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a b s t r a c t

Calculating strong-field, momentum-resolved photoelectron spectra (PES) from numerical solutions of
the time-dependent Schrödinger equation (TDSE) is a very demanding task due to the large spatial
excursions and drifts of electrons in intense laser fields. The time-dependent surface flux (t-SURFF)
method for the calculation of PES [Tao and Scrinzi (2012)] allows to keep the numerical gridmuch smaller
than the space over which the wavefunction would be spread at the end of the laser pulse. We present
an implementation of the t-SURFF method in the well established TDSE-solver Qprop [Bauer and Koval
(2006)]. Qprop efficiently propagates wavefunctions for single-active electron systems with spherically
symmetric binding potentials in classical, linearly (along z) or elliptically (in the xy-plane) polarized laser
fields in dipole approximation. Its combinationwith t-SURFFmakes the simulation of PES feasible in cases
where it is just too expensive to keep the entire wavefunction on the numerical grid, e.g., in the long-
wavelength or long-pulse regime.

Program summary

Program title: Qprop

Catalogue identifier: ADXB_v2_0

Program summary URL: http://cpc.cs.qub.ac.uk/summaries/ADXB_v2_0.html

Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland

Licensing provisions: GNU General Public License, version 3

No. of lines in distributed program, including test data, etc.: 12458

No. of bytes in distributed program, including test data, etc.: 86258

Distribution format: at.gz

Programming language: C++.

Computer: x86_64.

Operating system: Linux.

RAM: The memory requirements for calculating PES are determined by the maximum ℓ in the spherical
harmonics expansion of thewave function and the number ofmomentum (or energy) values forwhich the
PES are to be calculated. The examplewith the largest memory demand (large-clubs) uses approximately
6GB of RAM. The size of the numerical representation of a wavefunction during propagation is modest for
the examples included (53 MB for the large-club example).

Number of processors used: The evaluation of the PES can be distributed over up to Nk MPI processes (Nk
is the number of momentum values).

Catalogue identifier of previous version: ADXB_v1_0

Journal reference of previous version: Comput. Phys. Comm. 174(2006)396

Classification: 2.5.
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External routines: GNU Scientific Library, Open MPI (optional), BOOST (optional)
Does the new version supersede the previous version?: For TDDFT calculations the previous version should
be used.
Nature of problem:

When atoms are ionized by intense laser fields electrons may escape with large momenta (especially
when rescattering is involved). This translates to a rapidly spreading wavefunction in numerical
simulations of these systems thus rendering the calculation of PES very costly for increasing wave lengths
and peak intensities.
Solution method:

The TDSE is solved by propagating the wavefunction using a Crank–Nicolson propagator. The
wavefunction is represented by an expansion in spherical harmonics. In order to reduce the requirements
with respect to the grid size the t-SURFF method is used to calculate PES.
Reasons for new version:

Using the window operator method to calculate PES is increasingly costly with increasing
ponderomotive energies and pulse durations. The new version of Qprop provides an implementation of
the t-SURFF method which allows the use of much smaller numerical grids.
Summary of revisions:

An implementation of the t-SURFF method and examples for calculating PES are provided in the new
release.
Restrictions:

The dipole approximation for the laser interaction has to be applicable. t-SURFF is only implemented
for velocity gauge. Furthermore a finite cutoff for long range binding potentials has to be used in the
implemented t-SURFF method.
Additional comments:

For additional information see www.qprop.de
Running time:

Depends strongly on the laser interaction studied. The examples given in this paper have run times
from a few minutes to 12.5 hours.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Ten years after the initial release of Qprop [1], solving the
TDSE for more than one ‘‘active’’ electron in strong laser fields
remains a Herculean effort. Consequently, single-active-electron
TDSE simulations remain one of themost important tools in strong
field physics. Yet, what seems just an innocent extension of the
111-year-old photoeffect, namely a single, initially bound electron
in an intense laser field, shows a plethora of unexpected features
[2,3] that still challenge theory to date.

One of the most demanding tasks in strong-field TDSE simu-
lations is the calculation of momentum-resolved PES. Especially
for long-wavelength lasers the large final momenta and long pulse
duration make large computational grids necessary, at least if the
calculation of PES relies on the wavefunction after the laser pulse.
Employing wavelengths larger than the standard 800 nmmight be
beneficial for ‘‘self-imaging’’ using the target’s own electrons [4]
since the higher ponderomotive energies and returnmomentawill
better probe the target structure without the need to increase the
laser intensity towards the destructible over-barrier regime.

According to textbook quantum mechanics, momentum-
resolved PES should be calculated as |⟨φp|Ψ (t → ∞)⟩|2 where
|Ψ (t → ∞)⟩ is the electronic state as t → ∞ when the laser
is off, and |φp⟩ is a continuum eigenstate of asymptotic momen-
tum p. Not only is none of the assumptions true on a numerical
grid, but also the eigenstates |φp⟩ on the grid are unknown and ex-
pensive to compute for all p of interest (note that even if φp(r)
is known analytically its self-consistent, discretized representa-
tion on the numerical grid is not). In efficient numerical calcula-
tions of approximate PES one typically works around projections
on unperturbed eigenstates. Commonly, such methods are based
on an approximate projection operator applied to the (in someway
or another discretized) wavefunction immediately after the pulse
(e.g., the ‘‘window operator’’ [5,6]), Fourier-transforms, spectral
analysis in time (i.e., further unperturbed time-propagation and
analysis of the autocorrelation function [7]), or so-called ‘‘virtual
detectors’’ [8]. The t-SURFFmethodwas proposed in Ref. [9], notic-
ing that the spatially very extended wavefunction after the pulse
maybe traded for temporal information about thewavefunction on
a surface enclosing amuch smaller, central part of the grid. Surface-
flux methods have been long well-known for time-independent
Hamiltonians. The related problemof perfectly transparent bound-
ary conditions in time-dependent calculations has been addressed
as well [10,11]. The very significant achievement in Ref. [9] is to
employ the surface flux through a boundary while the laser is on
for the calculation of PES.

TDSE solutions serve as an important benchmark for simpler,
almost-analytical approaches such as the strong-field approxima-
tion and its quantum orbit flavors (see [12] for a recent review).
The TDSE-solver Qprop enables the efficient simulation of a sin-
gle active electron, initially bound in a spherically symmetric po-
tential and interacting with an intense laser field. In Qprop, the
wavefunction is expanded in spherical harmonics Yℓm(Ω), and the
radial wavefunctions φℓm(r) are propagated in time. The laser field
is treated in dipole approximation. For laser fields linearly polar-
ized in z-direction, the orbital angular momentum component L̂z
is a constant of the motion, and the related magnetic quantum
number m remains ‘‘good’’. As a consequence, the problem is ef-
fectively two-dimensional, and the partial waves are propagated
on an rℓ-grid, where r is the radial coordinate, and ℓ the orbital
angular momentum quantum number. For linear polarization, the
Muller algorithm introduced in [13] is used in Qprop. The Muller

http://www.qprop.de
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algorithm is based on the unconditionally stable and unitary
Crank–Nicolson propagationwith improved spatial discretizations
in r in combination with a decomposition in 2 × 2 matrices acting
in angular-momentum space.

