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The  knapsack  decomposition  algorithm  (KDA)  (Christian  and  Cremaschi,  2015)  decomposes  the  R&D
pipeline  management  problem  into  a series  of knapsack  problems,  which  are  solved  along  the plan-
ning  horizon.  It yields  tight  feasible  solutions,  and improves  the  solution  times  by  several  orders  of
magnitude  for  large  instances.  This paper  investigates  the  impact  of  problem  parameters  and  size,  and
KDA decision  rules on KDA  solution  quality  and  time.  The  decision  rules  are  (1)  timing  of  new  knap-
sack  problem  generations,  and  (2)  formulation  of  the  resource  constraints  in  knapsack  problems.  The
ultistage stochastic programming
harmaceutical R&D pipeline management
ecision dependent uncertainty
ndogenous uncertainty
napsack decomposition algorithm

results  revealed  that the  KDA  decision  trees  were  insensitive  to  problem  parameters,  and  the  KDA
solution  times  grew  super-linearly  with  linear  increases  in  the  length  of  the planning  horizon  and  the
number  of products.  The  results  suggest  that  the  KDA  where  knapsack  problems  are  generated  after
each  realization  with the  original  resource  constraint  yields  the  most  accurate  solutions  in the  quickest
time.

©  2016  Elsevier  Ltd.  All  rights  reserved.
. Introduction

For new pharmaceutical drug development, the time from dis-
overy to market of a potential molecule has increased considerably
ver the last decade. This increase leaves limited patent protec-
ion for pharmaceutical companies before the generic versions of
he drug become available in the market, and places consider-
ble pressure on them to boost the efficiency of their research and
evelopment (R&D) pipeline. One way to increase the efficiency is

mproved management of the R&D pipeline through the scheduling
f clinical trials.

The pharmaceutical R&D pipeline planning problem can be char-
cterized by a set of potential new product development projects
ith a set of resources and expenditures associated with each prod-
ct. In order for the products to reach the market, a series of clinical
rials must be completed. Trials are completed in a stage-gate pro-
ess where if a product fails to successfully complete a stage, it

rops from the portfolio. In this problem, the returns, the necessary
esources, and whether or not each product will reach market are
ot known with certainty when the investments are made. Deci-
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sions as to which products to invest in and when to invest in each
product are made in order to maximize the returns (Subramanian
et al., 2001).

The R&D pipeline management problem is difficult to solve due
to the endogenous nature of one of its uncertain parameters, the
outcome of the clinical trials. To observe the realizations of this
uncertain parameter, the decision to invest in a clinical trial must
first occur. This type of uncertainty is called endogenous uncer-
tainty with exogenous realizations, for which the outcome set does
not change based on the decisions but the times of realizations
depend on the decisions (Mercier and Hentenryck, 2008).

Several methods to solve the pharmaceutical R&D pipeline
planning problem have been presented in literature. These meth-
ods include both simulation and mathematical programming
approaches. In this work, we consider the multistage stochastic
programming (MSSP) formulation of the problem developed orig-
inally by Colvin and Maravelias (2008). This formulation quickly
becomes computationally intractable as the size of the problem
increases. Most recent work for solving MSSPs with endogenous
uncertainty focuses on developing decomposition strategies and
heuristic approaches that reduce the computational expense for
handling large-scale problems. In what follows, we provide a brief

overview of these approximate solution approaches.

Goel and Grossmann (2004) obtained an approximate solution
to the problem by searching a sub-space of the feasible region.

dx.doi.org/10.1016/j.compchemeng.2016.10.011
http://www.sciencedirect.com/science/journal/00981354
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Nomenclature

Set
i ∈ I The set of items generated by the knapsack algo-

rithm
k ∈ Kt The set of knapsack problems at time t

Parameters
Wi,r The item weight of item i for resource r
Vi,t The item value of item i at time t
Ei,t,k Represents the ability to pack item i at time t in

knapsack problem k
Pr The penalty for exceeding resource r
Cr The number of resources r currently invested

Variables
xi The binary decision to pack item i
yr A binary variable indicating whether a penalty is

being accessed for resource r
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zi,r A binary linearization variable

he offshore oil infrastructure planning problem was  solved to
etermine the optimal placement of oil production platforms by
inimizing the risk of obtaining a negative net present value.
ncertainty was considered in the production of each well. The

ub-space for the approach is defined by removing the scenario
ependency of investment decisions for uncertain fields, yielding a
ore constrained version of the original problem. Then, this con-

trained version is solved to optimality. The results revealed that
he solutions obtained to the constrained formulation were signif-
cant improvements compared to the deterministic solutions.

Mercier (2009) proposed a multi-step anticipatory algorithm,
hich uses a sample average approximation to generate a Markov
ecision Process (MDP). The MDP  is then solved, and the greedy

olution is returned. The algorithm was tested using 12 instances of
he pharmaceutical R&D pipeline management problem. The qual-
ty of the solution obtained by the algorithm were 10% better than
he dynamic programming equivalent for all instances. The authors
oncluded that the algorithm was, nevertheless, computationally
xpensive when applied to the pharmaceutical R&D pipeline man-
gement problems.

Colvin and Maravelias (2009) explored a rolling-horizon
pproximation approach, which yielded tight feasible solutions for
arge instances of the problem. The authors divided the planning
orizon into a finite number of subsets. A relaxed MSSP is generated

or the first subset by removing all inequality non-anticipativity
onstraints (NACs) for the stages beyond the first subset. The solu-
ion of the relaxed MSSP is implemented for the first subset, and
elated uncertainty is realized. Then, the process is repeated for
ach subset until the end of the planning horizon is reached. The
uthors were able to successfully solve cases with more than 1000
cenarios.

Solak et al. (2010) developed a sample average approximation
SAA) algorithm to solve the R&D project portfolio optimization
roblem. Smaller MSSPs are generated using a sample of the full
cenario set. The upper-bound of these MSSPs are obtained by
sing their Lagrangean duals and updating the multipliers with a
odified sub-gradient optimization algorithm. The lower bound

s generated via a heuristic that searches for a feasible solution in
he vicinity of the Lagrangean dual solutions obtained during each

teration of the sub-gradient algorithm. The authors suggest that

 branch-and-bound algorithm may  be used to close the duality
ap if necessary. The solutions of the MSSPs are called candidate
olutions. The quality of the first-stage decisions of the candidate
hemical Engineering 96 (2017) 18–32 19

solutions are evaluated using a larger sample set of the scenar-
ios. By repeating the process, the variance of the results is used to
find a bound on the true solution. Computational studies included
two technology portfolio examples where five and 10 projects were
considered. The results revealed that the algorithm was able to gen-
erate solutions with an estimated optimality gap of around two
percent.

Tarhan et al. (2013) presented an approach that improves upper
bounds for solving non-convex MINLPs with decision-dependent
uncertainty. The algorithm solves the Lagrangean relaxation of
the dual problem where NACs have been removed to obtain the
upper bound. The lower bound is generated by locating a feasible
solution using a rolling-horizon approach. The authors solved two
non-convex non-linear problems. The first problem is a version of
the process synthesis problem presented in Goel and Grossmann
(2006). The second is an offshore oil field planning problem orig-
inally presented in Tarhan et al. (2008). The authors concluded
that using the outer approximation solution to upper bound the
intermediate problems generated during the branch-and-bound
algorithm rather than solving them to optimality reduced the
solution time of both problems by 60%, and the solutions of the
intermediate problems remained within 0.01% of their optimal
solutions.

Gupta and Grossmann (2014) improved a Lagrangean decom-
position scheme by incorporating a scenario grouping strategy. The
scenario grouping strategy allows partial decomposition of the full
space model. Groups of scenarios were generated based on dif-
ferences in the outcomes of uncertain parameters. The grouping
strategy was applied to problems previously solved by Goel and
Grossmann (2004) and Goel and Grossmann (2006). The authors
concluded that their scenario grouping strategy provided a tight
bound on the solution in fewer iterations.

Previously, we  presented a Knapsack Decomposition Algorithm
(KDA) that decomposes a MSSP of pharmaceutical R&D pipeline
management problem into a series of knapsack problems (Christian
and Cremaschi, 2015). Knapsack problems are generated and solved
at the first time period and at time periods where there are no
active trials until the end of the planning horizon is reached. The
KDA solution yields a feasible decision tree, i.e., an implementable
clinical trial schedule, for the original MSSP. We  used KDA to solve
problems with two, three, five, six, seven, and ten products. The
number of scenarios in each of these problems ranged from nine
to over one million. These computational studies revealed that the
expected net present values (ENPVs) for the decision trees gen-
erated by KDA ranged between 0% and 6% of the ENPV of the true
solutions, and the KDA yielded these solutions up to 59 times faster
than solving the deterministic equivalent of the MSSP formulation
using state-of-the-art commercial solvers.

