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a b s t r a c t

We have implemented the Centroid Molecular Dynamics scheme (CMD) into the Grand Canonical-like
version of the Adaptive Resolution SimulationMolecular Dynamics (GC-AdResS) method. We have tested
the implementation on twodifferent systems, liquid parahydrogen at extreme thermodynamic conditions
and liquid water at ambient conditions; the reproduction of structural as well as dynamical results
of reference systems are highly satisfactory. The capability of performing GC-AdResS CMD simulations
allows for the treatment of a system characterized by some quantum features and open boundaries.
This latter characteristic not only is of computational convenience, allowing for equivalent results of
much larger and computationally more expensive systems, but also suggests a tool of analysis so far not
explored, that is the unambiguous identification of the essential degrees of freedom required for a given
property.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

The path integral (PI) approach is a powerful method that de-
scribes the quantum character of spatial delocalization of atoms
in space [1]. For systems at low temperature the PI description
is mandatory in order to capture their essential physical features,
however also at room temperature the PI description is relevant
for molecular systems composed of light atoms. In particular, the
efficient implementation of PI idea in Molecular Dynamics (MD)
turned the PI technique into an accurate computational tool for
simulating various molecular systems (see e.g. [2]). The critical as-
pect of PIMD is that it is rather expensive when compared to stan-
dard classical MD and thus its employment in simulation studies
has been restricted, so far, to small systems and short time scales;
it must also be noticed that in recent years more work has been
done so that PIMD calculations are simplified and made accessi-
ble to researchers equipped with basic standard computational re-
sources [3–9]. However there is another way, complementary to
the trend cited above, to access properties of a system without
the need of having large or simplified PIMD calculations: it con-
sists of embedding a PI system into a reservoir of low computa-
tional cost that assures thermodynamic conditions as if the whole
system was described at PI resolution. This idea implies that the
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PI system is an open system and exchanges energy and particles
with a reservoir. In this context, open boundary approaches, based
on the idea of space-dependent adaptive molecular resolution,
have been developed in large numbers in the last years (see e.g.
Refs. [10–16] and references therein). In particular the authors of
this paper during the last years haveworked on the development of
the Adaptive Resolution Simulation (AdResS) approach in its Grand
Canonical-like version [17–19]. More recently several PIMD ap-
proaches have been successfully implemented in GC-AdResS [20],
however, one particular approach, that is the Centroid Molecular
Dynamics, deserved amore careful testing and implementation. In
fact the theoretical and computational complexity of both meth-
ods, GC-AdResS and CMD, is such that an efficient and accurate
merging of the two in a unified scheme is not obvious. In partic-
ular the adiabatic hypothesis required in the CMD algorithms has
been never tested before in open boundary systemswhere also the
time scale of a possible response of the reservoir (e.g. if the reser-
voir is too small) may enter into the game. Moreover, compared to
approaches such as Ring Polymer MD [21,22] (already successfully
implemented in GC-AdResS), CMD, in the so called partially adia-
batic CMD (PACMD) [23], can be computationally cheaper and thus
it may represent a more efficient alternative (see note [24]). The
two systems chosen in this study are liquid parahydrogen at low
temperature and liquid water at ambient conditions; they repre-
sent ideal tests to validate the theoretical and computational ro-
bustness of the resulting method. Liquid parahydrogen has been
used in the past to test the robustness of PI approaches; in partic-
ular for AdResS, the extreme thermodynamic conditions represent
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a further challenge to the principle on which adaptive molecular
resolution is based. Liquid water instead is of importance in many
fields of simulation since water plays a key role in condensed mat-
ter systems broadly intended; light atoms like hydrogen atoms and
their key role in the bonding network of the liquid make this sys-
tem an ideal system for testing the GC-AdResS CMD algorithm.