Qprop is also able to propagate wavefunctions for arbitrary
elliptical polarization in the xy-plane. However, owing to the
broken azimuthal symmetry m is not a good quantum number
in this case, the problem is really three-dimensional, and the
computational cost higher. The details of the propagation routines
for linearly and elliptically polarized laser fields (beyond what is
explained in [1]) can be found on the Qprop website [14]. There is
also a list of papers in which Qprop was used. The current paper
only concerns the implementation of t-SURFF in Qprop.

The original Qprop package incorporates the possibility to
perform time-dependent density functional (TDDFT) calculations,
i.e., the solution of the time-dependent Kohn–Sham (KS) equa-
tions [15]. How to calculate rigorously many-electron PES from KS
orbitals is an open question in TDDFT, interesting in itself [16] but
not the topic of this work.

Another restriction concerns the gauge. Qprop allows for
velocity and length gauge, and it has been thoroughly tested
that observables converge to the same result. However, the
computational cost in velocity gauge is much smaller for strong
laser fields. This is because – given a vector potential A(t) –
the large, purely oscillatory component ∼A(t) in the kinetic
momentum pkin is absent in the canonical momentum p = pkin −

A(t), allowing for smaller ℓ-grids, larger time steps, and grid
spacings [17]. On the other hand, problems where the binding
potential around the origin dominates the energy scale are better
treated in length gauge. Since t-SURFF ismost beneficial to intense-
laser problems we implemented it for the velocity gauge.

The paper is organized as follows: In Section 2, the elementary
t-SURFF idea is reviewed, and the particular Qprop aspects are
discussed. We occasionally refer to the code version discussed in
this paper as Qprop 2.0. The main, important changes compared
to the original Qprop version [1] are described in Section 3 and
summarized in Table 2.

Examples for the calculation of momentum-resolved spectra
for above-threshold ionization (ATI) in the multiphoton regime,
a linearly polarized mid infrared laser pulse, and a circularly
polarized few cycle laser pulse are provided in Section 4. Atomic
units h̄ = me = |e| = 4πϵ0 = 1 are used throughout the paper
except where indicated otherwise.

2. Theory

The method for solving the TDSE used in Qprop is covered
extensively in the original article [1] and a technical manuscript
is available for download on the Qprop website [14]. Hence, only
the basic ideas will be summarized, and the focus clearly lies on
the incorporation of t-SURFF in Qprop.

2.1. Propagation of the wavefunction

Qprop is applicable to systems with a single (active) electron,
spherically symmetric binding potentials, and laser fields that
can be described classically and in dipole approximation. The
Hamiltonian may then be chosen as

Ĥ = −
1
2
∇

2
− iA(t) · ∇ + V (r). (1)

Here, the velocity gauge is used, with the purely time-dependent
A2(t) term already transformed away (see Appendix). In the ab-
sence of an external field A(t), spherical symmetry allows to sep-
arate the problem into uncoupled, one-dimensional Schrödinger
equations for the radial wavefunctions φℓm(r, t) if the total wave-
function is expanded in spherical harmonics,

Ψ (r, t) =
1
r

∞
ℓ=0

ℓ
m=−ℓ

φℓm(r, t)Yℓm(Ω). (2)

Computationally, the upper limit for ℓ is finite, say Lmax − 1. We
store the radial wavefunctionsφℓm(r, t) for ℓ = 0, 1, 2, . . . , Lmax−

1,m = −ℓ,−ℓ+1, . . . , ℓ on auniformly discretized radial grid r =

i∆r , i = 1, 2, . . . ,Nr . The propagation routine in Qprop supports
two basic modes of operation. The first of these modes is designed
for simulating the interaction with a linearly (in z-direction)
polarized laser field, A(t) = Az(t)ez . In this case the magnetic
quantum numberm of the initial state is conserved,m = m0,

Ψm0(r, t) =
1
r

Lmax−1
ℓ=0

φℓ(r, t)Yℓm0(Ω) (lin. pol.), (3)

and the set of radial wavefunctions {φℓ(r, t)} is effectively prop-
agated on a two-dimensional rℓ-grid. Here, we assume that, for
simplicity, there is only one m = m0 and not a superposition of
various partial waves of different m. In the latter case, one simply
may propagate the different m-components independently from
one another.

The second mode supports a laser field of arbitrary, i.e., ellipti-
cal, polarization in the xy-plane, A(t) = Ax(t)ex + Ay(t)ey. In that
case a full expansion, including allms, is required,

Ψ (r, t) =
1
r

Lmax−1
ℓ=0

ℓ
m=−ℓ

φℓm(r, t)Yℓm(Ω) (ell. pol.). (4)

Whereas for linear polarization the run time scales ∼Lmax it grows
∼L2max for elliptical polarization.

2.2. Window operator method for photoelectron spectra

The window operator method (WOM) [5,6] is an efficient way
to calculate PES if the complete wavefunction after the interaction
with the external field is available. Strictly speaking, already the
initial eigenstate wavefunction in realistic binding potentials is
nonzero everywhere (apart from nodal planes, lines, or points).
Computationally, it should be negligibly small on the boundary
of the numerical grid. During the interaction with the external
field, outgoing flux is typically removed by mask functions,
absorbing potentials [18], or complex scaling [19]. The parts of
the wavefunction that have been removed in such a way are lost
for the PES calculated using WOM. Typically, the fastest electrons
are missing because they arrive earlier at the absorbing boundary.
However, electrons, after substantial excursions, may return to the
ion due to the oscillatory laser field, and scatter. If the numerical
grid is so small that parts of the wavefunction representing such
electrons are absorbed, the PES may be spoiled not only at high
energies.

In order to calculate the energy-resolved PES the window
operator

Ŵγ n(ϵ) =
γ 2n

(Ĥ0 − ϵ)2
n
+ γ 2n

(5)

is applied to the final state |Ψ ⟩ = |Ψ (tf)⟩ (after the interactionwith
the external field). Ĥ0 is the field-free Hamiltonian (i.e., (1) with
A ≡ 0), γ is the window width, n the window ‘‘order’’ (the higher
the n, the more rectangular the window; n = 3 is used in Qprop).
The WOM provides an approximation for the absolute squares of
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the expansion coefficients in energy eigenstates |cϵ |2 = |⟨ϵ|Ψ ⟩|
2 as

lim
γ→0

1
Nγ n

⟨Ψ |Ŵ 2
γ n(ϵ)|Ψ ⟩ = |cϵ |2,

Nγ n =


dϵ


γ 2n

ϵ2
n
+ γ 2n

2

.

