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a b s t r a c t

A hybrid parallelisation technique for distributed memory systems is investigated for a coupled Fourier-
spectral/hp element discretisation of domains characterised by geometric homogeneity in one or more
directions. The performance of the approach is mathematically modelled in terms of operation count
and communication costs for identifying the most efficient parameter choices. The model is calibrated
to target a specific hardware platform after which it is shown to accurately predict the performance
in the hybrid regime. The method is applied to modelling turbulent flow using the incompressible
Navier–Stokes equations in an axisymmetric pipe and square channel. The hybrid method extends
the practical limitations of the discretisation, allowing greater parallelism and reduced wall times.
Performance is shown to continue to scale when both parallelisation strategies are used.

© 2016 The Author(s). Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).

1. Introduction

Direct Numerical Simulation (DNS) is used to simulate complex
laminar and turbulent flow problems both to gain an understand-
ing of the fundamental flow physics and for industrial applications
[1]. Turbulent flows inherently require high spatial and temporal
resolutions in order to resolve the spectrum of scales within the
flow, which depends on the Reynolds number Re. The number of
grid points needed to resolve a fully turbulent three-dimensional
flow scales as Re9/4 [2], meaning that even at modest Re, the
computational demands are significant. Since practical CFD appli-
cations involve Reynolds numbers on the order of 103–106 and
higher, this inevitably makes serial computation impossible, ne-
cessitating the use of parallel clusters of computers.

The most prevalent form of high-performance computer sys-
tems are distributed-memory clusters consisting of an inter-
connected collection of processors, each with their own local
memory hierarchies. Traditionally, the capacity of these systems
has been broadly increased through faster processor clock speeds
and improved lower-latency network interconnects. However, in
recent years, HPC facilities have evolved around increasingly par-
allel systems as clock speeds have saturated and energy-usage con-
cerns become a motivating factor [3]. Consequently, algorithms
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have been required to adapt to the changing hardware landscape
in order to maintain efficiency.

The spectral/hp element method [4], whilst being used to
simulate fluid flow for many years in an academic setting, is
now emerging as an attractive alternative to many traditional
numerical discretisations on modern HPC hardware. As opposed
to the classical finite element method, spectral/hp elements use
high-order polynomial expansions on each element. Numerically,
this has the advantage of low dispersion and diffusion alongside
exponential convergence in the polynomial order. Additionally
however, discretised operators are dense and have a far richer
structure compared to linear expansions, meaning that they can
more effectively utilise caching on modern HPC hardware. The
tensor product of one-dimensional basis functions on each element
also admits a rich fabric of implementation strategies [5–7].

However, variations of this method mean that we can further
improve computational performance whilst preserving the accu-
racy of the simulation. Many studies of fundamental flow physics
are posed on domainswhich are characterised by geometric homo-
geneity in one ormore coordinate directions [8–10]. Instead of dis-
cretising the domain using a 3D spectral/hp element method, one
can combine a 2D spectral/hp element discretisation with a pure
spectral expansion to significantly reduce the computational cost
of these problems. This approach is known as a Fourier–spectral/hp
element method [11]. In this study we are specifically interested in
the case where only one coordinate direction possesses geomet-
ric homogeneity. Therefore, the 3D domain is decomposed into a
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sequence of spectral/hp element planes, coupled using a Fourier
expansion in the third coordinate directions.

The approach typically used when parallelising this type
of discretisation is to either use mesh-decomposition in the
spectral/hp element planes, or apply a modal decomposition in the
Fourier direction. The latter takes advantage of the orthogonality
property of the Fourier basis for linear operators. The optimal
choice of parallelisation strategy typically depends on the size
of the problem, the ratio of Fourier planes to spectral elements,
alongside the hardware and interconnect of the parallel system.
Moreover, the fast development of computer systems forces
software designers to make a continuous effort to maintain
algorithms to be able to exploit all the benefits exposed by the
latest generation of hardware. There is therefore benefit to be
gained from a code supporting both types of parallelism, but
predicting the performance of these algorithms on a specific
architecture is not trivial [12].

The performance of a parallel 3D incompressible Navier–Stokes
solver using the Fourier–spectral/hp element method has been
benchmarked previously [13,14]. Spectral modes were distributed
across the processes, requiring the transposition of data using the
MPI all-to-all technique to compute derivatives in that direction.
Their performance model assumed a flat communication topology
and themaximumnumber of processes was limited to the number
of Fourier planes. Conversely, parallelisation of a spectral element
discretisation has been explored [15–19], forwhich the upper limit
on the number of processes is the number of mesh elements.

Performance of a mixed-parallelism case for 3D turbulence
simulations has previously been investigated [20], specifically
for a 1D spectral/hp element discretisation, coupled with a 2D
spectral expansion. Parallel communication was implemented
across processes as a Cartesian topology and a performance model
was constructed which suggested improved strong scaling could
be achieved on specific architectures. Solver performance depends
on hardware characteristics such as memory bandwidth and
processor cache size, but also on network capabilities in terms of
latency, and bandwidth. Therefore prudent choice of parallelism
strategy can enable improved overall performance by structuring
the computation and communication pattern to better match the
available hardware.