The quality of the KDA solution may  depend on the parame-
ters of the R&D pipeline problem, and KDA specific decision rules,
i.e., (1) which time period knapsack problems are generated, and
(2) how overscheduling in the pipeline is handled. In this paper,
we computationally investigate how the solution time and quality
of KDA solution change with changes in the size and parameters
of the R&D pipeline problem and KDA specific decision rules. The
effect of the former is investigated via sensitivity analysis where
the problem size and the parameters are perturbed around their
original values. For the latter, we present several variations of the
KDA obtained by modifying the decision rules, and discuss their
impact on the solution times and qualities. Section 2 briefly out-
lines the original KDA. Details of the sensitivity study is discussed
in Section 3. In Section 4, the variations to the KDA decision rules

are introduced. Section 5 outlines the computational studies, and
Section 6 presents and discusses the results. Section 7 summarizes
our findings and discusses future directions.
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Fig. 1. Pseudocode for the KDA algorithm.

. The knapsack decomposition algorithm (KDA)

The KDA was developed to solve the pharmaceutical R&D
ipeline management problem. The pharmaceutical R&D pipeline
anagement problem is characterized by the following,
Sets Description

d C-- D A set of new drug development projects
j  C-- J A set of clinical trial
r  C-- R A set of resources
t  C-- T A set of discrete time periods

Parameters
�L Coefficient for loss of active patent life
�D Coefficient for loss of products idle in the pipeline
Revmax

d
The maximum revenue of product d for completing all trials

�d,j,r The resource r requirements for trial j of product d
cd,j The monetary cost of starting trial j for product d
�d,j The number of time periods required to complete trial j for

product d
�max

r The maximum number of resource r available

Each new drug development project is required to complete
ach of the clinical trials. If a drug-development project successfully
ompletes the entire set of clinical trials the revenue associated
ith that drug is realized. Decisions are made as to which trial(s)

o start for which drug(s) at which time period(s). There are limited
esources available for investment at each time period. The objec-
ive is to maximize the ENPV of the clinical trial plan. Penalties are
ncurred for drugs remaining idle in the pipeline and for loss of
ctive patent life. The MSSP model of this planning problem can be
ound in Colvin and Maravelias (2008).

The KDA was developed as a heuristic approach for finding
easible solutions for MSSPs using a series of knapsack problems.
napsack problems are generated along the planning horizon to

orm the heuristic solution. Pseudocode for the algorithm can be
een in Fig. 1. The first step in the KDA is to generate a set of
otential items, i ∈ I. Items in the KDA are generated based on the
ecision variable(s). For the pharmaceutical R&D pipeline manage-
ent problem, the decision variable is when to start each clinical

rial. Here we represent each product clinical-trial pair as an item.
At time zero, the weight and value of each item is calculated

Step 3). These values are calculated using Eqs. (1) and (2). The
eight of each item, Wi,r , is simply the resources required to start

he corresponding product trial. Each item will have |R| weights,
ne for each resource.
i,r = �d(i),j(i),r ∀r ∈ R (1)

he value of an item, Vi,t , is calculated based on the expected gains
f starting a clinical trial. In this case, we have used the expected
evenue of the product deducting penalties for loss of active patent
hemical Engineering 96 (2017) 18–32

life. The revenue is weighted by the probability that the product
will complete the current and remaining clinical trials.

Vi,t =

⎡
⎣Revmax

d(i) − �d(i)
L

⎛
⎝t +

∑
j′≥j(i)

�d(i),j′ + 1

⎞
⎠
⎤
⎦ ∏

j′≥j(i)

pd(i),j (2)

The value for Ei,t,0 is calculated using a series of logical tests (Step 3).
Ei,t,0 takes a value of one if an item has not been packed in a previous
knapsack and if the item corresponds to the first trial of a product
(i.e. j (i) = 1). Similarly, Ei,t,0 will take a value of one if the items
corresponding to the pre-requisite trials have been packed and the
uncertainty in each of the pre-requisite trials has been revealed. At
t = 0, it is often the case that the only items corresponding to the
first trial of each product have values of Ei,t,0 equal to one.

The algorithm continues by generating an initial knapsack prob-
lem (Step 4). The formulation for the knapsack can be seen in Eq.
(3).

max
∑
i ∈ I

Vi,txi (3)

∑
i ∈ I

Wi,rxi ≤ Wr
max∀r ∈ R

∑
i

[∑
j′≥j(i)

�d(i),j′,r �d(i),j′

]
xi ≤ max

{∑
j′>j(i)

�d(i),j′ + 1∀is.t.Ei,t,k = 1

}
�r

max∀r ∈ R

xi ≤ Ei,t,k

xi ∈
{

0, 1
}

Much like the general knapsack formulation the objective of
the knapsack problem in the KDA is to maximize the value of
items packed (xi = 1) in the knapsack constrained by a maximum
weight limit. Unlike the general knapsack problem, the KDA knap-
sack problem introduces a resource-overscheduling constraint. The
resource over-scheduling constraint prevents items from being
packed in the knapsack if there are not enough resources available
to pack the items corresponding to subsequent trials continuously.
This constraint is aimed at reducing the number of products left idle
in the development pipeline. The solution of the knapsack problem
is used to determine the value of the decision variables at the time
the knapsack was  solved. For the pharmaceutical R&D problem at
t = 0, items selected by the knapsack (xi = 1) correspond to the
decision variable at t = 0 which take the value of one.

Steps 5 and 6 determine when and how many new knapsack
problems to generate. New knapsack problems are generated after
all uncertainty associated with items selected in the initial knap-
sack problem has been realized. In the case of the pharmaceutical
R&D pipeline management problem, new knapsacks are generated
after the outcomes of all started clinical trials are realized. The num-
ber of new knapsack problems generated is based on the number
of items packed in the initial knapsack problem. A new knapsack
problem is generated for each possible realization of uncertainty.
For instance, if two  items were selected in the knapsack and each
item had three possible outcomes, 23 knapsack problems would be
generated. In the pharmaceutical R&D pipeline management prob-
lem, the outcomes of uncertainty are either pass or fail. Therefore,
for each item packed in the knapsack there are two possible real-
izations. The total number of new knapsack problems generated is

equal to 2|˛|, where  ̨ is the number of items packed in the knap-
sack. Step 7 adds the newly generated knapsack problems to the set
of knapsack problems at time t + �, Kt+� . The time is incremented
by one (t := t + 1, Step 8), and knapsack problems in Kt are solved.
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or each problem in Kt new values for Wi,r, Vi,t, and Ei,t,k are calcu-
ated (Step 12). Ei,t,k is calculated using the knowledge of realized
alues of uncertainty and previously selected items to employ the
ame logic applied to Ei,t,0. Values calculated in Step 12 are used
ith the knapsack formulation shown in Eq. (3). The items selected

n the knapsack represent the decision variables at time t which
ake the value of one in scenarios where the realizations match
he knapsack problem k. For each knapsack problem solved in Kt ,
|˛| new knapsacks are generated at time � + t (Steps 14–16). After
ll knapsack problems in Kt are solved, the time is incremented
gain. The process of solving and generating new knapsack prob-
ems continues until the end of the planning horizon is reached.
he detailed description of the KDA is presented in Christian and
remaschi (2015).

. Evaluating sensitivity of the KDA solution quality and
ime to original problem parameter values and size

The parameters of the pharmaceutical R&D pipeline manage-
ent problem are the lengths and the costs of the clinical trials,

he revenue realized after successful completion of all clinical trials,
nd the penalty factors associated with delay of products already
n the pipeline and loss of patent life. We  test the sensitivity of
he KDA solution to the values of these parameters by perturbing
ach one individually. The size of the R&D pipeline management
roblems changes with the number of trials, the length of the plan-
ing horizon, and the number of resources. To study the impact
f problem size on the KDA performance, we constructed a set of
roblems where the number of products, the number of trials, the

ength of the planning horizon, and the number of resources are
aried independently.

. Variants of KDA decision rules

The KDA has two decision rules. The first one determines when
ew knapsack problems are generated. Our previous computa-
ional studies revealed that although the KDA yielded tight feasible
olutions (within three percent), for some problems, particularly
he ones with large differences in clinical trial lengths, it generated
ery sparse decision trees. For these problems, the quality of the
olution was worse (closer to three percent). We  hypothesize that
he sparse decision tree may  be a result of the algorithm requiring
hat all started trials must be completed prior to starting new trials.

