
Computer Physics Communications () –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

A finite-temperature Hartree–Fock code for shell-model
Hamiltonians✩

G.F. Bertsch ∗, J.M. Mehlhaff
Institute for Nuclear Theory and Department of Physics, Box 351560, University of Washington, Seattle, WA 98915, USA

a r t i c l e i n f o

Article history:
Received 8 February 2016
Received in revised form
17 June 2016
Accepted 27 June 2016
Available online xxxx

Keywords:
Hartree–Fock
Shell model
Gradient method
Nuclear levels
Nuclear structure

a b s t r a c t

The codes HFgradZ.py and HFgradT.py find axially symmetric minima of a Hartree–Fock energy
functional for a Hamiltonian supplied in a shell model basis. The functional to be minimized is the
Hartree–Fock energy for zero-temperature properties or the Hartree–Fock grand potential for finite-
temperature properties (thermal energy, entropy). Theminimizationmay be subjected to additional con-
straints besides axial symmetry and nucleon numbers. A single-particle operator can be used to constrain
the minimization by adding it to the single-particle Hamiltonian with a Lagrange multiplier. One can also
constrain its expectation value in the zero-temperature code. Also the orbital filling can be constrained
in the zero-temperature code, fixing the number of nucleons having given Kπ quantum numbers. This is
particularly useful to resolve near-degeneracies among distinct minima.

Program summary

Program title: HFgradZ.py, HFgradT.py

Catalogue identifier: AFAX_v1_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFAX_v1_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: GNU General Public License, version 3

No. of lines in distributed program, including test data, etc.: 9547

No. of bytes in distributed program, including test data, etc.: 80195

Distribution format: tar.gz

Programming language: Python (2.7).

Computer: PCs.

Operating system: Unix, Apple OSX.

RAM: 10 MBy

Classification: 4.9, 17.22.

External routines: Numpy (1.6)

Nature of problem:

Find Hartree–Fock minima of shell-model Hamiltonians

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding author.

E-mail address: bertsch@uw.edu (G.F. Bertsch).

http://dx.doi.org/10.1016/j.cpc.2016.06.023
0010-4655/Published by Elsevier B.V.

http://dx.doi.org/10.1016/j.cpc.2016.06.023
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/AFAX_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:bertsch@uw.edu
http://dx.doi.org/10.1016/j.cpc.2016.06.023

2 G.F. Bertsch, J.M. Mehlhaff / Computer Physics Communications () –

Solution method:
Gradient method with a preconditioner
Running time:
A few minutes

Published by Elsevier B.V.

1. Introduction

The usual methods for finding the Hartree–Fock (HF) minima of
nuclear Hamiltonians focus on the equations that must be satisfied
at the minimum,

d⟨H⟩

dx⃗
= 0. (1)

Here ⟨H⟩ is the Hartree–Fock expression for the energy, Eq. (11),
and x⃗ is the set of variational parameters. Convergence problems
can easily arise, as documented in Sect. 5.4 of Ref. [1]. They may be
overcome by sophisticated iteration schemes such as the Broyden
method [2], but we find that the gradient method advocated
in Ref. [1] and adopted Refs. [3,4] is simple and effective. The
gradient method is implemented in HFgrad by constructing the
vector d⟨H⟩/dx⃗ and using it to guide the iteration process. This is
described in Section 3.

There is one important difference in the two codes presented
here. The orbital occupation factors in the ground-state code
HFgradZ.py are either zero or one, specified in advance. In the
finite-temperature code HFgradT.py, the occupation factors are
the usual Fermi functions and they are computed as part of the gra-
dient iteration.

2. Variables

We consider a basis of shell-model wave functions labeled
by ℓ, j,m and τz and distinguished by an index i, j, The
orbitals are linear combinations of the shell-modelwave functions;
they are indexed by Greek letters κ, λ, The many-body
wave function is characterized by an orthogonal matrix U that
transforms from the shell basis to the orbital basis

|κ⟩ =


i

Uκ,i|i⟩ (2)

and a diagonal matrix P specifying the occupation factors in the
orbital basis

Pκλ = δκλfκ . (3)

In the zero-temperature code, fκ = 1 or 0 depending on whether
the orbital is occupied or not, while it the finite temperature code
it can vary between these limits.