The present study is distinguished from this previous work by
the choice of discretisation. We use a two-dimensional spectral/hp
element method, coupled with a one-dimensional spectral expan-
sion. This permits the investigation of flow problems on geome-
tries of significantly greater complexity than earlierworks.We first
outline the discretisation and parallelisation strategies and quan-
tify their comparative performance. For large runs with many pro-
cesses the number of possible hybrid parallelism strategies may
be significant. We construct a mathematical model to characterise
the expected performance of any given single or hybrid paralleli-
sation strategy which can be used to predict the optimal strategy
for a given problem. We calibrate the model against the individual
mesh-decomposition and Fourier parallelisation techniques and
demonstrate its accuracy in predicting performance of the hybrid
approach.

2. Methods

Three-dimensional incompressible, isothermal flow with con-
stant density and viscosity is governed by the incompressible
Navier–Stokes equations which, in terms of the primitive variables
(u, p), are expressed as

∂u
∂t

+ u · ∇u = −∇p + ν∇
2u,

∇ · u = 0,

Fig. 1. Structure of a three-dimensional expansion using a Fourier spectral/hp
element method.

where p is the kinematic pressure, ν is the kinematic viscosity and
u = [u, v, w]

⊤ is the velocity.

2.1. Spatial discretisation

The three-dimensional domain is decomposed into NZ two-
dimensional spectral/hp element planes spanning the x and
y coordinate directions, coupled with a Fourier expansion in
the third homogeneous direction, as illustrated in Fig. 1. The
spectral/hp element discretisation is described elsewhere [4] and
only a brief summary is given here.

Each two-dimensional plane Ωk is partitioned into a set of Nel
subdomains Ωe

k such that,

Ωk =

Nel
e=0

Ωe
k

Ωe
k ∩ Ω

f
k = ∅ ∀e ≠ f .

In this study the meshes consist of quadrilateral elements only,
but the approach may be equally applied when using triangular
elements. Numerical integration and differential operators are
constructed on a standard reference elementΩst which is mapped
to each Ωe

k using a bijective map, χ e
: Ωst

→ Ωe, as x = χe(ξ). On
each element, the solution umay be approximated as

uδ(x, y) =

N
n=0

φn(x, y)ûn =

P
p=0

P
q=0

φp(x)φq(y)ûe
pq,

where ûe
pq are elemental coefficients. These correspond to the

tensor-product of nodal expansion bases, φp(x) and φq(y), of
order P defined as Lagrange polynomials through Gauss–Lobatto–
Legendre points ξi, and have the form

φm(ξ) =

P
l=0,l≠m

(ξ − ξl)

P
l=0,l≠m

(ξm − ξl)

.

This is synonymous with the original spectral element method,
giving a total of (P + 1)2 degrees of freedom (DOF) per element
and NXY = Nel × (P + 1)2 local degrees of freedom per plane.
Gaussian quadrature is used for numerical integration, for which
the solution u is represented on the same set of P + 1 points ξm.
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The connectivity of elements in a plane is represented by an
assembly mapping A which maps the concatenated vector of
elemental degrees of freedom to their global counterparts and
enforces a C0-continuity constraint. The global degrees of freedom
are assembled using the relation ûe

= Aûg, where A is the matrix
equivalent of A. This matrix is in general highly sparse and so is in
practice not constructed explicitly.

Operators in the spectral/hp element method are constructed
elementally and appliedusing the sum-factorisation technique [21]
as this has been demonstrated to bemore efficient when operating
on elements with higher-order bases [7,6,5]. The tensor-product
nature of the elemental expansion bases allows matrix–vector op-
erations to be decomposed into a sequence of smaller, more com-
putationally efficientmatrix–matrix operations, performed in each
coordinate direction separately.

In the z-direction, the solution is expressed using a Fourier basis
of NZ/2 complex modes, φk(z) = eizk, to give an expansion of the
three-dimensional solution on an element as

uδ(x, y, z) =


n

φn(x, y, z)ûn =


pqk

φpq(x, y)φk(z)ûpqk.

The total number of degrees of freedom is therefore Ntot = NXYNZ .

2.2. Temporal discretisation

A stiffly stable splitting scheme [22] is adoptedwhich decouples
the velocity and pressure fields, leading to an explicit treatment of
the advection term and an implicit treatment of the pressure and
the diffusion terms. The key steps are

ū −

J−1
q=0

αqun−q

∆t
= −

J−1
q=0

βq[(u · ∇)u]
n−q,

∇
2pn+1

= ∇ ·


ū
∆t


,

¯̄u − ū
∆t

= −∇pn+1,

γ0un+1
− ¯̄u

∆t
= ν∇

2un+1.