The second decision rule specifies the constraint that aims to
revent products from being idle in the pipeline. We  refer to this
onstraint as the resource overscheduling constraint. The origi-
al KDA formulation introduces a hard resource overscheduling
onstraint, which ensures that for every item packed there will
e sufficient number of resources to continue subsequent trials.
ecause this constraint does not consider the possibility that a
roduct may  fail a trial, it may  significantly limit future investments

n additional products, and hence, may  lead to sparse decisions
rees.

.1. Sub-problem generation rules

We  propose two additional approaches for determining when
napsack problems are generated: (1) at Each Time Period (ETP),
nd (2) After Each Realization (AER). The ETP generates knapsack
roblems at each time period where there are idle resources and
linical trials that can be started. When a realization occurs, i.e.,
ne or more of the started clinical trials are completed, new knap-
ack problems are generated for each realized value. If any items

emain in the knapsack (trials that have been started but not yet
ompleted), they are passed as already selected items to each newly
enerated knapsack problem. Fig. 2 graphically depicts the knap-
ack generation schemes using ETP (Fig. 2(a)), the original KDA
Fig. 2. The knapsack generation schemes, (a) ETP, (b) Original KDA, (c) AER.

(Fig. 2(b)), and AER (Fig. 2(c)) for three time periods. The solution
of the first knapsack problem is to pack items 1 and 2 (Fig. 2, t = 0).
The trial associated with item 1 is completed at t = 1, while the trial
of item 2 is completed at t = 3. The ETP approach generates two
new knapsack problems at t = 1 (Fig. 2(a)). Each knapsack problem
corresponds to a unique realization associated with item 1. The
binary associated with item 2 is set equal to one (x2 = 1) in both
knapsack problems. For this example, we assume that there are not
sufficient resources to add any more items at t = 1. At t = 2, there
are no realizations, i.e., the trial associated with item 2 is not com-
pleted. The ETP algorithm generates and solves two new knapsack
problems. In each knapsack problem, the value of x2 is set equal
to one. The solutions of these knapsack problems are different. In
one case, the algorithm selects item 6. In the other case, the algo-
rithm does not have sufficient resources to add another item. The
uncertainty realization associated with item 2 occurs at t = 3. As
can be seen in Fig. 2(a), the KDA generates two  knapsack problems
for each branch. In the case where item 6 is selected, the knapsack
problem corresponding to one realization is able to add item 5. The
other knapsack problem does not have sufficient resources to add

another item.

Fig. 2(b) depicts the knapsack problem generation rule used in
the original KDA. The solution at t = 0 selects items 1 and 2. The
original KDA does not generate any knapsack problems until the
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linical trials associated with both items are completed, i.e., until
 = 3 (Fig. 2(b)). At t = 3, the original KDA generates and solves
our new knapsack problems, each one corresponding to one of the
ossible outcomes of uncertainty.

The AER approach (Fig. 2(c)) generates and solves knapsack
roblems when any of the selected trials is completed, i.e., the
utcome of an uncertain parameter is realized. Unlike the origi-
al KDA, if more than one item were packed in the knapsack, the
ER approach generates new knapsack problems at the completion
f the shortest clinical trial. Similar to ETP approach, if there are any
emaining items in the knapsack (trials that have been started but
ot yet completed), they are passed as already selected items to
ach newly generated knapsack problem.

Fig. 2(c) shows that the solution of the first knapsack prob-
em is the selection of items 1 and 2 at t = 0. The uncertainty
ssociated with item 1 is realized at t = 1. The AER approach gen-
rates new knapsack problems for each realization. Similar to the
TP approach, the AER approach finds that there are insufficient
esources to start any new trials. Unlike the ETP approach, the AER
pproach does not generate new knapsack problems unless there
s a realization. Therefore, no knapsack problems is generated at

 = 2. At t = 3, four knapsack problems are generated, two  for each
ranch. The two knapsack problems in each branch represent the
ossible realizations of uncertainty associated with item 2. Solu-
ions for each of the four knapsack problems at t = 3 are shown in
ig. 2(c).

.2. Formulations for resource overscheduling constraint

The original resource overscheduling constraint in the KDA does
ot allow for items (drug-trial pairs) to be packed as part of the
olution if there will not be enough resources to pack items cor-
esponding to subsequent trials of the same drug. For instance,
ssume that two potential drugs need to complete two trials
efore reaching market, the duration of all trials are equal, and the
esource costs are 10 and 30 for drug A trial one and trial two, 20
or both trials for drug B, and the maximum amount of available
esources is 30. The first trials of products A and B cannot be started
t the same time because the number of resources needed to start
he second trials exceeds the maximum amount. This constraint
eads to a conservative solution because it does not consider the
ossibility of a drug failing to successfully complete the selected
rial or the subsequent trials when trying to anticipate the future
esource requirements.

We  present two new formulations for avoiding possible
esource overscheduling. The first one modifies the knapsack prob-
em formulation by adding a penalty term to the objective function
ather than an additional constraint. The penalty term grows pro-
ortional to the number of resources that exceed the number of
vailable resources, and is shown in Eq. (4).

r = �
∑

i

[∑
j≥j(i)

�d(i),j,r �d(i),j

]
xi −

(
max

{∑
j′>j(i)

�d(i),j′ + 1∀i ∈ E

}
�r

max − Cr

)

(4)

The amount each resource in excess affects the penalty, Pr ,
s given by a rate constant �. Penalties are only incurred if the
umber of resources used exceeds the number of resources avail-
ble. The number of resources in excess of the available resources
s calculated by subtracting the maximum resources available⎧ ⎫ ⎞
max
⎨
⎩
∑
j′>j(i)

�d(i),j′ + 1∀i ∈ E
⎬
⎭�r

max⎠ from the resources allo-

ated for items that have been previously packed in the knapsack
hemical Engineering 96 (2017) 18–32

but have not been completed, Cr , and resources allocated for newly
packed items. To enforce that the penalty is only imposed when the
number of resources is exceeded, we introduce a disjunction with a
binary variable, yr , which is one when the number of resources used
exceeds the number of resources available and zero, otherwise. The
disjunction can be seen in Eq. (5).[

yr

Penalty = Pr

]
∨
[

¬yr

Penalty = 0

]
(5)

We use big-M formulation to convert this disjunction. The objec-
tive function with the penalty term is given in Eq. (6).

max

{∑
i

Vixi −
∑

r

Pryr

}
(6)

Expanding the penalty term in Eq. (6), we  can see that first
term in Eq. (7) is non-linear due to the multiplication of the binary
variables yr and xi.

∑
r

Pryr =
∑

r

�
∑

i

⎡
⎣∑

j≥j(i)

�d(i),j,r�d(i),j

⎤
⎦ xiyr

−

⎛
⎝max

⎧⎨
⎩
∑
j′>j(i)

�d(i),j′ +1∀i ∈ E
}

�r
max + Cr

)
yr

(7)

We  linearize this term by introducing a new binary variable z
where zi,r = Iti · yrand adding the following constraints, Eq. (8), to
the knapsack problems.

zi,r ≤ xi∀i, r

zi,r ≤ yr∀i, r

zi,r ≥ yr + xi − 1∀i, r (8)

The second formulation replaces the original resource over-
scheduling constraint with a probabilistic constraint, which uses
the probability that resources will be needed. The probability that
a drug will require resources for a given trial is equivalent to the
probability that the drug passes the previous trial(s). The proba-
bility that a drug passes a set of trials can be calculated using the
probabilities of success in each individual trial. The probability of
a series of events occurring, Pr,  where the outcome of each event
(e1, e2, . . .,  eN) is assumed to be independent, can be written as

Pr = P (e1∪ e2∪ . . .eN) =
∏

n

P (eN). Assuming the trial outcomes are

independent, the probability that a drug will pass a set of trials is
calculated as the geometric sum of the probability of each trial’s
success. Eq. (9). shows the modified constraint.

∑
i

[
�d(i),j(i),r · �d(i),j(i) +

∑
j>j(i)

[ ∏
j>j′>j(i)

P(j’ = Pass)

]
�d(i),j,r · �d(i),j

]

≤ max

{∑
j′>j(i)

�d(i),j′ + 1∀i ∈ E

}
�r

max∀r ∈ R (9)
Notice that the new constraint is a relaxation of the original
constraint. Resources for the current trial are allocated(�d(i),j(i),r ·
�d(i),j(i)) but the resources for subsequent trials are weighted using



 and Chemical Engineering 96 (2017) 18–32 23

t⎛
⎝

5

o
t
p
i
t
p
a
i
s
u
c
r
i
c
c
t
z
p
i

t
K
b
T
f
(
u
a
c
s
p
r
e
f
i

o
c
n
o
s
s
t
w
u
f

(
o
p

q
s
t
M
t
s

Table 1
Problem specifications used for studying the sensitivity of KDA solution time to
problem size.

