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a  b  s  t  r  a  c  t

Proper  orthogonal  decomposition  (POD)  is  an attractive  way  to obtain  nonlinear  low-dimensional  models.
This article  reports  on  the  automatization  of the  mentioned  reduction  method.  An automatic  procedure
for the  reduction  of  differential  algebraic  systems  is  presented,  which  is implemented  in the  modeling
and  simulation  environment  ProMoT/Diana.  The  software  tool  has  been  applied  to  a nonlinear  heat  con-
duction  model  and  a continuous  fluidized  bed  crystallizer  model.  The  automatically  generated  reduced
eywords:
onlinear model reduction
roper orthogonal decomposition
mpirical interpolation
omputer aided modeling

models  are significantly  smaller  than  the  reference  models,  while  the  loss  of  accuracy  is  negligible.
©  2016  Elsevier  Ltd.  All  rights  reserved.
ifferential algebraic systems

. Introduction

Many modern mathematical models of real-life processes
mpose difficulties when it comes to their numerical solution. This
olds especially for models represented by nonlinear distributed
arameter systems, which are frequent in engineering. Usually, for
he numerical solution of distributed parameter systems the orig-
nal system of infinite order is approximated by one with a finite
ystem order by a semi-discretization, which results in a system of
ifferential algebraic equations. The resulting number of degrees of
reedom is usually very high and makes the use of the discretized

odel inconvenient for model-based process design, process con-
rol and optimization (Shi et al., 2006). Thus there is a need for
educed models. Through model reduction, a small system with
educed number of equations is derived. The numerical solution of
educed models should be much easier and faster than the solu-
ion of the original problem. On the other hand, the reduced model
hould be able to reproduce the system behavior with sufficient
ccuracy in the relevant window of operation conditions and in the

elevant range of system parameters.

Various methods for nonlinear and linear model reduction
ave been proposed, particularly in the areas of electrical and

∗ Corresponding author.
E-mail addresses: khlopov@mpi-magdeburg.mpg.de (D. Khlopov),

angold@mpi-magdeburg.mpg.de (M.  Mangold).

ttp://dx.doi.org/10.1016/j.compchemeng.2016.11.004
098-1354/© 2016 Elsevier Ltd. All rights reserved.
mechanical engineering, control design and computational fluid
dynamics. Some of them are based on physical simplifications like
assumption of perfect mixing, introduction of compartments, equi-
librium assumptions, etc. This approach requires physical insight
of the modeler and hence is hard to automatize. Another success-
ful approach, which may  also be considered as a physical model
reduction method, is based on nonlinear wave propagation the-
ory (Marquardt, 1990; Kienle, 2000). It produces reduced model by
approximation of the spatially distributed solution by profile with a
given shape. As in the previous case, this method requires physical
process understanding from the user and can be applied only for
special systems. The generalized method of moments (Marchisio
and Fox, 2005; Lebaz et al., 2016) is a widely used mathematical
reduction technique for population balance equations. In this case,
the reduced model does not preserve full information on spatial
profile. Another mathematical possibility to obtain reduced models
is to separate fast and slow subsystems. Slow manifold approx-
imation (Christofides and Daoutidis, 1997) requires complicated
symbolic operations, which impose difficulties on the automatiza-
tion of this method. To sum up, widely used methods for nonlinear
model reduction require experienced user; automatic application
and integration in a simulation tool is a difficult and challenging
task, which has hardly been attempted to our knowledge. On the

other hand, there are linear model reduction techniques like bal-
anced truncation (Benner et al., 2000; Heinkenschloss et al., 2011),
which are applicable to high order systems and can be automatized
quite easily. However, the resulting linear reduced models are only

dx.doi.org/10.1016/j.compchemeng.2016.11.004
http://www.sciencedirect.com/science/journal/00981354
http://www.elsevier.com/locate/compchemeng
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alid locally and not able to capture nonlinear properties of the
riginal system.

In this work proper orthogonal decomposition (POD) (Kunisch
nd Volkwein, 2002; Park and Cho, 1996; Sirovich, 1987; Antoulas,
005) is used for the development of an automatic procedure for
odel reduction. This method has been successfully applied for

umerous problems in the fields of fluid dynamics, optimal control,
nd for population balance systems like crystallizers (Krasnyk and
angold, 2010; Mangold et al., 2015), and granulators (Mangold,

012). To put it in other words, the model reduction by POD is
 proven approach. Nevertheless, applying model reduction by
OD manually to complex engineering models is a challenging and
edious task. The idea of this work is to provide a software envi-
onment that performs the model reduction by POD automatically
ith minimal additional input from the user.

The work is structured as follows. Section 2 discusses the model
eduction method. Technical details of the developed software tool
or automatic model reduction are described in Section 3. Section 4
hows the developed software tool in action by applying it to two
est models: a nonlinear heat conductor and a continuous fluidized
ed crystallizer.

