
Computer Physics Communications 207 (2016) 432–444
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

New developments in FeynCalc 9.0✩

Vladyslav Shtabovenko a,∗, Rolf Mertig b,∗, Frederik Orellana c

a Technische Universität München, Physik-Department T30f, James-Franck-Str. 1, 85747 Garching, Germany
b GluonVision GmbH, Bötzowstr. 10, 10407 Berlin, Germany
c Technical University of Denmark, Anker Engelundsvej 1, Building 101A, 2800 Kgs. Lyngby, Denmark

a r t i c l e i n f o

Article history:
Received 14 February 2016
Received in revised form
4 June 2016
Accepted 14 June 2016
Available online 1 July 2016

Keywords:
High energy physics
Feynman diagrams
Loop integrals
Dimensional regularization
Dirac algebra
Color algebra
Tensor reduction

a b s t r a c t

In this note we report on the new version of FeynCalc, a Mathematica package for symbolic semi-
automatic evaluation of Feynman diagrams and algebraic expressions in quantum field theory. The main
features of version 9.0 are: improved tensor reduction and partial fractioning of loop integrals, new
functions for using FeynCalc together with tools for reduction of scalar loop integrals using integration-
by-parts (IBP) identities, better interface to FeynArts and support for SU(N) generators with explicit
fundamental indices.

Program summary

Program title: FeynCalc
Catalogue identifier: AFBB_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFBB_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU Public Licence 3
No. of lines in distributed program, including test data, etc.: 734115
No. of bytes in distributed program, including test data, etc.: 6890074
Distribution format: tar.gz
Programming language:Wolfram Mathematica 8 and higher.
Computer: Any computer that can run Mathematica 8 and higher.
Operating system:Windows, Linux, OS X.
Classification: 4.4, 5, 11.1.
External routines: FeynArts [2] (Included)
Nature of problem: Symbolic semi-automatic evaluation of Feynman diagrams and algebraic expressions
in quantum field theory.
Solution method: Algebraic identities that are needed for evaluation of Feynman
Reasons for new version: Compatibility with Mathematica 10, improved performance and new features
regarding manipulation of loop integrals.
Restrictions: Slow performance for multi-particle processes (beyond 1 → 2 and 2 → 2) and processes
that involve large (>100) number of Feynman diagrams.
Additional comments: The original FeynCalc paper was published in Comput. Phys. Commun., 64 (1991)
345, but the code was not included in the Library at that time.
Reasons for the new version: Compatibility withMathematica 10, improved performance and new features
regarding manipulation of loop integrals.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding authors.

E-mail addresses: v.shtabovenko@tum.de (V. Shtabovenko), rolfm@gluonvision.com (R. Mertig).
http://dx.doi.org/10.1016/j.cpc.2016.06.008
0010-4655/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2016.06.008
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.06.008&domain=pdf
http://cpc.cs.qub.ac.uk/summaries/AFBB_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:v.shtabovenko@tum.de
mailto:rolfm@gluonvision.com
http://dx.doi.org/10.1016/j.cpc.2016.06.008

V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444 433

Summary of revisions: Tensor reduction of 1-loop integrals is extended to arbitrary rank and multiplicity
with proper handling of integrals with zero Gram determinants. Tensor reduction of multi-loop integrals
is now also available (except for caseswith zero Gramdeterminants). Partial fractioning algorithmof [1] is
added to decompose loop integrals into termswith linearly independent propagators. Feynman diagrams
generated by FeynArts can be directly converted into FeynCalc input for subsequent evaluation.
Running time: Depends on the complexity of the calculation. Seconds for few simple tree level and 1-loop
Feynman diagrams; Minutes or more for complicated diagrams.
References:

[1] F. Feng, $Apart: A Generalized Mathematica Apart Function, Comput. Phys. Commun., 183,
2158–2164, (2012), arXiv:1204.2314.

[2] T. Hahn, Generating Feynman Diagrams and Amplitudes with FeynArts 3, Comput. Phys. Commun.,
140, 418–431, (2001), arXiv:hep-ph/0012260.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In the last decades, the importance of computer tools for higher
order perturbative calculations in quantum field theory (QFT) has
increased tremendously. Indeed, some recent achievements [1–3]
in this field would hardly have been possible to complete within
a reasonable time frame, if such projects were to be carried out
only by pen and paper. The question most QFT practitioners pose
themselves today is not whether to use software tools or not,
but rather which combination of tools will be the most efficient
for the endeavored project. It is clear that, in principle, there can
be no universal package to cover any demand of any particle
theorist. Instead, specific programs that provide different level of
automation should be used for specific tasks. One of such specific
tools is FeynCalc [4], that recently was released in the version 9.0.

FeynCalc is a Mathematica package for algebraic calculations
in QFT and semi-automatic evaluation of Feynman diagrams. The
very first public version of FeynCalc, developed by Rolf Mertig
with guidance from Ansgar Denner and Manfred Böhm, appeared
in 1991. Themain developments and improvements between 1991
and 1996 were triggered by the work of Mertig in electroweak
theory [5–8] and perturbative QCD [9]. In 1998 Rolf Mertig and
Rainer Scharf released TARCER [10], a Mathematica package
that implements reduction of 2-loop propagator type integrals
with arbitrary masses using O.V. Tarasov’s recurrence algorithm
[11,12]. Since then TARCER is a part of FeynCalc that can be loaded
on-demand. Between 1997 and 2000, important contributions to
the project came from Frederik Orellana, who, besides working
on the general code, contributed the sub-package PHI for using
FeynCalc in Chiral Perturbation Theory (χPT) [13] and interfacing
to FeynArts 3 [14]. From 2001 until 2014, with both developers
out of theoretical physics, the development of FeynCalc was
mostly constrained to bug fixing and providing support through
the mailing list,1 although some interesting projects with external
collaborators still were conducted [15]. In 2014, the developer
team was joined by Vladyslav Shtabovenko, who started to work
on rewriting some parts of the existing code and implementing
new features. In the same year the source code repository of
FeynCalc was moved to GitHub,2 where the master branch of the
repository represents the current development snapshot of the
package. Not only the stable releases, but also the development
version of FeynCalc can be anonymously downloaded by everyone

1 http://www.feyncalc.org/forum.
2 https://github.com/FeynCalc.
at any time free of charge. The code is licensed under the General
Public License (GPL) version 3. To minimize the number of new
bugs and regressions, an extensive unit testing framework3 with
over 3000 tests was introduced.

This note is organized in the following way. Section 2 compares
FeynCalc to other packages for automatic evaluation of 1-loop
Feynman diagrams and discusses setups, inwhich FeynCalc can be
particularly useful. Section 3 provides an overview of interesting
new features and improvements in FeynCalc 9.0. Section 4 gives
an example of using FeynCalc to determine matching coefficients
in NRQCD [16], a non-relativistic effective field theory (EFT) for
heavy quarkonia. Finally, we summarize and draw our conclusions
in Section 5.

2. Comparison to similar tools

In view of the existence of several well-known symbolic
packages (FormCalc [17], GoSam [18], FDC [19], GRACE [20],
Diana [21]) that offer almost fully automatic evaluation of
Feynman diagrams at 1-loop from Lagrangian to cross-section, it
appears necessary to explain how FeynCalc differs from such tools
and why it is useful.

FeynCalc by itself does not provide a fully automatic way of
computing cross sections or decay rates. Indeed, FeynCalc cannot
generate Feynman diagrams and has no built-in capabilities for the
numerical evaluation of master integrals and for the phase space
integration. Therefore, these two important steps should be done
using other tools.

Second, FeynCalc normally performs all the algebraic manip-
ulations using Mathematica. This leads to a slower performance
when compared to tools that rely e.g. on FORM [22] for the sym-
bolics. Despite some possibilities [15] to link FeynCalcwith FORM,
one should keep in mind that FeynCalc is not very well suited for
evaluating hundreds, thousands or millions of Feynman diagrams.

Finally, FeynCalc does not impose any particular ordering
in which different parts (Dirac matrices, SU(N) matrices, loop
integrals, etc.) of the amplitudes are supposed to be computed. It
is always up to the user to decide what is the most useful way to
carry out the calculation. This particular feature makes FeynCalc
very different from tools that attempt to automatize all the steps
of the evaluation process. Such tools usually stick to a particular
workflow which roughly consists of the following steps:

1. The user specifies the process that needs to be computed.

3 https://github.com/FeynCalc/feyncalc/tree/master/Tests.

http://arxiv.org/1204.2314
http://arxiv.org/hep-ph/0012260
http://www.feyncalc.org/forum
https://github.com/FeynCalc
https://github.com/FeynCalc/feyncalc/tree/master/Tests

434 V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444
2. If the given process is available in the standard configuration,
load the corresponding model (e.g. Standard model (SM)).
Otherwise the user must create a new model that contains this
process.

3. Using the loaded model, generate relevant Feynman diagrams
for the given process.

4. Evaluate the amplitudes by performing all the necessary
algebraic simplifications.

5. Square the amplitude and sum/average over the spins of the
involved particles.

6. Integrate over phase space.

In this list, already the second step might turn out to be
problematic. The list of built-in models usually includes SM and
some popular (e.g. SUSY inspired) extensions, while more exotic
theories require custom model files to be added by the user. If
the Lagrangian of such a theory looks very different from LSM
(e.g. in EFTs that are not strictly renormalizable (with an arbitrary
number of legs in vertices) like χPT or even not manifestly Lorentz
covariant like non-relativistic QCD (NRQCD) [16] or potential non-
relativistic QCD (pNRQCD) [23]), then its implementation becomes
a formidable task. On the other hand, even if the model can be
implemented with a limited amount of effort, it still might cost
more time than justwriting down the amplitudes by hand and then
manually entering them into the program. Although it is possible
to make fully automatic tools accept such amplitudes as input,
this is usually much less straightforward than the standard way of
just specifying the process, launching the diagram generator and
letting the automatics do the rest.

FeynCalc avoids such difficulties by accepting any kind of
input that consists of valid FeynCalc objects. Hence, one can enter
e.g. standalone Dirac traces, Lorentz vectors or loop integrals and
then manipulate them with suitable FeynCalc functions. In this
sense FeynCalc can be used much like a ‘‘calculator’’ for QFT
expressions.

For manual input of Feynman diagrams FeynCalc contains
some functions (FeynRule, FunctionalD, CovariantD,
QuantumField, etc.) for deriving Feynman rules from La-
grangians that are manifestly Lorentz covariant. Furthermore, it
is also possible to evaluate Feynman diagrams that were gener-
ated automatically (e.g. by FeynArts), so that the user always can
choose the most efficient strategy to get the calculation done.

Steps 4 and 5 usually imply that the user is not supposed
to interfere too much with the evaluation process. Instead, one
should rely on the available options to influence the outcome of
the calculation. For example, when an automatic tool handles the
Dirac algebra, it would normally try to simplify everything it can.
While in general, this approach is perfectly fine, sometimes one
would like to simplify only some of the Dirac structures, leaving
the others (e.g. all the traces involving an odd number of γ 5)
untouched. In principle, provided that the particular tool is open
source, one can always modify its code accordingly to obtain the
desired output. Depending on the complexity of the code and the
amount of documentation, this might, however, take some time
and even introduce new bugs.

With FeynCalc, the same result can be achieved in a more
simple way, as one always has full access to all kinds of
intermediate expressions. For this purpose FeynCalc also provides
various helper functions (e.g. Collect2, Expand2, Factor2,
Isolate, ExpandScalarProduct, DiracGammaExpand,
MomentumCombine, FCLoopSplit, FCLoopIsolate,
FCLoopExtract) that can be used to expand, sort, abbreviate and
collect the given expressions with respect to particular structures.