The fundamental physical quantity associated with the HF
solution is the single-particle density matrix ρ, given by

ρ = UTPU . (4)

The nominal dimension of the matrix is Nd = N2
b , where Nb is the

number of single-particle states in the shell-model basis. However,
the restriction in the code to axially symmetric configurationswith
good parity considerably reduces the number of nonzero terms;
the code takes advantage of the symmetry by separating thematrix
into blocks.

3. Basic equations

The code treats Hamiltonians that can be represented as a sum
of a diagonal one-body operator in Fock space togetherwith a two-
body interaction given by its J-coupled matrix elements. The basis
states are the shell-model states |i⟩ = |τzi, πi, ji,mi⟩ where τz is
the isospin, j is the angular momentum, π is the parity andm is the
z-component of angular momentum. The input Hamiltonian may
be written

Ĥ = K̂ + v̂ (5)

where

K̂ =


i

εiâ
Ď
i âi (6)

v̂ =


i<j,k<l

vij,kl â
Ď
i â

Ď
j âlâk (7)

and

vij,kl = dijdkl

JM

(i j|v|k l)J (ji jj mi mj|J M)(jk jl mk ml|J M). (8)

Here (i j|v|k l)J are the antisymmetrized J-coupled interaction ma-
trix elements and (ji jj mi mj|J M) are Clebsch–Gordon recoupling
coefficients. The factors dij = (1 + δij)

−1/2 are needed to produce
a correct normalization for the operator v̂. Only the elements ρij
with (τzi, πi,mi) = (τzj, πj,mj) are kept in the array represent-
ing the density matrix; the imposed symmetries require that other
elements are zero. Similarly, only terms that can give nonzero con-
tributions to the interaction energy are kept in the array represent-
ing v̂. We emphasize that the shell-model Hamiltonians that are
treated in the examples here only apply to a limited valence-shell
space. The v̂ is intended to be an effective interaction taking into
account polarization of the core orbitals. In any case, the calculated
energies of the codes represent only the part of the total energy as-
sociated with the valence particles.

Both the energy and the gradient are computedusing the single-
particle potential V as an intermediate array. It is defined

Vik =


ijkl

(vij,kl − vij,lk)ρjl. (9)

The gradient is derived from the single-particle Hamiltonian

Hsp
= K + V , (10)

a matrix with nominal dimension Nb × Nb.
Besides ρ, the matrices U, V and H are block-diagonal with the

blocks determined by the triplet of quantum numbers (τz, π,m).
For convenience the code is split into two driver modules,

HFgradZ.py for HF at zero temperature and HFgradT.py for
finite temperature. The zero-temperature code minimizes the HF
energy

E = ⟨H⟩ = TrKρ +
1
2
Tr2ρvρ. (11)

G.F. Bertsch, J.M. Mehlhaff / Computer Physics Communications () – 3

The finite-temperature code minimizes the grand potential. In
terms of ρ and fκ , the grand potential at inverse temperature β is
given by

Ω = E − β−1S +


τz

µτzNτz


(12)

with E from Eq. (11) and entropy S given by

S = −


κ

(fκ ln fκ + (1 − fκ) ln(1 − fκ)) , (13)

and the expectation values of particle number Nτz in the last term.
The latter are segregated in parentheses because that term has no
role in the gradient evaluation; the minimization will be carried
out at fixed Nτz .

4. The hybrid minimization method

The minimization with respect to the elements of U is same
in both codes. The constraint that U is orthogonal is satisfied in
the iterative process by starting with an orthogonal matrix and
updating it by an explicitly orthogonal transformation. The update
from U to U ′ can be expressed as a Thouless transformation of U ,

U ′
= eZU . (14)

Here Z is a skew-symmetric matrix of the independent variables
zκλ (κ < λ), giving Nb(Nb − 1)/2 variational parameters in the
general case, i.e. without any conserved quantum numbers. The
block structure associated with the (τzi, πi,mi) quantum numbers
greatly reduces that number.

The gradient of E (Eq. (11)) with respect to the elements of the
Z matrix is performed analytically to arrive at the expression

∂E
∂zκλ

= Horb
κλ (fκ − fλ). (15)

Here Horb is the single-particle Hamiltonian in the orbital basis,

Horb
= UHspUT . (16)

Given the gradient, the simplest algorithm to update U is the
steepest descent method. Here one would use Eq. (14) with

zκλ = ηz
∂E

∂zκλ

(17)

where ηz is some small numerical parameter that controls the
stability of the algorithm and its convergence rate. However,
convergence of the steepest descent iteration is often poor. Amuch
more efficient algorithm is used by Robledo in his HFB code [3].
It takes into account approximately the curvature of the energy
surface by introducing a preconditioner into the right-hand side
of Eq. (17).