1.1. Path integral molecular dynamics

A classical Hamiltonian of a particle of mass m under the
action of a potential V (x): H =

p2
2m + V (x) can be trans-

formed into a quantized Hamiltonian via the path integral for-
malism of Feynman [1,2]. The resulting Hamiltonian is formally
equivalent to the Hamiltonian of a polymer ring of P beads cir-
cularly connected through springs characterized by ωP =

√
P

βh̄
(β = 1/kBT ), a fictitious mass m′ and fictitious momenta p:

H =
P

i=1


p2i
2m′ +

1
2mω2

P(xi − xi+1)
2
+

1
P V (xi)


. The formalism

can be extended to a N-particle Hamiltonian: H =
N

j=1
p2j
2mj

+ V (x1, . . . .xN) and in case the spin statistics can be neglected

the resulting quantized Hamiltonian is: H =
P

i=1(
N

j=1
(p(i)

j )2

2m′
j

+N
j=1

1
2mjω

2
P(x

(i)
j − x(i+1)

j )2 +
1
P V (x(i)

1 , . . . .x(i)
N )); it must be noted

that the potential acts between beads with same index i. The spa-
tial oscillations/fluctuations of the polymer rings describe, in an
effective way, the quantum spatial delocalization of the N atoms.
As a consequence the statistical sampling of the individual bead
trajectories, produced (e.g.) by Molecular Dynamics, allows for
the calculation of statistical properties of atomic/molecular sys-
tems where the quantum effects due to the spatial delocaliza-
tion of atoms are of relevance. An efficient integrator of the re-
sulting dynamical equations which assures a satisfactory sam-
pling of the phase space is based on the decoupling of the har-
monic spring term of the Hamiltonian by transforming the primi-
tive coordinates into the normalmode coordinates:Vharmonic(XI) =
1
2MIω

2
PX

T
I AXI , where A is thematrix that couples the coordinates of

different beads. Once thematrix is diagonalized then the eigenvec-
tors are used to represent the Hamiltonian in normal mode coor-

dinates: Hnm =
P

i=1


p2i
2m′

i
+

1
2mω2

Pλi(x′

i)
2
+

1
P V (xi(X′))


, with λi

the ith eigenvalue of the diagonalized matrix. Here for simplicity
wehave reported the one-particleHamiltonian only. The equations
of motion can then be written in terms of normal mode variables
and the different choice of the fictitious mass in the equations
leads to different PIMD algorithms [25], although the methods dif-
fer considerably from the conceptual point of view. In particu-
lar for dynamical properties, Ring Polymer Molecular Dynamics
(RPMD) [21] gives an approximation to Kubo-transformed corre-
lation functions by using classical MD trajectories in the extended
phase space of polymer rings. RPMD, however, suffers from the so-
called ‘‘resonance-problem’’ [25,26] which causes a spurious split-
ting of the stretching peak in the IR spectrum. Thermostated RPMD
(TRPMD) [27] is an improvement over the conventional RPMD
method, where the spurious splitting is removed by coupling the
internal modes of the ring polymer to a thermostat. Instead, Cen-
troid Molecular Dynamics (CMD) [28] is based on the evolution
of the centroid of the ring polymer on the potential energy sur-
face created by the internal modes of the ring. CMD will be dis-
cussed in detail in Section 1.1.1. Alternative methods for treating
quantum dynamics, outside the realm of path integral techniques,
are those such as Linearized semi-classical initial value represen-
tation (LSC-IVR) method [29–31]; it uses classical MD trajectories
and adds quantum effects using the initial value representations
(IVR) [32,33] of semi-classical theory [34]. This approach, however,

does not conserve the quantum Boltzmann distribution. Further-
more, Althorpe and co-workers [35,36] have recently proposed a
method called ‘‘Matsubara dynamics’’ which originates from a sin-
gle change in the derivation of LSC-IVRmethod and generates clas-
sical dynamics and conserves the quantum Boltzmann distribu-
tion. They have also given the error terms in the propagator be-
tween exact quantum dynamics and CMD (as well as RPMD and
TRPMD). Within the context of Grand Canonical Adaptive Reso-
lution some PIMD approaches have already been discussed (see
Ref. [20]), thus here we will discuss the implementation and ap-
plication of Centroid Molecular Dynamics in GC-AdResS.

1.1.1. Centroid molecular dynamics
A centroid is a quasi-classical object that is defined as an

average over all the beads in a ring polymer as described before:
xc =

1
P

P
i=1 xi, pc =

1
P

P
i=1 pi, and the resulting dynamics is

named Centroid Molecular Dynamics (CMD) [28]. In this context,
the normal mode transformation reported before is the optimal
choice of CMD simulations; in fact the centroid separates out the
first normal mode coordinate from the other modes. The evolution
of the centroid is then governed by the following equations:

ẋc =
pc
m

(1)

and,

mc ẍc = −
∂Vo(xc)