Thus we see that FeynCalc should not be regarded as a direct
competitor to highly automatized packages like e.g. FormCalc,
because it neither provides routines for numerical evaluation nor
offers a fully automatic workflow to evaluate a scattering process.
For studies that can be carried out using an automatic tool from
the beginning to the end, it obviously would not be very efficient
to stick to FeynCalc. While one certainly can chain FeynCalc with
appropriate tools and libraries to obtain the same result, thiswould
requiremore time and effort —which could be invested elsewhere.

There are indeed also other publicly available software
packages (HEPMath [24] and Package-X [25]) that follow the
semi-automatic approach to QFT calculations and exhibit many
similarities to FeynCalc. Therefore, let us provide a short
comparison between those two packages and FeynCalc.

Just as FeynCalc, HEPMath is an open-source project licensed
under GPL version 3. This way the users are able to study the
source code and possibly modify HEPMath to suit their spe-
cific needs. Package-X is on the contrary distributed as a closed
source freeware. It can be downloaded directly from the project
homepage, but the source code is encrypted which prevents any
possible modifications or extensions by the user. Like FeynCalc
both HEPMath and Package-X can manipulate standalone expres-
sions that do not need to represent a valid Feynman diagram.
This is done by providing special functions for index contractions,
treatment of Dirac algebra and manipulations of loop integrals.
In D-dimensions all three packages can work with anticommut-
ing γ 5, but only HEPMath and FeynCalc can also treat γ 5 us-
ing the Breitenlohner–Maison–t’Hooft–Veltman scheme [26,27].
Tensor reduction of 1-loop integrals via Passarino–Veltman tech-
nique [28] and subsequent simplification of Passarino–Veltman co-
efficient functions are implemented in each package. FeynCalc 9
and Package-X can work with arbitrarily high-rank tensor inte-
grals, but HEPMath is currently limited to rank 4. As far as the
color algebra in concerned, while FeynCalc can deal with gen-
eral SU(N) generators, HEPMath only supports SU(3) and Package-
X does not offer any routines for working with color structures.
Both FeynCalc and HEPMath provide an interface to FeynArts for
generating Feynman diagrams. HEPMath, however, also contains
built-in interfaces to LoopTools [17] and LHAPDF [29] that are
missing in the two other packages. On the other hand, Package-
X comes with a library of explicit analytic results for 1-, 2- and
3-point Passarino–Veltman functions with almost arbitrary kine-
matics. This is a very useful feature that is, to our knowledge, not
present in any other automatic or semi-automatic packages.

The above comparison shows that all three packages have
somewhat different capabilities, but follow essentially the same
philosophy to provide the user with convenient and flexible tools
for doing calculations in QFT. Since HEPMath and Package-Xwere
released quite recently, they are still not sowidely used in research
as FeynCalc. However, as future versions of these packages will
likely introduce new useful features and improvements, they will
also become more visible in the high energy physics community
and thus further promote the idea of using semi-automatic tools
in suitable computations.

The niche that FeynCalc often fills is calculations that are
too specific to be done in a fully automatic fashion but also too
challenging to be done (only) by pen and paper, so that semi-
automatic evaluation is very welcome.

One example for such problems is the determination of
matching coefficients in EFTs. Matching coefficients are extracted
by comparing suitable quantities (e.g. Green’s functions) between
the higher energy theory and its EFT at energies, where both
theories should agree by construction. Then the quantity in the
higher energy theory usually needs to be expanded in small scales
and massaged into a form that resembles the same quantity in the
lower energy theory, so that one can read off the values of the
matching coefficients.

Such calculations are usually too special to be automatized in
a full generality, but they can benefit a lot from functions pro-
vided by FeynCalc. This is one of the reasons, why FeynCalc enjoys

V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444 435
certain popularity in the heavy quarkonium physics community,
where it is used to perform thematching betweenQCD andNRQCD
for production [30–32] or decay [33,34] of heavy quarkonia. Other
studies where FeynCalc was used involve such fields as Higgs
[35–37] and top quark physics [38], leptonic decays [39] phenom-
ena in hadronic interactions [40,41], dark matter [42,43], neutrino
physics [44–46] and gravity [47]. It is worth noticing that Feyn-
Calc was also used at some stages of NNLO [48,49] calculations.
Indeed, FeynCalc can be well employed for small or medium size
multi-loop processes if one connects it to suitable tools for IBP-
reduction (e.g. FIRE [50]) and numeric evaluation of multi-loop in-
tegrals (e.g. FIESTA [51] or SecDec [52]).

Last but not least, FeynCalc can be also useful for educational
purposes. The possibility of easily getting hands-on experience
with computing Feynman diagrams and exploring the different
steps involved can be very helpful and motivating for students of
quantum field theory.

3. New features in FeynCalc 9.0

3.1. Improved tensor decomposition

In the very early versions of FeynCalc, tensor decomposition of
1-loop integrals (via Passarino–Veltman technique [28]) could be
done only using the function OneLoop, where themaximal rank of
the integrals was limited to 4 and the output was always written
in terms of Passarino–Veltman coefficient functions. Although one
could reduce Passarino–Veltman coefficient functions with rank
higher than 4 using PaVeReduce, the tensor basis for such higher
rank integrals had to be constructed by hand.

While working on [9], Rolf Mertig added to FeynCalc 3.0 a
tool (Tdec) for tensor decomposition of multi-loop integrals of
arbitrary rank and multiplicity (for non-zero Gram determinants)
and even included a database (TIDL) to load already computed
decompositions, but only a very small amount of this functionality
was turned into a user-friendly routine TID (1-loop only), while
the rest remained to ‘‘lie idle’’ in the source code. TIDwas limited
to 4-point functions of rank 4 and could not handle kinematic
configurationswith zero Gramdeterminants, so that for such cases
one was forced to use OneLoop. However, in FeynCalc 4 the
reduction of rank 4 tensor integrals via OneLoopwas disabled due
to its poor efficiency. As a consequence of all these developments
the tensor reduction of 1-loop integrals (especially with rank
higher than 3) in the recent FeynCalc versions often turned to be
cumbersome and inconvenient.

In FeynCalc 9.0 TIDwas rewritten almost from scratch to allow
for 1-loop tensor decompositions of any rank and multiplicity. At
the beginning, the function computes Gram determinants for all
the unique 1-loop integrals in the expression. If the determinant
vanishes, the decomposition for that integral is done in terms of
the Passarino–Veltman coefficient functions.

In[1]:= FCClearScalarProducts[];
ScalarProduct[p1, p1] = 0;
int = FCI[SPD[p2, q] FAD[{q, m0}, {q + p1, m1}]]

Out[1]:= p2·q
(q2−m02).((p1+q)2−m12)

In[2]:= TID[int, q]

Out[2]:= iπ2(p1 · p2)B1

0,m02,m12


Otherwise, TID will output the result in terms of scalar 1-loop
integrals.

In[1]:= FCClearScalarProducts[];
int = FCI[SPD[p2, q] FAD[{q, m0}, {q + p1, m1}]]
Out[1]:=− (m02−m12+p12)(p1·p2)
2p12(q2−m02).((q−p1)2−m12)

+
p1·p2

2p12(q2−m02)
−

p1·p2
2p12(q2−m12)

If needed, those scalar integrals can be converted to Pas-
sarino–Veltman scalar functions by using ToPaVe, which is also
available since FeynCalc 9.0.

In[2]:= TID[int, q] // ToPaVe[#, q] &

Out[2]:=−
iπ2(m02−m12+p12)(p1·p2)B0(p12,m02,m12)

2p12
+

iπ2A0(m02)(p1·p2)
2p12

−
iπ2A0(m12)(p1·p2)

2p12

The decompositions in terms of scalar integrals tend to become
very large already for 3-point functions, so to obtain more
compact expressions it might be desirable to use the basis of
Passarino–Veltman coefficient functions, even if there are no zero
Gram determinants. This can be easily achieved via the option
UsePaVeBasis.

In[1]:= int = FCI[FVD[q, mu] FVD[q, nu] FAD[{q, m0}, {q + p1, m1}, {q + p2, m2}]]

Out[1]:= qmuqnu

(q2−m02).((p1+q)2−m12).((p2+q)2−m22)

In[2]:= TID[int /(I∗Pi^2), q, UsePaVeBasis−> True]

Out[2]:= gmunuC00

p12,−2(p1 · p2)+ p12 + p22, p22,m02,m12,m22


+p1mup1nuC11


p12,−2(p1 · p2)+ p12 + p22, p22,m02,m12,m22


+ (p2mup1nu + p1mup2nu)C12


p12,−2(p1 · p2)+ p12

+ p22, p22,m02,m12,m22


+p2mup2nuC22

p12,−2(p1 · p2)+ p12 + p22, p22,m02,m12,m22


All the Passarino–Veltman functions are defined as in Loop-

Tools [17] and explicit definitions are encoded for functions with
up to 5 legs. For integrals with even higher multiplicities the coef-
ficient functions (denoted as GenPaVe) simply include the depen-
dence on the external momenta that can be used to convert them
to the LoopTools or any other convention.

In[1]:= int = FCI[FVD[q, mu] FVD[q,nu] FAD[{q, m0}, {q, m1}, {q, m2}, {q, m3}, {q +
p4, m4}, {q + p5, m5}, {q + p6, m6}]]

Out[1]:= (qmuqnu) /

q2 −m02


.

q2 −m12


.

(p2+ q)2 −m22


.

(p3+ q)2 −m32

.

(p4+ q)2 −m42

.

(p5+ q)2 −m52


.

(p6+ q)2 −m62


In[2]:= TID[int /(I∗Pi^2), q, UsePaVeBasis−> True]

Out[2]:= gmunuGenPaVe

{0, 0},


0 m0
p1 m1
p2 m2
p3 m3
p4 m4
p5 m5
p6 m6





+p1mup1nuGenPaVe

{1, 1},


0 m0
p1 m1
p2 m2
p3 m3
p4 m4
p5 m5
p6 m6



+ . . .

Here, GenPaVe[{1,1},{{0,m0},{Momentum[p1],m1},
. . . , {Momentum[p6],m6}}] stands for the coefficient func-
tion of pµ1 p

ν
1 in the tensor decomposition of

dDq

×
qµqν

[q2 −m2
0][(q− p1)2 −m2

1][(q− p2)2 −m2
2] · · · [(q− p6)2 −m2

6]
. (1)

436 V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444
Since this kind of output is useful if one explicitly wants
to obtain coefficient functions defined in a different way than
in LoopTools, it can be activated also for functions with lower
multiplicities by setting the option GenPaVe of TID to True.
In[1]:= int = FCI[FVD[q, mu] FVD[q, nu] FAD[{q, m0}, {q + p1, m1}]]

Out[1]:= qmuqnu

(q2−m02).((p1+q)2−m12)

In[2]:= TID[int /(I∗Pi^2), q, UsePaVeBasis−> True, GenPaVe−> True]

Out[2]:= gmunuGenPaVe


{0, 0},


0 m0
p1 m1


+p1mup1nuGenPaVe


{1, 1},


0 m0
p1 m1


One should also keep inmind that FeynCalc cannot performany

further simplifications of GenPaVe functions, because internally
they are not recognized as Passarino–Veltman integrals (PaVe).