The present code employs a different method that achieves the
same purpose, which we call the hybrid method. At each iteration
step, the code diagonalizes a modified orbital Hamiltonian Horb

η

with the same diagonal elements as Horb but reduced off-diagonal
elements:

Horb
η |ij = δijHorb

ii + ηz(1 − δij)Horb
ij . (18)

The transformation matrix Uη that diagonalizes Horb
η is used to

update U ,

U ′
= UηU . (19)

In the limit ηz ≪ 1 the method amounts to a perturbative
approximation to the Uη , equivalent to Robledo’s preconditioned
form

zκλ = ηz
1Horb

κκ − Horb
λλ

 ∂E
∂zκλ

. (20)

One caveat: the Uη must keep orbitals ordered by the diagonal
elements Horb

κκ . The hybrid method also transforms the empty and
filled orbitals among themselves, but that does not change ρ or
affect any HF observables.

In another limit, namely ηz = 1, the method amounts to a
straightforward diagonalization of the single-particleHamiltonian.
This is often part of the update process in non-gradient methods.
Thus, the hybrid method achieves both update techniques under
the control of a single parameter.

Part of the update may require forcing a change in the
expectation value of a single-particle operator. For that purpose,
U is updated by a direct approximation to Eq. (17), as discussed in
the next section.

4.1. Operator constraints

Typically, there are many local minima of the Hartree–Fock
energy functional. They will also be present in the grand potential,
becoming weaker as the temperature of the ensemble increases.
It is important to permit additional constraints on the solutions
beyond those for the number operators, in order to explore the
energy surface and locate the possible minima. This is facilitated
in the code by allowing the user to numerically define a single-
particle operator Q and constrain its expectation value or just add
it as fixed external field. As an external field, the user supplies a
Lagrange multiplier λq and the gradient is derived from the single-
particle Hamiltonian

Hsp
λ = K + V − λqQ . (21)

The other option, constraining ⟨Q ⟩ to some value q, requires the
gradient updating algorithm to carry out two tasks. The first is to
correct the wave function to bring ⟨Q ⟩ closer to its target value.
This step is based on a Z matrix with elements given by

zκλ =
q − ⟨Q ⟩

TrQ ph(Q ph)T
Q ph (22)

where

Q ph
κλ = Q orb

κλ (fκ − fλ) (23)

and Q orb is the operator in the orbital basis as in Eq. (16). The
updating matrix must be orthogonal, but need only approximate
the exponential eZ . The code uses a simple Padé approximant to
preserve the orthogonal character [5]

eZ ≈ (1 + Z/2)(1 − Z/2)−1. (24)

In the presence of the constraint, theU update forminimization
must also be modified to project Z to a direction that keeps ⟨Q ⟩

fixed. This is carried out by replacing Horb by

Horb′

= Horb
−

Tr(HorbQ ph)

Tr(Q ph(Q ph)T)
Q ph. (25)

4.2. Special at zero temperature

At zero temperature, the occupation numbers fκ are zero or one
for each orbital. For the input data, the set {f } is specified by the

4 G.F. Bertsch, J.M. Mehlhaff / Computer Physics Communications () –

particle number in each block rather than orbital-by-orbital. The
neutron and proton numbers for the nucleus are determined by the
initial {f } array, Nτz =


κ fτz ,κ . Any change in {f } is discontinuous

so there can be no gradient method to effect a change. The code
permits two alternatives to deal with the situation. The {f } can
be kept fixed throughout the iteration process. As will be shown
in the examples, this option gives a very good control to locate
nearly degenerate local minima. The code also permits updates of
the occupations numbers. In that option, in each iteration cycle
the code populates the orbitals with the lowest single-particle
energies. Those determined by the diagonalization of Horb or its
constrained forms Horb

λ and Horb′

.
The situation may arise that one wishes to treat nucleus having

one or two partially filled shells as spherical. In that case, the zero-
temperature code would have be modified to specify fractional
occupation numbers for the partially filled shells.