∂xc
(2)

where mc is the physical mass and Vo is the potential of mean
force generated by the dynamics of the non-centroid modes. The
rigorous CMD procedure involves an accurate sampling of the
phase space pertaining to the non-centroid modes at each posi-
tion of the centroid. Such a procedure is computationally highly
expensive, and thus one uses adiabatic decoupling to separate the
fictitious motion of the non-centroid modes from the physical
motion of the centroid. This version of Centroid Molecular Dy-
namics is called Adiabatic Centroid Molecular Dynamics (ACMD)
[25,37,38]. The adiabatic decoupling is achieved by reducing the
masses of the non-centroid modes by a factor γ 2, where 0 < γ 2 <
1. The effect is that the motion of the centroid is slower compared
to the non-centroid modes, which implies that the centroid moves
on the potential ofmean force generated ‘‘on-the-fly’’ by rest of the
modes. Thus, the choice of mass in CMD is:

m′

i = γ 2mλi, m′

1 = m (3)

where γ is the adiabaticity factor. There exists another formulation
of ACMD, called partially ACMD (PACMD) [23,26],with the only dif-
ference that larger values of γ are used in PACMD. Due to a partial
separation between the non-centroid and centroid modes, PACMD
can be computationally less expensive than other PI-based ap-
proaches designed for the calculation of dynamic properties such
as RPMD [26]. It was shown in Ref. [23] that the dynamical prop-
erties for liquid parahydrogen were similar with both ACMD and
PACMD methods. In this work, we have implemented PACMD in
GC-AdResS and from now on, we will refer to PACMD as CMD. It
must be reported that the vibrational spectra in CMD suffers from
the curvature problem, due to which the stretching peak in the
spectra is red-shifted and broadened as the temperature is low-
ered [25]. It has been shown by Ivanov et al. [39] that the curva-
ture problem exists in CMD simulations of liquidwater. In this per-
spective this work must be evaluated for its technical significance
regarding the computational implementation, i.e. the capability
of reproducing conventional CMD result; the simulation carries
the same physical limitation of conventional CMD results. Paesani
et al. [40] have recently shown that the effects of curvature prob-
lem are negligible when a different water model (MB-pol potential
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Fig. 1. Pictorial representation of the GC-AdResS scheme; CG indicates the coarse-grained region, HY the hybrid region where path-integral and coarse-grained forces are
interpolated via a space-dependent, slowly varying, function w(x) and EX (or PI) is the path-integral region (that is the region of interest). In the explicit path-integral
subregion, the centroid mode is not subjected to any thermostat, while non-centroid modes move under the action of the thermostat.

energy surface) is used in adiabatic CMD. In such a scenario, CMD-
GC-AdResS will not carry the current limitations, since the validity
of GC-AdResS is independent of the specific molecular model.

1.2. GC-AdResS

The Grand Canonical Adaptive Resolution Simulation approach
(GC-AdResS) is a multiscale technique that allows to couple differ-
ent molecular models which describe the molecules in question at
different levels of resolution. (see Fig. 1). The simulation box is di-
vided in three parts: (i) high resolution region, (ii) hybrid or transi-
tion region, (iii) coarse-grained region. In the current case the high
resolution region is wheremolecules are described via the path in-
tegral approach and where the CMD technique is applied, instead
the transition region is a technical filter which allows to pass from
the PI representation to a coarse-grained representation. Finally in
the coarse-grained region molecules are treated as generic classi-
cal spheres (without any quantum characteristic) interacting via
a generic Weeks–Chandler–Andersen (WCA) potential (see Fig. 1).
It has been shown that the approach is, in general, theoretically
well founded [17,19] and numerically solid; moreover, in recent
years, the method has been successfully extended to several ap-
proaches based on the PI representation of atoms [41,20]. The tech-
nical implementation of CMD in GC-AdResS follows from the gen-
eral implementation of PI representation in GC-AdResS as reported
in Ref. [20], however the capability of GC-AdResS CMD to deliver
correct results strongly relies on its capability to sample the correct
phase space according to the CMD procedure (see also note [42]);
the aim of this paper is to show such an accuracy/efficiency.

1.3. Implementation of centroid molecular dynamics in GC-AdResS

Since the path-integral polymer rings can be interpreted
in terms of classical fictitious atoms (beads) with harmonic
interaction between the adjacent beads, the standard equation of
GC-AdResS can be used in a straightforward way.