It is well known that for a general multi-loop multi-scale
integral, tensor decomposition does not allow to cancel all the
scalar products containing loopmomenta in the numerator, as it is
the case at 1-loop. Nevertheless, this technique is widely used also
in calculations beyond 1-loop, especially if one needs to deal with
integrals that have loop momenta contracted to Dirac matrices or
epsilon tensors or even loop momenta with free Lorentz indices.
FeynCalc uses a special reduction algorithm (implemented in
Tdec) that consists of decomposing the integral into all tensor
structures allowed by the symmetries and using amodified version
of Gaussian elimination to obtain the coefficients of each tensor.

Since tensor decomposition of multi-loop integrals with
FeynCalc’s function Tdec is not very straightforward and usually
requires some additional Mathematica code, in FeynCalc 9.0 a
new function FCMultiLoopTID was added, that makes multi-
loop tensor reduction work out of the box.
In[1]:= int = FCI[FVD[q1, mu] FVD[q2, nu] FAD[q1, q2, {q1− p1},

{q2− p1}, {q1− q2}]]

Out[1]:= q1muq2nu

q12 .q22 .(q1−p1)2 .(q2−p2)2 .(q1−q2)2

In[2]:= FCMultiLoopTID[int, {q1, q2}]

Out[2]:= Dp1mup1nu−p12gmunu

4(D−1)q22 .q12 .(q2−p1)2 .(q1−q2)2 .(q1−p1)2
−

Dp1mup1nu−p12gmunu

2(D−1)p14q12 .(q2−p1)2 .(q1−q2)2

+
p12gmunu

−p1mup1nu

(D−1)p12q22 .q12 .(q1−q2)2 .(q1−p1)2
−

p12gmunu
−p1mup1nu

2(D−1)p12q22 .q12 .(q2−p1)2 .(q1−p1)2

Unfortunately, the reduction breaks down when the corre-
sponding Gram determinant vanishes. For such cases, in a future
version it is planned to include a more useful algorithm.

3.2. New partial fractioning algorithm

Since the version 3, FeynCalc includes ScalarProduct
Cancel and Apart2 that can be used to rewrite loop integrals in
a simpler form. ScalarProductCancel essentially applies the
well known identity [28]

q · p =
1
2
[(q+ p)2 +m2

2 − (q
2
+m2

1)− p2 −m2
2 +m2

1] (2)

repeatedly, until all scalar products containing loop momenta that
can be canceled in this way are eliminated. Apart2 uses the trivial
identity

1
(q2 −m2

1)(q2 −m2
2)
=

1
m2

1 −m2
2


1

q2 −m2
1
−

1
q2 −m2

2


(3)

to simplify suitable denominators. In principle, these two functions
implement some aspects of partial fractioning, i.e., the decomposi-
tion of a loop integral with linearly dependent propagators into a
sum of integrals where each integral contains only linearly inde-
pendent propagators. Notice that here we count scalar products
that involve loop momenta as propagators with negative expo-
nents. Unfortunately, there are plenty of examples where neither
ScalarProductCancel nor Apart2 can partial fraction an in-
tegral with linearly dependent propagators, e.g.

dDq
1

q2(q− p)2(q+ p)2

=
1
p2


dDq


1

q2(q− p)2
−

1
(q− p)2(q+ p)2


. (4)

A general partial fractioning algorithm that is suitable for
multi-loop integrals including its Mathematica implementation
(APart4) was presented in [53]. The author has also shown howhis
code can be used together with FeynCalc in order to decompose
different loop integrals. For this the user is required to convert a
loop integral in the FeynCalc notation (with denominator encoded
in FeynAmpDenominator) to a somewhat different form and to
specify all the scalar products that contain loop momenta and
appear in this loop integral. After the decomposition the resulting
integrals need to be converted back into FeynCalc notation.

In FeynCalc 9.0 the algorithm from [53] was adopted and
reimplemented to be the standard partial fractioning routine. As
such, it is fully integrated with all other FeynCalc functions and
objects and does not require any explicit conversion of the input
or output.

In[1]:= int = FAD[{q}, {q − p}, {q + p}]

Out[1]:= 1
q2 .(q−p)2 .(p+q)2

In[2]:= ApartFF[int1, {q}]

Out[2]:= 1
p2q2 .(q−p)2

−
1

p2q2 .(q−2p)2

The name of the corresponding function is ApartFF which
stands for ‘‘Apart Feng Feng’’ and serves as an additional
acknowledgment of the original author. One should also notice
that while the original APart can be used for partial fractioning
of general multivariate polynomials, the FeynCalc version is
limited only to polynomials that appear in Feynman diagrams as
propagators and scalar products. Thus, it is much less general than
APart but is also more convenient when used with FeynCalc.

3.3. Tools for interfacing FeynCalc with packages for IBP-reduction

In modern multi-loop calculations, reduction of scalar loop
integrals via integration-by-parts (IBP) identities [54] is a regular
step needed to arrive to a smaller set of master integrals.

Although FeynCalc does not include a general purpose tool
for IBP reduction (the built-in TARCER [10] is suitable only for
2-loop self-energy type integrals), this omission can be compen-
sated by using one of the publicly available IBP-packages (FIRE [50],
LiteRED [55], Reduze [56], AIR [57]). However, one should keep in
mind that such tools usually expect their input to contain only loop
integrals with linearly independent propagators that form a basis.
For example, the integral

dDq1 dDq2 dDq3
1

[q21 −m2]2[(q1 + q3)2 −m2](q2 − q3)2q22
(5)

cannot be processed by FIRE in this form because q21, q
2
2, (q1 + q3)2

and (q2 − q3)2 alone do not form a basis.

4 https://github.com/F-Feng/APart.

https://github.com/F-Feng/APart

V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444 437
In[1]:= << FIRE5‘FIRE5‘
Internal = {q1, q2, q3};
External = {};
Propagators = {q1^2−m^2, (q1 + q3)^2−m^2, (q2− q3)^2, q2^2};
PrepareIBP[];

Out[1]:= FIRE, version 5.1
DatabaseUsage: 0
UsingFermat: False
Not enough propagators. Add irreducible nominators

If one includes also q23 and q1 · q2 with zero exponentials, then
we have a proper basis and the reduction works as it should. Also
the integral

dDq1 dDq2
(p · q1)2(p · q2)2

[q21 −m2][q22 −m2](q1 − p)2(q2 − p)2(q1 − q2)2
(6)

cannot be reduced right away, this time because its propagators
are linearly dependent.

In[1]:= << FIRE5‘FIRE5‘
Internal = {q1, q2};
External = {};
Propagators = {q1^2−m^2, q2^2−m^2, (q1− p)^2, (q2− p)^2, (q1− q2

)^2, p q1, p q2};
PrepareIBP[];

Out[1]:= FIRE, version 5.1
DatabaseUsage: 0
UsingFermat: False
Linearly dependant propagators. Perform reduction first

To detect such problems before the reduction actually fails,
FeynCalc 9.0 introduces two new special functions. When
FCLoopBasisIncompleteQ is applied to a loop integral, it
returns True if this integral does not contain enough irreducible
propagators.

In[1]:= intP1 = FCI[FAD[{q1, m, 2}, {q1 + q3, m}, {q2− q3}, q2]]

Out[1]:= 1
(q12−m2).(q12−m2).((q1+q3)2−m2).(q2−q3)2 .q22

In[2]:= FCLoopBasisIncompleteQ[intP1, {q1, q2, q3}]
Out[2]:= True

In[3]:= FCLoopBasisIncompleteQ[SPD[q3, q3] SPD[q1, q2] intP1, {q1, q2, q3}]
Out[3]:= False

An integral with linearly dependent propagators will be
detected by FCLoopBasisOverdeterminedQ,

In[1]:= intP2 = FCI[SPD[p, q1]^2 SPD[p, q2]^2 FAD[{q1, m}, {q2, m}, q1− p, q2− p,
q1− q2]]

Out[1]:= (p·q1)2(p·q2)2

(q12−m2).(q22−m2).(q1−p)2 .(q2−p)2 .(q1−q2)2

In[2]:= FCLoopBasisOverdeterminedQ[intP2, {q1, q2, q3}]
Out[2]:= True

so that only an integral for which both functions return False can
be reduced in a straightforward way.

In a practical calculation where one knows what integral
topologies are involved, such issues can be easily resolved. In
particular, a clever choice of additional propagators that are
needed to have a basis, can greatly simplify the reduction. On the
other hand, depending on the size of the problem and the number
of topologies involved, a less clever but fully automatic solution
may also be useful.

For an integral with linearly dependent propagators we can use
ApartFF, that is guaranteed to decompose it into integrals where
all propagators are linearly independent.

In[1]:= ApartFF[intP2, {q1, q2}]
Out[1]:= (m2
+p2)

4

16(q12−m2).(q22−m2).(q2−p)2 .(q1−q2)2 .(q1−p)2

−
(m2
+p2)

3

8(q12−m2).(q22−m2).(q1−q2)2 .(q1−p)2

−
(m2
+p2)(p·q1)

8(q22−m2).(q1−q2)2 .(q1−p)2
+ . . .

For integrals with an incomplete basis of propagators one
can use the new function FCLoopBasisFindCompletion that
finds out which irreducible propagators (with zero exponents) are
missing.

In[1]:= FCLoopBasisFindCompletion[intP1, {q1, q2, q3}]

Out[1]:=


1
(q12−m2).(q12−m2).((q1+q3)2−m2).(q2−q3)2 .q22

,

− (q1 · q3)

+ q2 · q3+ 2q32, q1 · q2
 

With the suggested propagators the integral is guaranteed to
have a complete basis, but the choice of the propagators
themselves is usually not very clever. This is because in general
FeynCalc cannot guess the topology of the given integral without
any additional input. It is planned to provide a possibility
for specifying the topology, which would admittedly make
FCLoopBasisFindCompletion much more useful than it is
now.

Still, with ApartFF and FCLoopBasisFindCompletion it is
now possible to automatically bring any scalar multi-loop integral
in FeynCalc notation to a form that can be directly (modulo
notation conversion) forwarded to an IBP tool.

3.4. Advanced extraction of loop integrals

The idea to use FeynCalc as a sort of switch board for different
computational tools in a larger framework (see e.g. [58]) is further
developed in version 9.0 by the introduction of new functions that
can extract different loop integrals from the given expression.

One of them, FCLoopSplit, breaks the given expression into
four pieces, which are

1. Terms that contain no loop integrals.
2. Terms that only contain scalar loop integrals without any loop

momenta in the denominators, e.g.
dDq

1
q2 −m2

. (7)

3. Terms that contain scalar loop integrals with loop momenta
dependent scalar products in the denominators, e.g.

dDq
(q · p)

q2(q− p)2
. (8)

4. Terms that contain tensor loop integrals, e.g.
dDq

qµqν

q2 −m2
or


dDq

(γ · q)
q2(q− p)2

. (9)

In[1]:= int = FCI[(GSD[q− p] + m).GSD[x] FAD[q, {q− p, m}] + (m^2 + SPD[q, q])
FAD[{q, m,2}]];

Out[1]:= (m+γ ·(q−p)).(γ ·x)
q2 .((q−p)2−m2)

+
m2
+q2

(q2−m2).(q2−m2)

In[2]:= FCLoopSplit[int, {q}]

Out[2]:=

0, mγ ·x−(γ ·p).(γ ·x)

q2 .((q−p)2−m2)
+

m2

(q2−m2).(q2−m2)
,

q2

(q2−m2).(q2−m2)
,

(γ ·q).(γ ·x)
q2 .((q−p)2−m2)


This splitting makes it easier to handle different types of loop

integrals and to simplify them with FeynCalc or other tools. For
example, if one wants to perform tensor reduction of multi-loop
integrals with FaRe [59] instead of FCMultiLoopTID, it can be
done by applying FCLoopSplit to the given expression and
working with the fourth element of the resulting list, while the

438 V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444
other elements remain unchanged and can be later added to the
final expression.