Variation Variation Value

Number of Trials +1
+2
+3

Number of Resources +1
+2
+3

Length of Planning Horizon −1
+1
+2
+3

Trial Cost −25%
−10%
+10%
+25%

Active Patent Life Loss Penalty −25%
−10%
+10%
+25%

Idle Product Penalty −25%
−10%
+10%
+25%

Trial Duration +1
+2

Percent Unconstrained 0%
B. Christian, S. Cremaschi / Computers

he probability that all of the previous trials are successful, i.e.,∑
j>j(i)

⎡
⎣ ∏

j>j′>j(i)

P(j’ = Pass)

⎤
⎦�d(i),j,r · �d(i),j

⎞
⎠.

. Computational studies

The first set of computational studies investigates the impact
f the problem parameters on the KDA performance. The parame-
ers are the trial cost, the revenue for successful completion of the
ipeline, the penalties for loss of patent life and non-investment

n products currently in the pipeline, the length of each clinical
rial, and the overall resource availability. We  use the original two-
roduct (2 2 5 2), three-product (3 3 12 2), four-product (4 3 6 2),
nd five-product (5 3 6 2) cases as base case problems. File names
n this work provide descriptive information about the problem
olved. For instance, the file name 4 3 6 2 represent the four prod-
ct base case problem. This problem has four products, three
linical trials, a six time-period planning horizon, and two limiting
esources. The base case problems we consider in this work range
n number of products from two to five. In all but the two-product
ase, three trials are required to be completed. The two-product
ase requires the completion of only two clinical trial. Each case has
wo resources constraining investment decisions. Planning hori-
ons in each base case range from five time periods and 12 time
eriods. The parameters for each of the base case problems is given

n Appendix A.
The values of the cost, revenue, and penalty parameters are per-

urbed by ±10% and ±25% for each case. The sensitivity of the
DA performance to the lengths of the clinical trials is studied
y extending the length of each trial one and two  time periods.
o study the impact of overall resource availability, we construct
our problems with varying degrees of overall resource constraints:
1) unconstrained, (2) 40 percent unconstrained, (3), 70 percent
nconstrained, and (4) fully constrained. The base case problems
re assumed to be fully resource constrained. The unconstrained
ase provides enough resources for each product to be completed
imultaneously without delay. The number of resources in the 40
ercent unconstrained case is calculated by increasing the available
esources of the fully constrained case by 40 percent of the differ-
nce between the available resources in the unconstrained and the
ully constrained cases. In the 70 percent unconstrained case, this
ncrease is 70%.

The second set of computational studies investigates the effect
f the problem size on the KDA solution times. For each of our base
ase problems, we increase the size of the problem by increasing the
umber of trials, the length of the planning horizon, and the number
f resources. Table 2 summarizes the considered variations. A plus
ign (+) in Table 1 refers to an increase in magnitude, and a minus
ign (−) refers to a decrease. The number next to the sign indicates
he magnitude of the increase/decrease. A total of 124 problems
ere developed to test the sensitivity of the KDA to parameter val-
es and problem size. Information for a specific problem is available
rom the authors by request.

We  tested the performance of knapsack generation approaches
ETP and AER) using the six base case problems. The resource
verscheduling constraints were analyzed using the original six
roblems.

Performance of the KDA is evaluated based on its solution
uality and computational time requirements. The quality of the
olution is assessed by comparing the KDA solution objective func-

ion value with that of the deterministic equivalent of the rigorous

SSP solution. They are expressed as the percent difference from
he rigorous MSSP solution. The computation times are given in CPU
econds. Because the KDA generates solutions orders of magnitude
40%
70%

faster compared to the time it takes to obtain the solution for the
rigorous MSSP using commercially available solvers, the computa-
tion times for the variants of the KDA are compared to that of the
original KDA.

The KDA and the deterministic equivalent formulation of the rig-
orous MSSP have been implemented using python 3.5 with Pyomo
4.1 (Sandia Corporation, 2013) on Auburn Hopper Cluster. Pyomo
solves each knapsack sub-problem using CPLEX 12.63 to an opti-
mality gap of 0.1%. The rigorous MSSPs are solved to an optimality
gap of 1% for the two-, three-, and four-product variations and a
gap of 5% for the five- and six-product variations. In both cases, the
rigorous MSSP is solved using CPLEX 12.63.

6. Results and discussion of computational studies

6.1. The impact of changes in the R&D pipeline management
problem parameters

The computational experiments revealed that the changes in the
trial cost(s), the revenue(s), and both penalty parameters had very
little effect on the decision trees generated by the KDA. Changes
in the parameters, however, (as expected) resulted in fairly large
changes in the value of the objective function. The numerical results
of these studies are compiled in Appendix B. Similarly, variations
in length of each clinical trials did not have a significant impact on
the solution quality.

Fig. 3 plots the fraction of the ENPV of the KDA and MSSP for
each of the trials vs the ENPV of the fully unconstrained case for
each of the base cases. One can observe that the rigorous MSSP
ENPVs asymptotically approach the unconstrained solution. A sim-
ilar behavior is observed for the KDA solutions. However, the KDA
solution asymptotically converges to a solution that has a lower
ENPV than the MSSP in all but the two-product base case (Fig. 3).

This behavior is an artifact of the knapsack problem generation
schema. In the original KDA, knapsack problems are only gener-
ated after all realizations occur. Therefore, unless all clinical trials
have the same duration penalties are accessed for products sitting
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Table  2
Solution times and percent error for original knapsack, AER, and ETP knapsack generation schemes.

MSSP Original KDA Every Time
Period (ETP)

After Every
Realization (AER)

ENPV Solve Time
(CPU sec)

Percent Gap Solve Time
(CPU sec)

Percent Gap Solve Time
(CPU sec)

Percent Gap Solve Time
(CPU sec)

two-product 1110 0.02 1.17 0.05 1.17 0.09 1.17 0.07
three-product 1189 0.84 0.93 0.37 5.05 0.96 1.51 0.35
four-product 1683 2.71 0.42 0.81 0.30 1.26 0.30 0.87
five-product 2083 16.95 1.92 1.24 1.44 2.12 1.44 1.7
six-product 2412 97.67 0.37 1.63 0.21 3.18 0.21 2.45
seven-product – – – 8.17 – 21.33 – 16.67
Average 0.96 1.63 0.93
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Fig. 3. The change in ENPV of the KDA a

dle in the pipeline, and the resulting ENPV is lower than the ENPV
f the rigorous MSSP solution.

In our case studies, we also investigated how the size of the
roblem impacts the quality of the KDA solution. When the length
f the planning horizon and the number of resources were varied
he KDA remained within five percent of the rigorous MSSP solu-
ion. However, when the number of trials was increased the KDA
roduced solutions greater than 30% lower. These results can be
een in Appendix B After examining the decision trees for both the
DA and the rigorous MSSP solutions where the difference in ENPVs
xceeded five percent, we discovered that the solution for the MSSP
as to “do nothing”. Because the knapsack problems generated by

he KDA only includes positive value items (see Eq. (2)), the KDA
annot yield the “do nothing” solution. Therefore, the quality of the
DA solutions will deteriorate quickly if the optimum decision set

s empty.

.2. The impact of R&D pipeline management problem size on
DA solution time

Fig. 4 plots how KDA solution times and the number of knap-
ack problems solved change with number of resources, number
f clinical trials, and length of planning horizon. The charts on top

ow of Fig. 4 plot the KDA solution times versus the variation in the
umber of resources, number of clinical trials, or length of plan-
ing horizon. These charts reveal that the number of resources and
linical trials have negligible impacts on KDA solution times. The
SP solutions with resource availability.

number of resources affects the number of weight constraints in the
knapsack problems. Adding weight constraints increases the com-
plexity of an individual knapsack problem, and hence, may  increase
its solution time. For the level of variation considered in the num-
ber of resources for this computational study, the solution times
for individual knapsack problems did not change significantly. The
number of trials affects the total number of items in knapsack prob-
lems, but does not change the number of items that can be packed in
any given time. The maximum number of items that may  be packed
in any knapsack is equal to the number of products.

The KDA solution times appear to grow significantly when the
length of the planning horizon is increased. (Fig. 4). The increase
in planning horizon corresponds to an increase in potential deci-
sion points. An increase in decision points increases the number of
knapsack problems solved, and hence, the KDA solution time.