. Mathematical model reduction method

.1. Reference model representation

Before applying a reduction procedure to the reference model, it
as to be transformed into a spatially discretized form by applying
he method of lines (Schiesser, 1991). Discretization results in a
ystem of differential algebraic equations, which may  be written as

dx

dt
(t) = f (x(t)) = Ax(t) + c + g(x(t)), (1)

here x(t) is the discretized state vector, B and A are the system
atrices, where B may  be singular, c is a constant vector, and g(x(t))

s a function that comprises the nonlinearities of the system.

.2. POD method

In this work the proper orthogonal decomposition method
Kunisch and Volkwein, 2002; Park and Cho, 1996; Sirovich, 1987;
ntoulas, 2005) is used for the development of an automatic pro-
edure for the model reduction. The basic idea of this method
s to approximate the model solution by a linear combination of
ime independent basis functions weighted by time dependent
oefficients. The basis functions are constructed from numeri-
al simulation results of the detailed reference model. Applying
alerkin’s method of weighted residuals produces the reduced
odel equations. At this point the offline phase of the reduction

rocedure ends, which can be extremely computationally inten-
ive depending on the complexity of the reference model. But these
fforts pay off in the second fast and cheap step, the online phase.
n the online phase only a differential algebraic system of low order
as to be solved.

As a starting point of the offline phase, the detailed reference
odel has to be solved numerically. Snapshots for the model states

(t1), x(t2), . . . and for the right-hand sides f(t1), f(t2), . . . are stored
n matrices X = (x(t1), x(t2), . . .)  and F = (f(t1), f(t2), . . .),  correspond-
ngly.

A reduced basis for the snapshots vectors is constructed from
he singular value decomposition (SVD) of X with

T

 = U�V , (2)

here U is a unitary matrix containing the left singular vectors or
OD modes, which are already ordered by the singular values, VT

s a unitary matrix containing the right singular vectors and � is
mical Engineering 97 (2017) 104–113 105

a pseudo-diagonal matrix with the descending singular values as
entries. The singular values are a measure for the truncation error
and hence determine the order of the reduced model.

Consequently the basis vectors for the orthogonal projection are
taken as

�x
i = Ui, i = 1, . . .,  Nx, (3)

where Ui denotes the ith column of U, and Nx is the dimension of
the reduced basis and correspondingly the order of the resulting
reduced model.

The state vector x(t) is approximated by the following expres-
sion:

x(t) ≈ �x�x(t), (4)

where �x = (�x
1, . . .,  �x

Nx ), and �x(t) is the coefficient vector of the
reduced basis and the state of the reduced model.

In order to obtain equations for �x(t), the approximation for the
state vector (4) is inserted into the discretized differential equation
(1). To make the projection of the residuals on the reduced basis
vanish, Galerkin’s method of weighted residuals is applied, which
leads to

�xT B�x︸ ︷︷  ︸
=:Bred

d�x

dt
(t) = �xT A�x︸  ︷︷  ︸

=:Ared

�x(t) + �xT c︸︷︷︸
=:cred

+ �xT g(�x�x(t)) (5)

The matrices Bred, Ared and the vector cred from Eq. (5) have to be
evaluated only once for a fixed reduced basis, because they do not
depend on the reduced state vector �x(t).

2.3. Empirical interpolation

The nonlinear term on the right-hand side of Eq. (5) still depends
on the high order state vector of the reference model, bringing
additional complexity during the runtime of the reduced model.
Clearly, more efficient approaches are needed. There are several
methods in literature on how to handle the nonlinear terms in the
context of POD model reduction effectively, whose basic idea is to
approximate also the nonlinearities by basis vectors constructed
from snapshots (Grepl et al., 2007; Nguyen et al., 2008).

In this work the empirical interpolation method (EI) (Grepl
et al., 2007) is used. Its algorithm uses specially selected interpo-
lation indices to specify an interpolation-based projection instead
of a more costly orthogonal projection. Thus, the nonlinearity is
projected onto a subspace spanned by a basis, which approxi-
mates the solution space of the nonlinearity. The basis vectors
�g

i
, i = 1, . . .,  Ng for the available snapshots g(ti) = f(ti) − (Ax(ti) + c)

are constructed by the iterative procedure in Grepl et al. (2007).
During runtime of the reduced model, the nonlinearity is approxi-
mated as a linear combination of time independent basis functions
�g = (�g

1, . . .,  �g
Ng ) weighted by time dependent coefficients �g(t),

which follow from the linear equation system

�g
k︸︷︷︸

=:Dred

�g(t) = fk(x(t)) − (Ak�x︸︷︷︸
=:Ered

�x(t) + ck) (6)

The indices k from Eq. (6) are the output of the EI algorithm
described in Grepl et al. (2007) and chosen in such a way that the
approximation error is minimized. This is achieved by placing new
interpolation points where the residual between the input basis
and its approximation by former interpolation points is largest.

