
Computer Physics Communications () –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Highly efficient spatial data filtering in parallel using the opensource
library CPPPO✩

Federico Municchi a,∗, Christoph Goniva b, Stefan Radl a
a Institute of Process and Particle Engineering, Graz University of Technology, Inffeldgasse 13/III, 8010 Graz, Austria
b DCS Computing GmbH, Industriezeile 35, 4020 Linz, Austria

a r t i c l e i n f o

Article history:
Received 16 September 2015
Received in revised form
18 May 2016
Accepted 26 May 2016
Available online xxxx

Keywords:
Multi-scale
Closure models
Parallel filtering
Post processing
MPI

a b s t r a c t

CPPPO is a compilation of parallel data processing routines developed with the aim to create a library
for ‘‘scale bridging’’ (i.e. connecting different scales by mean of closure models) in a multi-scale
approach. CPPPO features a number of parallel filtering algorithms designed for use with structured and
unstructured Eulerian meshes, as well as Lagrangian data sets. In addition, data can be processed on the
fly, allowing the collection of relevant statistics without saving individual snapshots of the simulation
state. Our library is provided with an interface to the widely-used CFD solver OpenFOAM R⃝, and can
be easily connected to any other software package via interface modules. Also, we introduce a novel,
extremely efficient approach to parallel data filtering, and show that our algorithms scale super-linearly
on multi-core clusters. Furthermore, we provide a guideline for choosing the optimal Eulerian cell
selection algorithm depending on the number of CPU cores used. Finally, we demonstrate the accuracy
and the parallel scalability of CPPPO in a showcase focusing on heat and mass transfer from a dense bed
of particles.

Program summary

Program title: CPPPO
Catalogue identifier: AFAQ_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFAQ_v1_0.html
Program obtainable from: CPC Program Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: GNU Lesser General Public License, version 3
No. of lines in distributed program, including test data, etc.: 1043965
No. of bytes in distributed program, including test data, etc.: 11053655
Distribution format: tar.gz
Programming language: C++, MPI, octave.
Computer: Linux based clusters for HPC or workstations.
Operating system: Linux based.
Classification: 4.14, 6.5, 12.
External routines: Qt5, hdf5-1.8.15, jsonlab, OpenFOAM/CFDEM, Octave/Matlab
Nature of problem:
Development of closure models for momentum, species transport and heat transfer in fluid and
fluid–particle systems using purely Eulerian or Euler–Lagrange simulators.
Solution method:
The CPPPO library contains routines to perform on-line (i.e., runtime) filtering and compute statistics on
large parallel data sets.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding author.

E-mail address: fmunicchi@tugraz.at (F. Municchi).

http://dx.doi.org/10.1016/j.cpc.2016.05.026
0010-4655/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2016.05.026
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://cpc.cs.qub.ac.uk/summaries/AFAQ_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:fmunicchi@tugraz.at
http://dx.doi.org/10.1016/j.cpc.2016.05.026

2 F. Municchi et al. / Computer Physics Communications () –

Running time:
Performing a Favre averaging on a structured mesh of 1283 cells with a filter size of 643 cells using one
Intel Xeon(R) E5-2650, requires approximately 4 h of computation.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Many relevant physical systems involve a wide spectrum of
length scales that interact in a non-linear way. Hence, an accurate
prediction of all relevant phenomena in these physical systems
in engineering-scale equipment is challenging due to the inability
to directly simulate certain small-scale phenomena. One example
is dense fluid–particle flows, which are usually encountered
in many industrial processes: details of the flow around each
individual particle cannot be directly predicted, but are modeled
instead, e.g., by a drag coefficient. In addition, the simulation of
flows in engineering-scale equipment often necessitates the use
of Eulerian models on comparably coarse computational grids,
i.e., the continuum hypothesis has to be adopted, and small-scale
information is lost. Consequently, closures have to be derived
to account for a variety of phenomena, e.g., fluid–particle and
particle–particle interactions, or unresolved turbulent motion.
In order to accurately model such flow problems, a so-called
multi-scale approach is often used [1,2]. The multi-scale approach
consists in decomposing the original problem into various levels
of description, each one involving a typical range of length scales.
Then, simulations on the most detailed level (typically on the
smallest length scales) are performed to extract quantities which
can be used in coarse grained models. In a coarse-grained model,
only coarse flow structures are resolved (where ‘‘coarse’’ means
on the same order of the mesh size or larger). Transport processes
occurring at smaller scales are considered by closures, e.g., filter-
size dependent closures for scalar dispersion rates, inter-phase
exchange rates, or effective stresses. Nowadays, these closures are
often derived from simulations on a more detailed level, and not
from experimental data. This process is normally referred to as
‘‘coarse-graining’’, and has become a major trend in a variety of
scientific disciplines [3–6].