Tomaintain the order of the scheme, amodifiedNeumannpressure
boundary condition is used,

∂p
∂n

n+1

= −


∂u
∂t

n+1

+ ν

J−1
q=0

βq(∇ × ω)n−q

+

J−1
q=0

βq[(u · ∇)u]
n−q


· n.

The coefficients αq, βq and γ0 can be found in [22] for first-,
second- and third-order implicit–explicit (IMEX) time-integration
schemes. Fig. 2 illustrates the implementation of the time-
integration section of the algorithm,wherewe ignore input/output
and set-up costs. For short time-integration, these may be
significant.

2.3. Parallelisation

In this section we describe the parallelisation approaches used
in this study. We provide an overview of the two orthogonal
approaches: parallel decomposition of the Fourier modes (modal
parallelisation) and parallel decomposition of the spectral/hp
element planes (elemental parallelisation). We then outline the
hybrid approachwhich combines both techniques, and describe its

Fig. 2. Incompressible Navier–Stokes solution algorithm. Details of the building
blocks of the time-integration process. Themost expensive routines are highlighted,
i.e. the advection term calculation and the elliptic solvers for pressure and velocity
(Poisson and Helmholtz).

implementation. In each case we partition the simulation across a
total of R processes. The Message Passing Interface (MPI) library is
used for communication in all three methods.

In modal parallelisation the NZ planes, corresponding to NZ/2
complex Fourier modes, are distributed equally among the pro-
cesses. Elliptic solves are decoupled in the Fourier-transformed
space and can be performed independently on each plane using
either a direct Cholesky factorisation with reverse Cuthill–McKee
algorithm (LAPACK) [23], or through an iterative conjugate gradi-
ent algorithm. The non-linear advection term is more efficiently
computed in non-modal space. To perform the inverse and for-
ward Fourier transforms, used before and after the advection cal-
culation respectively, the data to be transformed must reside on
the same process. In practice, this requires a transposition of the
data using an MPI all-to-all operation. To support efficient differ-
entiation in the z-coordinate direction, we additionally impose the
constraint that both the real and imaginary components of each
complex Fourier mode reside on the same process, since, in the
Fourier space, derivatives are calculated through the multiplica-
tion ûk → −ikûk. This restricts the maximum number of useable
processes to NZ/2.

In contrast, elemental parallelism distributes the Nel elements
of each plane among the processes. The partitioning of the 2Dplane
is implemented using the METIS graph partitioning library [24]
and an identical partitioning and distribution amongst processes
is used for each plane in the domain. The natural limit on the
number of useable processes is therefore Nel. The dual-graph
of the mesh is partitioned among the R processes to equally
distribute thenumber of degrees of freedom,whilstminimising the
edge-cut, and therefore the inter-process communication. Elliptic
solves are performed iteratively, with communication being
required to exchange boundary information between adjacent
elements residing on different processes at each iteration. This
data exchange is implemented using the gather–scatter algorithm
from Nek5000 [25] which uses a global numbering of the DOFs in
the plane to efficiently summate process-local contributions and
distribute the result back to the participating processes.

Hybrid parallelisation combines both modal and elemental
approaches by organising the available processes in a Cartesian
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grid [20], as illustrated in Fig. 3. In this arrangement, the world
communicator is split into a series of row communicators which
support elemental parallelisation, while column communicators
enablemodal parallelisation. Each process belongs to precisely one
row communicator and one column communicator and nominally
operates on a fixed subset of elements in a fixed subset of
planes. As in modal parallelism, elliptic solves are performed in
Fourier-transformed space, but due to the elemental parallelism
the iterative conjugate gradient solver must be used. The limit on
the number of viable processes is now increased substantially to
Nel × NZ/2.

2.4. Test environment

All simulations are performed on an SGI Altix ICE 8200 EX
system with up to 512 cores (64 eight-core nodes). Each node
contains Nehalem CPUs running at 2.93 GHz and 24 GB RAM.
Communication is through a dual-rail Infiniband interconnect. The
system runs Redhat Enterprise Linux with kernel version 3.0.58-
0.6.6. Intel MPI was used for parallel message exchange and FFTW
3.2.2 for performing fast Fourier transforms.

The software used for the spectral/hp element discretisation in
this study was Nektar++ v3.3.0 [26,27]. In summary, the frame-
work provides scope for constructing high-order polynomial ex-
pansions on both fully two-dimensional and three-dimensional
domains. It also supports a coupled spectral/hp element—Fourier
approach for domains with geometric homogeneity. The specific
operators and time integration necessary for solving the incom-
pressible Navier–Stokes equations are built upon this framework.
As with any numerical timing study, the presented results are spe-
cific to the implementation used, although should provide useful
generic guidance.