In summary, the resulting reduced model consists of the differ-

ential equations

�xT B�x︸ ︷︷  ︸
=:Bred

d�x

dt
(t) = �xT A�x︸  ︷︷  ︸

=:Ared

�x(t) + �xT c︸︷︷︸
=:cred

+ �xT �g︸ ︷︷  ︸
=:Gred

�g(t) (7)
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n combination with the linear algebraic equations (6). To sum up,
he offline phase comprises the computation of snapshots x(ti) and
(ti) by numerical solution of the reference model, the generation
f reduced basis �n and �g, and evaluation of the numerical data
ike Bred, Ared, cred, Gred, Dred, Ered. The online phase is the solution of
he Nx differential equations (7) and the Ng algebraic equations (6),
hich requires much less effort compared to the reference model.

The main task of the model reduction tool is to construct the
educed model equations (6) and (7) in symbolic form from an
rbitrarily structured reference model.

. Software implementation

The automatic procedure for the model reduction is imple-
ented in the modeling and simulation environment Pro-
oT/Diana (Mangold et al., 2014). ProMoT is a modeling tool writ-

en in Common Lisp with a graphical user interface written in Java
Ginkel et al., 2003). ProMoT supports the structured implementa-
ion of dynamic models described by systems of nonlinear implicit
ifferential algebraic equations. ProMoT itself is a purely symbolic
odeling tool and hence has no restriction with respect to numeri-

al properties of the models. On the ProMoT level the idea is to keep
he model formulation separate from numerical requirements. It
ranslates symbolic model information into simulation code for a
umber of numerical simulation programs, one of which is Diana.

Diana (Krasnyk, 2008) is a simulation tool for the solution and
onlinear analysis of differential algebraic systems, as they typi-
ally result from first principle modeling of chemical engineering
ystems and biochemical systems. The numerical core of Diana is
ritten in C++ in order to ensure fast and efficient numerical solu-

ions. Model equations also have to be implemented in C++ as an
quation set object (ESO) using CAPE-OPEN standard interfaces.
sually, the model implementation is done automatically by Pro-
oT. For the numerical analysis, the modeler accesses Diana via

cripts written in the scripting language Python. The advantage is
hat Python is more user friendly than C++ code.

The developed software tool for model reduction is a part of the
roMoT project and hence is written in Common Lisp. One uses the
iana simulation tool only as an intermediate step for the numeri-
al solution of the reference model. The main parts of the software
ool are the snapshots generator, the symbolic transformator, the
enerator of numerical data and the builder of reduced model. The
tructure of the tool is sketched in Fig. 1.

.1. Snapshots generator

ProMoT provides a general text based modeling language MDL.
n order to start the model reduction, the user has to provide the
etailed reference model written in this language. Also, the user has
o provide the name of a Python script which contains all informa-
ion about simulation conditions like definition of model parameter
alues, a time range, and an output time interval for collecting snap-
hots. The background is that currently no systematic mathematical
rocedure exists for the choice of optimal conditions for generat-

ng snapshots. At this point, physical understanding of the user is
equired to choose simulation conditions that lead to typical spatial
rofiles of the solution.

The snapshots generator translates the provided reference
odel into the corresponding C++ code and runs Diana to yield

napshots. When the numerical computation is completed, Diana
roduces an output file, which contains the snapshots matrices

 = (x(t1), x(t2), . . .)  and F = (f(t1), f(t2), . . .).
.2. Symbolic transformator

If the reference model held the required form (1), i.e. with the
ight-hand side explicitly separated into a linear and a nonlinear
Fig. 1. Structure of automatic tool for model reduction.

part, all the steps of reduction procedure described in Section 2
could be easily implemented using just a numerical tool like Mat-
lab. But the reference model provided by the user usually has an
arbitrary structure, which is a set of differential algebraic equations
and can be written as

B
dx

dt
(t) = f (x(t)) (8)

The symbolic transformation of the reference model into the appro-
priate form is one of the most difficult tasks in the present work.
Splitting of the right-hand sides of model equations into linear and
nonlinear parts boils down to the calculation of the system matrix
A and the constant vector c from Eq. (1). Currently, the tool provides
two approaches for accomplishment of this task.

3.2.1. Analytical Jacobian
The first approach is based on the calculation of the analytical

Jacobian matrix and its use for the system matrix A. The constant
vector c is filled with zero values and has no particular meaning in
this approach. It is only needed to preserve the generality of model
reduction procedure. The general form of an element of the Jacobian
matrix can be expressed by the following equation:

Ai,j = ∂fi(x(t))
∂sj

, (9)

where Ai,j is an element of the system matrix at ith row and at jth
column. fi(x(t)) is the right-hand side of the ith differential or alge-
braic equation, sj is a symbolic name of the jth state variable. The
above operation has to be performed for expressions in symbolic
form.