Fαβ = w(Xα)w(Xβ)FPIαβ + [1 − w(Xα)w(Xβ)]FCGαβ (4)

where α and β indicate two molecules, FPI is the force derived
from the path-integral force field and FCG is the force derived from
a generic coarse-grained potential, X is the x coordinate of the

center of mass of the molecule and w is an interpolating function
which smoothly goes from 0 to 1 (or vice versa) in the interface
region, (∆), where the lower resolution is slowly transformed
(according tow) in thehigh resolution (or vice versa). This equation
represents the coupling of two different regions characterized by
different number of (effective) classical degrees of freedom [43].
A thermodynamic force, acting on the center of mass of each
molecule in the transition region, is introduced in GC-AdResS to
balance the pressure difference between the coarse-grained and
the explicit path-integral region [44,45,17,19] and it is numerically
implemented via the following iterative procedure:

F th
k+1(x) = F th

k (x) −
Mα

[ρref ]
2κ

∇ρk(x) (5)

with Mα the mass of the molecule, κ a constant which can be
chosen in an appropriate way, ρo is the target, average, density of
reference and ρk(x) is the molecular density at the kth iteration
as a function of the position in the transition/hybrid region. The
iteration converges when the density profile across the HY region
becomes flat (within max 2%–3% of deviation from ρref ); such a
force is very sensitive to thermodynamic conditions and numerical
integrators, thus its implementation (and resulting accuracy) in the
CMD version of GC-AdResS, despite we follow the same successful
protocol of previous PI-CG-AdResS calculations, is not a trivial
numerical result. The dynamics of the non-centroid modes in CMD
is artificial and is carried out in order to sample Vo(xc). Such
a process requires a canonical sampling over the non-centroid
modes, which is achieved by coupling the internal modes to a
thermostat for rapid equilibration [25,38]. Since the dynamics of
the centroidmode is Newtonian, there are no thermostats attached
to the centroid. In the context of AdResS, this would simply
translate to having a thermostat in the coarse-grained and hybrid
regions, while in explicit region, no thermostats are attached to the
centroid mode, while non-centroid modes move under the action
of the thermostat. Fig. 1 shows the GC-AdResS CMD system with
the application of a thermostat in different regions.

2. Calculation of quantum dynamical properties in GC-AdResS

The Kubo transformed quantum time correlation between two
operators Â and B̂ is approximated by [38]:

CAB(t) =
1
Q


dxcdpc
2π h̄

A(xc(0))B(xc(t))e−βHc (6)
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where Q is the canonical partition function and Hc = p2c/2m +

Vo(xc) is the Hamiltonian governing the evolution of centroids
on the potential Vo(xc) created by the internal modes. The direct
extension of the above formula to the case of an open boundary
system/grand-canonical-like ensemble is:

CAB(t) =
1

QGC


N

1
N!


dxNc dp

N
c

2π h̄
A(xNc (0))B(xNc (t))

× e−β

HN
c (xNc ,pNc )−µN


(7)

whereQGC is the grand-canonical partition function,µ is the chem-
ical potential, N is the number of path centroids (which is now a
variable number in the system) and HN

c is the Hamiltonian gov-
erning the evolution of centroids with N , instantaneous number of
path centroids. The number of centroids N ′ at time t = t ′ > 0 is
likely to be different from the number of centroidsN at time t = 0.
We use the correspondence between the Bergmann and Lebowitz
model [46–48] and GC-AdResS to interpret the quantity B(xNc (t))
in this context. From such a correspondence one concludes that
there exists a Liouvillian operator iLN , which evolves the system
from the configuration in phase space XN

c (0) to the configuration
in phase space XN ′

c (t) (thus from N to N ′ molecules) [19,49]. From
the numerical point of view, we use the same procedure as used
in Ref. [19] to calculate the equilibrium time correlation functions,
which is based on the definition of reservoir in the Bergmann and
Lebowitz model. According to this model, if a molecule leaves the
systemand enters in the reservoir, it does not retain itsmicroscopic
identity. Thus, if a molecule present at time t moves into a reser-
voir at time t ′ ≤ t , then it does not contribute to the correlation
after time t (see note [50] and Ref. [49]).