(6)

Application of the window operator to the final wavefunction,

|χγ n(ϵ)⟩ = Ŵγ n(ϵ)|Ψ ⟩,

⟨r|χγ n(ϵ)⟩ =
1
r


ℓm

R(γ n)ℓm (ϵ, r)Yℓm(Ω),
(7)

allows to calculate the energy-differential ionization probability as
(dropping γ n)

dP(ϵ)
dϵ

= ⟨χ(ϵ)|χ(ϵ)⟩ =


dr dΩ


ℓm

Rℓm(ϵ, r)Yℓm(Ω)
2

=


ℓm


dr
Rℓm(ϵ, r)2

=:


ℓm

awinop,ℓm(ϵ)
2. (8)

Omitting the integration over the angles θ , ϕ in Ω allows to ap-
proximate energy-angle-differential spectra,

dP(ϵ,Ω)
dΩ dϵ

=


dr

ℓm

Rℓm(ϵ, r)Yℓm(Ω)
2. (9)

This is an approximation because immediately after the laser pulse
the solid angle Ω in position space is not yet equal to the emis-
sion solid angle determined by the asymptotic electron momen-
tum. Hence, in practice it is advisable to field-free post-propagate a
while after the laser pulse until the energy-angle-differential spec-
trum is converged (the lower the energy, the longer it takes for
convergence). Note that because of [Ŵγ n(ϵ), Ĥ0] = 0 the angle-
integrated spectrum (8) is converged immediately after the pulse.

As mentioned above, long pulse durations and high electron
momenta render WOM very costly because all of the rapidly
spreading wavefunction has to be retained on the numerical grid.

2.3. Photoelectron spectra with t-SURFF

In order to facilitate the calculation of momentum-resolved
spectra on smaller spatial grids the t-SURFF method was pro-
posed [9]. For simplicity and pedagogical reasons, let us first con-
sider the one-dimensional TDSE

i∂tΨ (x, t) =


−

1
2
∂2x − iA(t)∂x + V (x)


Ψ (x, t). (10)

Suppose the binding potential V (x) can be neglected for distances
|x| > XI > 0, and the propagation lasts long enough, i.e., up
to time t = T when the laser is off and all probability density
representing ionization with a certain final minimum electron
momentum arrived at ±XI. Then the probability amplitude for
ionization can be approximated by

aI(k) = ⟨k(T )|Θ(|x| − XI)|Ψ (T )⟩

=


dx Θ(|x| − XI)ψ

∗

k (x, T )Ψ (x, T ) (11)

with plane-wave final-momentum states |k(T )⟩, i.e., in position
space ψk(x, T ) = ⟨x|k(T )⟩. We proceed by apparent complication,
writing

aI(k) =

 T

0
dt ∂t⟨k(t)|Θ(|x| − XI)|Ψ (t)⟩

+ ⟨k(0)|Θ(|x| − XI)|Ψ (0)⟩. (12)

Let us assume that the laser is on within the time interval [0, Tp],
Tp ≤ T , turning |k(t)⟩ into a Volkov state [20,12] for the TDSE (10)
with V (x) ≡ 0, that is, the solution for a free electron in a laser
field. In position space and velocity gauge (with A2(t) transformed
away) the Volkov state reads

ψk(x, t) = (2π)−1/2e−ik2t/2+ik[x−α(t)], α(t) =

 t

0
dt ′ A(t ′). (13)

α(t) is the classical excursion of a free electron in the laser field.
Using the TDSE (10) in (12), the fact that V (x) ≃ 0 for |x| > XI, and
⟨k(0)|Θ(|x| − XI)|Ψ (0)⟩ ≃ 0 for bound initial states, we obtain an
expressionwith the commutator between theVolkov-Hamiltonian
−

1
2∂

2
x − iA(t)∂x and the t-SURFF-boundary-defining step function,

aI, t-SURFF(k)

= i
 T

0
dt ⟨k(t)|


−

1
2
∂2x − iA(t)∂x , Θ(|x| − XI)


|Ψ (t)⟩. (14)

As

dx ∂xθ(|x|−X) =


dx [δ(x−X)−δ(x+X)] and


dx f (x)∂xδ(x−

X) = −

dx δ(x − X)∂xf (x), we find – with the Volkov states

inserted –

aI, t-SURFF(k) =
1

√
2π

 T

0
dt eitk

2/2 e−ik[x−α(t)]

×


1
2
k + A(t)−

i
2
∂

∂x


Ψ (x, t)

XI
x=−XI

, (15)

and the momentum-resolved spectrum follows as dP(k)/dk =

|aI, t-SURFF(k)|2.
In order to avoid finite-T -dependent artifacts half a Hanning

window

H(t) =


1 if t < T/2
[1 − cos(2π t/T )]/2 if t ≥ T/2 (16)

may be multiplied to the integrands.
XI should be big enough so that |V (x)| is sufficiently small for

|x| > XI. On the other hand, t-SURFF only captures electrons rep-
resented by the parts of the wavefunction that leave the region
|x| < XI within the time interval [0, T ]. In practice, a compromise
has to be found, and the convergence of the spectra in themomen-
tum range of interest should be checked by varying XI and T .

2.3.1. Angle-momentum-resolved spectra with Qprop
In the one-dimensional case, t-SURFF amounts to analyzing the

flux through a surface consisting of only two points ±XI. In three-
dimensional problems the role of XI may be taken by a radius RI,
and the binding potential V (r) is then assumed to be negligible for
|r| = r > RI. The analogue of (15) then involves integrals


dΩ

over the surface of the sphere of radius RI. Instead of (14) we now
have

aI, t-SURFF(k) = i
 T

0
dt ⟨k(t)|


−

1
2
∇

2

− iA(t) · ∇, Θ(r − RI)


|Ψ (t)⟩

= RI
2
 T

0
dt


dΩ

ψ∗

k (r, t)[Ax(t) sin θ cosϕ

+ Ay(t) sin θ sinϕ
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+ Az(t) cos θ ]Ψ (r, t)−
i
2
[ψ∗

k (r, t)∂rΨ (r, t)

−Ψ (r, t)∂rψ∗

k (r, t)]


r=RI

, (17)

with Volkov waves

ψk(r, t) = (2π)−3/2e−ik2t/2+ik·[r−α(t)], α(t) =

 t

0
dt ′ A(t ′). (18)

Apart from the transformation (43) (and a different definition
of the sign of the electron charge in atomic units) this is the
same result for the probability amplitudes a(k) as in Ref. [9]. In
Qprop, we need to calculate the surface integral in the probability
amplitude (17) for the case where the time-dependent wave
function is available as an expansion in spherical harmonics (4).
To this end we use an expansion of the Volkov waves

ψk(r, t) =


2
π

e−ik2t/2−ik·α(t)

ℓm

iℓjℓ(kr)Y ∗

ℓm(Ωk)Yℓm(Ω). (19)

Here, Ω is the solid angle with respect to r, the solid angle Ωk
is with respect to k, and jℓ(kr) are the spherical Bessel functions.
Inserting (19) and the spherical harmonics expansion (4) into (17)
yields

aI, t-SURFF(k)

=


2
π
RI

2
 T

0
dt eik

2t/2+ik·α(t)


dΩ


ℓm,ℓ1m1

(−i)ℓ1

× Yℓ1m1(Ωk)Y ∗

ℓ1m1
(Ω)Yℓm(Ω)