To handle a larger number of loop diagrams in an efficient
way, FCLoopSplit alone is not sufficient. This is because same
integrals may appear multiple times in different diagrams and
ignoring this fact would make the evaluation more complex than
it actually is. To avoid this kind of problems one should better first
analyze the amplitude and extract all the unique integrals. Then
each unique integral needs to be evaluated only once, no matter
how often it appears in the full expression. In FeynCalc 9.0 this can
be conveniently done with FCLoopIsolate. The function wraps
loop integers with the given head, such that the list of unique
integrals can be quickly created with Mathematica’s Cases and
Union or just FeynCalc’s Cases2

In[1]:= int = FCI[GSD[q− p1].(GSD[q− p2] + M).GSD[p3] SPD[q, p2] FAD[q, q−
p1, {q− p2, m}]];

Out[1]:= (p2·q)(γ ·(q−p1)).(M+γ ·(q−p2)).(γ ·p3)
q2 .(q−p1)2 .((q−p2)2−m2)

In[2]:= res = FCLoopIsolate[int, {q}, Head−> loopInt]

Out[2]:= loopInt


p2·q
q2 .(q−p1)2 .((q−p2)2−m2)


((γ · p1).(γ · p2).(γ · p3)

−M(γ · p1).(γ · p3))+

M loopInt


(p2·q)(γ ·q).(γ ·p3)
q2 .(q−p1)2 .((q−p2)2−m2)


− loopInt


(p2·q)(γ ·p1).(γ ·q).(γ ·p3)

q2 .(q−p1)2 .((q−p2)2−m2)


−loopInt


(p2·q)(γ ·q).(γ ·p2).(γ ·p3)

q2 .(q−p1)2 .((q−p2)2−m2)


+ loopInt


(p2·q)(γ ·q).(γ ·q).(γ ·p3)

q2 .(q−p1)2 .((q−p2)2−m2)


In[3]:= Cases2[res, loopInt]

Out[3]:=

loopInt


p2·q

q2 .(q−p1)2 .((q−p2)2−m2)


, loopInt


(p2·q)(γ ·q).(γ ·p3)

q2 .(q−p1)2 .((q−p2)2−m2)


,

loopInt


(p2·q)(γ ·p1).(γ ·q).(γ ·p3)
q2 .(q−p1)2 .((q−p2)2−m2)


, loopInt


(p2·q)(γ ·q).(γ ·p2).(γ ·p3)

q2 .(q−p1)2 .((q−p2)2−m2)


,

loopInt


(p2·q)(γ ·q).(γ ·q).(γ ·p3)
q2 .(q−p1)2 .((q−p2)2−m2)


The combined application of FCLoopIsolate and

FCLoopSplit is provided by FCLoopExtract. This function re-
turns a list of three entries. The first one contains the part of the ex-
pression which is free of loop integrals. The second entry consists
of the remaining expression where every loop integral is wrapped
with the given head. Finally, the last entry contains a list of all the
unique loop integrals in the expression.

In[4]:= FCLoopExtract[int, {q}, loopInt][[1]]

Out[4]:= 0

In[5]:= FCLoopExtract[int, {q}, loopInt][[2]] ===
FCLoopIsolate[int, {q}, Head−> loopInt]

Out[5]:= True

In[6]:= FCLoopExtract[int, {q}, loopInt][[3]] ===
Cases2[res, loopInt]

Out[6]:= True

Suppose that we want to evaluate these loop integrals using
some custom function loopEval (in this example it is just a
dummy function that computes the hash of each loop integral).
All we need to do is to apply FCLoopExtract to the initial
expression, map the list of the unique integrals to loopEval,
create a substitution rule and apply this rule to our expression in
order to get the final result.

In[7]:= {rest, loops, intsUnique} = FCLoopExtract[int, {q}, loopInt];
In[8]:= loopEval[x_] := ToString[Hash[x]];

In[9]:= solsList = loopEval /@ uniqueInts

Out[9]:= {2069116068,115167616,776830638,1878762839,1337833147}

In[10]:= repRule = MapThread[Rule[#1, #2] &, {intsUnique, solsList}]

Out[10]:=

loopInt


p2·q

q2 .(q−p1)2 .((q−p2)2−m2)


→ 2069116068,

loopInt


(p2·q)(γ ·q).(γ ·p3)
q2 .(q−p1)2 .((q−p2)2−m2)


→ 115167616,

loopInt


(p2·q)(γ ·p1).(γ ·q).(γ ·p3)
q2 .(q−p1)2 .((q−p2)2−m2)


→ 776830638,

loopInt


(p2·q)(γ ·q).(γ ·p2).(γ ·p3)
q2 .(q−p1)2 .((q−p2)2−m2)


→ 1878762839,

loopInt


(p2·q)(γ ·q).(γ ·q).(γ ·p3)
q2 .(q−p1)2 .((q−p2)2−m2)


→ 1337833147


Int[11]:= res = rest + loops /. repRule

Out[11]:= 115167616M + 1337833147− 1878762839+

2069116068((γ · p1).(γ · p2).(γ · p3)

−M(γ · p1).(γ · p3))− 776830638

With FCLoopSplit, FCLoopIsolate and FCLoopExtract
it is nowmuch easier not only tomanipulate loop integrals, but also
to check which integrals actually appear in an expression. Unique
loop integrals can be evaluated with tools outside of FeynCalc and
then substituted back by just a couple of lines of Mathematica
code.

3.5. Better interface to FeynArts

If FeynCalc needs to be used with a Feynman diagram
generator, then FeynArts is usually the most convenient choice.
Initially the syntax of both packages was adjusted to make
them fully compatible with each other. In fact, for the very
first version of FeynArts [60], FeynCalc was referred to as the
standard tool to evaluate the generated amplitudes. As FeynArts
was developed further, the full compatibility was lost, but
even now, the output of FeynArts can be converted into valid
FeynCalc input with only little effort. A more severe problem
in using this setup arises when FeynArts and FeynCalc are
loaded in the same Mathematica session. Unfortunately, both
packages contain objects with same names but different contexts,
definitions and properties (e.g. FourVector, DiracMatrix or
FeynAmpDenominator) such that it is not possible to use
them together without risking inconsistencies. To avoid these
issues FeynCalc is able to automatically patch the source code
of FeynArts by renaming all the conflicting symbols, such that
e.g. FourVector becomes FAFourVector and no variable
shadowing can occur. This patching mechanism was greatly
improved in FeynCalc 9.0 both in terms of user friendliness and
compatibility to other Mathematica packages. The patched copy
of FeynArts now resides in the FeynArts directory inside the
FeynCalc installation. By default this directory is empty. The user
is expected tomanually download the latest FeynArts tarball from
the official website5 and unpack its content to FeynCalc/FeynArts.
When FeynCalc is loaded via

$LoadFeynArts=True;
<<FeynCalc‘

5 http://www.feynarts.de.

http://www.feynarts.de

V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444 439
it will automatically detect FeynArts installation and offer the user
to patch it. This procedure is required only once and after that one
can use FeynArts and FeynCalc together without any problems.

After all the required diagrams have been generated and
turned into amplitudeswith FeynArts‘ functionCreateFeynAmp,
the output still needs to be converted into valid FeynCalc
input. In FeynCalc 9.0 this is handled by the new function
FCFAConvert that takes the output of CreateFeynAmp and gen-
erates proper FeynCalc expressions based on the given options.
With IncomingMomenta, OutgoingMomenta and
LoopMomenta the user can specify how the corresponding mo-
menta should be named. Otherwise they will be denoted as
InMom1, InMom2 , . . . , OutMom1, OutMom2 , . . . and LoopMom1,
LoopMom2 , Polarization vectors of external massless bosons
are by default not transverse, but can be made so if the momenta
of the bosons are listed in TransversePolarizationVectors.
The splitting of fermion–fermion–boson couplings into left and
right handed chirality projectors (default in FeynArts) can be un-
donewith the optionUndoChiralSplittings. For example, the
amplitude for the tree level process γ ∗ u→ u g is obtained via

In[1]:= $LoadFeynArts = True;
$FeynCalcStartupMessages = False;
<< FeynCalc‘;
$FAVerbose = 0;

In[2]:= diags = InsertFields[CreateTopologies[0, 2−> 2], {F[3, {1}],
V[1]} −> {V[5], F[3, {1}]}, InsertionLevel−> {Classes},
Model−> "SMQCD"];

In[3]:= FCFAConvert[CreateFeynAmp[diags], IncomingMomenta−> {p1, kp},
OutgoingMomenta−> {kg, p2}, UndoChiralSplittings−> True,
TransversePolarizationVectors−> {kg}, DropSumOver−> True,
List −> False] // Contract

Out[3]:=−
2ELgsTGlu3

Col4Col1(ϕ(p2,MU)).(γ̄ ·ε̄∗(kg)).(γ̄ ·(kg+p2)+MU).(γ̄ ·ε̄(kp)).(ϕ(p1,MU))
3((−kg−p2)2−MU2)

−
2ELgsTGlu3

Col4Col1(ϕ(p2,MU)).(γ̄ ·ε̄(kp)).(γ̄ ·(p2−kp)+MU).(γ̄ ·ε̄∗(kg)).(ϕ(p1,MU))
3((kp−p2)2−MU2)

3.6. Finer-grained expansions

To expand scalar products of Lorentz vectors FeynCalc provides
the function ExpandScalarProduct. The standard behavior of
this command is to expand every scalar product in the expression.

In[1]:= exp = SPD[q1, p1 + p2] SPD[q2, p3 + p4] SPD[p5 + p6, p7 + p8]

Out[1]:= ((p1+ p2) · q1)((p3+ p4) · q2)((p5+ p6) · (p7+ p8))

In[2]:= ExpandScalarProduct[exp]

Out[2]:= (p1 · q1+ p2 · q1)(p3 · q2+ p4 · q2)(p5 · p7+ p5 · p8
+p6 · p7+ p6 · p8)

which might lead to an unnecessary increase of terms, if the user
wants to expand only some particular scalar products. FeynCalc
9.0 improves ExpandScalarProduct by introducing the option
Momentum which allows to specify a list of momenta that need to
be contained in a scalar product thatwill be expanded. All the other
scalar products will remain untouched.