3. Results and discussion

3.1. Low-temperature parahydrogen: Technical details

All simulations in thiswork have been performed in homemod-
ified GROMACSMDpackage [51] and the thermodynamic force has
been calculated using VOTCA simulation package [52]. We have
performed simulations of parahydrogen at two different temper-
atures: 14 K and 25 K. The number of parahydrogen molecules in
the system is 3000, and the box dimensions are chosen to repro-
duce the experimental density [53]: ρ = 26.2 cm3/mol at 14 K
and ρ = 31.2 cm3/mol at 25 K. This corresponds to box dimen-
sions 90 × 38 × 38 Å3 at temperature 14 K and 90 × 41 × 41 Å3

at temperature 25 K. In AdResS simulations, the resolution of the
molecules changes along x-axis, as depicted in Fig. 1. The size of
the quantum and transition region is 20 Å. The intermolecular in-
teraction is described as in previouswork [54,55] by the (spherical)
Silvera–Goldman potential [56] and the cut-off used is 9 Å. In the
coarse-grained region,we have used a genericWCApotential given
by:

U(r) = 4ϵ


σ

r

12

−


σ

r

6
+ ϵ, r ≤ 21/6σ . (8)

For parahydrogen at 14 K, the parameters σ and ϵ are 0.30 nm and
0.90 kJ/mol respectively, and for the system at 25 K, σ and ϵ are
0.30 nm and 0.80 kJ/mol respectively. We have used P = 48 beads
for T = 14 K and P = 32 beads for T = 25 K. These values give
converged results for low temperature parahydrogen [57,23]. An
adiabaticity parameter of γ 2

= 1/P [23] is used and a time step
of 0.25 fs is found to be optimal for the corresponding adiabaticity
parameter. A 200 ps long PIMD simulation is performed and along
the trajectory, configurations are stored every 4 ps to performCMD
simulations. Thus, a total of 50 trajectories each of length 10 ps are

Table 1
Local diffusion constant D (Å2 ps−1) for liquid parahydrogen.

Temperature Reference CMD AdResS CMD

14 K 0.37 0.33
25 K 1.37 1.36

generated. For the first 4 ps, we keep all the modes under the ac-
tion of thermostat, in order to adjust the velocities as masses are
different in PIMD and CMD methods. For this technical setup, we
have strictly followed the procedure reported in the work of Perez,
Tuckerman andMüser [38]. After this initial equilibration run, cen-
troid mode is not kept under the action of the thermostat while
non-centroid modes are thermostated. We use the same strategy
for AdResS simulations,where a 200ps long fully thermostatedGC-
AdResS PIMDsimulation is performed, and50 initial configurations
are taken along this trajectory to perform GC-AdResS CMD simula-
tions. For the first 4 ps, the thermostat acts in the explicit as well as
the hybrid and coarse-grained regions. After the short equilibration
run, the centroid modes are not coupled to a thermostat in the ex-
plicit region, while the hybrid and coarse-grained region are kept
under the action of the thermostat. The equilibrium properties are
calculated in the explicit region in the last 6 ps, i.e. excluding the
equilibration run. The velocity auto correlation function is calcu-
lated up to 2 ps by averaging over the 50 trajectories. The diffusion
coefficient is obtained from the time integral of the velocity auto-
correlation function:

D =
1
3


∞

0
Cvv(t)dt. (9)

3.2. Low-temperature parahydrogen: Results

Fig. 2 shows the centroid density for low-temperature parahy-
drogen in the explicit path-integral subregion. The agreement
between the reference results and AdResS results is highly satis-
factory. In a rigorous application of the GC-AdResS protocol, a part
of the explicit region, in contact with the transition/hybrid region
is considered as a buffer region and it is included in the transition
region; however if this is not done an error of, at worst, 10% should
be considered or a more accurate (but more expensive) thermody-
namic force shall be calculated. Following the prescription above,
in this work all the properties are calculated in the explicit path-
integral subregion excluding the border areas (as shown by the
two vertical lines in Fig. 2). Fig. 3 shows the centroid radial dis-
tribution functions for low temperature parahydrogen calculated
in the explicit region in AdResS CMD and an equivalent region in
reference CMD simulations. The results are highly satisfactory. It
should be noted that centroid RDF’s are not same as the quantum
(bead–bead) RDF’s and a deconvolution procedure [58] is used to
convert centroid RDF’s to the actual quantum RDF’s. However, it
is an important numerical quantity to show that the explicit path-
integral region in AdResS reproduces detailed structural properties
in a proper way. Fig. 4 shows the velocity auto-correlation func-
tion for low-temperature parahydrogen calculated in the explicit
region in AdResS CMD and an equivalent region in reference CMD
simulations. It can be seen that AdResS CMD results and the refer-
ence CMD results agree in a rather satisfactory way. This has also
been verified by comparing the local diffusion constant calculated
by integrating over the velocity auto-correlation functions, which
can be seen in Table 1.