×


jℓ1(kr)


2π
3


Ã(t)Y1,−1(Ω)− Ã∗(t)Y1,1(Ω)

+
√
2Az(t)Y1,0(Ω)

 1
r
φℓm(r, t)

−
i
2
jℓ1(kr)∂r


1
r
φℓm(r, t)


+

i
2r
φℓm(r, t)∂r jℓ1(kr)


r=RI

. (20)

Here, Ã(t) = Ax(t) + iAy(t). The solid-angle integrals over three
spherical harmonics with argument Ω can be evaluated. One
obtains

aI, t-SURFF(k) =


ℓm

aI, t-SURFF,ℓm(k)Yℓm(Ωk) (21)

with

aI, t-SURFF,ℓm(k)

=
RI(−i)ℓ+1

(2π)1/2

 T

0
dt eitk

2/2+ik·α(t)

jℓ(kRI)


∂rφℓm(r, t)|RI

−
(ℓ+ 1)φℓm(RI, t)

RI


+ kφℓm(RI, t)jℓ+1(kRI)

+ i
√
2 jℓ(kRI)


Ã(t)


bℓ,−mφℓ−1,m+1(RI, t)

− dℓmφℓ+1,m+1(RI, t)


− Ã∗(t)

bℓmφℓ−1,m−1(RI, t)− dℓ,−mφℓ+1,m−1(RI, t)


+

√
2Az(t)


cℓ−1,mφℓ−1,m(RI, t)+ cℓmφℓ+1,m(RI, t)


, (22)
where the recursion relation

d
dr

jℓ(kr) = −kjℓ+1(kr)+
ℓ

r
jℓ(kr) (23)

was used, and

cℓm =


(ℓ+ 1)2 − m2

(2ℓ+ 1)(2ℓ+ 3)
, bℓm =


(ℓ+ m − 1)(ℓ+ m)
2(2ℓ− 1)(2ℓ+ 1)

,

(24)

dℓm =


(ℓ+ m + 1)(ℓ+ m + 2)(ℓ+ 1)
(2ℓ+ 2)(2ℓ+ 3)(2ℓ+ 1)

. (25)

The time integrals at the surface

Ii,ℓm(k) =

 T

0
dt eitk

2/2+ik·α(t)Fi(t)φℓm(RI, t), i = 0, 1, 2, 3 (26)

I4,ℓm(k) =

 T

0
dt eitk

2/2+ik·α(t)∂rφℓm(r, t)|r=RI (27)

with

F0(t) = Ã∗(t), F1(t) = Ã(t),
F2(t) = Az(t), F3 = 1

(28)

are needed to calculate the t-SURFF spectrum,

aI, t-SURFF,ℓm(k) =
RI(−i)ℓ+1

(2π)1/2


jℓ(kRI)


I4,ℓm(k)−

ℓ+ 1
RI

I3,ℓm(k)


+ k jℓ+1(kRI)I3,ℓm(k)

+ i
√
2 jℓ(kRI)


−(bℓmI0,ℓ−1,m−1(k)− dℓ,−mI0,ℓ+1,m−1(k))

+ (bℓ,−mI1,ℓ−1,m+1(k)− dℓmI1,ℓ+1,m+1(k))

+
√
2(cℓ−1,mI2,ℓ−1,m(k)+ cℓmI2,ℓ+1,m(k))


. (29)

In the expansion of the probability amplitude (21), aI, t-SURFF,ℓm
still depends on Ωk. In a ‘‘complete’’ expansion in spherical
harmonics one would expect no angular dependence in the
coefficients, i.e.,

aI, t-SURFF(k) =


ℓm

āI, t-SURFF,ℓm(k)Yℓm(Ωk). (30)

This can be achieved by expanding

eik·α(t)
= 4π


ℓm

iℓjℓ[kα(t)]Y ∗

ℓm(Ωα(t))Yℓm(Ωk) (31)

as well. Another solid angle Ωα(t), with respect to the excursion
vector α(t), appears, and

āI, t-SURFF,ℓm(k)

= RI


ℓ1m1ℓ2


2(2ℓ1 + 1)(2ℓ2 + 1)

(2ℓ+ 1)
Cℓ0ℓ10ℓ20C

ℓm
ℓ1m1ℓ2,m−m1

× (−i)ℓ1−ℓ2+1
 T

0
dt eitk

2/2 jℓ2 [kα(t)]Y
∗

ℓ2,m−m1
(Ωα(t))

×


jℓ1(kRI)


∂rφℓ1m1(r, t)


RI

−
(ℓ1 + 1)φℓ1m1(RI, t)

RI


+ kφℓ1m1(RI, t)jℓ1+1(kRI)

+ i
√
2 jℓ1(kRI)


Ã(t)


bℓ1,−m1φℓ1−1,m1+1(RI, t)

− dℓ1m1φℓ1+1,m1+1(RI, t)
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− Ã∗(t)

bℓ1m1φℓ1−1,m1−1(RI, t)

− dℓ1,−m1φℓ1+1,m1−1(RI, t)


+
√
2Az(t)


cℓ1−1,m1φℓ1−1,m1(RI, t)

+ cℓ1m1φℓ1+1,m1(RI, t)


, (32)

where Cℓmℓ1m1ℓ2m2
are Clebsch–Gordan coefficients [21], is obtained.

The relevant time integrals now read

Īi,ℓ1m1,ℓ2m2(k) =

 T

0
dt eik

2t/2jℓ2 [kα(t)]Y
∗

ℓ2m2
(Ωα(t))

× Fi(t)φℓ1m1(RI, t), i = 0, 1, 2, 3, (33)

Ī4,ℓ1m1,ℓ2m2(k) =

 T

0
dt eik

2t/2jℓ2 [kα(t)]Y
∗

ℓ2m2
(Ωα(t))

× ∂rφℓ1m1(r, t)|RI , (34)

in terms of which

āI, t-SURFF,ℓm(k) = RI


ℓ1m1ℓ2


2(2ℓ1 + 1)(2ℓ2 + 1)

(2ℓ+ 1)

× Cℓ0ℓ10ℓ20C
ℓm
ℓ1m1ℓ2,m−m1

(−i)ℓ1−ℓ2+1

×


jℓ1(kRI)


Ī4,ℓ1m1,ℓ2,m−m1(k)−

ℓ1 + 1
RI

Ī3,ℓ1m1,ℓ2,m−m1(k)


+ k Ī3,ℓ1m1,ℓ2,m−m1(k)jℓ1+1(kRI)

+ i
√
2 jℓ1(kRI)


bℓ1,−m1 Ī1,ℓ1−1,m1+1,ℓ2,m−m1(k)

− dℓ1m1 Ī1,ℓ1+1,m1+1,ℓ2,m−m1(k)

− bℓ1m1 Ī0,ℓ1−1,m1−1,ℓ2,m−m1(k)

+ dℓ1,−m1 Ī0,ℓ1+1,m1−1,ℓ2,m−m1(k)

+
√
2

cℓ1−1,m1 Ī2,ℓ1−1,m1,ℓ2,m−m1(k)

+ cℓ1m1 Ī2,ℓ1+1,m1,ℓ2,m−m1(k)


(35)

results.
Both methods for calculating the ionization probability ampli-

tude, i.e., via (21) with (29) and (30) with (35), are implemented
in Qprop 2.0. If Nθk , Nϕk are the number of respective angles, and
Nℓ = Lmax, Nm the number of ℓ and m quantum numbers consid-
ered, the ratio NθkNϕk/(NℓNm) of the number of time integrals that
need to be calculated may be used to estimate which of the two
methods is computationally cheaper.