In[1]:= exp = SPD[q1, p1 + p2] SPD[q2, p3 + p4] SPD[p5 + p6, p7 + p8]

Out[1]:= ((p1+ p2) · q1)((p3+ p4) · q2)((p5+ p6) · (p7+ p8))

In[2]:= ExpandScalarProduct[exp, Momentum−> {q1}]

Out[2]:= (p1 · q1+ p2 · q1)((p3+ p4) · q2)((p5+ p6) · (p7+ p8))

In[3]:= ExpandScalarProduct[exp, Momentum−> {q2}]

Out[2]:= (p3 · q2+ p4 · q2)((p1+ p2) · q1)((p5+ p6) · (p7+ p8))
The same option is now present also in DiracGammaExpand
that is used to expand Lorentz vectors contracted with Dirac
matrices

In[1]:= exp = GSD[q1 + p1 + p2].GSD[q2 + p3 + p4].GSD[p5 + p6 + p7 + p8]

Out[1]:= (γ · (p1+ p2+ q1)).(γ · (p3+ p4+ q2)).(γ · (p5+ p6+ p7+ p8))

In[2]:= DiracGammaExpand[exp]

Out[2]:= (γ · p1+ γ · p2+ γ · q1).(γ · p3+ γ · p4+ γ · q2).(γ · p5
+γ · p6+ γ · p7+ γ · p8)

In[3]:= DiracGammaExpand[exp, Momentum−> {q1}]

Out[3]:= (γ · p1+ γ · p2+ γ · q1).(γ · (p3+ p4+ q2)).(γ · (p5
+p6+ p7+ p8))

In[4]:= DiracGammaExpand[exp, Momentum−> {q2}]

Out[4]:= (γ · (p1+ p2+ q1)).(γ · p3+ γ · p4+ γ · q2).(γ · (p5
+p6+ p7+ p8))

3.7. SU(N) generators with explicit fundamental indices

FeynCalc denotes SU(N) generators in the fundamental
representation as SUNT[a] where a stands for the adjoint index.
The fundamental indices are suppressed, so that a chain of SUNT-
matrices is understood to have only two free fundamental indices,
e.g. SUNT[a,b,c] stands for T a

ij T
b
jkT

c
kl and it is not possible to

express, say T a
ij T

b
kl with SUNT objects only.

Due to this limitation, evaluation of Feynman amplitudes with
more than two free fundamental color indices (e.g qq̄ → qq̄ scat-
tering in QCD) was very inconvenient and usually required ad-
ditional Mathematica code to obtain the correct result. For this
reason FeynCalc 9.0 introduces a new object SUNTF[{a},i,j]
that stands for T a

ij , an SU(N) generator in the fundamental repre-
sentationwith explicit fundamental indicesi andj and the adjoint
index a. Hence expressions like T a

ij T
b
kl or T

a
ij T

b
jkT

c
lm can be now con-

veniently expressed with SUNTF[{a},i,j]*SUNTF[{b},k,l]
and SUNTF[{a,b},i,k]*SUNTF[{c},l,m] respectively. The
new SUNTF objects are fully compatible with SUNSimplify, the
standard routine for simplifying SU(N) algebra.

In[1]:= exp1 = SUNTF[{a}, i, j] SUNTF[{b}, j, k] SUNTF[{c}, k, l]

Out[1]:= T a
ij T

b
jkT

c
kl

In[2]:= SUNSimplify[exp1]

Out[2]:=

T aT bT c


il

In[3]:= exp2 = exp1 SUNFDelta[i, l]

Out[3]:= δilT a
ij T

b
jkT

c
kl

In[4]:= SUNSimplify[exp2]

Out[4]:= tr(T c .T a.T b)

4. Using FeynCalc with non-relativistic EFTs

Up to now we silently assumed that all the amplitudes and
expressions that we want to evaluate stem from a theory that is
manifestly Lorentz covariant. This nice property of relativistic QFTs
is often taken for granted, but one surely should not forget about
EFTs that are used to describe non-relativistic systems, where the
corresponding Lagrangians often do not exhibit manifest Lorentz
covariance.

440 V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444
To our knowledge, there are no public tools for doing algebraic
calculations in non-relativistic EFTs, where one has to explicitly
distinguish between temporal and spatial components of Lorentz
tensors. Naively, one might think that to do a calculation in such a
theory using computer, one would need to write a large amount
of additional code almost from scratch. However, with such a
versatile tool like FeynCalc, this estimate turns out to be too
pessimistic. In the following we want to give a simple example
of using FeynCalc in a non-relativistic calculation, where only
a comparably small amount of additional Mathematica code is
needed.

In Section 2 we have already mentioned NRQCD [16], which
is an EFT of QCD that was developed to exploit the separation of
scales

mv2 ≪ mv ≪ m (10)

in a heavy quarkonium. Here, m denotes the heavy quark mass
and v stands for the relative velocity of heavy quarks in the
quarkonium. The scalesm,mv andmv2 are usually called hard, soft
and ultrasoft respectively.

NRQCD is obtained from QCD by integrating out all degrees of
freedom above the soft scale. The hard contributions are of course
not simply thrown away. Their effects are incorporated in the
matching coefficients ωn that multiply operators On of the NRQCD
Lagrangian, which can be schematically written as

LNRQCD =

n

ωn

mn
On. (11)

Since for charm and bottom quarks we have

m≫ ΛQCD, (12)

with ΛQCD being the QCD scale at which the perturbation theory
breaks down, the matching can be always done perturbatively.

The matching coefficients are fixed by comparing suitable
quantities in perturbative QCD and in perturbative NRQCD at finite
order in the expansion in v. The NRQCD Lagrangian itself contains
an infinite number of operators of arbitrary high dimensions
that are compatible with the symmetries of QCD. Using the
power counting rules of the theory, one can estimate the relative
importance of the operators for each process of interest. For this
reason, usually only a small number of NRQCD operators needs to
be considered in a practical calculation.

In the followingwewant to use FeynCalc to perform thematch-
ing betweenQCDandNRQCD in order to extract thematching coef-
ficients (at leading order in αs) that enter the decay rate of χc0,2 →

γ γ at leading order in v. Notice that the decay χc1 → γ γ does not
occur, because it is forbidden by the Landau–Yang theorem.

These matching coefficients have been calculated in the
framework of NRQCD multiple times [16,32,61–63], with many of
these calculations carried out in a fully covariant way using the
covariant projector technique [33]. Nevertheless, for pedagogical
reasons we want to stick to the explicit non-covariant matching
in the spirit of [16] and [62]. We also would like to remark that
the projector technique has not yet been generalized for higher
quarkonium Fock states, that include not only two heavy quarks
|Q Q̄ ⟩ but also gluons (e.g. |Q Q̄ g⟩ or |Q Q̄ gg⟩). For this reason, the
presented approach might still be useful in calculations, where
such higher order contributions have to be considered. We also
want to stress that codes which offer out of the box support for
doing NRQCD calculations already exist (e.g. FDC [19] package), so
the current example merely shows a quick naive implementation
not optimized for performance or flexibility.
The factorization formulas for the decay rates [16] are given by

Γ (χc0 → γ γ) =
2Imfem(3P0)

3m4
⟨χc0 |χ

Ď(− i
2
←→
D · σ)ψ |0⟩

× ⟨0|ψĎ(− i
2
←→
D · σ)χ |χc0⟩ (13)

Γ (χc2 → γ γ) =
2Imfem(3P2)

m4
⟨χc2 |χ

Ď(− i
2
←→
D (iσ j))ψ |0⟩

× ⟨0|ψĎ(− i
2
←→
D (iσ j))χ |χc2⟩. (14)

Here, Pauli spinor field ψ (χ) annihilates (creates) a heavy quark
(antiquark), σ is the Pauli vector and the covariant derivative is
defined as

Dµ = ∂µ + igAµ ≡ (D0,−D), (15)

so that

iD0
= i∂0 − gA0, (16)

iD = i∇ + gA, (17)

where Aµ is the gluon field and g stands for the QCD coupling
constant. Furthermore,

ψĎ
↔

D χ ≡ ψĎ(Dχ)− (Dψ)Ďχ, (18)
←→
D (iσ j)

≡
1
2


←→
D iσ j

+
←→
D jσ i


−

1
3
δij
←→
D · σ. (19)

The NRQCD long distance matrix elements (LDME)

⟨χc0 |χ
Ď(− i

2
←→
D · σ)ψ |0⟩⟨0|ψĎ(− i

2
←→
D · σ)χ |χc0⟩ (20)

and

⟨χc2 |χ
Ď(− i

2
←→
D (iσ j))ψ |0⟩⟨0|ψĎ(− i

2
←→
D (iσ j))χ |χc2⟩ (21)

are non-perturbative. They can be determined from fitting to the
experimental data or computed on the lattice. On the other hand,
thematching coefficients fem(3P0) and fem(3P2) can be calculated in
perturbation theory from the matching condition [16]

2 Im A (Q Q̄ → Q Q̄)

pert. QCD

=
2Imfem(3P0)

3m4
⟨Q Q̄ |χĎ(− i

2
←→
D · σ)ψ |0⟩

× ⟨0|ψĎ(− i
2
←→
D · σ)χ |Q Q̄ ⟩|pert. NRQCD

+
2Imfem(3P2)

m4
⟨Q Q̄ |χĎ(− i

2
←→
D (iσ j))ψ |0⟩

× ⟨0|ψĎ(− i
2
←→
D (iσ j))χ |Q Q̄ ⟩|pert. NRQCD, (22)

where on the right hand side we have displayed only spin triplet
terms that contribute at leading order in v. The left hand side of
Eq. (22) denotes twice the imaginary part of the perturbative QCD
amplitude Q Q̄ → Q Q̄ with 2 photons in the intermediate state.
It is understood that this amplitude also has to be expanded to
second order in v.

We start the matching calculation by considering the on-shell
amplitude for the perturbative processQ (p1)Q̄ (p2)→ γ (k1)γ (k2)
in QCD. The kinematics of this process reads

p1 + p2 = k1 + k2, (23)

p21 = p22 = m2, (24)

k21 = k22 = 0, (25)

V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444 441
with pi = (

m2 + p2

i , pi) ≡ (Ei, pi) and ki = (|ki|, ki). Obviously,
it is most convenient towork in the quarkonium rest frame, where

p1 = −p2 ≡ q, (26)

E1 = E2 ≡ Eq =

m+ q2, (27)

k1 = −k2. (28)

For convenience, the photon polarization vectors can be chosen to
be purely spatial, satisfying

ϵ(k1)0 = ϵ(k2)0 = 0, (29)
ϵ(k1/2) · k1/2 = ϵ(k1/2) · k2/1 = 0. (30)

We need to expand the QCD amplitude in v, i.e. in |q|/m up to
second order which involves rewriting Dirac spinors for Q and
Q̄ in terms of the Pauli spinors. For the latter let us recall that
in 4-dimensions we can decompose any chain of Dirac matrices
into scalar, pseudoscalar, vector, axial vector and tensor (SPVAT)
components. This decomposition stems from the fact that the 4
dimensional matrices I , γ 5, γ µ, γ 5γ µ and σµν = i

2 [γ
µ, γ ν] form

a basis, such that any 4× 4 matrixM can be written as

M = c1I + c2γ 5
+ c3µγ µ + c4µγ 5γ µ + c5µνσµν . (31)

Therefore, there are only 5 unique spinor structures involving
heavy quarks that we can encounter in any tree level amplitude.
In fact, the only components that appear in this calculation are
vector and axial vector, so that we do not need to consider the
other three. Using the explicit form of the Dirac spinors with the
non-relativistic normalization,

u(q) =


Eq +m
2Eq


ξ

q · σ
Eq +m

ξ


, (32)

v(−q) =


Eq +m
2Eq


−

q · σ
Eq +m

η

η


, (33)

with ξ and η being 2-component spinors, we obtain

v̄(−q)γ 0u(q) = 0, (34)

v̄(−q)γ iv(q) = ηĎσ iξ −
qi

2m2
ηĎq · σξ + O((|q|/m)3), (35)

v̄(−q)γ 0γ 5u(q) = ηĎξ

1−

q2

2m2


+ O((|q|/m)3), (36)

v̄(−q)γ iγ 5u(q) =
i
m
ηĎ(q× σ)iξ + O((|q|/m)3). (37)

Let us first ignore all the complications related to the non-
relativistic expansion and see how far we can get with the QCD
amplitude without breaking the covariant notation.

