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In  order  to increase  the  accuracy  of  the modified  cell  average  technique  (mCAT)  alongside  the  zeroth  and
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there.  The  solver  is conceptually  easy  to understand  and  straightforward  for programming.  A  number  of
analytically  solved  problems  were  simulated  by  incorporating  this  solver  into  the  mCAT  and  the  results
were  compared  with  the  previous  solver.  Significant  improvements  for different  phenomenon  especially
the  aggregation  related  systems  were  observed.
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egion of high amount of time

. Introduction

Solving the populations balance equation, because of its vast
pplications in diverse processes, has been a great concern for the
esearchers. This equation, even in its most simple form, has a
on-linear integro-differential nature that makes it intractable to
nalyze. Another difficulty in solving the PBE numerically is the
carcity of the number of analytically-solved problems that the
umerical methods refer to. Most methods are divided into these
ategories: the pivot-based techniques (Kumar and Ramkrishna,
996; Kostoglou, 2007; Kumar et al., 2008; Mostafaei et al., 2015),
he finite element and finite volume methods (John et al., 2009;
amar et al., 2009; Ahmeda et al., 2013; Kumar and Kumar, 2013),

he Monte Carlo simulation (Lin et al., 2002; Zhao et al., 2007; Xu
t al., 2014) and the method of moments (Marchisio and Fox, 2005;
uan et al., 2012; Bruns and Ezekoye, 2012; Santos et al., 2013). The
resent method is, in fact, a modified cell average technique which

s a fixed-pivot technique (FPT) and a continuation of the previous
ne (Mostafaei et al., 2015). The problem with most the PBE solvers
ncluding modified cell average technique (Mostafaei et al., 2015)
nd its predecessors cell average technique (Kumar et al., 2008)
nd FPT (Kumar and Ramkrishna, 1996) is that they cannot be used

n high amount of time, because modeling of this region is hard
ue to its unique condition. For example, in this region the degree
f aggregation is high and that is why a little deviance from the

∗ Corresponding author.
E-mail address: rajabi@ut.ac.ir (M.  Rajabi-Hamane).

ttp://dx.doi.org/10.1016/j.compchemeng.2016.10.012
098-1354/© 2016 Elsevier Ltd. All rights reserved.
actual values may  lead to a large error. In the previous work by the
authors, a supplemental solver (Fig. 1) was  introduced to increase
the accuracy of the method by stretching the grid in order to lower
the accumulation at the last point. This solver was successful for
moderately high amount time, but not in very high amount of time
where the accumulation at the lowest part of the internal coordi-
nation or the highest part, depending on the process, is high. A new
supplemental solver has been incorporated. The goal here is to pre-
dict the density function and its zeroth and first moments in this
region.

2. Mathematical description

2.1. The source of errors

A population balance equation (PBE) which describes a one-
dimensional batch type process reads (Ramkrishna, 2000):

∂f (x, t)
∂t

+ ∂(G(x, t)f (x, t))
∂x

= Bagg + Bbreak − Dagg − Dbreak, (1a)

where the birth and death terms are:

Bagg = 1
∫ x

ˇ(u, x − u, t)f (u, t)f (x − u, t) du, (1b)

2

0

Dagg = f (x, t)

∫ ∞

0

ˇ(u, x, t)f (u, t) du, (1c)

dx.doi.org/10.1016/j.compchemeng.2016.10.012
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
http://crossmark.crossref.org/dialog/?doi=10.1016/j.compchemeng.2016.10.012&domain=pdf
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d�1 =
∫ ∞

G(x, t)f (x, t) dx +
∫ ∞

x(Bagg + Bbreak) dx
Fig. 1. mCAT supplemental solver alg

break = 2

∫ ∞

0

S(u, t)f (u, t)P(x|u, t) du, (1d)

break = S(x, t)f (x, t). (1e)

he f is the density function, G is the growth term,  ̌ donates the
oagulation kernel, and functions S and P are the selection function
nd the breakage probability density function respectively.