The energy-differential ionization probability dPI, t-SURFF(ϵ)/dϵ
with ϵ = k2/2 can be calculated (using d3k = k2dk dΩk =
√
2ϵ dϵ dΩk) as

dPI, t-SURFF(ϵ)
dϵ

=
√
2ϵ


dΩk


ℓm

āI, t-SURFF,ℓm(k)Yℓm(Ωk)

2
k=

√
2ϵ

=
√
2ϵ

ℓm

āI, t-SURFF,ℓm(k)2
k=

√
2ϵ

=
√
2ϵ|āI, t-SURFF(k)|2


k=

√
2ϵ

. (36)

The last expression enables a direct comparison of the partial
spectra |āI, t-SURFF,ℓm(k)|2 with the WOM result (8).

The two propagationmodes implemented inQprop cover linear
polarization, Az ≠ 0, Ã = Ã∗

≡ 0 (mode 34) and elliptical
polarization in the xy-plane, Ã ≠ 0, Ã∗

≠ 0, Az ≡ 0 (mode 44). The
corresponding t-SURFF spectral amplitudes follow from the more
general expressions (29), (35).
3. News in Qprop 2.0

The structure of Qprop, propagation modes, output, WOM
analysis, etc. are described in the original Qprop article [1]. In
a typical TDSE-solving problem, an imaginary-time propagation
to find the initial state precedes a real-time propagation of
the wavefunction. After the real-time propagation, the final
wavefunctionmaybe analyzed. Since the earliest versions ofQprop
WOM was implemented to calculate photoelectron spectra. Now,
in Qprop 2.0, there is an alternative to the last, WOM step, which
is t-SURFF. However, while WOM requires the final wavefunction
and the binding potential only, t-SURFF needs data stored during
the real-time propagation as well, and the real-time propagation
depends on where the t-SURFF boundary RI is located. In the
example of Section 4.1WOMand t-SURFF spectrawill be calculated
and compared. Before,webrieflymention other important changes
in Qprop 2.0.

External potentials are still collected in the class hamop. Up to
now this class could only handle functions (cf. Table 2 in [1]). In
Qprop 2.0 it is able to digest any object that can be converted to
std::function. In the examples in Section 4 this is exploited by
using functors instead of functions.

The class parameterListe is provided for parsing simple
parameter files. These text files contain entries of the form
name type value. Lines startingwith the character# are ignored
and can be used for comments. In order to read parameters from
a file functions for reading the types string, long and double
are implemented. The source code of the test cases in Section 4
provides plenty of examples for the use of parameter files.

The t-SURFF method for calculating PES is implemented in
the classes tsurffSpectrum and tsurffSaveWF. The class
tsurffSaveWF is responsible for saving the radial wavefunctions
at the t-SURFF boundary φℓm(RI, t) and their spatial derivative
∂rφℓm(r, t)|r=RI (fourth order finite difference approximation) to
files with the ending .raw.

The remaining steps, i.e., performing the time integrals (26),
(27) or (33), (34) (smoothed by the Hanning window (16)) and
calculating the partial spectra (21) or (30) are implemented in
the class tsurffSpectrum. The relevant member functions are
time_integration() and polar_spectrum(), respectively.

InQprop 2.0, the classvecpot – to be defined inpotentials.
hh – is used to initialize the vector potential components for the
real-time propagation. The examples below illustrate this.

Depending on theparameterexpansion-method intsurff.
param, Eq. (21) (expansion-method=1) or (30) (expansion-
method=2) is employed to calculate the probability amplitudes.
If expression (30) is used print_partial_amplitudes()may
be called to write the partial amplitudes

√
2ϵ|āI, t-SURFF,ℓm(

√
2ϵ)|2

to a file.
As in the previous versions of Qprop there are two possible

field set-ups: linear polarization along the z-direction (propagation
mode 34) and any polarization in the xy-plane (propagation mode
44). They are selected by qprop-dim long 34 or qprop-dim
long 44 in the parameter file initial.param, respectively.

Angle-resolved spectra whose range and resolution are defined
in the parameter file tsurff.param are written to text files
named tsurff-polarip.dat. Here, ip is the number of the
process which produced the result. By default MPI parallelization
is disabled and there is only a single file with ip = 0. However,
the examples in Section 4 can be also processed using a parallel
t-SURFF analysis. For the case of polarization in the xy-plane
each data row contains the energy value k2/2, absolute value of
momentum k, angle θk, angleϕk and amplitude |a(k)|2k. In the case
of linear polarization the azimuthal angle ϕk is not relevant due to
the azimuthal symmetry about the z axis, and thus omitted.
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Fig. 1. The flow chart shows which input parameters (left) are used by which programs (right, light blue). The programs generate output, some of which is read by another
program (right, white). This particular example is for the case discussed in Section 4.1, generating the data shown in Figs. 2 and 3. (For interpretation of the references to
colour in this figure legend, the reader is referred to the web version of this article.)
The partial spectra files named tsurff-partialip.dat
(generated if expansion-method is set to 2) contain the
column entries energy k2/2, momentum k, partial probabilities
|ā0,0(k)|2k, . . . , |āLmax−1,Lmax−1(k)|2k, and their sum |ā(k)|2k. The
ordering of the entries |āℓm(k)|2 for propagation mode 44 is
indicated in Table 1.

In the case of linear polarization along the z axis (propagation
mode 34) themagnetic-quantum-numberm is fixed, and each row
has the column entries k2/2, k, |ā0(k)|2k . . . |āLmax−1(k)|2k, |ā(k)|2k.
Note that all partial spectra aremultiplied by k =

√
2ϵ (cf. Eq. (36)).

The range and the resolution of the spectra are determined
by the following parameters in tsurff.param: k-max-surff
determines the maximum absolute value of momentum,
num-k-surff the number of k values for which probabilities are
calculated. Setting the parameter delta-k-scheme to 1 sam-
ples equidistantly in k, 2 equidistantly in energy ϵ = k2/2.
num-theta-surff and num-phi-surff define the numbers
Nθk ,Nϕk of angles θk andϕk. The values for the angles are distributed
equidistantly in the intervals θk ∈ [0, π] and ϕk ∈ [0, 2π) (note
that if Nθk < 3 it is increased to 3, and if Nθk is chosen even su-
perfluous if it is increased by one; in that way θk = 0, π/2, π are
always covered).