At this order in v and αs, there are only two tree level diagrams
to consider that can be trivially generated with FeynArts.

In[1]:= $LoadFeynArts = True;
$FeynCalcStartupMessages = False;
<< FeynCalc‘;
$FAVerbose = 0;

In[2]:= diags = InsertFields[CreateTopologies[0, 2−> 2],
{F[3, {2, a }], −F[3, {2, b}]} −> {V[1], V[1]},
InsertionLevel−> {Classes}, Model−> "SMQCD"];

Then the amplitudes are converted into FeynCalc notation and
simplified using standard FeynCalc functions.

In[3]:= amps = (9/4 EQ^2∗FCFAConvert[
CreateFeynAmp[diags, Truncated−> False, PreFactor−>−1],
IncomingMomenta−> {p1, p2}, OutgoingMomenta−> {k1, k2},
UndoChiralSplittings−> True,
TransversePolarizationVectors−> {k1, k2},
ChangeDimension−> 4, List−> False]) // Contract // Factor

Out[3]:= iEL2EQ2δab
(ϕ(−p2,MC)).(γ̄ ·ε̄∗(k1)).(γ̄ ·(k1−p2)+MC).(γ̄ ·ε̄∗(k2)).(ϕ(p1,MC))

(p2−k1)
2
−MC2

+iEL2EQ2δab
(ϕ(−p2,MC)).(γ̄ ·ε̄∗(k2)).(γ̄ ·(k2−p2)+MC).(γ̄ ·ε̄∗(k1)).(ϕ(p1,MC))

(p2−k2)
2
−MC2

The next step is to put the external particles on-shell

In[4]:= FCClearScalarProducts[];
ScalarProduct[k1, k1] = 0;
ScalarProduct[k2, k2] = 0;
ScalarProduct[p1, p1] = MC^2;
ScalarProduct[p2, p2] = MC^2;

and perform the SPVAT decomposition of the spinor chains,

In[5]:= repRuleHideChains = {
FCI[Spinor[−p2, MC].GA[x_].GA[5].Spinor[p1, MC]] :> FCI[FV[A, x]],
FCI[Spinor[−p2, MC].GA[x_].Spinor[p1, MC]] :> FCI[FV[V, x]],
FCI[Spinor[−p2, MC].GS[x_].GA[5].Spinor[p1, MC]] :> FCI[SP[A, x]],
FCI[Spinor[−p2, MC].GS[x_].Spinor[p1, MC]] :> FCI[SP[V, x]]
};

In[6]:= amps2 = amps // DiracSimplify // DiracReduce // FCI //
ReplaceAll[#, repRuleHideChains] & //
PropagatorDenominatorExplicit[#, Dimension−> 4] & //
Contract // ReplaceAll[#, Pair[Momentum[k1 | k2],
Momentum[Polarization[k1 | k2, ___]]]−> 0] &

Out[6]:= EL2EQ2δabϵ
Ak1ε̄∗(k1)ε̄∗(k2)

2(k1·p2)
−

EL2EQ2δabϵ
Ak2ε̄∗(k1)ε̄∗(k2)

2(k2·p2)
+

iEL2EQ2δab(V ·ε̄∗(k1))(p2·ε̄∗(k2))
k2·p2

+
iEL2EQ2δab(p2·ε̄∗(k1))(V ·ε̄∗(k2))

k1·p2
+

iEL2EQ2δab(k1·V)(ε̄∗(k1)·ε̄∗(k2))
2(k1·p2)

+
iEL2EQ2δab(k2·V)(ε̄∗(k1)·ε̄∗(k2))

2(k2·p2)

where for convenience we chose to abbreviate vector and axial
vector chains as

Vµ ≡ v̄(p2)γ
µu(p1), (38)

Aµ ≡ v̄(p2)γ
µγ 5u(p1). (39)

If we are to expand the resulting expression in |q|/m, we must
make the q-dependence explicit in all parts of the amplitude.
Since different components of the 4-vectors and spinor chains that
appear in the computation depend on |q| in a different way, it now
becomes necessary to break the covariant notation. However, by
doing so in a naive way, e.g. by writing something like

V · k1 = V 0
|k| − V · k, (40)

ϵµνρσ k1µAνε∗ρ(k1)ε
∗

σ (k2) = ϵ
µ0ρσ k1µA0ε∗ρ(k1)ε

∗

σ (k2)

− ϵµiρσ k1µAiε∗ρ(k1)ε
∗

σ (k2) (41)

we introduce new objects that carry Cartesian indices and
thus cannot be handled by the built-in routines for work-
ing with Lorentz tensors (e.g. Contract, ScalarProduct,
ExpandScalarProduct, etc.). Fortunately, it is possible to com-
pletely avoid introducing any Cartesian tensors or tensors with
mixed Lorentz and Cartesian indices by exploiting FeynCalc’s
built-in TensorFunction in a clever way.

This approach is based on [64], although we do not consider a
boosted Q Q̄ -system and assume that the quarkonium is at rest. To
see how this works, let us first define a symmetric tensor Eµν with

Eµν =

0 for µ = 0 or ν = 0,
δij for µ ≠ 0 and ν ≠ 0. (42)

With Eµν we can write any Cartesian scalar product xiyi as

xiyi = xiyjδij = Eµνxµyν ≡ E(x, y), (43)

where x0 and y0 can be anything, since they drop out by
construction. If x is a pure Cartesian vector, then we can choose

442 V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444
xµ = (0, xi). Suppose that wewant to expand xiyi in |x| or |y|. Then
we can write

E(x, y) = |x||y|E(x̂, ŷ), (44)

with xi = |x|x̂i and yi = |y|ŷi, where E(x̂, ŷ) does not depend on |x|
and |y|. Therefore, aMinkowski scalar product x·y can be rewritten
as

xµyµ = x0y0 + |x||y|E(x̂, ŷ) (45)

and if x and y are external 4-momenta, then we have

xµyµ =

m2

x + |x|2

m2

y + |y|2 + |x||y|E(x̂, ŷ), (46)

so that the expansion in the scalar variables |x| or |y| can be
carried outwithoutmaking any reference to 3-vectors. Someuseful
relations for dealing with E-tensors are

Eµνgµν = −3, (47)
EµνEρσ gµρ = −Eνσ . (48)

In a similar manner we can also rewrite terms that involve
3-dimensional epsilon tensors by introducing

Cµνρ =

0 for µ = 0 or ν = 0 or ρ = 0,
εijk for µ ≠ 0 and ν ≠ 0 and ρ ≠ 0, (49)

such that

εijkxiyjzk = −εijkxiyjzk = −Cµνρxµyνzρ ≡ −C(x, y, z). (50)

Then, it is easy to see that

εσµνρaσ xµyνzρ = εijk(a0xiyjzk − x0aiyjzk + y0aixjzk − z0aixjyk)

= a0C(x, y, z)− x0C(a, y, z)+ y0C(a, x, z)− z0C(a, x, y), (51)

from where we again can easily expand in the 3-momenta of a, x,
y or z, since

C(x, y, z) = |x||y||z|C(x̂, ŷ, ẑ), (52)

with C(x̂, ŷ, ẑ) being independent of |x|, |y| and |z|. The product of
two C tensors can be expressed through

CµνρCαβγ =


Eµα Eµβ Eµγ

Eνα Eνβ Eνγ

Eρα Eρβ Eργ

 . (53)

The basic properties of Eµν (denoted as NRPair) and Cµνρ
(denoted as NREps) can be implemented in FeynCalc with a
minimal amount of extra code.

In[7]:= SetAttributes[NRPairContract, Orderless];
TensorFunction[NREps, x, y, z];
TensorFunction[{NRPair, "S"}, x, y];
NREps[a___, x_, b___, x_, c___] := 0;
NRPairContract /:
NRPairContract[LorentzIndex[x_], LorentzIndex[x_]] :=−3;
NRPairContract /:
NRPairContract[LorentzIndex[x_], y_] ∗
NRPairContract[LorentzIndex[x_], z_] :=− NRPairContract[y, z];
NRPairContract /:
NRPairContract[LorentzIndex[x_], y_] ∗
NREpsContract[a___, LorentzIndex[x_], b___] :=− NREpsContract[a, y, b

];
NRPairContract /:
NRPairContract[LorentzIndex[x_], y_]^2 :=− NRPairContract[y, y];
NREpsContract /:
NREpsContract[x_, y_, z_]^2 :=− 6;
NREpsContract /:
NREpsContract[mu_, nu_, rho_] NREpsContract[al_, be_, ga_] :=

(Det[{{np[mu, al], np[mu, be], np[mu, ga]},
{np[nu, al], np[nu, be], np[nu, ga]},
{np[rho, al], np[rho, be], np[rho, ga]}}] /.
np−> NRPairContract);
Contractions of Eµν and Cµνρ with each other or with the
metric tensor are simplified by NRContract, while NRExpand
implements Eq. (51).

In[8]:= NRContract[expr_] :=
FixedPoint[(Expand2[Contract[#], {NRPair, NREps}] //. {NRPair−>
NRPairContract, NREps−> NREpsContract}) &, expr] /.
{NRPairContract−> NRPair, NREpsContract−> NREps};

In[9]:= NRExpand[expr_] :=
FixedPoint[ReplaceRepeated[Expand2[#, {Eps, NREps}],
{Eps[a_Momentum, x_Momentum, y_Momentum, z_Momentum] :>
NREn[a] NREps[x, y, z]− NREn[x] NREps[a, y, z] +
NREn[y] NREps[a, x, z]− NREn[z] NREps[a, x, y]}] &, expr];

Here we use NREn to denote the temporal components of
4-momenta. The expansions of spinor chains given in Eqs. (34)–(37)
are now straightforward to translate into FeynCalc notation.

In[10]:= repRuleExpandedChains = {
Pair[v : Momentum[V], x_] :>−NRPair[v, x],
Pair[a : Momentum[A], x_] :> NREn[a] NREn[x]− NRPair[a, x],
NREn[Momentum[A]]−> 1− (qvec^2) /(2 MC^2),
NREn[Momentum[V]]−> 0,
NRPair[x_, Momentum[V]] :>−((qvec^2 NRPair[Momentum[qhat],

Momentum[{S, I}]] NRPair[Momentum[qhat], x])/(2 MC^2)) +
NRPair[Momentum[{S, I}], x],
NRPair[x_, Momentum[A]] :>
−((I qvec NREps[Momentum[qhat], Momentum[{S, I}], x])/MC),
NREps[x___, a : Momentum[A], y___] :> (li =
LorentzIndex[Unique[]];−NREps[x, li, y] NRPair[a, li]),
NREps[x___, v : Momentum[V], y___] :>
(li = LorentzIndex[Unique[]];−NREps[x, li, y] NRPair[v, li])

};

Simplifications that are specific to the kinematics of the process are
also easy to define.