The mCAT introduced in Mostafaei et al. (2015) is a sectional
ethod in which the whole internal dimension (here volume) is

ivided into a finite number of cells. Then, by concentrating all par-
icles of each cell in a specific point that is called the representative
oint, the density function can be rewritten like the following form:

 (x, t) =
np∑
i=1

Ni(t)ı(x − xi), (2)

here np is the number of cells, ı is the Dirac delta function, and
oth Ni and xi are the number of particles and representative point
f the ith cell respectively. By replacing above equation in pop-
lation balance equation in a specific cell and integrating it with
ounting on the migrating particles which come from and go to the
djacent cells, the discretized formula can be reached:

dNi

dt
= − �i

xi+1 − xi
+ Bi − Di, i = 1, (3a)

dNi

dt
= �i−1

xi − xi−1
− �i

xi+1 − xi
+ Bi − Di, i = 2, . . .,  np − 1 (3b)

dNi

dt
= �i−1

xi − xi−1
+ Bi − Di, i = np. (3c)

he Bi and Di are the birth rate and death rate of particles in the ith
ell and � is a variable called the kernel of the discretized equation.
his set of equations preserves the zeroth moment but for the first

oment to be preserved, an equality should be fulfilled:

np Bnp (t) +
np−1∑
i=1

(�i(t) + xiBi(t)) =
∫ ∞

0

x(Bagg + Bbreak) dx. (4)
 presented in Mostafaei et al. (2015).

However, as discussed in Mostafaei et al. (2015), for a fixed grid
(or a grid that is only dependent on the growth term), this equal-
ity cannot be maintained otherwise the density function in some
cells becomes negative which is meaningless and undesirable. So,
the source of errors lies in the incapability to keep both these
conditions. For the aggregation process, this shows itself as an accu-
mulation at last points. To alleviate this problem in the last paper, a
solver was  introduced such that if the condition would be fulfilled,
then based on preserving both moments, a new cell would be added
to the system of equations (Mostafaei et al., 2015) (Fig. 1). This
method was  effective for relatively high amount of times but in very
high times, the solver would lose its role. The error increases and
the solver becomes time-consuming. A solver that is based on the
mCAT method, very fast in terms of computation, much more pre-
cise than previous methods such as CAT, FPT or mCAT is proposed
here.

2.2. Processes

As mentioned above, the burden of computation of density func-
tion and preserving the first moment cannot just be put on the
kernel of the discretized equation (�), so the only factor aside from
the kernel that is part of the system of equation and has a direct
effect on the computation is the grid, specifically the representa-
tive points. Therefore, the focus of the new supplemental solver lies
in these points and their connection with the system of equations,
type of process and specially the first moment.

Consider a system with all major processes in it (Eq. (1)). Then,
by multiplying both sides by variable x and integrating it through
the whole part of internal dimension, the rate of first moment can
be achieved:
dt 0 0

−
∫ ∞

0

x(Dagg + Dbreak) dx (5)
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ubstituting Eq. (2) in Eq. (5), we obtain:

d�1

dt
=

np∑
i=1

Ni(t)G(xi, t) +
np∑
i=1

(V ′
i (t) + xiBi(t)) −

np∑
i=1

xiDi(t) (6)

here variable V ′
i

is called the difference volume flux and defined as:

′
i =
∫ xb,i+1

xb,i

(x − xi)(Bagg + Bbreak) dx. (7)

n Eq. (3), by multiplying each equation with its own representative
oint and then adding up all equations, the result would be:

np

i=1

xi
dNi

dt
= xnp Bnp (t) +

np−1∑
i=1

(�i(t) + xiBi(t)) −
np∑
i=1

xiDi(t). (8)

q. (8) can be rewritten as:

d(
∑np

i=1xiNi)

dt
−

np∑
i=1

Ni(t)
dxi

dt

= xnp Bnp (t) +
np−1∑
i=1

(�i(t) + xiBi(t)) −
np∑
i=1

xiDi(t). (9)

he first term at the left side of Eq. (9) is the rate of first moment.
o if this term would be kept at the right side, then the reorganized
quation would be:

d�1

dt
=

np∑
i=1

Ni(t)
dxi

dt
+ xnp Bnp (t) +

np−1∑
i=1

(�i(t) + xiBi(t)) −
np∑
i=1

xiDi(t)

(10)

y putting both the right sides of Eqs. (6) and (10) in one side and
mitting the unnecessary parts, we would have:

np

i=1

Ni(t)
[

dxi

dt
− G(xi, t)

]
+

np−1∑
i=1

�i =
np∑
i=1

V ′
i . (11)

his formula is the basis of the new supplemental solver which will
e discussed deeply in the following sections.