The calculation of a spectrum may be easily parallelized by
assigning to each process a part of the k interval. Open MPI [22]
is used in the current implementation.
The GNU Scientific Library (GSL) [23] is used for the evaluation
of spherical harmonics, Bessel functions, and Wigner 3j symbols.
The latter are related to the Clebsch–Gordan coefficients appearing
in (32) and (35) [21].

4. Examples

Four examples for Qprop 2.0 with t-SURFF are provided in
the sub-directories ati-tsurff, ati-winop, large-clubs,
attoclock, and pow-8-sine. Instructions on how to build and
run the sample programs and how to plot the results are detailed
in the readme.txt files provided in these directories.

Simulation parameters are read from the text files
initial.param, propagate.param and tsurff.param by
the programs for imaginary-time propagation, real-time propaga-
tion, and the calculation of PES. The flow chart in Fig. 1 visualizes
this for the first example in Section 4.1: the parameter files (left)
are read by the programs (right) as indicated by lines. Note that
both hydrogen_re.cc and eval-tsurff.cc use parameters
from all three parameter files.

Some of the output by one program is read by another, e.g., the
ground state wavefunction after imaginary-time propagation
in hydrogen_im-wf_fin.dat or the wavefunction on the
t-SURFF boundary during real time in tsurffpsi.raw. The
PES data are finally in the files tsurff-polar0.dat and
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Table 1
Mapping of ℓ andm to a single index (ℓ+ 1)ℓ+ m.

· · · m = −2 m = −1 m = 0 m = 1 m = 2 · · ·

ℓ = 0 0
ℓ = 1 1 2 3
ℓ = 2 4 5 6 7 8
.
.
. . .

. .
.
.

. . .
Table 2
Comparison of features in Qprop and Qprop 2.0.

Qprop Qprop 2.0

PES methods WOM t-SURFF and WOM
TDDFT capabilities yes not yet
Length gauge yes no
Parallel processing no yes (PES with t-SURFF)
Representation of potentials plain functions std::function
Parsing parameter files xml-like format name-type-value tuples in text file
tsurff-partial0.dat, to be processed by some plot program.
In the examples directories gnuplot scripts are provided.

The binding potential Vbind(r), vector potential A(t), excursion
α(t), and the imaginary potential −iVIm(r) for absorbing outgoing
electron flux (that already passed the t-SURFF boundary) are
defined in the header file potentials.hh. In all examples the
imaginary potential is chosen

VIm(r) =


0 r < RIm

VIm,max


r − RIm

WIm

16

r ≥ RIm
(37)

with VIm,max = 100, RIm = Rgrid − WIm, and the width of the
absorbing regionWIm specified via the parameter imag-width in
propagate.param.

An advanced method for the absorption of wavefunctions at
grid boundaries with impressively few additional grid points was
proposed [24] and could be implemented in a future version of
Qprop.

4.1. Window operator vs t-SURFF

In the first examplewe show that PES calculated by the t-SURFF
approximation are in good agreement with spectra calculated
using WOM. All relevant files are located in the directories
ati-tsurff and ati-winop, respectively.

In order to ensure that the binding potential vanishes before the
t-SURFF boundary a modified Coulomb potential

Vbind(r) =


−

1
r

if r < Rco

r − Rco

R2
co

−
1
Rco

if Rco ≤ r < 2Rco

0 r ≥ 2Rco

(38)

with Rco = 25 (parameter pot-cutoff in initial.param) is
used. The t-SURFF boundary is at RI = 100 = 4Rco (parameter
R-tsurff) to ensure that even highly-excited bound states are
negligible for r > RI.

A linearly polarized nc = 20-cycle laser pulse described by the
vector potential

A(t) = ezAz(t); Az(t) = Â sin2

ωt
2nc


sin(ωt + ϕCEP) (39)

withω = 0.085 (wavelengthλ = 535nm), electric field amplitude
Ê = Âω = 0.02387 (peak intensity I = 2 × 1013 W/cm2), and
carrier-envelope-phase ϕCEP = 0 is considered.

For this first example we provide step-by-step directions.
1. Switch to the directory
qprop-with-tsurff/src/ati-tsurff.
You may give a look to readme.txt, Makefile, and the
*.param files.

2. Type make (or first make clean and then make).
3. Run the imaginary-time propagation by entering

./hydrogen_im. The ground state is quickly reached within
the 5000 imaginary-time steps (specified in hydrogen_im.
cc). The executable hydrogen_im generates some output
files: the initial wavefunction is stored in hydrogen_im-wf_
ini.dat (real and imaginary parts in columns 1 and 2, respec-
tively), the finalwavefunction inhydrogen_im-wf_fin.dat,
some observables in hydrogen_im-observ.dat, and grid
parameters in hydrogen_im-0.log.

4. Run the real-time propagation by entering ./hydrogen_re.
The total number of real time steps 45568 is determined
automatically from the sum long(NTp + Nt−SURFF + 1 ) of the
pulse duration (in time steps)

NTp =
nc 2π/ω
∆t

= 29567.931

and the time

Nt−SURFF =
RI/pmin

∆t
= 16000.0

the slowest electron of interest (withmomentum pmin, assigned
to p-min-tsurff in tsurff.param) takes to arrive at RI so
that it will be captured for the t-SURFF PES. The real-time prop-
agation takes less than 4 min on our Intel Core i5-3570 desk-
top computer. The output file hydrogen_re-vpot_z.dat
contains the vector potential Az(t) (2nd column) vs time
(1st column), the log-file hydrogen_re.log grid, time, and
laser parameters. The filehydrogen_re-obser.dat contains
time, the instantaneous energy expectation value ⟨Ψ (t)|T̂ +

Vbind(r)|Ψ (t)⟩ (where T̂ is the kinetic energy), the projection
on the initial state |⟨Ψ (0)|Ψ (t)⟩|2, the total norm on the grid
(drops below unity because of the absorbing potential), and the
position expectation value ⟨z⟩ = ⟨Ψ (t)|ẑ|Ψ (t)⟩. Initial and
final wavefunctions are stored in hydrogen_re-wf.dat as
described in the original Qprop paper [1]. The values 1-total
normon the grid after the simulation and 1−|⟨Ψ (0)|Ψ (tfinal)⟩|2
are stored in hydrogen_re-yield.dat. The relevant out-
put files for the subsequent t-SURFF post-processing are
tsurffpsi.raw and tsurff-dpsidr.raw, containing the
partial radial wavefunctions and their derivative at r = RI, re-
spectively.
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Fig. 2. (Color online) Energy-resolved total PES for hydrogen (starting from the
1s state) calculated with t-SURFF and WOM. Laser parameters: λ = 535 nm,
I = 2 × 1013 W/cm2 , nc = 20.