3. Performance model

Identifying the optimal strategy and the distribution of
processes between elemental and modal parallelism is non-trivial,
since algorithmic complexity and specific system architecture
affects performance. We therefore design a performance model,
calibrated through the use of the two parallelisation strategies
independently, to help select the best approach before the start of
a given simulation.

3.1. General model assumptions

To ensure the model remains simple enough for predictive use,
yet sufficiently complex to provide reasonable accuracy,wemake a
number of assumptions regarding the nature of the computational
problem and hardware when evaluating the computational and
communication costs.

The computational cost of an algorithmic unit is evaluated
using the floating-point operation count of basic routines such as
matrix–vector multiplications, inner products and vector–vector
summations. This implicitly disregards hardware characteristics,
such as caching and memory throughput limits, although our
testing has shown that these aspects can be reasonably captured
using scalar constants, determined during the calibration process
for a specific platform. Operations are evaluated at the element
level, and their total computational cost across the domain
is therefore assumed to be predominantly independent of the
parallelisation strategy.

Communication costs are generally more complex to model
and strongly depend on the hardware configuration. Different
cluster configurations, such as mesh, hypercube or ring inter-
connect topologies, have a significant effect on the measured

Fig. 3. Illustrative MPI Cartesian communicator for a hybrid parallelisation of a
Fourier spectral/hp element discretisation using 4 elements per plane and 4 planes,
on 16 MPI processes. Row communicators handle the communication between
mesh partitions for elemental parallelisation while column communicators handle
communication between planes for modal parallelisation.

communication time. In this study we follow the most common
approach when estimating communication costs [20,14], which
is to assume a ‘‘flat’’ topology supporting direct communication
between nodes and no interconnect contention. Operations are
assumed to be performed using double-precision floating point
numbers, occupying eight bytes on the test system described
above.

3.2. Model construction

The general structure of our performance model is as follows.
Let Oi be the operation count of the ith operation in the algorithm.
Let Cj be the time required for the jth communication, then we can
define the total parallel execution time, T , as

T =
1

RXYRZ


i

Oi +


j

Cj

where RXY and RZ are the number of processes used for elemen-
tal and Fourier parallelism, respectively, and R = RXYRZ . The
size of a computational problem is generally measured by the
number of degrees of freedom. In the spectral/hp discretisation,
this corresponds to the number of elemental modes which, for
two-dimensional quadrilateral elements, is (P + 1)2. For some
matrix–vector operations the sum-factorisation technique, which
exploits the tensorial nature of the expansion, can be used that re-
quires (4P3

+ 18P2
+ 26P + 12) operations per element [7].

The communication times TCj can be further modelled as

Cj = Nmsgs ×

τL + Nop × τB


(1)

where Nmsgs is the number of messages transmitted during an
operation, Nop is the number of floating-point values per message,
τL is the latency and τB the inverse of the bandwidth. Note that
τB is quantified using s/DOF , rather than the conventional s/MB,
to facilitate the modelling. Latency and bandwidth are sampled
for the test system using the MPI benchmarking application IBM-
MP1. Bandwidth is measured for a number of MPI routines and
for messages of size 8 bytes up to 4 MB and averaged. For the
test system considered, the average bandwidth measured was
1.64 · 103 MB/s. Bandwidth and latency for the test system was
determined to be

τB = 4.87 · 10−9 s/DOF, τL = 2.09 · 10−6 s.
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input : ũ0, ũ1, ũ2

output: Ñ(u0), Ñ(u1), Ñ(u2)

// Transformation back to physical space
for i = 0 to 2 do

1 ui = IDFT (ũi);
end
for i = 0 to 2 do

// Derivatives in the 2D spectral/hp
element plane

2 ∂ui/∂x = Dxui ∂ui/∂y = Dyui;

// Derivatives in the spectral direction
3 ∂ ũi/∂z = D̃z ũi;

// Transformation back to physical space
4 ∂ui/∂z = IDFT (∂ ũi/∂z);

// Construction of the i − th advection
component

5 N(ui) = u0∂ui/∂x + u1∂ui/∂y + u2∂ui/∂z;

// Transformation to Fourier space
6 Ñ(ui) = DFT (N(ui));
end

Algorithm 1: Non-linear advection term procedure. Terms
with a tilde are forward Fourier-transformed.

3.3. Advection term

We first model the advection term u · ∇u, which is computed
in physical space and can be expanded as

N(u) = u∂u/∂x + v∂u/∂y + w∂u/∂z,
N(v) = u∂v/∂x + v∂v/∂y + w∂v/∂z,
N(w) = u∂w/∂x + v∂w/∂y + w∂w/∂z,

where u, v and w denote the three components of the velocity u.
The numerical implementation of this is shown in Algorithm 1.
Computational costs arise from FFTs (lines 1, 4 and 6), derivatives
(lines 2 and 3) and vector–vector operations (line 5), while
communication is only required to compute the FFTs.