3.3. Liquid water: Technical details

We use the q-SPC/Fw water model [59] for performing CMD
simulations. The number of water molecules in system are 1320,
and the box dimensions are 58 × 26 × 26 Å3, corresponding to
a density 990 kg m−3. The size of the quantum subregion treated
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(a) 14 K. (b) 25 K.

Fig. 2. Centroid density in the explicit path-integral region in reference CMD and AdResS CMD simulations for liquid parahydrogen. All the properties are calculated in the
region enclosed between the vertical lines using the rigorous GC-AdResS protocol.

(a) 14 K. (b) 25 K.

Fig. 3. Centroid radial distribution functions calculated in the explicit region in AdResS CMD and an equivalent region in the reference CMD simulations for liquid
parahydrogen.

(a) 14 K. (b) 25 K.

Fig. 4. Velocity auto-correlation function calculated in the explicit region in AdResS CMD and an equivalent region in the reference CMD simulations for liquid parahydrogen.

in this work is 12 Å and the size of the transition region is 24 Å.
The remaining system contains coarse-grained particles, which
interact via generic WCA potential. The parameters σ and ϵ in
the current simulations are 0.30 nm and 0.65 kJ/mol respectively.
The number of imaginary time slices is taken to be P = 32
and an adiabaticity parameter of γ 2

= P−(P+1)/(P−1) [26] is
used, and a time step of 0.1 fs is found to be sufficient for
this adiabaticity parameter. Reaction field method is used to
compute the electrostatic properties with dielectric constant for
water = 80. The cut-off for both Van Der Waals and electrostatic
interactions is 9 Å. We generate a 200 ps long PIMD trajectory,
where the configurations are stored after every 8 ps. We initiate
25 ps long CMD trajectories from the saved configurations. All

the modes are coupled to a thermostat for first 5 ps. After this
initial warm up run, we decouple the centroid mode from the
thermostat while non-centroid modes move under the action of
thermostat. In the CMD AdResS simulations, this translates to
having a thermostat coupled to the whole system for the first 5
ps, following which the thermostat is coupled to all the modes in
coarse-grained and hybrid regions and only non-centroid modes
in the explicit path-integral region. The dynamic properties are
calculated in the explicit region in the last 20 ps, i.e. excluding the
equilibration run. The correlation functions are calculated up to 10
ps by averaging over the 25 trajectories. We calculate the lth order
orientational correlation functions of the type:

Cl(t) = ⟨Pl[e(0) · e(t)]⟩, (10)
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Fig. 5. Centroid density in the explicit path-integral region in reference CMD and
AdResS CMD simulations for liquid water.

Fig. 6. Number of molecules that remain within the explicit path-integral region ν

as a function of time. This quantity is calculated in reference CMD and AdResS CMD
simulations.

where Pl is the Legendre polynomial of order l, and e is a unit
vector that is chosen along one of the three principal inertial axes
(denoted by n) of the water molecule. The lth order relaxation
times are obtained from the time integrals of the corresponding
orientational correlation functions:

τ n
l =


∞

0
Cn
l dt. (11)

Since the orientational correlation functions are calculated for 10
ps, an exponential tail was fitted to the correlation functions for
computing the integral. We also calculate the infrared absorption
coefficient α(ω) using the following relation [59]:

α(ω) =


4π2ω

3V h̄cn(ω)


(1 − e−βh̄ω)

1
2π

×


+∞

−∞

e−iωt
⟨M(0)M(t)⟩dt, (12)

where ⟨M(0)M(t)⟩ is the total dipole moment auto-correlation
function, c is the speed of light, V is the volume of the box and
n(ω) is the refractive index of the system at frequency ω.

3.4. Liquid water: results

Fig. 5 shows the centroid density for liquid water in the explicit
path-integral subregion. The agreement between the reference

Table 2
Local diffusion constant and lth order relaxation times for liquid water calculated
in the explicit region of AdResS CMD and an equivalent subregion in the reference
CMD simulations.