5. Run the t-SURFF analysis by entering ./eval-tsurff.
The wall-clock run time should be less than 3 min on
a state-of-the-art desktop PC. The spectra are stored in
tsurff-partial0.dat and tsurff-polar0.dat. In this
example, we focus on the total energy spectrum (36) and the
partial contributions

√
2ϵ
āI, t-SURFF,ℓm(√2ϵ)

2 to it so that only
tsurff-partial0.dat is needed. The columns in this file
contain (in the case of linear polarization) energy ϵ, momen-
tum k =

√
2ϵ, partial contributions k

āI, t-SURFF,ℓ=0,m0(k)
2, . . . ,

k
āI, t-SURFF,ℓ=Lmax−1,m0(k)

2, total spectrum dPI, t-SURFF(ϵ)/dϵ.
Hence, energy is in column 1 and the total spectrum in column
Lmax + 3.
The t-SURFF analysis may be executed in parallel, as explained
in readme.txt.

6. The gnuplot script plot-total-spectrum.gp generates
the graphics file total-spectrum.png containing the total
t-SURFF PES shown in Fig. 2. For comparison, the script also
includes the WOM result (to be calculated next), if present.

7. The gnuplot script plot-partial-spectra.gp generates
partial-spectrum.pngwith thepartial t-SURFF PES for ℓ =

3 and 4, shown in Fig. 3. Again, the script includes the analogous
WOM results, if present.

Now we generate the corresponding results using WOM.

1. Switch to the directory
qprop-with-tsurff/src/ati-winop.
The parameter file initial.param is identical to the one
for t-SURFF. However, in propagate.param the radial grid
size for real-time propagation is now explicitly specified
(R-max double 4000.0, total radial grid size R-max +

imag-width)whereas in t-SURFF it is calculated automatically
as imag-width +RI + Ê/ω2 (which is only 253 for this
example). There is another parameter file, winop.param,
discussed below.

2. Type make (or first make clean and then make).
3. Run the imaginary-time propagation by entering

./hydrogen_im.
4. Run the real-time propagation by entering ./hydrogen_re.

The run time is much longer now (≃38 min on our desktop
computers) because of a factor 16 bigger grid, which more than
obliterates the advantage due to the smaller number of real
time steps long(NTp +1 )= 29568. The hydrogen_re*.dat
output files are structured as in ati-tsurff. For instance, in
hydrogen_re-obser.dat, column 4, it is seen that the norm
on the larger grid stays unity now whereas in ati-tsurff it
drops down because the part of the wavefunction representing
ionization is absorbed soon after it passed the t-SURFF
boundary.
Fig. 3. (Color online) Contributions from the ℓ = 3 and ℓ = 4 partial waves to the
energy-differential spectrum.

5. Run the WOM analysis by entering ./winop (takes less
than 3 min). The parameters in winop.param determine
that the PES are calculated for num-energy values between
energy-min and energy-max. Moreover, more radial grid
points may be used for the WOM analysis in order to
have a better representation of the continuum (parameter
winop-radial-grid-size is set to 50000 in the example).
If the radial grid for WOM is too small discrete, ‘‘spherical box’’
states are visible. The result in spectrum_0.dat has the same
structure as tsurff-partial0.dat above.

6. The WOM PES are included in the output generated by the
gnuplot scripts plot-total-spectrum.gp and plot-
partial-spectra.gp in directory ati-tsurff, i.e., Figs. 2
and 3.

Fig. 2 shows the energy-resolved spectra for electron emis-
sion calculated by the t-SURFF and window operator method re-
spectively. The normalized WOM result and the corresponding
|āI, t-SURFF(k)|2kwith k =

√
2E from t-SURFF are plotted. The agree-

ment is very good; the results only differ for low energies, as ex-
pected.

Both with WOM and t-SURFF the contributions of partial
waves of angular momentum index ℓ to the energy-differential
ionization probability can be computed. Fig. 3 shows a comparison
of
āI, t-SURFF,ℓ0(k)2k|k=√

2ϵ calculated by t-SURFF and
awinop,ℓ0(ϵ)

2
from WOM (see (36) and (8), respectively) for the partial
contributions ℓ = 3 and ℓ = 4.

4.2. Ionization of hydrogen in a strong linearly polarized laser field

In this example, the momentum-resolved PES shown in Fig. 4
for a hydrogen atom is calculated for laser parameters which
make the numerical simulations much more demanding than in
the previous example. This example is found in the directory
large-clubs.

The binding potential (38) with the cut off radius Rco =

100 is used. The ground state is obtained after typing make and
running ./hydrogem_im, as in the previous example. Entering
./hydrogen_re starts the real-time propagation, simulating the
interaction with a linearly polarized nc = 6-cycle laser pulse of
wavelength λ = 2000 nm, intensity I = 1014 W/cm2, and shape
(39). It takes about 5 h on our desktop computer. A rough, conser-
vative estimate for the maximal, relevant orbital angular momen-
tum quantum number is Lmax ≃ (Ip + 10Up)/ω ≃ 623 where
Ip = 0.5 is the ionization potential and Up = Â2/4 ≃ 1.37 is the
ponderomotive potential. The distance of the t-SURFF boundary RI

should be larger than the classical quiver amplitude Â/ω ≃ 103
of a free electron in that laser field. Additionally, wavefunctions of
high-lying bound states should be negligible beyond RI, which is
ensured if RI (here 300) is sufficiently larger than Rco (here 100).
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Fig. 4. (Color online) Momentum-resolved electron spectrum. Laser parameters: λ = 2000 nm, I = 1014 W/cm2 , nc = 6. A bigger number of angles Nθk = 400 and an
extended additional propagation time Tt-SURFF = 2000 than in the example were used to produce the data for this high-resolution PES.
The smallest momentum of interest p-min-tsurff, determining
the post-laser propagation time as explained in the first example, is
chosen 0.5. If one is interested in lower-energy regions (to see the
low energy structures, for instance [3]) one should use a smaller
value for p-min-surff. It may be more efficient to use WOM in-
stead of tuning p-min-tsurff down to tiny values.

Next, the momentum-resolved PES calculated by the absolute
square of (21) is calculated by executing ./eval-tsurff (or the
parallel version, see readme.txt). In the interest of a shorter
execution time (still 12.4 h though), a smaller number of angles,
a larger p-min-tsurff and a larger grid spacing are used than
for the PES shown in Fig. 4.

The gnuplot script plot-polar-spectrum.gp plots the
momentum-resolved PES in the pzpx-plane from the momentum-
angle (i.e., k, θk) data. The high-resolution PES in Fig. 4 beautifully
shows many of the textbook features of a strong-field PES in the
tunneling regime (the Keldysh parameter is γ =


Ip/2Up ≃

0.43 < 1): the typical club structure caused by electron rescatter-
ing, ‘‘holographic side lobes’’ [2], and intra-cycle interference [25].
Arrows indicate the pmax =


2 × 10Up ≃ 5.2 cutoff for rescat-

tered electrons along the polarization axis. However, because of
the short pulse duration different rescattering clubs belonging to
different half laser cycles are visible.