ProMoT is a symbolic tool and hence allows to treat all the mod-

eling entities like model equations and variables in symbolic form.
To perform such mathematical operations like differentiation over
ProMoT symbolic expressions in a way  which is similar to the tradi-
tional manual computations, the computer algebra system Maxima
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Maxima, n.d.) is used. Since it is written in Common Lisp and can
e called directly from Lisp code, Maxima is embedded into the Pro-
oT  core. For convenience of use of the computer algebra system

 program interface between ProMoT and Maxima has been devel-
ped. The interface allows to convert internal data structures of
roMoT into corresponding Maxima representation and vice versa.

The main advantage here is that this approach turns out to be
ery cheap with respect to computational time as well as allocated
emory during the offline phase, because the Jacobian matrix is

reated as a sparse matrix with low occupancy rate. On the other
and, this approach produced rather poor numerical results of the
odel reduction for the example systems considered. One reason
ight be that the choice of a suitable reference state x, around
hich the linearization is carried out, is not obvious.

.2.2. Linear regression
The idea of the second approach is to calculate the system matrix

 and the constant vector c from Eq. (1) numerically from the avail-
ble matrices with snapshots X = (x(t1), x(t2), . . .)  and F = (f(t1), f(t2),

 . .).  In order to achieve this, the following linear regression prob-
em has to be solved

rg min
A,c

Nd∑
i=1

[(Ax(ti) + c − f (ti))
T (Ax(ti) + c − f (ti))], (10)

here Nd denotes the number of generated snapshots from numer-
cal solution of reference model.

After some mathematical manipulations the system matrix A
an be calculated from the following system of linear algebraic
quations

{
Nd∑
i=1

x(ti)x(ti)
T −

Nd∑
i=1

x(ti)[

Nd∑
i=1

x(ti)]

T

}

=
Nd∑
i=1

f (ti)x(ti)
T −

Nd∑
i=1

f (ti)[

Nd∑
i=1

x(ti)]

T

(11)

When the matrix A is known, the constant vector c is obtained
s

 = (
∑

Nd
i=1f (ti) − A

∑
Nd
i=1x(ti))

1
Nd

(12)

Since this approach is applied to already generated numerical
ata and makes no assumptions on the linearization point x, it
rovides much better results on model linearization while keep-

ng the nonlinearities of the reference model as small as possible.
or numerical computations a specialized external software tool is
sed, which will be described later. The main disadvantage here is
igh memory usage that is needed to solve a linear equation system
f very high order with dense matrices.

As a final step, the model reduction tool can easily construct the
onlinearity g(x(t)) of the reference model in symbolic form as

(x(t)) = f (x(t)) − (Ax(t) + c). (13)

his information combined with corresponding snapshots is used
o approximate the nonlinearity of the reference model by the
mpirical Interpolation method.

.3. Generator of numerical data
Generating the equations of the reduced model requires vari-
us numerical linear algebra computations in the offline phase, in
articular the solution of linear equations, singular value decom-
osition for computing the reduced basis, and the computation of
mical Engineering 97 (2017) 104–113 107

the system matrices of the reduced model. An advanced numer-
ical apparatus is needed to accomplish this. For these purposes
it was decided to use a specialized software as an external tool.
GNU Octave (Eaton et al., 2009) is a high-level interpreted language
primarily intended for numerical computations. Octave is freely
available, easy to use, convenient for development of model reduc-
tion tool because of the ability to work in an interactive mode, but
has limitations with respect to very large matrices. Due to modular
structure of the reduction tool, Octave could be replaced by other
linear algebra packages in the future.

To use this tool externally a program interface between ProMoT
and Octave has been developed. ProMoT can send commands to
Octave and receive its responses via the special input and output
streams. A typical interaction scenario starts with sending some
numerical data to Octave, then applying a mathematical function,
and requesting an output result back to ProMoT. All conversions
between ProMoT data and corresponding Octave representation
are made by the developed programming interface.

3.4. Builder of reduced model

After completion of the above parts it is possible to calculate
all the numerical matrices and symbolic expressions needed for
the reduced model in the form of (6) and (7). The builder of the
reduced model creates a new modeling file into which it writes the
following system of equations⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

Nx∑
j=1

Bredi,j

d�x
j

dt
(t) =

Nx∑
j=1

Aredi,j�
x
j (t) + credi +

Ng∑
j=1

Gredi,j�
g
j
(t)

Ng∑
j=1

Dredk,j�
g
j
(t) = fk(x(t)) − (

Nx∑
j=1

Eredk,j�
x
j (t) + ck)

(14)

where Nx is the number of ordinary differential equations of the
reduced model and Ng denotes the number of algebraic equations
for handling of the nonlinearities. For the reconstruction of the
states of the reference model x(t1), x(t2), . . . one has to evaluate
Eq. (4).