4.3. Finite temperature

The finite-temperature code minimizes the grand potential
Ω or equivalently the partition function of the grand canonical
ensemble. The occupation factors are now real numbers satisfying
0 ≤ fκ ≤ 1. Rather than using fκ directly, the code uses variables
ακ related to f by

fκ =
1

1 + eακ
. (26)

The gradient ofΩ with respect to theα variables can be carried out
independently of the gradient with respect to z. The latter has the
same form as in the zero-temperature minimization,

∂Ω

∂zκλ

=
∂E

∂zκλ

= Horb
κλ (fκ − fλ). (27)

The gradient with respect to α is given by

∂βΩ

∂ακ

=

ακ − βHorb

κ,κ


fκ(1 − fκ). (28)

In the code, the updated set {α′
κ} is computed as

α′

κ = (1 − ηα)ακ + ηα


ακ − βHorb

κ,κ


+ ατz . (29)

Here ηα is the coefficient of the gradient. The second term is pro-
portional to the gradient times the preconditioner (fκ(1 − fκ))−1.
The last term is an τz-dependent constant that can be interpreted
as β times the chemical potential. It is determined from the equa-
tion Nτz =


fκ(α′

τz
) where Nτz are the proton and number num-

bers in the data input. To update ⟨Q ⟩ at the same time as α would
be more complicated (see Eq. (21) of Ref. [4]) and was not imple-
mented in HFgradT.py.

In practice, we have not found any convergence difficulty with
respect to theα update takingηα = 1 as in other iteration schemes.
Still, it is reassuring to have a gradient method available for the f
variables: it guarantees that every cycle of U and f updates lowers
the grand potential for sufficiently small ηz and ηα .

5. Numerical

The most time-consuming operation in the codes is the
multiplication carried out in Eq. (9). However, matrix ρij is fairly
sparse because of the restrictions to axial symmetry and good
parity; the nonzero elements are in subblocks of given τz and
Kπ . The code takes advantage of the block structure of ρij to
store it as a packed array. This requires the array b2idx0[:] to
store the entry points to the subblocks and the array b2D[:] to
store the dimensions of the subblocks. Thus the Python code to
access the i, j element of the nth subblock is rho[n,i,j] =
rho_packed[b2idx0[n]+b2D[n]*i + j].For the examples

below, the single-particle spaces have dimensions 40 for protons
and 66 for neutrons. Only K > 0 orbitals are needed, so the total
dimension of the ρ matrix is 53 × 53 = 2809. After the packing,
the dimension is reduced to 161. The considerations apply to the
matrix U and the matrix for the single-particle operator Q . The
starting trial U in the examples is the identity matrix. The identity
matrix may be specified as a default option or read in explicitly as
a packed array. The single-particle operator in the example is the
usual quadrupole field with matrix elements

Qij =


d3rφ∗

ji,mi
r2Y20(θ)φji,mi (30)

where φj,m is a shell-model orbital of a Woods–Saxon single-
particle potential [6]. It is read in as thepacked arrayQ.dy162.dat.

The two-body interaction is also stored with the same packing,
allowing Eq. (9) to be evaluated by ordinary matrix–vector
multiplication.

6. Running the codes

The user must supply files that specify the shell-model
space and the one-body and two-body matrix elements of the
Hamiltonian in the space. The files defining the shell-model space
and the shell-model Hamiltonian follow the convention defined
in Ref. [7]. Note that Hamiltonian interaction matrix elements are
input in the neutron–proton formalism rather than the isospin
formalism.

The input data also requires a file of the initial occupation
numbers {f }. The initial basis-to-orbital transformation U can
be read from a file or optionally taken as the unit matrix. For
HFgradZ, the occupation numbers refer to blocks and the size of
the array is equal to the number of blocks. For the HFgradT, the
input occupation numbers refer to orbitals and the size of the array
is the dimension of the orbital space. Note that only the orbitals
with positivem are included in the array; the orbitalswith negative
m are treated assuming that the wave function is invariant under
time reversal.

In practice, the initial transformationmatrix can be quite crude,
as long as it is an orthogonal matrix. In several of the examples
below, the initial U is taken as the unit matrix.

Another array required by the code is the matrix of some one-
body field Q such as the quadrupole operator. Both U and Q inputs
are in the packed-block array format.

There are three numerical parameters related to the iteration
algorithm. They are ηz defined in Eq. (18) and ηα defined in Eq.
(29) and a convergence criterion δ. The iteration is terminated in
HFgradZ.pywhen the condition


ij(ρ

new
ij −ρold

ij)2 < δ. A similar
condition is applied in HFgradT.py, but using the change in the
Hsp matrix to monitor the convergence.