.2.1. Aggregation
A system consisting of the aggregation and growth processes is

iscussed here. From the previous work (Mostafaei et al., 2015):

i = V ′
i , i = 1, . . .,  np − 1. (12)

ased on this equation and Eq. (11) the following form would be
btained:
np

i=1

Ni(t)
[

dxi

dt
− G(xi, t)

]
= V ′

np
(13)

efore dismantling the above equation, two important rules should
e taken into account: first, in a system involving growth, the grid
oves with respect to the growth term (Kumar and Ramkrishna,

997) and second, a representative point must not leave its cell. At
he end:

dxi

dt
= G(xi, t), i = 1, . . .,  np − 1 (14a)

dxi

dt
= G(xi, t) +

V ′
np

Ni
, i = np. (14b)
hese equations should be solved alongside Eq. (3). But because Eq.
14a) has a simple form, usually it can be solved analytically and
hat is why the only problem that can be faced from the above equa-
ions is solving the complicated Eq. (14b). Because of this problem,
d Chemical Engineering 96 (2017) 33–41 35

a new simpler formula extracted from the previous equations is
introduced to lower the computational time and make the solver
much more simpler. In the new formula, the variable xnp has been
replaced by the first moment �1 and instead of solving a compli-
cated ODE (Eq. (14a)), two easier equations would be solved. By
putting the terms of Eq. (1) in Eq. (5) it can be confirmed that pro-
cesses like aggregation and breakage do not have any effect on the
first moment. In other words:

d�1

dt
=
∫ ∞

0

G(x, t)f (x, t) dx =
np∑
i=1

Ni(t)G(xi, t) (15)

also, it is known that:

�1 =
np∑
i=1

xiNi (16)

by rewriting this equation and consider xnp as an unknown variable,
then

xnp = �1 −
∑np−1

i=1 xiNi

Nnp

(17)

so by putting Eq. (17) in Eq. (15), the new equation would be as
follows:

d�1

dt
=

np−1∑
i=1

Ni(t)G(xi, t) + Nnp G

(
�1 −

∑np−1
i=1 xiNi

Nnp

, t

)
. (18)

Through both Eqs. (17) and (18), it can be seen that they are good
replacements for Eq. (14b).

In a special case where there is no growth (G(x, t) = 0) and the
aggregation is the only process present, the right side of Eq. (18)
disappears and the first moment remains constant. In this case, it is
needed to use Eq. (17) which is much more simpler than Eq. (14b).

2.2.2. Breakage
The overall trend for systems involving both the breakage and

growth processes is like before with a slight change which is related
to the kernel of the discretized equation:

np∑
i=1

Ni(t)
[

dxi

dt
− G(xi, t)

]
= V ′

1. (19)

The important rules that were mentioned in the last part can be
used here too. In other words:

dxi

dt
= G(xi, t), i = 2, . . .,  np (20a)

dxi

dt
= G(xi, t) + V ′

1
Ni

, i = 1. (20b)

Like the aggregation case, the complexity of Eq. (20b) might cause
problem. That is why it is recommended to replace this formula
with the following equations:

x1 = �1 −
∑np

i=2xiNi

N1
(21)

d�1

dt
=

np∑
i=2

Ni(t)G(xi, t) + N1G

(
�1 −

∑np

i=2xiNi

N1
, t

)
. (22)
Similarly, if there is no growth in the system„ then the first moment
remains constant. In this case just Eq. (21) can take the place of Eq.
(20b).
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F olvers of mCAT, CAT and the analytical solutions (�0(t)/�0(0) = 0.001, ˇ(x, y) = x + y).
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ilar methods, the one that has a lower computation time would be
preferred. Fig. 6 reveals that the new supplemental solver is con-
siderably faster than both the old one and CAT and in this factor
like the previous variables the new solver is preferable.
ig. 2. Aggregation: the number of particles calculated by both the supplemental s