4. Case studies

4.1. Heat conductor

One of the first spatially distributed chemical engineering mod-
els to which POD was applied is a nonlinear heat conduction system
defined on a two-dimensional plane (Park and Cho, 1996). In Park
and Cho (1996), the model reduction was done manually, separat-
ing the system into a part with homogeneous boundary conditions
and another one with inhomogeneous boundary conditions. This
separation is quite tedious. Therefore, the model is a nice test exam-
ple for the developed automatic model reduction tool. The system
geometry is shown in Fig. 2. It is a square with a quarter removed.
The system boundaries (I)–(V) have the boundary temperature of
zero; the boundary temperature Tf of the upper boundary (VI) takes
arbitrary values between 0 and 50 ◦C.

The governing equation of the system reads:

∂T

∂t
= ∇ · (�(T)∇T) (15)

with the following temperature dependence of the thermal diffu-
sivity:
�(T) = k1 + k2T + k3T2 (16)

where k1, k2 and k3 are constants with values taken from Park and
Cho (1996).
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Fig. 2. Heat conduction system under consideration.

.1.1. Spatial discretization
The method of lines is used to convert the partial differential

quation (15) into a set of ordinary differential equations that can be
olved numerically. A finite volume scheme is applied with volume
lements as shown in Fig. 3.

Equidistant grids are used in both the x and y directions. The
iscretization is straightforward and done as follows. Firstly, Eq.
15) can be rewritten as

∂T

∂t
= ∂

∂x

(
�(T)

∂T

∂x

)
+ ∂

∂y

(
�(T)

∂T

∂y

)
(17)

Integration of Eq. (17) over a volume element gives
yj+(1/2)

yj−(1/2)

∫ xi+(1/2)

xi−(1/2)

∂T

∂t
|x,y,tdxdy

=
∫ yj+(1/2)

yj−(1/2)

∫ xi+(1/2)

xi−(1/2)

∂
∂x

(
�(T)

∂T

∂x
|x,y,t

)
dxdy

+
∫ yj+(1/2)

∫ xi+(1/2) ∂
(

�(T)
∂T |x,y,t

)
dxdy (18)
yj−(1/2) xi−(1/2)
∂y ∂y

The integral on the left-hand side of Eq. (18) is averaged in
oth directions. The integrals on the right-hand side are first

ig. 3. Volume element for the spatial discretization of the heat conduction model.
mical Engineering 97 (2017) 104–113

solved in x and y directions correspondingly and averaged in other
directions:

dTi,j

dt
�xi�yj = �yj

[
�(T)

∂T

∂x
|x,yj,t

]xi+(1/2)

xi−(1/2)

+ �xi

[
�(T)

∂T

∂y
|xi,y,t

]yj+(1/2)

yj−(1/2)

(19)

dTi,j

dt
= 1

�xi

(
�i+(1/2),j

∂T

∂x
|xi+(1/2),yj

− �i−(1/2),j
∂T

∂x
|xi−(1/2),yj

)

+ 1
�yj

(
�i,j+(1/2)

∂T

∂y
|xi,yj+(1/2) − �i,j−(1/2)

∂T

∂y
|xi,yj−(1/2)

)
(20)

Approximation of the remaining derivatives gives

dTi,j

dt
= 1

�xi

(
�i+(1/2),j

Ti+1,j − Ti,j

�xi
− �i−(1/2),j

Ti,j − Ti−1,j

�xi

)

+ 1
�yj

(
�i,j+(1/2)

Ti,j+1 − Ti,j

�yj
− �i,j−(1/2)

Ti,j − Ti,j−1

�yj

)
(21)

with

�i+(1/2),j = (1/2)(�(Ti,j) + �(Ti+1,j)) (22)

In this example, 120 grid points are chosen in both directions,
resulting in an equation system of 10,800 ordinary differential
equations. It is obvious from Eq. (21) that a manual separation
of the right-hand sides into a linear and a nonlinear part would
be quite cumbersome. An automatization of this step, as done by
the developed tool, simplifies the generation of the reduced model
considerably.

4.1.2. Simulation scenario 1: single change of boundary
temperature

To perform the model reduction procedure, the dynamic char-
acteristics of the reference model have to be obtained in form of
snapshots. The boundary temperature Tf is considered as system
input. The dynamics of the system with respect to changes of Tf is
to be analyzed. Thus, the snapshots have been collected in the fol-
lowing way. The initial temperature across the plate is equal to 0 ◦C.
Then the plate heats up by increasing the upper boundary tempera-
ture Tf to 50 ◦C until a new steady state is reached. For the numerical
solution by Diana the IDA solver (Hindmarsh and Taylor, 1999) is
used, which varies the time step �t  dynamically according to user
defined tolerances. A new steady state is reached after 0.5 s and
during this time the integrator takes 319 steps, at which the system
solutions are collected as snapshots.