The charts on the bottom row of Fig. 4 plot the number of knap-
sack problems generated versus the variation in the number of
resources, number of trials, and length of the planning horizon.
One of the trends revealed in these plots is the positive correla-
tion between the KDA solution time and the number of knapsack
problems solved. The trend is most noticeable when comparing the
solution time and the number of knapsack problems solved when
the length of the planning horizon is varied. The knapsack problem

is an np-complete problem, and, hence, the solution time for each
knapsack problem increases in non-polynomial time based on the
number of items and the dimensionality of the problem (number of
weight constraints). The KDA solution time is equal to the cumula-
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Fig. 4. The impact of problem size on the KDA solutio
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of items. Realizations Ç are assumed to occur every min � ∀d, j
ig. 5. The correlation between number of knapsack problems solved and the solu-
ion  time in CPU seconds of the KDA.

ive solution time of all knapsack problems plus the additional time
onsumed for logic operations (e.g., for determining eligible items).
ig. 5 plots the KDA solution time against the number of knapsack
roblems solved. The plot suggests that the KDA time complexity

s linearithmic (O(n log (n))) where n is defined as the number of

napsack problems solved. In Christian and Cremaschi (2015), we
resented a loose theoretical upper-bound on the number of knap-
ack problems that may  be solved. For all problems considered in
n time and the number of knapsack problems.

this computational study, the actual number of knapsack problems
solved are significantly lower than the theoretical bound. Improv-
ing the theoretical bound on the number of knapsack problems
solved will allow for better prediction of KDA solution times.

The number of knapsack problems generated depends on the
number of realizations that occur in the planning horizon and
the number of items. The number of realizations in the planning
horizon is affected by the length of the planning horizon, and the
duration of each clinical trial that is selected. A longer planning
horizon translates to more realizations and thus more knapsack
problems. Quantifying the number of realizations also requires the
knowledge of packed items which is not known a priori. Each item
packed in the knapsack has a corresponding trial duration. The
duration for each trial is not guaranteed to be identical, therefore
more realizations will occur when items with short trial durations
are packed. The packed items in knapsack problems are limited
due to resource constraints. However, resource constraints only
constrain the number of resources available not the number of
items packed thus some knapsacks may  have many light (low
resource) items while others just a few heavy (high resource) items.
The bound presented in Christian and Cremaschi (2015) takes a
very conservative approach to addressing each of these compli-
cations. The bounding approach assumes each knapsack packs a
maximum number of items based on the items weights (resource
requirements) and the maximum number of resources available.
It also assumes that the same knapsack is packed at each realiza-
tion regardless of the availability of items to pack and outcomes( )
d,j

time periods. These assumptions cause the bounding approach to
calculate the number of knapsacks solved if you could pack the
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ig. 6. An algorithm to estimate the number of knapsack problems solved by the
DA.

aximum number of items allowed by the available resources in
very knapsack at each realization.

Here, we introduce an algorithm that improves the bound by
onsidering that each branch in the decision tree is limited to pack-
ng each item once. It assumes that realizations occur when the
rst item in the knapsack is completed. Similar to the previous
pproach, we do not consider the value of the uncertain param-
ter after it has been realized. We assume that subsequent items
an be packed whether or not the clinical trial is successful. This
ssumption creates an upper bound on the number of knapsack
roblems solved. The algorithm is presented in Fig. 6.

The algorithm calculates the estimated number of knapsacks
EKS) by stepping through the planning horizon. At each step, the
lgorithm finds the maximum number of items that can be packed
ssuming that items that have been packed previously are no longer
ligible. Using the algorithm, we predicted the number of knapsack
roblems for the original set of problems presented in Christian and
remaschi (2015). For the two-product case, the algorithm pre-
icted a total of five knapsack problems. Using the KDA approach,
he number of knapsacks solved was four. The difference is due
o the generation of knapsack problems regardless of the trial out-
omes. In the two-product case, the number of failures that result in
ounting fictitious knapsack problems is low. This count increases
ith the size of the problem (number of products and trials). There-

ore, as the size of the problem increases the estimate provided by
ig. 6. degrades. For the three product case, the ratio of the num-
er of actual knapsack problems solved to the estimated number

s 0.20. For the largest problem (the ten-product case), the ratio is
he lowest at 0.05.

Another measure of problem size is the number of scenarios, and
ig. 7 shows the change in the number of knapsack problems solved
ith the number of scenarios. Notice that the general trend of Fig. 7

hows an increase in the number of knapsack problems solved as
he number of scenarios increases. The number of scenarios does
ot directly impact the number of knapsack problems solved, how-
ver the number of scenarios in a problem does depend on the
umber of uncertain parameters and the number of realizations

or each uncertain parameter. The number of uncertain parameters
n pharmaceutical R&D pipeline management problem depends on
he number of products. For each additional product, there is one
dditional uncertain parameter, and for each additional clinical
rial, there is one additional realization per uncertain parameter.
or each additional uncertain parameter, there are (|J |  + 1) times

ore scenarios. Similarly, for each realization, there are
( |J |+1

|J |
)|D|
imes more scenarios. Hence, both the number of knapsack prob-
ems and the number of scenarios increases with increases in
umber of products, and hence, the positive trend in Fig. 7. Unlike

ncreasing the products, increasing the number of clinical trials
Fig. 7. The number of knapsack problems solved using the KDA plotted against the
number of scenarios in the equivalent MSSP.

does not have a significant effect on the number of knapsack prob-
lems solved. In Fig. 7, this phenomenon is observed with the points
that sit on an almost horizontal line at 28 knapsack problems.
This horizontal line represents an increase in scenarios without an
increase in the number of knapsack problems solved. At 1024 sce-
narios, Fig. 7 shows that the number of knapsack problems solved
increases from 24 to 559 without an increase in the number of
scenarios. This occurs when the length of the planning horizon is
increased. Increasing the length of the planning horizon neither
adds new uncertain parameters nor adds new realizations, thus
not impacting the number of scenarios. However, it increases the
number knapsack problems solved because there are more decision
points.

6.3. Impact of the proposed knapsack problem generation rules

The ENPVs and solution times for the KDA using all three knap-
sack problem generation rules are summarized in Table 2. For
completeness, the same information is provided for the solution
of the rigorous MSSP. The solution quality does not change sig-
nificantly among different knapsack problem generation schemes
(Table 2). All ENPVs obtained using the KDA approach remain
within 5% of the rigorous MSSP ENPVs.

The ENPVs obtained by the ETP and the AER knapsack generation
rules are identical for all but the three-product case. The difference
in the three-product case is due to the lack of realizations at every
time period. The decision trees obtained by the KDA using each of
the knapsack problem generation schemes and from the solution of
the rigorous MSSP for this case are given in Fig. 8. In the figure, the
nodes correspond to decisions. The information in the parentheses
represent the (drug, trial) selected at the decision point.

Visually the decision trees obtained using the original KDA
(Fig. 8(a)) and the AER decision rule appear (Fig. 8(b)) sparser than
the MSSP decision tree (Fig. 8(d)). In contrast, the decision tree for
the ETP approach (Fig. 8(c)) is denser than the MSSP decision tree.
The ETP approach results in the densest decision tree because it
generates new knapsack problems at each time period. The solu-
tions of these knapsack problems, in turn, may  result in investment
decisions at each time period. For the three-product case, the ETP
approach overschedules the trials compared to the original KDA,
partly due to how the resource overscheduling constraint functions.

This constraint ensures that the total number of resources needed
to complete the remaining clinical trials without delay is more than
the available number of resources during that same time period.
This is implemented using a cumulative approach. For instance,
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ig. 8. The decisions trees obtained by KDA for the three product case using (a) the o
chemes; and (d) the MSSP (Christian and Cremaschi, 2015) decision tree.

onsider a product that requires one resource for the first trial, two
esources for the second trial, and three resources for the third trial.
he total number of resources needed to complete all three trials
s six. The cumulative approach ensures that for the duration of
roduct’s clinical trials there are six resources available. It does not
ccount for the fact that the first trial only requires one resource
hile the third trial requires three. Because the resource require-
ents for each trial are not differentiated, the algorithm may  run

nto instances where the cumulative number of resources needed is
vailable but the resources needed to start a particular trial at a spe-
ific time are not. Solving problems at every time period provides
ore opportunities for this behavior.
Fig. 8(b) shows the decision tree generated using the AER

pproach has more decision points than the original KDA decision
ree but fewer than the MSSP decision tree. Notice that despite con-
idering new knapsack problems at each realization, the approach
ails to obtain the first two decisions correctly, whereas the ETP
pproach captures this behavior. The AER approach is unable to do
o because knapsack problems are only generated after realizations.