CPPPO (i.e., the ‘‘Compilation of fluid/Particle PostPrOcessing
routines’’) has been developed as a flexible library that provides a
collection of efficient algorithms to perform these coarse-graining
operations. The main purpose of CPPPO is to act as a tool for
‘‘scale-bridging’’, regardless of the effective scale range, the model
formulation, or the simulator used. CPPPO is designed to interact
with any purely Eulerian, or mixed Eulerian–Lagrangian data
set. This allows one to apply CPPPO for a number of different
scientific and engineering applications. For example, this includes
the verification of Large Eddies Simulation (LES) models based on
differential filtering [7], anisotropic filtering of flow data [8], or the
development of sub-grid stress tensors for LES. In what follows,
however, we focus on amulti-scale scenario applied to study dense
fluid–particle flows in order to outline how CPPPO can be used for
scale bridging.

At the most fundamental level, Direct Numerical Simulations
(DNS) are used to derive coefficients for heat, momentum and
mass transfer in dense particulate systems [9–14]. Typically, a
certain number of realizations for the case studied are needed
[15,16] in order to derive statistically meaningful correlations.
This approach requires to process data from large data sets in
order to compute averaged (mean) quantities (which are needed
to evaluate transfer coefficient), standard deviations, or other

statistics like the distribution of the angle between two vector
fields [17]. Also, time-averaged quantities are often used to
evaluate transport coefficients in fluid–particle systems [18]. In
case of non-equilibrium systems (like fluidized beds, in which
instabilities are system-inherent [19]), the modeling of drag and
stresses may require higher-order closures. Unfortunately, these
models are difficult to develop [20]. Another example can be found
in the field of granular materials: here the calculation of effective
transport properties requires the evaluation of filtered fields and
fluxes [14,21]. The same approach, i.e., considering statistical data
of, e.g., the velocity fluctuations, can be used on intermediate
length scales when deriving models for engineering applications.
Typically, this results in an Eulerian ‘‘grid coarsening’’ approach,
e.g., by deriving models for the sub-grid-scale fluid–particle
agitation [3]. Favre averaging of relevant fluid variables (e.g., the
fluid velocity), and fluid–particle interactions (e.g., the coupling
force) is generally adopted to derive these closures [22–24]. In
case an Euler–Lagrange approach is followed, the effect of ‘‘particle
coarsening’’ (i.e., each simulated particle is a proxy for a prescribed
number of particles named parcel) has to be taken into account as
well [23]. All these examples demonstrate that spatial averaging
operation onEulerian and Lagrangiandata sets is of key importance
for multi-scale model development nowadays.

In principle, the application of an appropriate filtering strategy
is straight forward once the fluid–particle flow simulator is
available. However, filtering of scientific data and ‘‘coarse-
graining’’ poses several challenges from the software point of view.
For example, spatio-temporal averages have to be computed across
different processors for the (typically large) filter sizes. Typically,
filter sizes to be used when filtering DNS data of fluid–particle
flows have a size of two to five particle diameters. Thus, filtering is
typically performed over 203–503 Eulerian grid cells, often located
on different processors. This requires an algorithm that can deal
with parallel communication, and that does not require mirroring
the full field information on every processor. The latter is of
course a feasible approach, however, when aiming on large-scale
simulations this would require an excessive use of RAM. At the
same time, parallel communication of local field values requires
significant network resources due to the large amount of data
to communicate. Another issue is the amount of data generated
during the simulation run: the implemented algorithms should be
able towork ‘‘on the fly’’ in order to process (i.e., time-average) data
from different time steps. Also, there should be a clear separation
(in terms of namespaces and classes) between the simulator and
the post-processing utility such that the latter can be linked to
different simulators. Finally, the library should bemodular in order
to make the addition of new features as easy as possible.