In order to start model reduction, the user has to provide a MDL
file with the reference model written in modeling language MDL
and a Python script with information about the simulation scenario.
Also, the user has to specify the truncation errors indicating what
fraction of the least significant basis functions is to be neglected. In
the following, the truncation error for the POD  modes and for the
basis functions derived by empirical interpolation are designated as
ex and eg, correspondingly. Using the linear regression method for
model linearization and specifying the truncation errors ex = 10−5

and eg = 10−1, the tool generated the reduced model with only 19
ordinary differential equations and 1 algebraic equation, compared
to 10,800 ordinary differential equations of the reference model.
Both models agree very well, as is illustrated by Fig. 4. It shows the
relative total error ‖x(t) − x̂(t)‖/‖x(t)‖, where x̂(t) is the approxi-
mation of the reduced model. The error takes the largest value at
the initial stage when there are very steep temperature gradients at

the boundary and it reduces to a small value as the system reaches
the steady state.

In comparison to the first approach, the second approach based
on calculation of the analytical Jacobian produces less efficient
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ig. 4. Simulation results of the reduced heat conductor model using linear regres-
ion.

educed models. The reference state x, around which the lineariza-
ion has been carried out, is chosen as average value among all
he generated snapshots. Fig. 5 shows how the truncation error eg

ffects the accuracy of the reduced models.
In order to achieve the same approximation accuracy using this
pproach, 25 algebraic equations are needed, compared to only 1
lgebraic equation by using linear regression method.

ig. 5. Simulation results of the reduced heat conductor model using analytical
acobian.
Fig. 6. The temporal variation of boundary temperature f (random variation).

4.1.3. Simulation scenario 2: randomly changing boundary
temperature

In this section the case is considered where the boundary
temperature Tf changes randomly. It is known that the system
parameter Tf takes values between 0 and 50 ◦C, thereby narrow-
ing the variety of possible dynamic characteristics of the reference
system. Trying to collect the most significant ones, the follow-
ing simulation scenario has been performed for the generation of
snapshots. As typical values of the boundary temperature Tf only
the multiples of 10 between 0 and 50 are considered. In turn, for
each of these values Tfi

the following actions are to be made. At
first, the steady-state temperature distribution when the upper
boundary temperature is set to Tfi

is taken as an initial tempera-
ture distribution. Next, a series of simulations are being performed
from this steady state by setting the upper boundary tempera-
ture to other typical values Tfj

one by one except the considered
one Tfi

. Each such simulation takes 0.01 s of simulation time. As
in the previous case by using the IDA solver (Hindmarsh and
Taylor, 1999) with the varying step size �t,  Diana generated 5645
snapshots.

Using the linear regression method for model linearization and
specifying the truncation errors ex = 10−5 and eg = 10−6, the soft-
ware tool produced the reduced model with 66 ordinary differential
equations and 76 algebraic equations, compared to 10,800 ordinary
differential equations of the reference model. The reduced model
has been solved when the boundary temperature Tf changes ran-
domly between 0 and 50 ◦C at every 0.01 s and compared with the
exact solution. Fig. 6 shows a random variation of the boundary
temperature Tf constructed by a random number generation code.
Fig. 7 shows that both solutions agree very well. The error increases
when a new value of the boundary temperature Tf appears and goes
down towards a steady state.

4.2. Fluidized bed crystallizer

As the second case study a model of fluidized bed crystallizer
sketched in Fig. 8 will be considered. The crystallizer aims at
separation of a mixture by selectively growing crystals of one
component in the mixture. Selective crystallization is achieved by
providing seeding crystals of the derived species and by keeping
the supersaturation of the liquid in a range that prevents nucleation
of new crystals (Binev et al., 2016). The crystallizer has the shape
of a cylinder whose diameter narrows towards the crystallizer’s

bottom from dtop to dbottom. An input volume flow of the fluid
comes from outside and enters the bottom of the crystallizer. The
fluid flow goes from bottom to top, which drags small particles
upwards. Larger particles sink to the bottom due to gravity. A
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ig. 7. Simulation results of the reduced heat conductor model (simulation scenario
).

ixture of solvent and particles leaves the crystallizer at the top.
n additional fluid flow near the crystallizer’s bottom transports
articles to an ultrasonic attenuator where they are broken into
maller fragments. The fragments are sent back to the crystallizer.

The reference model for this process is described in Binev et al.
2016). The main model assumption is that the number of parti-
les is sufficiently high that the particle phase may  be described by

 particle population with a number size density n(x, L, t) denot-

ng the number of particles with size L per volume at a point x in
pace. Further, plug flow in axial direction and vanishing gradients
n radial direction are assumed. The population balance equation
f the system reads:

ig. 8. Considered system consisting of a crystallizer and an ultrasonic attenuator.
mical Engineering 97 (2017) 104–113

A(x)
∂n

∂t
|x,L,t = − ∂

∂x
(A(x)vp(x, L, t)n(x, L, t)) + D

∂
∂x

(
A(x)

∂n

∂x
|x,L,t

)

− A(x)G(x)
∂n

∂L
|x,L,t + V̇us(nfromus

(L)

− n(x, L, t))ı(x − xus) (23)

with boundary conditions

vp(0,  L, t)n(0, L, t) − D
∂n

∂x
|0,L,t = 0 (24)

∂n

∂x
|H,L,t = 0 (25)

n(x, 0, t) = 0 (26)

and initial conditions

n(x, L, 0) = n0(x, L) (27)

The first term on the right-hand side of Eq. (23) is the advective
transport of particles with velocity vp; A(x) denotes the cross-
sectional area of the crystallizer. The particle velocity vp from Binev
et al. (2016) can be expressed as follows

vp(x, L) = V̇

A(x)
− v∗

eq(x, L), (28)

where V̇ is the volume flow of the fluid; v∗
eq denotes the volumetric

fluid flux needed to keep a suspension in equilibrium. It is computed
from the Richardson Zaki model as described in Binev et al. (2016).