Parameter Reference CMD AdResS CMD

D (Å2 ps−1) 0.32 0.32

τ
µ

1 (ps) 4.0 3.7

τ
µ

2 (ps) 1.3 1.2

results and AdResS results is highly satisfactory. Fig. 6 shows the
number of molecules that remain within the explicit path-integral
region ν as a function of time. This is calculated as following: we
label all the molecules in the trajectory at time ‘0’ and calculate
how many of those labeled molecules are present at time ‘t ’.
This is an important quantity that describes the movement of
the molecules in and out of the explicit path-integral region.
This quantity is calculated in AdResS CMD and reference CMD
simulations. It can be seen that the two curves overlap. This
result confirms, once again, that AdResS subregion has the same
average dynamical behavior as the reference CMD subregion,
and indirectly shows the Grand Canonical-like character of GC-
AdResS. Fig. 7 shows the centroid RDF’s calculated in the explicit
region in AdResS CMD and an equivalent region in reference
CMD simulations. The results are highly satisfactory. Fig. 8 shows
the velocity auto-correlation function, first and second order
orientational correlation functions (by defining the unit vector
along the direction of molecular dipole moment, µ) calculated in
the explicit region in AdResS CMD and an equivalent region in
reference CMD simulations and Table 2 reports the local diffusion
constant (D (Å2 ps−1)) and lth order relaxation times (τµ

1 (ps) and
τ

µ

2 (ps)). It can be seen that the local diffusion constant is same in
both AdResS CMD and reference CMD results, while there is some
discrepancy in the 1st order relaxation time. The difference is not
significant, however it must be reported. Fig. 9 shows the infrared
spectrum calculated in the path-integral subregion in AdResS CMD
and reference CMD simulations. The agreement is remarkable, and
strongly supports the numerical and conceptual solidity of the
method since the spectrum is a quantity of primary importance
also from an experimental point of view. In general, it should
be pointed out that the current GC-AdResS simulations are not
performed under optimal conditions, i.e. a very large reservoir and
(ideally) a relatively small hybrid region. The computational set up
employed in thiswork represents a ‘‘worst case scenario’’ that tests
the technical frontiers of the method; it is natural to expect that
when theoretical conditions are fullymet then the level of accuracy
can only rise (as proven recently [19]). However, already under non
optimal conditions the results are highly satisfactory.

4. Conclusions

We have reported the implementation and testing application
of CMD in the open boundary, Grand Canonical-like Adaptive
Resolution Simulation technique. We have studied two test
systems: (a) liquid parahydrogen at low temperature and (b)
liquid water at ambient conditions. Structural and dynamical
properties were calculated and compared with reference full CMD
calculations, the results show a highly satisfactory agreement.
The GC-AdResS set up can be also employed as a tool of analysis
by systematically increasing/decreasing the quantum region and
control whether some properties change when compared to the
calculations of a full CMD system. This approach would allow for
a determination of the essential degrees of freedom required for
a certain property. In fact the reservoir is very generic and its
only physical contribution is atmacroscopic/thermodynamic level,
thus as a matter of fact all the necessary degrees of freedom are
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(a) H-H g(r). (b) O-H g(r).

(c) O-O g(r).

Fig. 7. Centroid radial distribution functions for liquid water calculated in explicit region of AdResS CMD and an equivalent subregion in the reference CMD simulations.

(a) Velocity autocorrelation function. (b) First order orientational correlation function.

(c) Second order orientational correlation function.

Fig. 8. Equilibrium time Correlation Functions for liquid water calculated in explicit region of AdResS CMD and an equivalent subregion in the reference CMD simulations.
For the first order correlation function, an exponential tail has been fitted beyond 10 ps.

exclusively those of the quantum region. For classical systems
this kind of approach has been already used to determine the
locality of the hydrogen bonding network for water around large

hydrophobic solutes [60]. Interestingly, in PI studies of systems
as those in Ref. [60], one should add the effects of the quantum
description to the intrinsic classical locality/non-locality described
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Fig. 9. Infrared spectrum for liquid water at 298 K calculated in explicit region of
AdResS CMD and an equivalent subregion in the reference CMD simulations.

by the classical GC-AdResS. This implies that the use of GC-
AdResS with PI methods would allow for the understanding, at
a very basic/essential level, of the relevant principles behind the
difference between classical and quantum results. In this paper we
have shown that GC-AdResS CMD is technically robust and thuswe
can confidently foresee in future applications an analysis aimed at
identifying relevant degrees of freedom at the level described by
the PI approach.
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