In the present work we present the library CPPPO that
addresses the above challenges.Whilemost of the existing filtering
algorithms documented in literature were developed for image
processing applications [25,26], CPPPO is able to handle three-
dimensional data sets in parallel. Specifically, CPPPO can process
data sets from complex geometries and unstructured meshes.
Another important difference with respect to image filtering is the
type of data: images just deal with a limited set of scalar quantities
represented by integers (i.e., the color intensity). In contrast,

F. Municchi et al. / Computer Physics Communications () – 3

Fig. 1. Filtering–sampling–binning loop: the structure of a typical CPPPO run.

relevant simulation results are vectorial data that is represented
by floating point values. Furthermore, CPPPO handles cell/particle
selectors separately from filtering routines to allow an easier
implementation of custom filtering kernels, and a higher flexibility
in the choice of the algorithm. In summary CPPPO features a
flexible code architecture tailored for scientific computations on
high performance clusters. The library is designed to perform three
kinds of operations on the data set:

• Filtering: Field volume averaging that can be performed on
every cell (for the Eulerian filter option) or at specific user-
defined locations (for the Lagrangian filter option). The user
can customize the kernel function (see Section 3) by adding an
arbitrary amount of weights (which have to be scalar fields) or
by modifying the kernel’s functional form.

• Sampling: This operation allows to take samples from the do-
main (results from the filtering operations may be sampled as
well) and relate each sampled value with one or more markers.
For example, CPPPO can sample a spatially-filtered fluid veloc-
ity field at every cell using the fluid phase fraction as marker.

• Binning: Data collected from sampling operations can be col-
lapsed using binning operations. The marker field values are
discretized according to the user input, and a conditional av-
eraging calculation is performed on the sampled field. This data
collapsing allows to reduce the amount of data that needs to be
written to disk in case the user is only interested in correlations
between themeans of the sampled quantities and one (ormore)
markers.

For every user-specified filter (i.e., kernel function), the library
performs these three operations in sequence (see Fig. 1). We will
refer to this loop as the FSB loop (Filtering, Sampling and Binning).

Our paper is structured as follows. In Section 2, the basic data
structure and the range of applicability of the library are discussed.
In Section 3, the basics of filtering and Favre-averaging are intro-
duced, as well as the novel divergent approach to parallel filtering
implemented in CPPPO. Available routines for statistics calcula-
tion are described in Section 4, and the sampling/binning process
is outlined. The implementation of the algorithms for cell selection
and filtering is presented in Section 5, with emphasis on the par-
allelization strategy. In Section 6 several simple test cases for code
verification are described, and in Section 7 we present a parallel
scalability analysis for CPPPO.We also present a typical application
of CPPPO in Section 8 for the evaluation of heat and mass transfer
coefficients. Finally, conclusions are summarized in Section 9.

2. Library interface to simulators

Before detailing the algorithms available in CPPPO, it is worth
describing the conditions that a simulator needs to meet in order
to be linked to CPPPO. In the following, we will also describe the
general set of data to which the algorithms can be applied.

2.1. Basic data structure

CPPPO can be coupled to simulators using finite volume, finite
difference, finite elements, spectral, lattice Boltzmannor smoothed

4 F. Municchi et al. / Computer Physics Communications () –

particle hydrodynamics methods. Thesemethods normally consist
in solving partial differential equations within a computational
domain Ωc of volume VΩc . The library requires the simulator to
provide the following data:

• A set of nodes (points) lyingwithinΩc , each one identifiedwith
a set of three spatial coordinates.

• A set of scalars representing the measure of the spatial volume
surrounding each node. Notice that, in order to correctly
calculate spatial filtered quantities, the volumes must not
overlap and their summust be equal to the total computational
volume VΩc .

• A set of scalars representing field values (e.g., pressure,
temperature, velocity components, species concentration, et
cetera) at each node.

In the following, we will refer to the entity composed of a node
and the associated volume as cell. The union of all cells is termed
as mesh and field values associated with each node are named cell
values. Mesh and cell values form the Eulerian data in CPPPO.

Notice that CPPPO does not require any information regarding
cell shape or surfaces. The topological details of Ωc or the original
mesh are not considered and a cell is considered to lie within a
certain region if its node is included in that region. Thus, filtering
operations are affected by errors due to: (i) cell shape (or cell
quality) and (ii) the ratio between cell size and filter size. However,
this is not really an issue since (i) is generally controlled in the
simulator in order to reduce numerical errors in the computation
(before running CPPPO) and (ii) should always be low due to
cell shape regularity required in (i) and the fact that filtering
volumes are often much larger than smallest field structures
(which normally require lumped nodes and thus, small cells, to be
sufficiently resolved).