In[11]:= NREn[Momentum[Polarization[k1 | k2, ___]]] = 0;
NREn[Momentum[k1 | k2]] = kvec;
NREn[Momentum[p1 | p2]] = Sqrt[MC^2 + qvec^2];
NREn[Momentum[qhat | qhatp | {S, _}]] = 0;
NREn[Momentum[k1hat]] = 1;
NRPair[Momentum[p1], x_] = qvec NRPair[Momentum[qhat], x];
NRPair[Momentum[p2], x_] =−qvec NRPair[Momentum[qhat], x];
NRPair[Momentum[p1p], x_] = qvec NRPair[Momentum[qhatp], x];
NRPair[Momentum[p2p], x_] =−qvec NRPair[Momentum[qhatp], x];
NRPair[Momentum[k1 | k2 | k1hat | k2hat],
Momentum[Polarization[k2 | k1, ___]]] = 0;

NRPair[Momentum[x_], Momentum[x_]] :=
1 /; MemberQ[{qhat, qhatp, p1hat, p2hat, k1hat, k2hat}, x];
NRPair[Momentum[k1], x_] = kvec NRPair[Momentum[k1hat], x];
NRPair[Momentum[k2], x_] =−kvec NRPair[Momentum[k1hat], x];
kvec = Sqrt[MC^2 + qvec^2];

repRuleExpansion = {
FCI@SP[x_, a : Polarization[z_, ___]] /; MemberQ[{k1, k2}, z] :>
−NRPair[Momentum[x], Momentum[a]],
FCI@SP[x_, (y : p1 | p2 | k1 | k2 | {S, I } | {S, −I} | k1hat | qhat)] :>
NREn[Momentum[x]] NREn[Momentum[y]]−
NRPair[Momentum[x], Momentum[y]],

NREps[a___, Momentum[k1], z___] :> kvec NREps[a, Momentum[k1hat
], z],

NREps[a___, Momentum[k2], z___] :>− kvec NREps[a, Momentum[
k1hat], z],

NREps[a___, Momentum[p1], b___] :> qvec NREps[a, Momentum[qhat
], b],

NREps[a___, Momentum[p2], b___] :>−qvec NREps[a, Momentum[
qhat], b]

};

Finally, we can expand the amplitude up to second order in |q|/m.

In[12]:= amps3 = amps2 // NRExpand //
ReplaceRepeated[#, repRuleExpandedChains] & // NRContract //
ReplaceRepeated[#, repRuleExpansion] & // Series[#, {qvec, 0, 2}] & //
Normal // PowerExpand // NRContract;

To obtain 2 Im A (Q (p′1)Q̄ (p
′

2)→ Q (p1)Q̄ (p2)) from our expanded
amplitude, we need to multiply A (Q (p′1)Q̄ (p

′

2) → γ (k1)γ (k2))

V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444 443
by A∗ (Q (p1)Q̄ (p2) → γ (k1)γ (k2)), sum over polarizations of the
external photons and perform the phase space integration. For the
latter we can use that

dΩk1 k̂
i1
1 . . . k̂

i2n+1
1 = 0, (54)

dΩk1 k̂
i1
1 . . . k̂

i2n
1

=
4π

(n+ 2)!!


δi1 i2 . . . δi2n−1 i2n + permutations


. (55)

To implement these relations we need an auxiliary function that
uncontracts the indices of k̂1
In[13]:= NRUncontract[expr_, l_List] :=
expr /. {Power[t_NRPair, n_] :> times @@ Table[t, {i, 1, n}],

Power[t_NREps, n_] :> times @@ Table[t, {i, 1, n}]} //. {
NRPair[y_, x_] /; ! FreeQ2[y, l] && Head[x] =!= LorentzIndex :>
(li = Unique[$AL];−NRPair[y, LorentzIndex[li]] NRPair[x, LorentzIndex[li]]),
NREps[w___, y_, x___] /; ! FreeQ2[y, l] :> (li = Unique[$AL];
−NRPair[y, LorentzIndex[li]] NREps[w, LorentzIndex[li], x])
} /. times−> Times;

and a replacement rule that handles the angular integration
In[14]:= angularIntegration[hat_] := {

qHead[NRPair[i_, Momentum[hat]]] /; FreeQ2[{i}, {hat, S}] :> 0,
qHead[a_Times] :> qHead[(List @@ a) /. NRPair[Momentum[hat], b_] :>

{hat, b /. LorentzIndex[c_, _] :> c }],
qHead[a_List] :> (Tdec[a, {}, List −> False, FCE−> False,

Dimension−> 3] //. {(h : LorentzIndex | Momentum)[x_, 3] :>
h[x], Pair −> NRPair})

};

Then the left hand side of Eq. (22) is given by
In[15]:= res = (1/(16 Pi)) (Collect[(amps3 /. qhat−> qhatp)∗

ComplexConjugate[amps3] /. NRPair[x_, y_] :>
−FCI@SP[x, y] + NREn[x] NREn[y], qvec] /. qvec^4−> 0) //
DoPolarizationSums[#, k1, k2] & //
DoPolarizationSums[#, k2, k1] & //
ReplaceRepeated[#, repRuleExpansion] & // Cancel //
NRUncontract[#, {k1hat}] & //
FCLoopIsolate[#, {k1hat}, Head−> qHead] & //
ReplaceRepeated[#, angularIntegration[k1hat]] & // NRContract //
ReplaceAll[#, {EL^4−> 16 Pi^2 AlphaFS ^2}] & //
SelectNotFree[#, S] &

Out[15]:=
4πα2EQ4qvec2δ2abNRPair(qhat,{S,i})NRPair(qhatp,{S,−i})

5MC4
+

22πα2EQ4qvec2δ2abNRPair(qhat,{S,−i})NRPair(qhatp,{S,i})
15MC4

+
4πα2EQ4qvec2δ2abNRPair(qhat,qhatp)NRPair({S,−i},{S,i})

5MC4

An explicit expression for the right hand side of Eq. (22) can be
obtained by using Fourier decompositions of the Pauli spinor fields
(c.f. [65]), so that we end up with
4α2Q 4π

5m4
q · q′ηĎσξ ξ Ďση +

4α2Q 4π

5m4
ηĎq · σξ ξ Ďq′ · ση

+
22α2Q 4π

15m4
ηĎq′ · σξ ξ Ďq · ση

=
Imfem(3P2)

m4
q · q′ ηĎσξ ξ Ďση +

Imfem(3P2)
m4

ηĎq · σξ ξ Ďq′ · ση

+
2
3


Imfem(3P0)− Imfem(3P2)


m4

ηĎq′ · σξ ξ Ďq · ση, (56)

fromwhichwe can immediately read off the values of thematching
coefficients

Imfem(3P0) = 3α2Q 4π, (57)

Imfem(3P2) =
4
5
α2Q 4π, (58)

that agree with the known results from the literature [16,32,61–
63].
5. Summary

We have presented new features and improvements in
FeynCalc 9.0 and discussed cases in which FeynCalc can be used
to obtain new results. Although the very first version of FeynCalc
appeared almost 25 years ago, the development is still far from
complete. New developments in theoretical particle physics show
possible directions in which FeynCalc can evolve. This includes
better support for multi-loop calculations and determination of
matching coefficients in effective field theories, but also built-in
interfaces to other useful software tools and the ability to work
with non-relativistic theories.

Finally, wewould like to observe that in the last two years some
new general-purpose packages [24,25] for QFT calculations were
released,which follow the approach similar to that of FeynCalc and
thus provide a comparable level of flexibility. This development
shows that even in the age of fully automatic packages for 1-loop
calculations, user-friendly, semi-automatic tools like FeynCalc
are still in demand and employed in many interesting research
projects.

Acknowledgments

Two of the authors (RM and FO) would like to thank Daniel
Wyler for his help and support in the earlier days of FeynCalc.

One of the authors (VS) wants to thank Hector Martinez
Neira for bringing his attention to FeynCalc for the first time
and his Ph.D. supervisor Nora Brambilla for encouraging him
to work in this direction. Simone Biondini is acknowledged for
testing 1-loop tensor decompositions with TID. VS would also
like to express his gratitude to Antonio Vairo, Christoph Bobeth,
ThomasHahn, GeorgWeiglein, Sergey Larin, ClaudeDuhr,Matthias
Steinhauser, Alexander Smirnov, Massimo Passera and Yu Jia for
useful discussions and explanations. His work has been supported
by the DFG and the NSFC through funds provided to the Sino-
German CRC 110 ‘‘Symmetries and the Emergence of Structure
in QCD’’ (DFG/TR-110, NSFC Grant No. 11261130311), and by the
DFG cluster of excellence ‘‘Origin and structure of the universe’’
(www.universe-cluster.de).

Last but not least, all the authors would like to thank the
participants of the FeynCalc mailing list for their bug reports,
feature requests, suggestions and encouragements.

Appendix A. Supplementary data

Supplementary material related to this article can be found
online at http://dx.doi.org/10.1016/j.cpc.2016.06.008.

References

[1] C. Anastasiou, C. Duhr, F. Dulat, F. Herzog, B. Mistlberger, Phys. Rev. Lett. 114
(2015) 212001. arXiv:1503.06056.

[2] P. Marquard, A.V. Smirnov, V.A. Smirnov, M. Steinhauser, Phys. Rev. Lett. 114
(2015) 142002. arXiv:1502.01030.

[3] M. Beneke, Y. Kiyo, P. Marquard, A. Penin, J. Piclum, D. Seidel, M. Steinhauser,
Phys. Rev. Lett. 112 (2014) 151801. arXiv:1401.3005.

[4] R. Mertig, M. Böhm, A. Denner, Comput. Phys. Comm. 64 (1991) 345–359.
[5] A. Denner, J. Küblbeck, R. Mertig, M. Böhm, Z. Phys. C 56 (1992) 261–272.
[6] W. Beenakker, A. Denner, S. Dittmaier, R. Mertig, T. Sack, Nuclear Phys. B 410

(1993) 245–279.
[7] W. Beenakker, A. Denner, W. Hollik, R. Mertig, T. Sack, D. Wackeroth, Nuclear

Phys. B 411 (1994) 343–380.
[8] W. Beenakker, A. Denner, S. Dittmaier, R. Mertig, Phys. Lett. B 317 (1993)

622–630.
[9] R. Mertig, W.L. van Neerven, Z. Phys. C 70 (1996) 637–653. arXiv:hep-

ph/9506451.
[10] R. Mertig, R. Scharf, Comput. Phys. Comm. 111 (1998) 265–273. arXiv:hep-

ph/9801383.
[11] O.V. Tarasov, Phys. Rev. D 54 (1996) 6479–6490. arXiv:hep-th/9606018.
[12] O.V. Tarasov, Nuclear Phys. B 502 (1997) 455–482. arXiv:hep-ph/9703319.
[13] M. Buechler, G. Colangelo, J. Kambor, F. Orellana, Phys. Lett. B 521 (2001)

22–28. arXiv:hep-ph/0102287.

http://www.universe-cluster.de
http://dx.doi.org/10.1016/j.cpc.2016.06.008
http://arxiv.org/abs/1503.06056
http://arxiv.org/abs/1502.01030
http://arxiv.org/abs/1401.3005
http://refhub.elsevier.com/S0010-4655(16)30170-9/sbref4
http://refhub.elsevier.com/S0010-4655(16)30170-9/sbref5
http://refhub.elsevier.com/S0010-4655(16)30170-9/sbref6
http://refhub.elsevier.com/S0010-4655(16)30170-9/sbref7
http://refhub.elsevier.com/S0010-4655(16)30170-9/sbref8
http://arxiv.org/abs/hep-ph/9506451
http://arxiv.org/abs/hep-ph/9506451
http://arxiv.org/abs/hep-ph/9801383
http://arxiv.org/abs/hep-ph/9801383
http://arxiv.org/abs/hep-th/9606018
http://arxiv.org/abs/hep-ph/9703319
http://arxiv.org/abs/hep-ph/0102287

444 V. Shtabovenko et al. / Computer Physics Communications 207 (2016) 432–444
[14] T. Hahn, Comput. Phys. Comm. 140 (2001) 418–431. arXiv:hep-ph/0012260.
[15] F. Feng, R. Mertig, FormLink/FeynCalcFormLink : Embedding FORM in

Mathematica and FeynCalc, 2012, arXiv:1212.3522.
[16] G.T. Bodwin, E. Braaten, G.P. Lepage, Phys. Rev. D 51 (1995) 1125–1171.

arXiv:hep-ph/9407339.
[17] T. Hahn, M. Perez-Victoria, Comput. Phys. Comm. 118 (1999) 153–165.

arXiv:hep-ph/9807565.
[18] G. Cullen, H. van Deurzen, N. Greiner, G. Heinrich, G. Luisoni, P. Mastrolia,

E. Mirabella, G. Ossola, T. Peraro, J. Schlenk, J.F. von Soden-Fraunhofen, F.
Tramontano, Eur. Phys. J. C 74 (8) (2014) 3001. arXiv:1404.7096.