. Results and discussion

Before analyzing the systems, an important note should be
ointed out. As it is known, the reason for adding the supplemental
olver to the method was to lower the error, which in case of the
ld solver (Fig. 1) was to add a new point to the grid by preserving
oth moments. But as time goes higher, the grid may  stretch and
he number of cells may  become high, In this case, the capability to
ompare the old solver to the new one gets lower. For this reason,
he two following equations have been introduced to make the old
olver look like the new one:

np,s,new =
∑
np,s≤i

Ni, (23a)

np,s,new =
∑
np,s≤i

(xiNi)/
∑
np,s≤i

Ni, (23b)

here the variable np,s is the number of cells at start of program-
ing which is the same as the new supplemental solver. For all
ethods, the half-geometric half-linear grid that was  developed in

he last paper (Mostafaei et al., 2015) has been put to use. The repre-
entative points, in case of the mCAT methods, have been achieved
ased on the formula that uses the initial particles size distribution

n the last paper and for the CAT, the arithmetic mean of boundary
oints in each cell.

.1. Aggregation

The system presented here is the sum kernel with an exponen-
ial function as the initial condition (see Appendix A). As it can be
een from Fig. 2, all methods predict the overall trend of the den-
ity function but the result of the new supplemental solver is much
ore precise than the other two solvers. This means the ability to

redict the number of particles at the last point has a direct impact
n the predictability of the method specially in very high amount
f time when the aggregation degree is very high.

The over-prediction of the density function by the old supple-
ental solver of mCAT and CAT leads to the overestimating of

he zeroth moment, unlike the new supplemental solver of mCAT
hich predicts this variable very well (Fig. 3). But for the first

oment, by looking at Fig. 4, a relatively high under-prediction can

e seen. This phenomenon is on the contrary of the zeroth moment
hich means for the first moment the effect of the last point is much
igher than other points and also its effect on the zeroth moment.
Fig. 3. Aggregation: the zeroth moment of the density function calculated by both
the  supplemental solvers of mCAT and CAT and their comparison with the analytical
solution.

For analyzing the extent of error, the variable Relative Accumu-
lated Error which is independent of number of points and process
type is used.

RAE(t) =
∑np

i=1|Ni(t) − Ni,real(t)|
�0,real(t)

. (24)

It is obvious from Fig. 5 that the error of the new supplemental
solver is much less than the old one and CAT, for instance the error
of the new solver at last point is about 1/30 of the old supple-
mental solver’s and 1/50 of the CAT. Another important fact that
should be taken into account too, is the computation time. For sim-
Fig. 4. Aggregation: the first moment of the density function calculated by both the
supplemental solvers of mCAT and CAT and their comparison with the analytical
solution.
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Fig. 5. Aggregation: the comparison of the relative accumulated error for both the
supplemental solvers of mCAT and CAT.
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Fig. 8. Aggregation and growth: the zeroth moment of the density function calcu-
lated by both the supplemental solvers of mCAT and CAT and their comparison with
the  analytical solution.

F
y

ig. 6. Aggregation: the comparison of the computation time for both the supple-
ental solvers of mCAT and CAT.

.2. Aggregation and growth

In this system a sum kernel as coagulation kernel, a linear func-
ion as growth term and an exponential function as initial condition
as been chosen (see Appendix A). Fig. 7 shows the density function
redicted by both the supplemental solvers of mCAT and CAT.

It can be concluded easily that the new supplemental solver is
ar better in predicting the density function than the old supple-

ental solver and CAT, however the two other techniques still can
redict the general trend of the function. As it is clear from Fig. 7,
he overestimation of the old supplemental solver and CAT leads to
ver-predicting of the zeroth moment, as shown in Fig. 8. However,

ased on Fig. 9, the results of the old supplemental solver and CAT
or the first moment tend to drop after a specified point, which is in
ounterpoint to the zeroth moment and a sign that the effect of the
ast point on the first moment is higher than the zeroth moment. As

ig. 7. Aggregation and growth: the number of particles calculated by both the supplem
)  = x + y and G(x, t) = x).
Fig. 9. Aggregation and growth: the first moment of the density function calculated
by  both the supplemental solvers of mCAT and CAT and their comparison with the
analytical solution.

it can be seen from both these figures, the prediction of the zeroth
and first moments by the new supplemental solver is very accurate.