Inverse FFTs are required for each of the velocity components
and the z-derivatives of each of the velocity components. A forward
FFT is used to transform the result of the advection calculation. This
gives a total of nine FFTs, each consisting of a set of independent
1D FFTs. The number of 1D FFTs is given by the number of
quadrature points associated with the local spectral/hp element
mesh partition. Assuming the mesh is evenly partitioned, we can
quantify the total number of 1D FFTs as Nel(P + 1)2, each costing
O(NZ log2(NZ )), giving a cumulative cost of

OA
1 = 9Nel(P + 1)2 · CFFTNZ log2 NZ ,

where CFFT is a const. Derivatives in the z-direction are a BLAS level
1 operation with total cost

OA
2 = NelNZ (P + 1)2.

In-plane physical derivatives will be proportional to the cost
of executing a matrix–vector multiplication using the general
derivative matrix. A total of six in-plane derivatives are computed.
The total cost of derivative operations is therefore,

OA
3 = 6Nel(P + 1)4.

Finally, there are five level 2 BLAS operations in calculating each
component of N(ui). Vectors are of size Nel(P + 1)2, resulting in a
total cost of

OA
4 = 15Nel(P + 1)2.

input : initial guess x0
output: final solution x

// calculate initial residual r0
r0 = b − Ax0;

// solve for w0 where K is the
preconditioner

Kw0 = r0;

// set parameters
q−1 = p−1 = 0 β−1 = 0 s0 = Aw0;
ρ0 = (r0,w0) µ0 = (s0,w0) α0 = ρ0/µ0;

for i = 0 to N MAX
iter do

1 pi = wi + βi−1pi−1;
2 qi = si + βi−1qi−1;
3 xi+1 = xi + αipi;
4 ri+1 = ri − αiqi;

if (ri+1, ri+1) < tolerance then
break;

end
5 Solve Kwi+1 = ri+1;
6 si+1 = Awi+1;
7 ρi+1 = (ri+1,wi+1);
8 µi+1 = (si+1,wi+1);

βi = ρi+1/ρi;
αi+1 = ρi+1/(µi+1 − ρi+1βi/αi);

end

Algorithm 2: Preconditioned Conjugate Gradient Method.

For the advection term, communication is required during the
9 FFTs to shuffle data between processes so that the data for each
1D FFT, previously spanning RZ processes, is colocated on the same
process. We apply the communication model described in (1). For
each of the 9 FFTs two MPI All-to-all calls are required (shuffling
and unshuffling), each of which formally requiresNmsgs = (RZ −1)
messages [20,14]. Message size is based on the assumption that
the 1D FFTs will be evenly distributed across the participating
processes. This gives a communication cost of

CA
1 = 18(RZ − 1)


τL +

Nel

RZRXY
(P + 1)2τB


.

Combining the above contributions and distributing the
computational cost amongst the processes gives a parallel
execution time of

T A
=

1
RZRXY

·


i

OA
i +


j

CA
j .

3.4. Elliptic solver

Algorithm 2 shows the basic steps to solve the linear systems
using a preconditioned conjugate gradient method [28]. To
simplify the analysis, we do not perform static condensation of
the elliptic systems, evaluating themusing a block-diagonalmatrix
system, where each block contains a full elemental matrix.

The daxpy operations on lines 1–4, each comprising one
scalar–vector multiplication and one vector–vector summation
giving a total cost of

OE
1 = 8Nel(P + 1)2.
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Fig. 4. Overview of how a partition containing N loc
el can be cast. The different

groupings suggest that the maximum number of edges which may require
communication is ∝ 2(N loc

el + 1).

The application of the diagonal preconditioner in step 5 can be
considered a vector–vector multiplication and has cost

OE
2 = Nel(P + 1)2.

The most computationally expensive step is the evaluation of the
matrix system in step 6. Applying the sum-factorisation operation
count defined earlier in this section we quantify the number of
operations as

OE
3 = Nel(4P3

+ 18P2
+ 26P + 12).

Finally, the two inner products in steps 7 and 8 evaluate
the stopping criteria of the iterative algorithm. Each consist
of a vector–vector multiplication and a sum reduction. The
vector–vector multiplication requires Nel(P + 1)2 operations per
planewhile the sum reductionNel(P+1)2−1 operations per plane.
In order to maintain simplicity in the model we approximate the
sum reduction to Nel(P + 1)2 operations, leading to

OE
4 = OE

8 = 6Nel(P + 1)2.

Communication appears during the inner product reductions
and during the matrix–vector multiplication. The inner product
reduction can be modelled using the All-gather model [20]. The
number of messages is (RXY − 1) for each inner product, since
the local reductions need to be composed into a global reduction,
which happens on one processor. Since the reduction operations
for each iteration can be collated into a single message, the size is
three floating-point values. This results in the communication time

CE
1 = (RXY − 1)


τL + 3τB


.