The second term on the right-hand side of the population bal-
ance equation (23) stands for particle transport by dispersion.

The third term is due to particle growth with the growth rate

G(x) = k
c(x) − csat

csat
(29)

The dynamic behaviour of the concentration c(x) from Eq. (29)
is described by the following balance equation of the solute in the
liquid phase

∂
∂t

(Aeff (x)c) = − V̇

A(x)
∂c

∂x
+ Aeff (x)Df

∂2
c

∂x2
+ 	p

	f

∫ ∞

0




6
G(x)L̂3 ∂n

∂L
dL,

(30)

where Aeff(x) denotes the effective area of the crystallizer.
The last term of Eq. (23) describes the effect of the ultrasonic

attenuator on the particle population. V̇us is the volume flow to and
from the attenuator. The equation for the number size distribution
in flow from the ultrasonic attenuator nfromus

reads:

∂nfromus
(L)

∂t

=
(

V̇us

Vus
(n(xus, L, t) − nfromus

(L)) + 1
�us

(nus(L)kus − nfromus
(L))

)
(31)

nus is chosen as
nus(L) = exp

(
−10−3

L

(L − Lus)
2

2�2
us,L

)
(32)

The scaling factor kus can be calculated as

kus =
∫ ∞

0
nfromus

(L)L3dL∫ ∞
0

nus(L)L3dL
(33)
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Table  1
Summary information about the generated reduced models.

Experiment Number of equations Computational time (s)

Reference Reduced Offline phase Reference Reduced

Conductor (scenario 1) using linear regression 10,800 ODEs 19 ODEs + 1 alg 783.65 41.12 5.04
Conductor (scenario 1) using analytical Jacobian 10,800 ODEs 19 ODEs + 6 alg 212.09 41.12 7.91
Conductor (scenario 1) using analytical Jacobian 10,800 ODEs 19 ODEs + 16 alg 212.00 41.12 7.64
Conductor (scenario 1) using analytical Jacobian 10,800 ODEs 19 ODEs + 25 alg 210.79 41.12 7.54
Conductor (scenario 2) using linear regression 10,800 ODEs 66 ODEs + 76 alg 7253.60 992.81 546.67
Crystallizer using linear regression 9800 ODEs 45 ODEs + 66 alg 3993.20 1138.84 102.72
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(x − xus) = 1

�us,x
√

2

exp

(
− (x − xus)

2

2�2
us,x

)
(34)

pproximates the spatial spread of the extraction of particles due
o the finite diameter of the connecting tube between crystallizer
nd attenuator.

The method of lines is used to convert the reference system into
 spatially discretized form. For the numerical solution a finite vol-
me  scheme is applied. Since the particle velocity vp may  change its
ign along the x coordinate, gradients in this direction are approx-
mated by central differences to provide numerical stability under
hese circumstances. The following discretization grid has been
pplied: 120 points in the direction of the external coordinate

 and 80 points in the direction of the internal coordinate L. In
otal, the reference model consists of 9800 ordinary differential
quations.

As a demonstrative example, the reduced model has to be pro-
uced that approximates the following dynamic of the reference
odel. An initial state of the fluidized bed crystallizer is the station-

ry state when all system parameters are set to their default values.
hen the volume flow of the fluid V̇ increases from 2.5 × 10−6 m3s−1

o 2.8 × 10−6 m3 s−1. A new stationary state is reached after 3000 s.
he dynamic behavior of the system during this time is shown in
ig. 9.

To perform the model reduction, snapshots are collected on
n equidistant time grid for t = 0 · · ·3000 s with interval of 1 s.
sing the linear regression method for linearization and specify-
ng the truncation errors ex = 10−6 and eg = 10−2, the tool generated
he reduced model with 45 ordinary differential equations and
6 algebraic equations, compared to 9800 equations of the ref-
rence model. Fig. 10 shows good agreement of approximation

0 0.2 0.4 0.6 0.8 1
0

1

2

3

4

5

6

7

8

9

10 x 10
11

crystallizer coordinate / m

n to
ta

l(x
)

time

ig. 9. Profiles of total number of particles ntotal(x) at time points t = 0 s, t = 250 s,
 = 500 s, t = 3000 s.
Fig. 10. Simulation results of the reduced fluidized bed crystallizer model.

with the exact solution. The error takes the largest value at
the beginning when the biggest particle population decreases
rapidly and it goes down as the system reaches the stationary
state.