Additionally, the user can provide a set of Lagrangian (particle)
data which may represent particle clouds or sampling probes.
While probes are just defined by their position in Ωc , particle
clouds can be defined with several more properties (like particle
diameter, velocity, torque, forcing terms, and scalars) which can be
passed to CPPPO directly from the simulator. These properties can
be used, for example, to calculate inter-phase transfer coefficients
‘‘on-the-fly’’.

Further information ondata structure canbe found in theCPPPO
documentation.

2.2. General linking architecture

CPPPO has his own way of handling field, mesh and particle
data which, in general, does not have to conform to any particular
simulation software. In order to exchange data between CPPPO
and a simulator, an interface library is required. The interface
library is specific for every simulator, and it will typically rely
on the simulator’s classes and namespaces. CPPPO comes with an
interface library for OpenFOAM R⃝.

The role of the interface library is to get pointers to memory
locations of all relevant data fields (e.g., holding mesh and particle
information), and pass them to the core library in an appropriate
format. For example, vector fields require pointers to the array of
doubles containing each component. Similarly, for the mesh data
pointers to coordinates and volumes of every cell are transferred.
Some simulators store all the components of a vector or all the
mesh point coordinates in just one array, one example of which
is OpenFOAM R⃝. CPPPO allows to specify a displacement between
the component values (for example a displacement of 3 for three
dimensional data) in order to automatically take into account this
data structure. In addition, the interface library allocates space for
the filtered fields (i.e., those fields that store the result of filtering
operations) and registers them (i.e., pass the required pointers)

Fig. 2. Flow of information from the simulator to the interface and, finally, to the
CPPPO core library.

into the CPPPO core library. Thus, the interface library performs
additional storage operations using the simulator namespace. In
this way, the resulting filtered fields can be saved and used in the
simulator format, which positively contributes to the usability of
CPPPO.

The CPPPO core library performs filtering, sampling and binning
operations using the memory allocated by the interface library
and the simulator. The core library allocates heap memory for the
filtering operations. For example every Eulerian filtering operation
(i.e., where a filter is centered at every cell’s center) requires an
array of doubles with size equal to the number of cells to store
intermediate values (see Section 3 for details). This data flow is
summarized in Fig. 2.

2.3. Parallel data handling

The CPPPO core library represents the domain as a set of nodes
which, in the case of the OpenFOAM R⃝ interface, correspond to the
cell centers. CPPPO ignores the cell shape, but requires the interface
to provide cell volumes. When a filtering or searching operation is
performed, the cells with the closest cell center are selected.

CPPPO is designed for applications holdingparallel-decomposed
data (i.e., a physical domain is subdivided into smaller subdomains)
where the domain subdivision is made of boxes whose faces are
perpendicular to the corresponding Cartesian axis. This is an im-
portant requirement since it ensures that CPPPO exactly knows the
position of every processor boundary. Every box can contain a dif-
ferent number of cells, or have different size in any direction. How-
ever, in order to keep a high parallel efficiency, it is recommended
to keep the same number of cells for every processor.

CPPPO is parallelized using MPI [27], and can be run in parallel
with any simulator that splits the computational domain in several
box-shaped subdomains. Since CPPPO is designed for spatial
filtering, data should be decomposed according to their position
in space. This is true in almost the totality of currently available
simulators for CFD either using a finite volume approach (e.g.,
OpenFOAM R⃝, ANSYS FLUENT R⃝, Code_Saturne R⃝, STAR-CCM+ R⃝,

F. Municchi et al. / Computer Physics Communications () – 5

AVL FIRE R⃝, etc.) or not (e.g., Palabos R⃝, Nektar++ R⃝, Nek5000 R⃝,
etc.).

CPPPO requires each process to have its memory address space.
Thus, simulators which rely on a GPU hardware architecture, or
OpenMPmay not be suitable for linking with CPPPO at the current
stage. Also, RMA (remote memory access), and MPI one-sided
communications in general, will most likely create problems in
case of passive synchronization. This is because a processor would
have to call MPI_Lock to himself in order to access local data
inside anMPIwindow. In summary, we recommend careful testing
of the interface routines when using CPPPO in connection with
simulators that rely on RMA or one-sided communication. For the
standard interface (to OpenFOAM R⃝) we only require that:

• The global domain is decomposed in box-shaped subdomains,
• Each process holds only one subdomain, and that
• Accessibility of local data is ensured.