The amount of error by each technique has been depicted in
Fig. 10. Similar to the aggregation case, the new supplemental
solver is by far the most accurate technique. The computation time
has been presented in Fig. 11. The results show that the old supple-
mental solver solves the equation much longer than the new one
but much faster than CAT.

3.3. Breakage
A system with a constant selection function and a step function
as initial condition is chosen for this study. The details of the prob-
lem has been discussed in Appendix A. Fig. 12 depicts the density
function of both the new and old supplemental solvers of mCAT and

ental solvers of mCAT, CAT and the analytical solutions (�0(t)/�0(0) = 0.001, ˇ(x,
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Fig. 10. Aggregation and growth: the comparison of the relative accumulated error
for  both the supplemental solvers of mCAT and CAT.
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Fig. 13. Breakage: the zeroth moment of the density function calculated by both
the supplemental solvers of mCAT and CAT and their comparison with the analytical
solution.

F
P

ig. 11. Aggregation and growth: the comparison of the computation time for both
he  supplemental solvers of mCAT and CAT.

AT and their comparison to the analytical solution. The results of
he old supplemental solver and CAT are very different from the
arlier cases in which the deviance of these two techniques from
nalytical solution was clear. Breakage is a linear process, a pro-
ess of degree one. That is why the accumulation at first point, V ′

1,
hich is the source of error is much smaller than its counterpart in

he aggregation process, V ′
np

.
Fig. 12 implies that there are no deviance of the old supplemen-

al solver and CAT from analytical for zeroth moment, as it is evident
rom Fig. 13. Despite of that, Fig. 14 reveals a divergence for the old
olver from analytical solution. In other words, not only the number
f particles are important but also the location of the representa-

ive points. Because a small difference in the first point has led to
his discrepancy for the first moment, unlike the new supplemental
olver which has a high level of accuracy in the prediction of these
ariables.

ig. 12. Breakage: the number of particles calculated by both the supplemental solve
(x|x′) = 1/x′).
Fig. 14. Breakage: the first moment of the density function calculated by both the
supplemental solvers of mCAT and CAT and their comparison with the analytical
solution.

The RAE of all techniques has been shown in Fig. 15. It can be
found out from this figure that all methods are very accurate how-
ever it is a little surprise that the precision of the new supplemental
solver is a little lower than the other two techniques. For computa-
tion time too, the old solver is slightly faster but Fig. 16 shows that
both the solvers like CAT are pretty fast. Unlike the other two cases,
the aggregation-only and the aggregation and growth, in break-
age the old supplemental solver of mCAT and CAT showed some
improvements and in some aspects they were a little better than the
new supplemental solver, however it showed a significant deviance
from the actual value of first moment, something that was not seen

in the new supplemental solver.

By looking closer at above figures, it can be found out the results
of the old supplemental solver and CAT are the very close to each

rs of mCAT, CAT and the analytical solution (�0(t)/�0(0) = 10,000, S(x, t) = 1 and
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Fig. 15. Breakage: the comparison of the relative accumulated error for both the
solvers.
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ig. 16. Breakage: the comparison of the computation time for both the solvers.

ther. The reason is, in this specific problem the representative
oints of both these techniques are the same and the difference
olume flux of each cell for these techniques are all equals and
egative. That is why the kernel of the discretized equations would
e same which would lead us to the same results.