To estimate communication during matrix–vector multiplica-
tion, we assume the structure of the mesh decomposition leads
to a tree-like graph of communication, arising from recursive bi-
section. The number of communications will therefore be propor-
tional to log2(RXY ). Furthermore, we can assume data needs to be
exchanged in both directions for each edge of the tree. Message
size is far more challenging to estimate, since this is dependent on
the size of the boundary between any two partitions. We there-
fore choose themaximummessage size, which can be estimated at
2(N loc

el +1), as illustrated in Fig. 4. Herewe are also assuming that all
partitions are interior to the domain and therefore all boundaries
participate in communication. These estimates lead to a prediction
for the matrix–vector multiplication communication costs as

CE
2 = 2CGS log2(RXY )


τL + 2


Nel

RZRXY
+ 1


(P + 1)τB


,

where CGS is a constant relating to the implementation of the
gather–scatter algorithm.

Combining these contributions gives the cumulative cost of a
single iteration of the elliptic solver as

T E
=

1
RZRXY

·


i

OE
i +


j

CE
j .

Table 1
Turbulent test cases discretisation features.

Test case P Nplane
el NZ Nel NXY NTOT

Pipe 7 64 128 8192 5184 663552
Channel 6 450 64 28800 28800 1843200

Fig. 5. Diagram illustrating the pipe geometry and its discretisation. Spectral/hp
elements are used in the cross-plane with a Fourier expansion used in the
streamwise direction.

3.5. Incompressible Navier–Stokes model

We now combine the above components of the model to
elicit a full model for the incompressible Navier–Stokes algorithm
described in Fig. 2. The total parallel execution time for one time-
step can be expressed as

TNS
= a · T A

+ b ·

N P

iter + 3N H
iter


· T E, (2)

which captures the costs associated with the advection term, Pois-
son solve for the pressure and the three Helmholtz solves for the
velocity components. N P

iter and N H
iter are the number of iterations

of the Poisson and Helmholtz solves, respectively. These will vary
depending on the nature of the problem and the choice of precon-
ditioner plays an important role in the efficiency of the iterative
solver. The diagonal preconditioner was chosen formodelling sim-
plicity and is not necessarily the most efficient choice. Typical val-
ues are N P

iter ∼ 80 and N H
iter ∼ 10 for the problems considered

in this study. However, these are problem-specific and are largely
independent of the parallelisation strategy. The coefficients a and
b capture the characteristics of specific hardware and are deter-
mined during the calibration process discussed next.

4. Results

Weconsider twoprototype turbulent flowproblems to quantify
the performance of the different parallelisation regimes. These
examples highlight the benefits of the hybrid parallelisation
approach for increasing parallelism in a scalable way and therefore
reducing parallel execution time. Table 1 lists the performance
model properties of the two domains considered. Since this study
concerns only the parallelisation aspect of these simulations, we
consider a fixed discretisation in each case. The discretisation is
chosen to be numerically converged for capturing turbulent flow in
the given geometry and at the prescribed Reynolds number, based
on previously published studies [10,29,30].

4.1. Test problems

The pipe geometry is illustrated in Fig. 5, where the streamwise
direction is geometrically homogeneous. Lengths and velocities are
non-dimensionalised by the diameterD and the bulk velocity ubulk,
respectively. The length of the pipe is 5D. The flow is driven by a
constant body-force of

fz = 0.5 ∗ 0.3164/Re0.25
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Fig. 6. Diagram illustrating the channel geometry and its discretisation. A Fourier
expansion is used in the spanwise direction.

Fig. 7. Parallel efficiency of the four parallel approaches for the pipe flow problem
on the system detailed in Section 2.4. The vertical dotted black lines indicate the
practical limit imposed by themodal and elemental discretisations in isolation. The
solid purple line shows ideal efficiency, relative to the 16-core case using modal
parallelism with iterative elliptic solver. The dotted orange lines show the model
prediction for the cases used for calibration. The solid orange lines showpredictions
for the hybrid regime. (For interpretation of the references to colour in this figure
legend, the reader is referred to the web version of this article.)

for Re = 3000 to instil a turbulent flow regime. The pipe is
discretised using spectral elements in the cross-section of the pipe
and a Fourier expansion in the streamwise direction. A total of
64 spectral elements at polynomial order 7 are used in the x–y
plane, while 128 modes are used in the Fourier expansion. No-slip
boundary conditions are imposed on thewall of the pipe. The time-
step used for simulations is ∆t = 0.002 non-dimensional time
units with a second-order IMEX scheme.

For the channel, shown in Fig. 6, lengths are non-dimen-
sionalised by the channel half-height and velocities by ubulk. The
length of the channel is 4π , and the spanwise dimension is 4π/3.
The flow is driven by a body force of fx = 0.0036 for Re = 3000 and
no-slip boundary conditions are imposed on the top and bottom of
the channel. The channel was discretised using 64 Fourier modes
and 450 spectral elements with a polynomial order of 6. The time-
step used for channel flow simulations was 0.0001 with a second-
order IMEX scheme.