In case a user wants to link CPPPO to a software that
does not meet the above requirements, a more careful design
of the interface library is necessary. For example, we have
implemented an interface to CSV data files that performs the
domain decomposition, and does not require the input file to be
already decomposed in parallel. Also, the above mentioned issue
with not accessible local data can be circumvented by copying the
shared data in separate arrays, thus creating a compact addresses
set for the whole subdomain. We next detail on some practical
aspects when implementing such a new interface library.

2.4. Coding an interface library

In case the user wants to link CPPPO with a software, he/she
will have to use the existing OpenFOAM R⃝ or CSV interfacemodule,
or code a new interface library. For the latter, the OpenFOAM R⃝

interface library is a good template. In the following, we will
refer to this library to illustrate the main steps needed to code an
interface library.

Remember that all the functions that are called in an interface
module are summarized in core/c3po.h.

• An interface should create an instance of the c3po class.
• An interface should be able to access pointers to mesh data

and pass them to CPPPO, which then uses them to calculate
and communicate other required quantities. An example can
be found in the file interface_OF/mesh_check.C. Notice that the
OpenFOAM R⃝ interface provides a public function that can be
called in the simulator. This is done to track the evolution
of dynamic meshes and ensure that pointers handed over to
CPPPO are always valid.

• An interface should possess a run function which (i) registers
(i.e., handles relevant pointers to) the required fields in CPPPO
according to their data format, and (ii) starts the FSB loop of
CPPPO. The interface_OF/c3po_OF_interface.C file provides an
example therefore.

• During the FSB loop, the interface should be able to allocate
heap memory for the required fields (e.g., filtered fields), and
delete them when necessary. Note that CPPPO will already
provide suitable names to label these new fields.

In general, the amount of time required to code a new interface
can vary significantly with the architecture of the simulation
software and the programmer’s skills. Thus, it is useful to first
study the architecture of the simulator andCPPPO, e.g., by using the
training material available at http://www.tugraz.at/en/institute/
ippt/downloads-software/.

3. Spatial filtering

Spatial filtering can be considered as a subset of the general
operation [28]:

φ (x, t) =

K

x − x′, t − t ′

φ

x′, t ′

dx′dt ′ (1)

where φ is a generic field, K is the kernel function, and the
integration is performedover thewhole space and timedomain. An
important property of the kernel function is normalization, thus:

K

x − x′, t − t ′

dx′dt ′ = 1. (2)

CPPPOwill automatically normalize your kernel function. In the
case of spatial filtering, the kernel function is expressed as:

K

x − x′, t − t ′

= K

x − x′

δ

t − t ′

. (3)

Thus, the argument is integrated over space only:

φ (x, t) =

K

x − x′

φ

x′, t

dx′. (4)

The corresponding fluctuating field φ′′ is defined as:

φ′′ (x, t) = φ (x, t) − φ (x, t) . (5)

CPPPO solves Eq. (4) at every cell center x, or alternatively at
predefined positions r. The kernel used in this study is the top-hat
kernel:

K

x − x′

=

i

H

∆i
2 − |xi − x′

i|

∆i
(6)

where ∆i is the filter size in the ith direction of a Cartesian
coordinate system and H is the Heaviside function. CPPPO also
features a top-hat kernel in a spherical coordinate system. It has
to be noticed that this kernel, while acting as a sharp cut-off in the
physical space, features a smooth cut-off in the spectral space [29],
resulting in a wave number overlap between φ and φ′′.

3.1. Favre filtering

The Favre averaging technique [30,31] consists in a decomposi-
tion of the flow field variables in terms of density-weighted vari-
ables:

φ =
ρφ

ρ
. (7)

Favre averaging is often used formultiphase flows to derive filtered
transport equations, and to decouple the phase fraction from the
flowvariables. In addition, variance and covariance calculations are
of major importance to evaluate the components of the SGS (Sub
Grid Scale) stress tensor, or SGS fluxes. CPPPO is able to perform
Favre averaging and Favre variance and covariance calculation for
every cell inside the domain, or at specific user-defined positions.
To illustrate the equivalence between the variance (or covariance)
and the components of the SGS stress tensor, we consider the
definition of the latter as:

τ
sgs
ij = uiuj − uiuj. (8)

Here ui is the velocity of in the spatial direction i. For example, the
diagonal elements of the tensor shown in Eq. (8) can be obtained

http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/

6 F. Municchi et al. / Computer Physics Communications () –

from the Favre variance as follows:

Var(ui(x)) =

G(x′

− x)

ui(x′) − ui(x)

2 dx′

=

G(x′

− x)u2
i (x

′)dx′
+ ui

2(x)

− 2ui(x)

G(x′
− x)ui(x′)dx′

= uiui − uiui = τ
sgs
ii (9)

where G(x′
− x) is a function representing the top-Hat kernel and

the Favre averaging operation. The other components of τ
sgs
ij can

be calculated in a similar manner using the Favre covariances. The
same approach applies to evaluate SGS fluxes. Notice that CPPPO
allows the user to define an arbitrary number of weighting fields
for the kernel function, and hence offers the freedom to compute
filtered quantities for virtually any application.