[19] J.-X. Wang, Nucl. Instrum. Methods A 534 (2004) 241–245. arXiv:hep-
ph/0407058.

[20] G. Belanger, F. Boudjema, J. Fujimoto, T. Ishikawa, T. Kaneko, K. Kato, Y.
Shimizu, Phys. Rep. 430 (2006) 117–209. arXiv:hep-ph/0308080.

[21] M. Tentyukov, J. Fleischer, Comput. Phys. Comm. 132 (2000) 124–141.
arXiv:hep-ph/9904258.

[22] J.A.M. Vermaseren, New features of FORM, 2007, arXiv:math-ph/0010025.
[23] N. Brambilla, A. Pineda, J. Soto, A. Vairo, Nuclear Phys. B 566 (2000) 275.

arXiv:hep-ph/9907240.
[24] M. Wiebusch, Comput. Phys. Comm. 195 (2014) 172–190. arXiv:1412.6102.
[25] H.H. Patel, Comput. Phys. Comm. 197 (2015) 276–290. arXiv:1503.01469.
[26] G. ’t Hooft, M. Veltman, Nuclear Phys. B 44 (1972) 189–213.
[27] P. Breitenlohner, D. Maison, Comm. Math. Phys. 52 (1977) 11–38.
[28] G. Passarino, M. Veltman, Nuclear Phys. B 160 (1979) 151.
[29] A. Buckley, J. Ferrando, S. Lloyd, K. Nordström, B. Page, M. Rüfenacht, M.

Schönherr, G. Watt, Eur. Phys. J. C 75 (2015).
[30] P. Cho, A. Leibovich, Phys. Rev. D 53 (1996) 150–162. arXiv:hep-ph/9505329.
[31] Y.-J. Zhang, K.-T. Chao, Phys. Rev. Lett. 98 (2007) 092003.

arXiv:hep-ph/0611086.
[32] A. Petrelli, M. Cacciari, M. Greco, F. Maltoni, M.L. Mangano, Nuclear Phys. B 514

(1998) 245–309. arXiv:hep-ph/9707223.
[33] G.T. Bodwin, A. Petrelli, Phys. Rev. D 66 (2002) 094011. arXiv:hep-ph/0205210.
[34] Y. Jia, X.-T. Yang, W.-L. Sang, J. Xu, J. High Energ. Phys. 2011 (2011)

arXiv:arXiv:1104.1418.
[35] C.O. Dib, R. Rosenfeld, A. Zerwekh, J. High Energy Phys. 0605 (2006) 074.

arXiv:hep-ph/0509179.
[36] D. Buttazzo, G. Degrassi, P.P. Giardino, G.F. Giudice, F. Sala, A. Salvio, A. Strumia,

J. High Energ. Phys. 2013 (2013) arXiv:arXiv:1307.3536.
[37] D. de Florian, J.Mazzitelli, Phys. Rev. Lett. 111 (2013) 201801. arXiv:1309.6594.
[38] B. Xiao, Y.-K. Wang, Z.-Q. Zhou, S. hua Zhu, Phys. Rev. D 83 (2011) 057503.

arXiv:1101.2507.
[39] M. Fael, L. Mercolli, M. Passera, J. High Energy Phys. 1507 (2015) 153.

arXiv:1506.03416.
[40] L.S. Geng, J.M. Camalich, L. Alvarez-Ruso, M.J.V. Vacas, Phys. Rev. D 78 (2008)
014011. arXiv:0801.4495.

[41] D.R. Phillips, M.R. Schindler, R.P. Springer, Nuclear Phys. A 822 (2009) 1–19.
arXiv:0812.2073.

[42] J. Kopp, V. Niro, T. Schwetz, J. Zupan, Phys. Rev. D 80 (2009)
arXiv:arXiv:0907.3159.

[43] J.M. Cline, A.R. Frey, F. Chen, Phys. Rev. D 83 (2010) 083511. arXiv:1008.1784.
[44] S. Bray, J.S. Lee, A. Pilaftsis, Phys. Lett. B 628 (2005) 250–261. arXiv:hep-

ph/0508077.
[45] R. Laha, B. Dasgupta, J.F. Beacom, Phys. Rev. D 89 (2013) 093025.

arXiv:1304.3460.
[46] B. Dasgupta, J. Kopp, Phys. Rev. Lett. 112 (2013) 031803. arXiv:1310.6337.
[47] S. Foffa, R. Sturani, Phys. Rev. D 87 (2013) arXiv:1206.7087.
[48] J.R. Gaunt, M. Stahlhofen, J. High Energy Phys. 1412 (2014) 146.

arXiv:1409.8281.
[49] F. Feng, Y. Jia, W.-L. Sang, Can NRQCD explain the γ γ ∗ → ηc transition form

factor data? 2015, arXiv:1505.02665.
[50] A.V. Smirnov, V.A. Smirnov, Comput. Phys. Comm. 184 (2013) 2820–2827.

arXiv:1302.5885.
[51] A.V. Smirnov, Comput. Phys. Comm. 185 (2013) 2090–2100. arXiv:1312.3186.
[52] S. Borowka, J. Carter, G. Heinrich, Comput. Phys. Comm. 184 (2012) 396–408.

arXiv:1204.4152.
[53] F. Feng, Comput. Phys. Comm. 183 (2012) 2158–2164. arXiv:1204.2314.
[54] K. Chetyrkin, F. Tkachov, Nuclear Phys. B 192 (1981) 159–204.
[55] R.N. Lee, Presenting LiteRed: a tool for the Loop InTEgrals REDuction, 2012,

arXiv:1212.2685.
[56] C. Studerus, Comput. Phys. Comm. 181 (2009) 1293–1300. arXiv:0912.2546.
[57] C. Anastasiou, A. Lazopoulos, J. High Energy Phys. 0407 (2004) 046. arXiv:hep-

ph/0404258.
[58] F. Feng, Automated one-loop computation in quarkonium process within

NRQCD framework, 2013, arXiv:1307.5587.
[59] M.R. Fiorentin, Internat. J. Modern Phys. C (2015) 1650027. arXiv:1507.03527.
[60] J. Küblbeck, M. Böhm, A. Denner, Comput. Phys. Comm. 60 (1990) 165–180.
[61] J.P. Ma, Q. Wang, Phys. Lett. B 537 (2002) 233–240. arXiv:hep-ph/0203082.
[62] N. Brambilla, E. Mereghetti, A. Vairo, J. High Energy Phys. 0608 (2006) 039.

arXiv:hep-ph/0604190.
[63] W.-L. Sang, F. Feng, Y. Jia, S.-R. Liang, Next-to-next-to-leading-order QCD

corrections to χc0,2 → γ γ , 2015, arXiv:1511.06288.
[64] E. Braaten, Y.-Q. Chen, Phys. Rev. D 54 (1996) 3216–3227.

arXiv:hep-ph/9604237.
[65] P. Cho, A.K. Leibovich, Phys. Rev. D 53 (1996) 6203–6217.

arXiv:hep-ph/9511315.

http://arxiv.org/abs/hep-ph/0012260
http://arxiv.org/abs/1212.3522
http://arxiv.org/abs/hep-ph/9407339
http://arxiv.org/abs/hep-ph/9807565
http://arxiv.org/abs/1404.7096
http://arxiv.org/abs/hep-ph/0407058
http://arxiv.org/abs/hep-ph/0407058
http://arxiv.org/abs/hep-ph/0308080
http://arxiv.org/abs/hep-ph/9904258
http://arxiv.org/abs/math-ph/0010025
http://arxiv.org/abs/hep-ph/9907240
http://arxiv.org/abs/1412.6102
http://arxiv.org/abs/1503.01469
http://refhub.elsevier.com/S0010-4655(16)30170-9/sbref26
http://refhub.elsevier.com/S0010-4655(16)30170-9/sbref27
http://refhub.elsevier.com/S0010-4655(16)30170-9/sbref28
http://refhub.elsevier.com/S0010-4655(16)30170-9/sbref29
http://arxiv.org/abs/hep-ph/9505329
http://arxiv.org/abs/hep-ph/0611086
http://arxiv.org/abs/hep-ph/9707223
http://arxiv.org/abs/hep-ph/0205210
http://arxiv.org/abs/arXiv:1104.1418
http://arxiv.org/abs/hep-ph/0509179
http://arxiv.org/abs/arXiv:1307.3536
http://arxiv.org/abs/1309.6594
http://arxiv.org/abs/1101.2507
http://arxiv.org/abs/1506.03416
http://arxiv.org/abs/0801.4495
http://arxiv.org/abs/0812.2073
http://arxiv.org/abs/arXiv:0907.3159
http://arxiv.org/abs/1008.1784
http://arxiv.org/abs/hep-ph/0508077
http://arxiv.org/abs/hep-ph/0508077
http://arxiv.org/abs/1304.3460
http://arxiv.org/abs/1310.6337
http://arxiv.org/abs/1206.7087
http://arxiv.org/abs/1409.8281
http://arxiv.org/abs/1505.02665
http://arxiv.org/abs/1302.5885
http://arxiv.org/abs/1312.3186
http://arxiv.org/abs/1204.4152
http://arxiv.org/abs/1204.2314
http://refhub.elsevier.com/S0010-4655(16)30170-9/sbref54
http://arxiv.org/abs/1212.2685
http://arxiv.org/abs/0912.2546
http://arxiv.org/abs/hep-ph/0404258
http://arxiv.org/abs/hep-ph/0404258
http://arxiv.org/abs/1307.5587
http://arxiv.org/abs/1507.03527
http://refhub.elsevier.com/S0010-4655(16)30170-9/sbref60
http://arxiv.org/abs/hep-ph/0203082
http://arxiv.org/abs/hep-ph/0604190
http://arxiv.org/abs/1511.06288
http://arxiv.org/abs/hep-ph/9604237
http://arxiv.org/abs/hep-ph/9511315

	New developments in FeynCalc 9.0
	Introduction
	Comparison to similar tools
	New features in FeynCalc 9.0
	Improved tensor decomposition
	New partial fractioning algorithm
	Tools for interfacing FeynCalc with packages for IBP-reduction
	Advanced extraction of loop integrals
	Better interface to FeynArts
	Finer-grained expansions
	 S U (N) generators with explicit fundamental indices

	Using FeynCalc with non-relativistic EFTs
	Summary
	Acknowledgments
	Supplementary data
	References