4.2. Hybrid parallelism performance

The efficiency of the various parallel strategies is assessed
through the strong scaling tests for both problems. The results for
the pipe are shown in Fig. 7. Modal parallelism (triangle and square
symbols) scales well using either direct or iterative elliptic solvers.
Elemental parallelism (circle symbols) scales poorly due to the
large ratio of communication to computation, since even for only
32 processes, there are only 2 elements per process. The dotted
lines indicate theoretical bottlenecks on the number of useable
processes due to there being an insufficient number of elements or
Fouriermodes. In both cases, this limit is 64 processes. However, in

Fig. 8. Parallel efficiency of the four parallel approaches for the channel flow
problem on the system detailed in Section 2.4. The vertical dotted black lines
indicate the practical limit imposed by the modal and elemental discretisations in
isolation. The solid purple line shows ideal efficiency, relative to the 16-core case
using modal parallelism with iterative elliptic solver.

the case of a Fourier-dominated discretisation, modal parallelism
is clearly preferably over elemental parallelism.

Fig. 8 shows a comparison of efficiency for the different
parallelism strategies in the channel problem. Here the modal
bottleneck is reached at 32 cores and the modal approach
with direct solver has the greatest performance in this regime.
Elemental parallelism is possible up to 450 cores but, above
128 cores, the ratio of computation to communication is low
and at 256 cores, the distribution of computation becomes
significantly unequal, resulting in poor parallel performance.
However, elemental parallelism outperforms modal parallelism
when using the iterative solver. This observation is intuitive since
only four nodes are used and most of the communication between
partitions will be intra-node. Recent versions of the OpenMPI
libraries allow processes on the same node to use shared memory,
rather than using the network interface to send messages. Within
a node latency between processes is therefore low and sending
a large number of small messages becomes the most effective
method.

Hybrid parallelism extends these limits substantially, enabling
simulations up to and beyond 512 processes. The distribution of
modal and elemental parallelism will lead to different perfor-
mance. In Figs. 7 and 8 the solid triangles indicate the minimum
execution time achievable using hybrid parallelism for a prescribed
total number of cores. Efficiency is less than the ideal case in gen-
eral, but still reduces runtime significantly as the number of pro-
cesses increase. In particular, for 512 processes, the performance
approaches the ideal case.

Figs. 9 and 10 show the parallel efficiency of the various
parallelisations of the pipe and channel problem, respectively,
normalised against the 16-core modal case with iterative solver.
Efficiency of both modal and elemental parallelism reduces with
increasing core counts, however, the use of the hybrid approach
recovers a significant portion of the lost efficiency. For the pipe
the combined approach enables 80% of ideal parallel efficiency to
be attained on 512 cores, while for the channel there is an order
of magnitude increase in efficiency at 256 cores, compared to the
elemental approach.

4.3. Model calibration

Calibration is the process whereby we identify values for the
machine-specific constants a and b in Eq. (2). To simplify the
calibration process, we combine the costs of the elliptic solves
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Fig. 9. Turbulent pipe flow parallel simulation—efficiency of parallelisation
approaches on a cluster of 8-core nodes. The histograms show the efficiency E of
different parallel simulations defined as E = S/P where S is the speed-up and P is
the total number of processors used for the simulation. The speed-up is based on
the 16-core (2 nodes) run using the Modal (iterative) approach.
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Fig. 10. Turbulent channel flow parallel simulation—efficiency of parallelisation
approaches on a cluster of 8-core nodes. The histograms show the efficiency E of
different parallel simulations defined as E = S/P where S is the speed-up and P is
the total number of processors used for the simulation. The speed-up is based on
the 16-core (2 nodes) run using the Modal (iterative) approach.

and split the timings into those for computation and those for
communication as

TNS
= a1 · T A

O + a2 · T A
C + b1 · T E

O + b2 · T E
C .

To illustrate the use of themodel, sixmeasurementswere taken
of the time taken to solve the pipe problemusing the elemental and
Fourier parallel decomposition. The model TNS was implemented
in MATLAB and the required coefficients were calculated using a
least-squares algorithm as

a1 = 0.45 · 10−6 a2 = 0.2 b1 = 3.15 · 10−6

and

b2 =


400, if Nplane

el /PXY < 4,
10, otherwise.

The coefficient b2 is multi-valued since performance of the
elemental parallel decomposition typically degrades sharply when
there are fewer than four elements per process, often due to
imbalance in the mesh distribution amongst the processes.