Assume we wanted to obtain the same spectrum with WOM.
A conservative estimate for the radial grid size is Rwinop =

pmaxTp/2 ≃ 4328. With t-SURFF we have only Rt-SURFF ≃ 550. The
advantage of t-SURFF is even more pronounced for simulations of
more laser cycles because the computational cost for propagation
scales ∼T 2

p for WOM but only ∼Tp for t-SURFF.

4.3. Hydrogen in a circularly polarized laser field

We consider ionization by a circularly polarized laser pulse

A(t) = exAx(t)+ eyAy(t),

Ax(t) = Â sin2

ωt
2nc


sinωt,

Ay(t) = Â sin2

ωt
2nc


cosωt.

(40)

In a circularly polarized few-cycle laser pulse the ionization time
is mapped to the electron’s angle of escape, constituting a so-
called ‘‘attoclock’’ [26],which is also the nameof the corresponding
directory.

We choose nc = 2, ω = 0.114 (i.e., λ = 400 nm), Ê =

ωÂ = 0.0533799 (i.e., I = 1014 W/cm2) in propagate.param.
The binding potential (38) with the cutoff Rco = 25 is used (see
initial.param).

As in the previous examples, after the generation of the ground
state via running ./hydrogen_im the real-time propagation is
started by entering ./hydrogen_re. On our desktop computer
this takes 75 min. In the file hydrogen_re-obser.dat the
columns contain time, field-free energy expectation value ⟨H0⟩,
projection on initial state, norm on the grid, and the position
expectation values ⟨x⟩ and ⟨y⟩.

PES are calculated with ./eval-tsurff (or mpirun-np n
eval-tsurff-mpi for n processes using MPI, see readme.txt).
The number of θk angles Nθk and the number of ϕk angles
Nϕk are defined in tsurff.param. Here, in the attoclock ex-
ample we set Nθk = 3 and Nϕk = 50. The run time for
./eval-tsurff is 4.4 h (and correspondingly faster when pro-
cessed in parallel). For circular or elliptical polarization in the
xy-plane the momentum-resolved PES in the pxpy-plane is most
interesting (unless the wavefunction has a nodal plane there).
To that end, the bash shell script select-theta.sh selects
the data for θk = π/2 from the tsurff-polarip.dat file(s)
and stores it in tsurff-polar.dat. Finally, the gnuplot script
plot-polar-spectrum.gp plots the PES and generates the
graphics file polar-spectrum.png.

Fig. 5 shows the PES (albeit for higherNϕk ) whosemain features
can be explained in simple terms: As the right panel shows, the
electric field E(t) peaks in the middle of the pulse, pointing in
negative x direction. This implies that the tunneling exit for the
electron is at positive x at that most likely emission time. The
final drift of the photoelectron according to ‘‘simple man’s theory’’
(see, e.g., [27,28]) is given by the negative vector potential at the
time of emission, pointing in negative y direction. Hence, if the
Coulomb interaction between emitted electron and parent ion
was negligible, one would expect a maximum probability in the
momentum-resolved PES around px = 0 and py = −


2Up, where

Up = Â2/2 for the vector potential (40). However, the Coulomb
attraction affects the trajectory of the escaping electron such that
it ‘‘swings by’’ and accumulates a drift px < 0, explaining why
themaximum rotates clockwise away from this expected position,
as seen in the left panel of Fig. 5 [29]. An additional rotation
might be due to a finite tunneling time [30]. An interference
pattern is observed in the first quadrant of the momentum plane,
which is due to the two trajectories leading to the same final drift
momentum, i.e., the crossing of the −A(t) curve in Fig. 5, right,
Coulomb-rotated clockwise away from the positive py axis. TDSE
simulations for a similar setup were reported in, e.g., [31–33].
Qprop in propagation mode 44was used in [34,29,32].

4.4. Changing the pulse shape

An example for a pulse shape different from the sin2-case
(39) is given in the directory pow-8-sine. We consider linear
polarization, A(t) = ezAz(t), with

Az(t) = Â sin8

ωt
2nc


sin(ωt + ϕCEP). (41)
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Fig. 5. (Color online) Left: Momentum-resolved ‘‘attoclock’’ PES k
aI, t-SURFF(k)2 for a two-cycle, circularly polarized laser pulse. Laser parameters: λ = 400 nm,

I = 1014 W/cm2 . Right: Electric field and (negative) vector potential.
The power-of-eight envelope is sometimes preferable to the
sine-square because the spectral decomposition of the laser
pulse is closer to realistic, experimental circumstances. The other
parameters are kept the same as in the ati-tsurff example of
Section 4.1.

The only modifications necessary to implement a ‘‘new’’ vector
potential are in class vecpot, defined in potentials.hh
(in the respective example directory). However, apart from the
vector potential pulse shape itself, the corresponding time integral,
i.e., the excursion α(t), has to be specified there as well. The latter
is needed for the t-SURFF post-processing.

After the usual sequence of running make, ./hydrogen_im,
./hydrogen_re, ./eval-tsurff (a matter of a few min-
utes), gnuplot plot-total-spectrum.gp and gnuplot
plot-partial-spectra.gp generate the spectra analogous to
Fig. 2 (total-spectrum.png) and3 (partial-spectra.png).
The ATI peaks have less substructure than for the sin2-envelope.
The gnuplot script plot-polar-spectrum.gp produces the
momentum-resolved PES in tsurff-mom-res.png. A typical
multiphoton, ATI-like pattern is observed.

5. Summary

We incorporated the time-dependent surface flux method
(t-SURFF) for the calculation of momentum-resolved photoelec-
tron spectra (PES) into theQprop package. In that waywe facilitate
the simulation of momentum-resolved PES up to the fastest rele-
vant electron energies (typically ten times the ponderomotive en-
ergy) for laser parameters that were inaccessible with the previous
version of Qprop based on the window-operator method. In fact,
while t-SURFF gets along with grid sizes of the order of the quiver
amplitude, thewindow operatormethod requires the full, very de-
localized wavefunction at the end of the pulse. Especially for long-
wavelengths, high intensities, and many laser cycles t-SURFF is
numerically much more efficient than the window operator ap-
proach as far as the energetic electrons are concerned. Comple-
mentary, the slow electrons (and the bound part of the spectrum)
can still be calculated using the window operator since the neces-
sary information is contained in the (non-absorbed) wavefunction
on the small grid within the t-SURFF boundary.

Several examples were provided, whose execution should
enable users to adapt Qprop to their own problems.
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Appendix A

The TDSE for an electron in a binding potential V (r) and coupled
to an external vector potential in dipole approximation reads

i∂tΨ (r, t) =


1
2
[p + A(t)]2 + V (r)


Ψ (r, t). (42)

The transformation

Ψ (r, t) = Ψ ′(r, t) e−i
 t dt ′A2(t ′)/2 (43)

yields the TDSE

i∂tΨ ′(r, t) =


p2

2
+ A(t) · p + V (r)


Ψ ′(r, t) (44)

without the A2(t) term. The corresponding Hamiltonian Ĥ =

p2/2 + A(t) · p + V (r), with p = −i∇ , is used in (1).
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