The KDA solution times are orders of magnitudes faster than the
ime required to solve the deterministic equivalent of the rigorous

SSP for all variations of the knapsack sub-problems generation
chemes (Table 2). When solution times among different knapsack
roblem generation schemes are considered, in general, the origi-
al KDA yields the solutions the fastest and the KDA using the ETP
pproach the slowest. The only exception is the solution times for
he three-product case in which the times are small enough that

he measurement error may  exceed the measured time. In the orig-
nal knapsack algorithm fewer knapsack problems were generated
ecause all realizations are required to occur before new problems
l KDA (Christian and Cremaschi, 2015), (b) the AER, and (c) ETP knapsack generation

are generated. Using both proposed methods, more knapsack prob-
lems are generated. Fig. 9 shows the total number of knapsacks
solved using each of the knapsack generation approaches. The prob-
lems used are the original problems from Christian and Cremaschi
(2015). From our computational studies on problem size, we  know
that the solution time increases with the number of knapsack prob-
lems generated. Notice that for the two-product and three-product
cases, the difference between the number of knapsack problems
solved in each case is small. In the two-product case, the differ-
ence between the number of knapsack problems generated in the
original KDA (least) and the ETP approach (most) is only two. In
the larger cases (six- and seven-products), the difference in the
number of knapsack problems solved increases considerably. In the
seven-product case, the difference between the number of knap-
sack problems generated in the original KDA algorithm (least) and
the ETP approach (most) was  462. For all cases, the AER approach
generated more knapsack problems than the original KDA but as
many or fewer than ETP scheme. In the cases where the realiza-
tions for decisions occur at each time period, generating knapsack
problems using the ETP scheme is identical to generating knapsack
problems using the AER scheme.

6.4. Impact of different formulations of resource overscheduling
constraint

The resource overscheduling constraint implemented in the

original KDA tries to ensure that there will be resources available
to start the subsequent clinical trial if a clinical trial is successful.
Using the six problems originally solved in Christian and Cremaschi
(2015), we study the impact of different formulations for avoiding
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Fig. 9. The number of knapsack problems solved using the original KDA, the ETP, and the AER knapsack generation approaches.

Table 3
The objective functions and solution times of the probabilistic resource constraint and the original resource constraint.

Original KDA Sub-Problem Generation

Probabilistic Resource Overscheduling Constraint Original Resource Overscheduling Constraint

Objective Value Solve Time (CPU Seconds) Objective Value Solve Time (CPU Seconds)

two-product 1097 0.05 1097 0.05
three-product 1165 0.47 1178 0.37
four-product 1665 1.17 1676 0.81
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five-product 2038 2.06 

six-product 2399 2.86 

seven-product 2871 17.48 

esource overscheduling: (1) the original resource overscheduling
onstraint, (2) a penalty term in the objective function, and (3) a
robabilistic resource overscheduling constraint.

We varied the penalty coefficient between 1 and 500 and solved
ach of the base case problems. Varied values of the penalty coeffi-
ient resulted in solutions with identical equivalent ENPVs. A closer
nvestigation of the decision trees generated using either value
f the penalty coefficient revealed that they did not change for
he range considered. This suggests that investments in additional
roducts is significantly limited by the availability of “here-and-
ow” resources and less impacted by resource availability later in
he planning horizon.

The results for the implementation of the probabilistic approach
re summarized in Table 3. Comparing the objective function values
n Table 3 reveals that values are lower when the probabilistic over-
cheduling constraint is used in all but the seven product case. In
he seven product case, the improved value suggests that the value
f allowing additional items to be packed outweighs the losses
ncurred for products being idle in the pipeline.

The KDA solution times for the proposed approaches to for-
ulating resource overscheduling constraint are similar to that of

he original one for the smaller problems (two- and three-product
ases). For the larger problems (six- and seven-product cases),
here is a noticeable increase in the solution times. For the penalty
pproach, this increase stems from the increase in the solution
imes of individual knapsack problems. The time for solving knap-
ack problems with the penalty term in the objective function was
wice as long as solving the original knapsack problems. In each of
he case studies, the average time needed to solve a knapsack prob-
em with the penalty term was 0.04 CPU seconds whereas solving
he original knapsack problems required 0.02 CPU seconds. In the
maller cases, the number of knapsack problems solved is small,
nd thus, the difference in the total solution times is insignificant.

n larger cases, however, the total number is large, which leads to
onger overall solution times for the penalty approach. The differ-
nce in the time to solve each knapsack problem with the penalty
2043 1.24
2403 1.63
2870 8.17

term can be attributed to the additional variables that were added
to linearize the penalty term in the objective function.

Similar to the penalty approach, the probabilistic approach
also shows increased solution time for larger problems (six- and
seven-products). The knapsack problems with the probabilistic
resource overscheduling constraint use a similar formulation to
the original knapsack problems. For smaller problems (two- and
three-products), the solution times for the knapsack problems with
the probabilistic constraint and the original knapsack problems are
identical (0.02 CPU seconds). The larger problems revealed that
the knapsack problems with probabilistic constraint take longer
to solve (0.03 CPU seconds). The linear relaxation of the knapsack
problem with the probabilistic constraint yields a larger feasible
region than the original knapsack problem, which yields a looser
upper bound. Therefore, for larger instances of the problem with
more items that can be packed in a knapsack (i.e., products), it takes
longer to solve the problems with the probabilistic constraint.

7. Conclusions

The first portion of the presented work studied the sensitivity of
the KDA solution to the changes in the values of the fixed parame-
ters (trial cost, revenue, penalty levels, and trial length) of the R&D
pipeline management problem. The trial cost, the revenue, and the
penalty level parameters were perturbed by ±10% and ±25%. The
trial length was  extended by one and two time periods. In all of
the cases, we observed very little change in the decisions obtained
by the KDA. When the problem size was  increased the accuracy of
the KDA solution was  not impacted by increasing the number of
resources or the length of the planning horizon. However, when
the number of trials was  increased the KDA was  unable to produce
a “do-nothing” solution resulting in a large percent gap between
the ENPV of the KDA solution and that of the deterministic equiv-

alent of the rigorous MSSP. Increasing the length of the planning
horizon caused exponential growth in the solution time. This can
be attributed to the increase in the number of knapsack problems
solved. Because the KDA only generates knapsack problems to solve
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nce uncertainty associated with all packed items (i.e., drug-trial
airs) are realized, longer durations reduces the decision points
enerated by the KDA, and results in sparser decision trees com-
ared to the true solution.

In this work, we considered several modifications to improve the
DA presented in Christian and Cremaschi (2015). The original KDA
ade decisions after all realizations occurred. Here, we presented

wo additional approaches, a scheme that generates knapsack prob-
ems at every time period and a scheme that generates knapsack
roblems at each realization. Using a set of 25 problems includ-

ng the six original problems solved in Christian and Cremaschi
2015), each scheme was tested. The results suggest that generat-
ng new problems at each realization provides solutions closer to
he deterministic equivalent MSSP than generating problems after
ll realizations occurred. By solving new knapsack problems at each
ime period, the solution was often identical to solving new prob-
ems at each realization. In the few cases where solving knapsacks
t each time period provided a superior solution, the increase in the
lgorithm time did not justify selection of the ETP approach over
he AER approach.

In addition to the sub-problem generation schemas, two  addi-

ional resource overscheduling constraints in knapsack problems
ere considered. The two constraints, an objective function penalty

pproach and a probabilistic constraint approach, yielded solutions

able A1
arameters for the Two-Product Base Case (2 2 5 2).

Product Duration Probability
of Success

Cost($1 M)  

PI PII PI PII PI PII 

D1 2 4 0.3 0.5 10 90 

D2  2 3 0.4 0.6 10 80 

able A2
arameters for the Three-Product Base Case (3 3 12 2).

Product Duration Probability
of Success

Trial Cost ($M) 

PI PII PIII PI PII PIII PI PII PIII 

D1 2 4 4 0.3 0.5 0.8 10 90 220 

D2  2 3 5 0.4 0.6 0.8 10 80 200 

D3  2 3 4 0.3 0.6 0.9 10 90 180 

able A3
arameters for the Four-Product Base Case (4 3 6 2).

Product Duration Probability
of Success

Trial Cost ($M) 

PI PII PIII PI PII PIII PI PII PIII 

D1 1 1 3 0.3 0.5 0.8 10 90 220
D2  1 2 2 0.4 0.6 0.8 10 80 200
D3  1 1 3 0.3 0.6 0.9 10 90 180
D4  1 2 2 0.4 0.6 0.8 10 100 170

able A4
arameters for the Five-Product Base Case (4 3 6 2).