4.4. Model validation

To quantify the accuracy of predictions using the calibrated
performance model in the hybrid regime, we apply the model to
the turbulent pipe flow example. Results presented are obtained
by averaging 1000 measurements of the timings for each of
the components of the time-stepping algorithm. The choice of
elliptic solver has a significant impact on performance, and as
in the modal parallelism case, the timings for the elliptic solves
are measured using both a direct method using LAPACK and an
iterative conjugate gradient approach. The four parallelisation
types used throughout the remainder of this section are therefore
modal (iterative and direct), elemental (iterative) and hybrid
(iterative). Strong scaling is performed for the different parallelism
strategies and results are normalised by the timings for the 16-core
modal approach using the iterative solver.

The model, outlined in Section 3, is calibrated for the turbulent
pipe flow example using simulations executed using both modal
parallelism and elemental parallelism in isolation. These timings
are consequently accurately reproduced by themodel, as shown by
the dashed orange lines in Fig. 7. The solid orange line in the same
figure shows predicted runtimes using the performance model in
the hybrid regime. Good agreement is observed and the model
correctly identifies the best performing hybrid case, timings of
which are shown by the blue triangles.

5. Discussion

In this paper we presented a technique to parallelise a 3D
incompressible Navier–Stokes algorithm discretised using a 2D
spectral/hp element mesh coupled with a Fourier expansion in a
third geometrically homogeneous direction. The implementation
enables a flexiblemixture of both elemental parallelism andmodal
parallelism. We have illustrated the hybrid parallelism technique
on two prototype problems: turbulent flow in an axisymmetric
pipe and turbulent flow in a channel. Both problems enjoy
increased parallelism through the approach and consequently
improved runtimes and greater energy efficiency. The optimal
weighting of these strategies can be systematically chosen through
the construction of a performance model, calibrated to a specific
system through measurements of the two parallelism approaches
independently. This enables rapid selection of the highest-
performing combination of the strategies without costly trial-and-
error testing.

In the modern HPC environment, where energy is of increas-
ing concern, selecting the optimal implementation to maximise
performance is becoming increasingly important. Although expe-
rience and intuition can generally suggest the most suitable paral-
lelisation approach for a specific problem, the decision is in general
highly challenging, particularly when moving between HPC sys-
tems or when tackling problems on a range of different domains
with the same algorithm. Even from a purely theoretical perspec-
tive, it can be appreciated that a single parallel approach cannot
be optimal in all situations and this has been confirmed through
numerical experimentation.

The number of degrees of freedom in the xy-plane and
the number of Fourier modes are the first indicators of which
technique is more appropriate. We recognise that problems with
a high number of modes compared to the number of elements per
plane appear to benefit from the modal parallelisation approach.
On the other hand, a domain discretisationwith a larger number of
elements than Fourier modes generally benefits from an elemental
decomposition technique. However, the relative performance
of different approaches cannot be determined entirely through
operation counts. Accounting for specific hardware characteristics
and the latency and bandwidth available on the communication
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pattern is essential to accurately predict the optimal strategy.
Parallelisation approaches requiring a large number of messages,
such as the mesh-decomposition parallelisation, can suffer from
poor performance if the interconnect latency is high. These types
of parallel techniques are therefore efficient on shared memory
machines or low-latency interconnects.

In general we wish to be able to tackle a range of problems
where those quantities can vary, potentially reaching extreme
values. It is therefore clearly beneficial to have both parallelisation
strategies available within a single codebase and this study
illustrates the advantages of being able to combine them in a
flexible manner to achieve lower runtimes on a fixed number of
processors. A further benefit is the extension of strong scalability
possible through the use of the hybrid parallel implementation.
The potential of newmachines are often exploited by investigating
even larger problems than previously explored and in finer
detail, or using larger Reynolds numbers, and to capitalise
on weak scalability. Good weak scalability generally follows
from good strong scalability and by increasing an algorithms
strong scalability, simulations can be run faster and on larger
machines.

It should be noted that not all the hybrid parallel approaches
we tested provided good performance. Depending on the mesh
topology, partitioning and the number of Fourier modes on
each processor, some strategies may not perform efficiently. We
note, for example, that the optimal 128-core hybrid parallel case
for the turbulent pipe in Fig. 7 has a similar runtime to the
modal parallelism using the direct solver with only 64 cores.
Conversely, we showed that certain choices may result in reduced
computational time without increasing the number of processors.
This is the case of the modal approach when using a direct solver,
which generally performs as well as an elemental parallelisation
method with twice the number of CPUs. Minimising the energy
consumption when running a simulation is a point of interest in
current high performance computing research. Implementation
flexibility plays an important role in addressing these goals.

In terms of limitations, we have disregarded some pieces of
the algorithm in order to focus on the two main routines, namely
the advection and the elliptic operators. This is a typical approach
when creating a scalability model [20], although it may introduce
some errors. The calibration has been carried out by monitoring
the solution time on the SGI Altix ICE 8200 EX system, therefore
the coefficients presented heremust be considered specific for that
machine. Finally, the model, and therefore the results presented
in this paper, are specific to Nektar++. However, it still provides
valuable insight and can suggest overall guidelines on typical
choices of parallelisation strategy on large HPC resources.
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