. Conclusion

In this study, a new supplemental solver that takes the place
f its predecessor at last paper (Mostafaei et al., 2015) is devised.
he new solver enhanced the accuracy of the important elements
f mCAT method; density function and both the zeroth and first
oment at high amount time, something that was  never done

efore for this kind of method. The supplemental solver was based
n the mathematics of the mCAT method and the solver itself was
ependent on the type of the process. After that even a replace-
ent that acted as a shortcut was proposed based on the essence

f the solver and nature of processes like breakage and aggregation.
he results were surprising, because not only that in all cases the
ew supplemental solver was very accurate especially in systems

nvolving aggregation that the error of both the old supplemen-
al solver and CAT were very high but also the method was  much
aster. In other words in addition to increase the accuracy of mCAT

ethod with this new supplemental solver, the computation time
s lowered too.

ppendix A. Analytical solutions

Aggregation: With the sum kernel, ˇ(x, y) = x + y, and an expo-
ential initial condition, e−x, the analytical solution reported by
amkrishna (2000) is:

 (x, t) = e−t−2x+xe−t I1(2x
√

1 − e−t)√ −t
(A.1)
x 1 − e

here I1, is the first order modified Bessel function. There is no
nalytical solution for integral of Eq. (A.1). So, it is recommended
d Chemical Engineering 96 (2017) 33–41 39

to solve this integral numerically. The zeroth moment too can be
achieved from the PBE easily:

�0(t) = �0(0)e−t (A.2)

Aggregation and growth: Ramabhadran et al. (1976) solved the
combined aggregation and growth processes with G(x, t) = x and
ˇ(x, y) = x + y:

T = 1 − e−t (A.3a)

ω = exp
(

− T

1 − T

)
(A.3b)

f (x, t) = ω

x
√

1 − ω
exp(−x(1 − T)(2 − ω))I1(2x(1 − T)

√
1 − ω)

(A.3c)

there is no way to integrate Eq. (A.3c) analytically and should be
integrated numerically. However, the zeroth and first moments
from the population balance equation can be exploited:

�0(t) = �0(0)ω(t) = �0(0) exp(�1(0) − �1(0)et) (A.4a)

�1(t) = �1(0)
1 − T

= �1(0) exp(t) (A.4b)

Breakage: The initial condition is defined as the following:

f (x, 0) = 1
2

(1 − �(x − 2)) =

⎧⎨
⎩

1
2

if x ≤ 2,

0 if x > 2.

(A.5)

The analytical solution of a breakage system with S(x, t) = 1 and
P(x|x′) = 1

x′ based on (Ziff and McGrady, 1985) is:

f (x, t) = e−t f (x, 0) + e−t
√

8t

∫ ∞

0

I1(u
√

8t)f (xeu2
, 0) du. (A.6)

Integrating this equation to reach N(xi, t) is not an easy task even
for such a simple initial condition, however the following form can
be reached:

N(xi, t) = M(xb,i+1, t) − M(xb,i, t), (A.7)

where

M(x, t) = xe−t

2
+  e−t

√
8t

∫ √
ln(2/x)

0

I1(u
√

8t)

×
(

x

2
− e−u2

)
du, (x ≤ 2).  (A.8)

Unfortunately this equation can not be solved analytically too.
Nonetheless, it can be easily confirmed that:

�0(t) = �0(0) exp(t). (A.9)

Appendix B. A review to the CAT and mCAT

The formulation of both the CAT (Kumar et al., 2008) and mCAT
(Mostafaei et al., 2015) has been presented in this appendix. As it
is known the birth and death term alongside the difference volume
flux are defined as:

Bi =
∫ xb,i+1

xb,i

(Bagg + Bbreak) dx. (B.1)

Di =
∫ xb,i+1

(Dagg + Dbreak) dx. (B.2)
V ′
i =
∫ xb,i+1

xb,i

(x − xi)(Bagg + Bbreak) dx. (B.3)
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ow these term would be achieved for the aggregation and break-
ge processes.