Product Duration Probability
of Success

Trial Cost ($M) 

PI PII PIII PI PII PIII PI PII PIII

D1 1 1 3 0.3 0.5 0.8 10 90 220
D2  1 2 2 0.4 0.6 0.8 10 80 200
D3  1 1 3 0.3 0.6 0.9 10 90 180
D4  1 2 2 0.4 0.6 0.8 10 100 170
D5  1 2 3 0.35 0.5 0.9 10 70 210
hemical Engineering 96 (2017) 18–32 29

that were worse than the original knapsack approach in all but
one case (the largest case with seven products). For this reason, we
recommend using the original knapsack resource overscheduling
constraint. Future work will examine the use of the KDA as a lower
bounding procedure for the solution of the MSSP, and investigate
the generalization of the KDA approach to solve problems other
than the pharmaceutical R&D pipeline management problem.
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Resource 1
(max = 2)

Resource 2
(max = 3)

revmax �L �D

PI PII PI PII

1 1 1 2 3100 19.2 44
1 2 1 1 3250 19.6 56

Resource 1
(max = 2)

Resource 1
(max = 3)

revmax �L �D

PI PII PIII PI PII PIII

1 1 2 1 2 3 3100 19.2 22
1 2 2 1 1 3 3250 19.6 28
1 1 2 1 1 3 3300 20 26

Resource 1
(max = 4)

Resource 2
(max = 3)

revmax �L �D

PI PII PIII PI PII PIII

 1 1 2 1 2 3 3100 19.2 22
 1 2 2 1 1 3 3250 19.6 28

 1 1 2 1 1 3 3300 20 26
 1 1 2 1 2 3 3000 19.4 24

Resource 1
(max = 4)

Resource 2
(max = 3)

revmax �L �D

 PI PII PIII PI PII PIII

 1 1 2 1 2 3 3100 19.2 22
 1 2 2 1 1 3 3250 19.6 28

 1 1 2 1 1 3 3300 20 26
 1 1 2 1 2 3 3000 19.4 24
 1 1 2 1 1 3 3150 19.6 24
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Table  A4 (Continued)

Parameters for the Six-Product Base Case (6 3 6 2)

Product Duration Probability
of Success

Trial Cost ($M) Resource 1
(max = 4)

Resource 2
(max = 3)

revmax �L �D

PI PII PIII PI PII PIII PI PII PIII PI PII PIII PI PII PIII

D1 1 1 3 0.3 0.5 0.8 10 90 220 1 1 2 1 2 3 3100 19.2 22
D2  1 2 2 0.4 0.6 0.8 10 80 200 1 2 2 1 1 3 3250 19.6 28
D3  1 1 3 0.3 0.6 0.9 10 90 180 1 1 2 1 1 3 3300 20 26

A

T
P

l

D4  1 2 2 0.4 0.6 0.8 10 100 170 1 1 2 1 2 3 3000 19.4 24
D5  1 2 3 0.35 0.5 0.9 10 70 210 1 1 2 1 1 3 3150 19.6 24
D6  1 2 3 0.45 0.45 0.8 10 85 195 1 2 2 2 1 3 3050 19 25

ppendix B.

See Tables B1–B3

able B1
arameter and Size Perturbation Results for the Two-Product Base Case (OP).

File Name ENPV Percent
Difference
(MSSP)

Percent
Difference (OP)

Same as Base
KDA solution?

Knapsack
Problem Count

KDA Solve
Time

MSSP ENPV MSSP Tota
Time

2 2 5 3 1097 −0.63 0.00 TRUE 4 0.07 1104 0.15
2  2 5 4 1097 −0.63 0.00 TRUE 4 0.07 1104 0.16
2  2 5 5 1097 −0.63 0.00 TRUE 4 0.07 1104 0.19
2  3 5 2 709 −3.26 −35.36 FALSE 4 0.07 733 0.33
2 4 5 2 523 −5.72 −52.30 FALSE 4 0.07 555 0.58
2  5 5 2 422 −5.03 −61.56 FALSE 5 0.09 444 1.15
2  2 4 2 1101 0.19 0.35 FALSE 4 0.07 1099 0.11
2  2 6 2 1110 0.00 1.17 TRUE 6 0.09 1110 0.15
2  2 7 2 1110 −0.10 1.17 TRUE 6 0.11 1111 0.19
2  2 8 2 1110 −0.39 1.17 TRUE 6 0.11 1114 0.21
2  2 5 2 C.75 1115 −0.52 1.62 TRUE 4 0.08 1121 0.24
2 2 5 2 C.9 1104 −0.59 0.65 TRUE 4 0.07 1111 0.14
2  2 5 2 C1.1 1090 −0.68 −0.65 TRUE 4 0.08 1098 0.13
2  2 5 2 C1.25 1079 −0.75 −1.62 TRUE 4 0.08 1088 0.14
2  2 5 2 R.75 791 −0.88 −27.94 TRUE 4 0.06 798 0.13
2  2 5 2 R.9 975 −0.71 −11.18 TRUE 4 0.08 982 0.16
2 2 5 2 R1.1 1220 −0.57 11.18 TRUE 4 0.07 1227 0.16
2  2 5 2 R1.25 1404 −0.49 27.94 TRUE 4 0.08 1411 0.15
2  2 5 2 GL.75 1110 −0.75 1.14 TRUE 4 0.08 1118 0.15
2  2 5 2 GL.9 1102 −0.68 0.46 TRUE 4 0.08 1110 0.15
2  2 5 2 GL1.1 1092 −0.59 −0.46 TRUE 4 0.07 1099 0.15
2  2 5 2 GL1.25 1085 −0.52 −1.14 TRUE 4 0.08 1090 0.14
2  2 5 2 GD.75 1099 −0.45 0.18 TRUE 4 0.16 1104 0.15
2 2 5 2 GD.9 1098 −0.56 0.07 TRUE 4 0.08 1104 0.15
2  2 5 2 GD1.1 1096 −0.71 −0.07 TRUE 4 0.08 1104 0.14
2  2 5 2 GD1.25 1095 −0.81 −0.18 TRUE 4 0.07 1104 0.15
2  2 5 2 TD1 1087 0.87 −0.89 FALSE 4 0.03 1078 0.14
2  2 5 2 TD2 1077 0.72 −1.81 FALSE 4 0.03 1070 0.14
2  2 5 2 PC60 1097 −0.63 0.00 TRUE 4 0.08 1104 0.15

2  2 5 2 PC30 1097 −0.63 0.00 TRUE 

2  2 5 2 PC0 1121 0.00 2.13 FALSE 

Average -0.84
4 0.08 1104 0.15
4 0.08 1121 0.15
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Table  B2
Parameter and Size Perturbation Results for the Three-Product Base Case (OP).

File Name ENPV Percent
Difference
(MSSP)

Percent
Difference (OP)

Same as Base
KDA solution?

Knapsack
Problem Count

KDA Solve
Time

MSSP ENPV MSSP Total
Time

3 3 12 3 1180 −0.67 0.17 FALSE 21 0.46 1188 5.44
3  3 12 4 1180 −0.67 0.17 FALSE 21 0.43 1188 5.82
3  3 12 5 1180 −0.79 0.17 FALSE 21 0.48 1189 5.88
3  4 12 2 761 −1.60 −35.38 FALSE 21 0.75 773 16.44
3  5 12 2 417 −15.29 −64.60 FALSE 21 0.51 492 44.90
3 6 12 2 240 −22.10 −79.64 FALSE 31 0.94 308 109.61
3 3 11 2 1177 −0.92 −0.04 FALSE 20 0.78 1188 4.68
3  3 13 2 1174 −1.24 −0.31 FALSE 27 1.07 1189 5.68
3  3 14 2 1178 −1.25 0.02 FALSE 28 1.10 1193 10.16
3  3 15 2 1177 −1.68 −0.10 FALSE 33 1.41 1197 6.46
3  3 12 2 C.75 1225 −0.92 4.03 FALSE 23 0.61 1237 5.39
3 3 12 2 C.9 1197 −0.96 1.61 FALSE 23 0.58 1208 5.46
3  3 12 2 C1.1 1159 −1.01 −1.61 FALSE 23 0.58 1171 5.32
3  3 12 2 C1.25 1130 −1.00 −4.03 FALSE 23 0.58 1142 5.35
3  3 12 2 R.75 804 −1.11 −31.76 FALSE 23 0.61 813 5.34
3 3 12 2 R.9 1028 −1.03 −12.71 FALSE 23 0.55 1039 5.25
3  3 12 2 R1.1 1327 −1.00 12.71 FALSE 23 0.57 1341 5.40
3  3 12 2 R1.25 1552 −0.92 31.79 FALSE 23 0.56 1567 5.20
3  3 12 2 GL.75 1209 −0.96 2.67 FALSE 23 0.59 1221 5.28
3  3 12 2 GL.9 1190 −0.99 1.07 FALSE 23 0.60 1202 5.36
3  3 12 2 GL1.1 1165 −1.04 −1.07 FALSE 23 0.60 1177 5.24
3  3 12 2 GL1.25 1146 −1.11 −2.67 FALSE 23 0.55 1159 5.42
3 3 12 2 GD.75 1179 −1.02 0.08 FALSE 23 0.57 1191 5.28
3  3 12 2 GD.9 1178 −1.02 0.03 FALSE 23 0.57 1190 5.28
3  3 12 2 GD1.1 1177 −1.02 −0.03 FALSE 23 0.58 1189 5.40
3  3 12 2 GD1.25 1177 −1.02 −0.08 FALSE 23 0.58 1189 5.28
3  3 12 2 TD1 1132 −1.85 −3.95 FALSE 13 0.31 1153 5.60
3 3 12 2 TD2 1083 −2.39 −8.09 FALSE 7 0.28 1109 5.66
3  3 12 2 PC60 1183 −1.61 0.48 FALSE 33 0.82 1203 5.28
3 3 12 2 PC30 1213 −0.58 2.96 FALSE 31 0.77 1220 5.37
3  3 12 2 PC0 1214 −0.59 3.09 FALSE 27 0.67 1221 5.27
Average −2.24