The command line input file contains 6 ormore lines as follows:
Line 1. Name of file defining the shell-model space;
Line 2. Name of the file defining the shell-model Hamiltonian;
Line 3. Name of file giving the initial occupation numbers f of
the single-particle HF orbitals, followed by a flag: ‘F’ for fixed
occupation numbers, ‘U’ to update occupation numbers;
Line 4. Name of file defining the initial transformationmatrix U; or
‘None’ for the default option which is U = identity matrix;
Line 5. Ground-state code: ηz , delta, itermax; or
Line 5’. Finite-temperature code: ηz , ηα , delta, itermax, Z , N;
Line 6. Name of file defining a single-particle field Q , flag for
constraint status (none = ‘N’,Lagrange = ‘L’, Constrained = ‘C’), λq
or ⟨Q ⟩;
Line 7+. Inverse temperature β (MeV−1) (one or more lines in
HFgradT).

G.F. Bertsch, J.M. Mehlhaff / Computer Physics Communications () – 5

7. Output

The principal outputs of the code, written to the terminal,
are the number of iterations niter, the final energy E, and
the expectation value of the quadrupole operator Q or other
single-particle operator provided in the input data. The finite-
temperature code also reports the entropy of the ensemble, S in
Eq. (13).

The code also writes to terminal a table of orbital properties.
The columns are:
(1) index for the orbital;
(2) index of the block containing the orbital;
(3) charge of the nucleon (0 or 1);
(4) K quantum number;
(5) parity π : 0 or 1 for even or odd parity respectively;
(6) occupation number f , integer for zero temperature and
floating-point for finite temperature;
(7) single-particle energy.

In addition, the code writes the final U matrix and f array
to files u_new.dat and n_new.dat, respectively. In the zero-
temperature code the second file has two lines. The first line gives
the number of occupied orbitals in each block and can be used as
an input file to HFgradZ. The second line gives the occupation
number for each orbital in the format needed by HFgradT. Apart
from that, the two files are in proper format to be used as input to
rerun theminimization. If theminimization is converged, the rerun
should only require one iteration step.

8. Two examples

The examples use input Hamiltonians for 162Dy and 148Sm,
taken from Refs. [6,8]. The shell scripts below illustrate the various
options available when running the codes.

8.1. 162Dy

dy162Z.sh: This script runs the zero-temperature code allowing
occupation number changes during the iteration. The final energy,
E = −371.78 agrees with Table II of Ref. [9].
dy162_def-sph.sh: This script runs the finite temperature code
for several β values in the vicinity of the deformed-spherical phase
transition. The output quadrupole moments ⟨Q ⟩β are shown in
Fig. 1. A phase transition at β ≈ 0.83 MeV−1 is evident. This is
a well-known artifact of mean-field theory and is absent in more
refined treatments [6,8],
dy162ZL.sh,dy162ZC.sh,dy162TZ.sh:
These scripts exhibit the use of a constraining field. The scripts
with an ‘‘L’’ add the field with a Lagrange multiplier. The scripts
with a ‘‘C’’ constrain the expectation value of the field. The
zero-temperature input parameters have been chosen to show
convergence to the same state by both methods. Here the
converged solution has E = −370.23 and Q = 587.5.

8.1.1. 148Sm
sm148U.sh: This script shows that the iteration process may fail
to converge when the occupation numbers are allowed to change
at each iteration step. It turns out that the update cycles between
two sets of occupation numbers. The two sets differ by a single
pair of neutrons moving between block Kπ

= 1/2− and block
Kπ

= 3/2−.
sm148F.sh: This script runs the code for each of the occupation
number sets from the previous script. There is no longer an

Fig. 1. Quadrupole moment as a function of inverse temperature for 162Dy as
computed by the HFgradT.py code.

oscillation, and both runs converge. The total energies of the two
minima are very close to the entry for that nucleus in Table II of
Ref. [9]. The two solutions can be distinguished more clearly by
their quadrupole moments, 313 and 342 fm2 respectively.

9. Other mean-field approximations

Some insight into the workings of the codes might come from
examining how other mean-field approximations could be carried
out in the same computational framework. The use of packed
arrays simplifies the coding because details of the approximations
are buried in the packing. In order of difficulty, we discuss
relaxing the constraints on axial quantum numbers, relaxing
the constraint on time-reversal invariance, and going to the
Hartree–Fock–Bogoliubov generalized mean-field approximation
(HFB).