Aggregation: By putting Eq. (2) in above equations for the case,
he terms would be:

i =
i∑

j=1

j∑
k=1

1
2

(1 + ne(j, k))(H(xj + xk − xb,i)

− H(xj + xk − xb,i+1))ˇjk(t)NjNk, (B.4a)

i = Ni

np∑
j=1

ˇij(t)Nj, (B.4b)

′
i =

i∑
j=1

j∑
k=1

1
2

(1 + ne(j, k))(H(xj + xk − xb,i) − H(xj + xk − xb,i+1))

× (xj + xk − xb,i)ˇjk(t)NjNk (B.4c)

where ne and H are the not equal and the Heaviside functions
espectively as below:

e(a, b) =
{

0 if a = b

1 if a /= b

(x) =

⎧⎪⎪⎨
⎪⎪⎩

0 if x < 0
1
2

if x = 0

1 if x > 0

he kernel of discretized equation for both the CAT and mCAT is:

i = V ′
i H

(
V ′

i

Bi

)
+ V ′

i+1H

(
−

V ′
i+1

Bi+1

)
, for the CAT (B.5a)

i = V ′
i , for the mCAT. (B.5b)

Breakage: By repeating the operation, this time for the breakage
rocess, we have:

i = 2S(xi, t)Ni

∫ xi

xb,i

P(x|xi, t) dx

+
np∑

k=i+1

2S(xk, t)Nk

∫ xb,i+1

xb,i

P(x|xk, t) dx, (B.6a)

i = S(xi, t)Ni, (B.6b)

′
i = 2S(xi, t)Ni

∫ xi

xb,i

(x − xi)P(x|xi, t) dx

+
np∑

k=i+1

2S(xk, t)Nk

∫ xb,i+1

xb,i

(x − xk)P(x|xk, t) dx. (B.6c)

The kernel for the breakage is:

i = V ′
i H

(
V ′

i

Bi

)
+ V ′

i+1H

(
−

V ′
i+1

Bi+1

)
, for the CAT (B.7a)

i = V ′
i+1, for the mCAT. (B.7b)
Aggregation and breakage: The terms can be achieved from the
bove equations:

i = Bi,agg + Bi,break, (B.8a)
d Chemical Engineering 96 (2017) 33–41

Di = Di,agg + Di,break, (B.8b)

V ′
i = V ′

i,agg + V ′
i,break. (B.8c)

And the kernel:

�i = V ′
i H

(
V ′

i

Bi

)
+ V ′

i+1H

(
−

V ′
i+1

Bi+1

)
, for the CAT (B.9a)

�i = V ′
i+1,break + V ′

i,agg, for the mCAT. (B.9b)

Systems involving growth: For systems involving the growth pro-
cess, the following solution that has been applied in both the CAT
(Kumar et al., 2008) and the FPT (Kumar and Ramkrishna, 1997)
methods is implemented along with above equations:

dxb,i

dt
= G(xb,i, t). (B.10)

By combining this set of equations and the equations of representa-
tive points in the main text, the growth term will be appeared in the
system of equations. As it can be seen, the growth term only inter-
feres with grid and so the density function is indirectly dependent
on the growth process.

Appendix C. Breakage and aggregation systems

Because of the complexity of the systems including both the
breakage and aggregation, there is no analytical solution in the liter-
ature except on a special example (McCoy and Madras, 2003) which
in it the PSD would reach a steady state after some time, thus makes
it unfitted for our study which the continuous accumulation at the
boundary representative points (the last point for the aggregation
and the first point for the breakage) plays an important role in high
amount of times. However for readers to not go through further
problems, this coupled phenomena has been sufficiently described
here.

Solving these kind of systems by the new supplemental solver
is quite unique because of the equation they produce:

np∑
i=1

Ni(t)
[

dxi

dt
− G(xi, t)

]
= V ′

np,agg + V ′
1,break. (C.1)

Unlike the previous sections, we cannot consider just one of the
aforementioned representative points for the new supplemental
solver, because based on the above equation there is no guarantee
that this representative point would stay at its cell. That is why a
better solution is to consider both the representative points in the
formulation of the new solver. In other words:

dxi

dt
= G(xi, t) +

V ′
1,break

Ni
, i = 1 (C.2a)

dxi

dt
= G(xi, t), i = 2, . . .,  np − 1 (C.2b)

dxi

dt
= G(xi, t) +

V ′
np,agg

Ni
, i = np (C.2c)

If there is an inclination to use the alternative for the new supple-
mental solver that applies the first moment, it should be noticed
that the first moment can only replace just one of the aforemen-
tioned points. In other words, Eq. (18) in place of Eq. (C.2c) or Eq.
(22) instead of Eq. (C.2a).
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