The example illustrates that the developed software tool is able
to handle nonlinear models of high complexity, for which a manual
model reduction would be a considerable task.

4.3. Case studies: summary

The summary information with all the specifics about the gen-
erated reduced models is presented in Table 1. The simulations in
this work were carried out on a personal computer with an Intel(R)
Core(TM) i5-4590 3.30 GHz and 32 GB RAM running the Ubuntu
12.04.5 LTS. The computational effort is measured with the Python
command clock from the package time as CPU time in seconds.

5. Conclusions

The automatic tool for the model reduction has been developed
by using proper orthogonal decomposition combined with empiri-
cal interpolation. For demonstration purposes a virtual machine has
been prepared with all the needed software installed. It is freely
available for download from http://promottrac.mpi-magdeburg.
mpg.de/dist/pod/promot-pod-reducer-32bit.ova.
Although the basis functions from snapshots of the reference
model give some hints on the accuracy to be expected from the
reduced model, depending on many factors the approximation
error during runtime of the reduced model can leave the desired
range. For this purpose an efficient a posteriori error estimator
proposed in Zhang et al. (2015) has to be implemented.

http://promottrac.mpi-magdeburg.mpg.de/dist/pod/promot-pod-reducer-32bit.ova
http://promottrac.mpi-magdeburg.mpg.de/dist/pod/promot-pod-reducer-32bit.ova
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http://promottrac.mpi-magdeburg.mpg.de/dist/pod/promot-pod-reducer-32bit.ova
http://promottrac.mpi-magdeburg.mpg.de/dist/pod/promot-pod-reducer-32bit.ova
http://promottrac.mpi-magdeburg.mpg.de/dist/pod/promot-pod-reducer-32bit.ova
http://promottrac.mpi-magdeburg.mpg.de/dist/pod/promot-pod-reducer-32bit.ova
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ist of symbols

atin symbols:

Symbol Description Unit Value

A Right system matrix of reference model
Ared Right system matrix of reduced model
A(x) Cross-sectional area of crystallizer m2

Aeff(x) Effective area of crystallizer m2

B Left system matrix of reference model
Bred Left system matrix of reduced model
c  Constant vector of reference model
cred Constant vector of reduced model
csat Saturated solution concentration 1 0.0051
c(x)  Liquid phase concentration 1
D  Dispersion coefficient in particle phase m2 s−1 10−4

Df Dispersion coefficient in liquid phase m2 s−1 10−4

d Diameter of crystallizer m
dbottom Diameter at the bottom of crystallizer m 1.5 × 10−2

dtop Diameter at the top of crystallizer m 3 × 10−2

ex Truncation error for POD modes 1
eg Truncation error for basis functions derived by empirical interpolation 1
f(x(t)) Right-hand sides of equations
F  Snapshots for f(x(t))
G(x) Particle growth rate ms−1

g(x(t)) Nonlinearities of reference model
H Height of crystallizer m 1.1
kus Scaling factor for nus 1
L  Internal coordinate/particle diameter m
k  Growth rate constant 1 3.37 × 10−7

k1 Coefficient in thermal diffusivity 1 1
k2 Coefficient in thermal diffusivity 1 10−2

k3 Coefficient in thermal diffusivity 1 10−4

Lus Mean value of ultrasonic outlet number size density m 5.0 × 10−5

Nd Number of snapshots 1
Nx Number of differential equations 1
Ng Number of algebraic equations 1
n(x, L, t) Number size density m−3 m−1

nus Output size distribution m−3 m−1

nfromus
Number size distribution in flow from ultrasonic attenuator m−3 m−1

s Symbolic name of state variable
T  Temperature ◦C
Tf Temperature of the upper boundary ◦C
t  Time s
U  POD modes
V̇ Fluid volume flow m3 s−1 2.5 × 10−6

V̇us Volume flow through attenuator m3 s−1 1.17 × 10−5

Vus Volume of ultrasonic attenuator m3 10−3

v∗
eq Volumetric fluid flux ms−1

vp Particle velocity ms−1

x(t) Discretized state vector
x  Space coordinate m
xUS Position of the connection between crystallizer and ultrasonic attenuator m 0.025
x̂(t)  Approximation of reduced model
X Snapshots for x(t)

reek symbols:

Symbol Description Unit Value

� Thermal diffusivity W m−1 K−1

� Diagonal matrix with singular values
�US,L Standard deviation of ultrasonic outlet number size density m 10−5

�US,x Shaping parameter for exchange flow between crystallizer and attenuator m
x x
� State vector of �

�g State vector of �g

�g Matrix of reduced basis vectors for g(x(t))
�x Matrix of reduced basis vectors for x(t)
�us Characteristic time of attenuation s 100
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