Table B3
Parameter and Size Perturbation Results for the Four-Product Base Case (OP).

File Name ENPV Percent
Difference
(MSSP)

Percent
Difference (OP)

Same as Base
KDA solution?

Knapsack
Problem Count

KDA Solve
Time

MSSP ENPV MSSP Total
Time

4 3 6 3 1619 −2.63 −3.39 FALSE 63 1.65 1663 22.76
4 3 6 4 1619 −2.25 −3.39 FALSE 63 1.90 1656 23.58
4  3 6 5 1624 −1.67 −3.09 FALSE 49 1.43 1651 24.40
4  4 6 2 1095 −3.64 −34.65 FALSE 50 1.42 1136 126.59
4  5 6 2 687 −13.17 −58.99 FALSE 24 0.93 791 554.35
4  6 6 2 405 −22.59 −75.80 FALSE 24 1.35 524 2067.58
4  3 5 2 1664 −0.73 −0.67 FALSE 32 2.30 1677 17.83
4  3 7 2 1687 −0.01 0.67 FALSE 80 5.46 1687 25.58
4  3 8 2 1695 0.10 1.15 FALSE 111 7.74 1693 29.49
4  3 9 2 1699 −0.01 1.39 FALSE 139 9.73 1699 59.11
4  3 6 2 C.75 1747 −0.66 4.24 FALSE 54 3.20 1758 24.45
4  3 6 2 C.9 1704 −0.67 1.70 FALSE 54 3.13 1716 23.45
4  3 6 2 C1.1 1647 −0.37 −1.70 FALSE 54 2.84 1653 24.05
4  3 6 2 C1.25 1605 −0.54 −4.24 FALSE 54 2.18 1613 23.53
4  3 6 2 R.75 1160 −0.86 −30.75 FALSE 54 2.14 1170 23.48
4  3 6 2 R.9 1469 −1.07 −12.30 FALSE 54 2.06 1485 23.48
4  3 6 2 R1.1 1882 −0.59 12.30 FALSE 54 2.06 1893 23.55
4  3 6 2 R1.25 2191 −0.70 30.76 FALSE 54 2.05 2206 23.29
4  3 6 2 GL.75 1699 −0.84 1.42 FALSE 54 2.07 1714 23.46
4  3 6 2 GL.9 1685 −0.54 0.57 FALSE 54 2.02 1694 23.70
4  3 6 2 GL1.1 1666 −0.77 −0.57 FALSE 54 2.04 1679 23.62
4  3 6 2 GL1.25 1652 −0.79 −1.42 FALSE 54 2.04 1665 23.46
4  3 6 2 GD.75 1677 −0.68 0.10 FALSE 54 1.98 1689 23.55
4  3 6 2 GD.9 1676 −0.78 0.04 FALSE 54 1.99 1689 23.38
4  3 6 2 GD1.1 1675 −0.51 −0.04 FALSE 54 1.91 1684 23.63
4  3 6 2 GD1.25 1674 −0.56 −0.10 FALSE 54 1.88 1683 23.48
4  3 6 2 TD1 1602 −2.04 −4.40 FALSE 19 0.21 1636 24.09
4  3 6 2 TD2 1486 −1.55 −11.32 FALSE 18 0.21 1510 23.86
4  3 6 2 PC60 1676 −1.57 0.02 FALSE 85 3.10 1703 23.66
4  3 6 2 PC30 1706 −0.74 1.79 FALSE 81 2.97 1718 23.23
4  3 6 2 PC0 1714 −0.40 2.31 FALSE 81 3.02 1721 23.46
Average −2.06
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Table  B3 (Continued)

Parameter and Size Perturbation Results for the Five-Product Base Case (OP)

File Name ENPV Percent
Difference
(MSSP)

Percent
Difference (OP)

Same as Base
KDA solution?

Knapsack
Problem Count

KDA Solve
Time

MSSP ENPV MSSP Total
Time

5 3 6 3 1982 −2.82 −2.95 FALSE 90 1.96 2040 286.94
5 3 6 4 1982 −2.62 −2.95 FALSE 90 3.81 2036 294.54
5 3 6 5 1994 −1.90 −2.35 FALSE 87 4.11 2033 296.37
5  4 6 2 1323 −3.77 −35.24 FALSE 68 3.35 1375 2963.13
5  5 6 2 860 −10.83 −57.91 FALSE 26 2.28 964 21376.09
5  6 6 2 509 −18.86 −75.08 FALSE 26 0.61 627 112356.45
5  3 5 2 2038 0.11 −0.25 FALSE 51 1.10 2035 227.08
5 3 7 2 2059 −0.10 0.79 FALSE 147 3.10 2061 321.21
5 3 8 2 2064 0.03 1.05 FALSE 194 4.15 2063 366.56
5  3 9 2 2084 0.44 2.01 FALSE 293 6.32 2075 414.11
5  3 6 2 C.75 2128 −0.28 4.18 FALSE 75 1.59 2134 278.36
5  3 6 2 C.9 2077 −0.25 1.67 FALSE 75 1.60 2082 278.04
5  3 6 2 C1.1 2008 −0.50 −1.67 FALSE 75 1.60 2019 851.48
5  3 6 2 C1.25 1957 −0.54 −4.18 FALSE 75 1.55 1968 313.37
5  3 6 2 R.75 1413 −0.30 −30.80 FALSE 75 1.61 1418 288.00
5  3 6 2 R.9 1791 −0.41 −12.32 FALSE 75 1.67 1798 280.77
5  3 6 2 R1.1 2294 −0.15 12.32 FALSE 75 1.62 2298 280.53
5 3 6 2 R1.25 2672 −0.66 30.82 FALSE 75 1.62 2690 279.43
5  3 6 2 GL.75 2074 −0.47 1.53 FALSE 75 1.61 2084 279.67
5  3 6 2 GL.9 2055 −0.31 0.61 FALSE 75 1.62 2061 284.72
5  3 6 2 GL1.1 2030 −0.77 −0.61 FALSE 75 1.63 2046 282.60
5  3 6 2 GL1.25 2011 −0.65 −1.53 FALSE 75 1.65 2025 283.77
5  3 6 2 GD.75 2045 −1.20 0.11 FALSE 75 1.58 2069 280.57
5  3 6 2 GD.9 2043 −0.84 0.04 FALSE 75 1.56 2061 287.98
5 3 6 2 GD1.1 2042 −0.19 −0.04 FALSE 75 1.57 2046 280.94
5  3 6 2 GD1.25 2040 −0.37 −0.11 FALSE 75 1.65 2048 285.80
5  3 6 2 TD1 1957 −2.32 −4.20 FALSE 21 0.12 2004 279.89
5  3 6 2 TD2 1840 −1.22 −9.96 FALSE 5 0.25 1862 286.54
5  3 6 2 PC60 2097 −1.10 2.68 FALSE 215 9.72 2121 282.39

SE 

SE 

R

C

C

C

G

G

G

Decision Dependent Uncertainty., pp. 1–61.
5 3 6 2 PC30 2118 −0.45 3.68 FAL
5  3 6 2 PC0 2120 −0.39 3.78 FAL
Average −1.73
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