9.1. Axial symmetry and parity invariance

From a coding point of view, the constraints on axial symmetry
and parity invariance could be removed with little effort. These
constraints are determined in the function initBlocks where
the block structure is set up, and changing the criteria is trivial.
The computation and storage of interactionmatrix elements in the
function mk_vv automatically use the same block structure, so no
changes would be required. The matrices of course may become
large, but for the single-particle space treated in the examples, the
size would still be manageable with the standard linear algebra
library package (numpy.linalg). Another potential problem is to
make sure that unwanted symmetries are already broken in the
input wave function fileU . This can be easily done by a randomizer
as discussed in Ref. [4].

9.2. Breaking time-reversal invariance

To calculate odd-Anuclei and for other purposes onemightwish
to break the assumed time-reversal symmetry in the present codes.
This requires doubling the dimensions of the basis to include both
plus andminusmquantumnumbers. This leads to a doubling of the
number of blocks. The only coding issue is to separately compute
the matrix elements of basis orbitals with positive or negative m
quantum numbers in mk_vv.

6 G.F. Bertsch, J.M. Mehlhaff / Computer Physics Communications () –

9.3. HFB

The authors are not aware of any published codes for computing
nuclear properties in the finite-temperature HFB approximation,
but there is at least one shell-model code [4] available for
calculating HFB ground states. In that code and the ones used
in Ref. [3,9] the wave-function matrices are updated in a
completely different way from the algorithms implemented in the
present codes. However, the generalization from ground state to
finite temperature should be straightforward using the method
implemented in the present HF codes.

Acknowledgments

We would to thank Y. Alhassid and L. Robledo for discussions
leading to this work, and H. Nakada for the use of his Hartree–Fock
code to validate the codes presented here. Support for this work
was provided by the US Department of Energy under Grant No. DE-
FG02-00ER41132.

Appendix. Key functions in the codes

The coded equations from the text above are listed here,
together with their location in the code.
Eq. (4): util.calcRho

Eq. (8): hfsetup.mk_vv
Eq. (9): util.calcV
Eqs. (10), (21): util.calcHsp
Eq. (11): util.totalE
Eq. (12): HFgradT
Eq. (13): util2.entropy
Eq. (16): util.calcOrbOp
Eqs. (18), (19): util2.updateU
Eqs. (22)–(24): util2.resetQ
Eq. (25): util2.projectZ4
Eq. (29): util2.updatef

References

[1] P. Ring, P. Schuck, The Nuclear Many-Body Problem, Springer, 1980.
[2] A. Baran, et al., Phys. Rev. C 78 (2008) 014318.
[3] M. Warda, et al., Phys. Rev. C 66 (2002) 014310.
[4] L.M. Robledo, G.F. Bertsch, Phys. Rev. C 84 (2011) 014312. The code may be

found in the Supplementary Material.
[5] L. Robledo, private communication.
[6] Y. Alhassid, L. Fang, H. Nakada, Phys. Rev. Lett. 101 (2008) 082501.
[7] B.A. Brown, W.A. Richter, Phys. Rev. C 74 (2006) 034315.
[8] C. Özen, Y. Alhassid, H. Nakada, Phys. Rev. Lett. 110 (2013) 042502.
[9] Y. Alhassid, G.F. Bertsch, C.N. Gilbreth, H. Nakada, Phys. Rev. C 93 (2016) 044320.

http://refhub.elsevier.com/S0010-4655(16)30203-X/sbref1
http://refhub.elsevier.com/S0010-4655(16)30203-X/sbref2
http://refhub.elsevier.com/S0010-4655(16)30203-X/sbref3
http://refhub.elsevier.com/S0010-4655(16)30203-X/sbref4
http://refhub.elsevier.com/S0010-4655(16)30203-X/sbref6
http://refhub.elsevier.com/S0010-4655(16)30203-X/sbref7
http://refhub.elsevier.com/S0010-4655(16)30203-X/sbref8
http://refhub.elsevier.com/S0010-4655(16)30203-X/sbref9

	A finite-temperature Hartree--Fock code for shell-model Hamiltonians
	Introduction
	Variables
	Basic equations
	The hybrid minimization method
	Operator constraints
	Special at zero temperature
	Finite temperature

	Numerical
	Running the codes
	Output
	Two examples
	162Dy
	148Sm

	Other mean-field approximations
	Axial symmetry and parity invariance
	Breaking time-reversal invariance
	HFB

	Acknowledgments
	Key functions in the codes
	References