3.2. Convergent and divergent filtering algorithm

Since the calculation of filtered quantities implies long range
interactions, processor communication has to be taken into
account when designing an algorithm to numerically solve Eq. (4).
In case Eq. (4) is projected into the discrete space (and when
considering a top-Hat kernel), it can be written as:

φi =

j=Nf
j=0

vjφj

Vf
(10)

where the sum is over all Nf cells inside the filter region, vi is
the volume of the ith cell, and Vf is the total filter volume. The
extension of the above equation to Favre averaging or arbitrary
weighted averaging is obvious. The above calculation has to be
performed for every cell i in order to compute a complete field
of the filtered quantity. Considering Eq. (10) it is clear that, before
the calculation can start, it is necessary to evaluate which cells are
inside the filter.

The approach described by Eq. (10) is what we call the conver-
gent approach for filtering. This is because, after the list of cells
inside the filter is assembled, data from the neighboring cells is
passed to the location where the filter is centered. This approach
requires (for every location to filter) Nf − 1 summation and mul-
tiplication operations, and one division operation. The amount
of multiplication operations could be reduced in case the multi-
plied field values are stored and then communicated. However,
this would require additional memory. Also, communication of the
cell list and values with other processors has to be performed. As
shown in Fig. 3 (left panel), the convergent approach requires the
communication of every required cell data owned by another pro-
cessor. In our case three values need to be transferred from pro-
cessor 2 to processor 1. The convergent approach is the most basic
approach for spatial filtering, and most of the available filtering al-
gorithms used for image processing are based on it.

In order to reduce the computational load and enhance parallel
efficiency, we developed a novel approach named the divergent
approach. The divergent algorithm does not evaluate the filtered
value at any position sequentially, but updates the filtered fields at
every step, and ends with a final division step. Specifically, every
step consists of:

(i) Selecting a cell from the computational domain.
(ii) Creating a list of cells located in the region to be filtered

around the selected cell.

(iii) Multiplying the field value at the selected cell with the
requiredweight (i.e., cell volume ormass density). Note, when
the filter size tends to the domain size only one cell value
needs to be stored and communicated instead of having to
allocate and communicate the whole field.

(iv) Communicating and adding the multiplied field values to all
cells inside the cell list

The loop has to be repeated for every cell inside the domain. At
the end, one last step is needed to divide the values of filtered
fields by the filter volume (or by the summed weights in case of
Favre averaging). This approach requires (for every cell) Nf − 1
additions, but only one multiplication. The number of divisions
in the final step equals the total number of cells. Overall, less
multiplication operations are required in the divergent approach
compared to a convergent approach (without allocating memory
for the multiplied fields as explained above). Most important, the
key advantage of the divergent algorithm over the convergent
algorithm is the amount of data that needs to be communicated.
As shown in Fig. 3 (right panel), in the divergent algorithm
the direction of communication is reversed, and just the field
value at the current cell needs to be communicated once. The
communicated value is then processed locally on the relevant
processor (in our case processor 2), which does not involve any
communication overhead any more.

It should be clear that the computational bottleneck for these
kinds of algorithms is not the number of standard operations, but
the number of MPI operations. While image filtering algorithms
tend toward a reduction in the number of standard operations,
the algorithms implemented in CPPPO have the reduction of the
number of MPI operations as the main goal. Since field and mesh
data can be very large in terms of the consumed memory, it
is often not feasible to rely on massive data copying and thus,
processor communications are rather frequent. The number ofMPI
communications in CPPPO can be of the same order of magnitude
as the mesh size. More details on the parallel implementation will
be given in Section 5.

There are several differences between CPPPO, and other tools
for averaging like those provided in OpenFOAM R⃝ (or sub-modules
such as swak4Foam [32]). These modules can just calculate
averages over lines, faces and volumes using predefined lists
(so-called ‘‘sets’’). They cannot average at every cell, and cannot
average around several moving Lagrangian objects (even if it could
be possible to program the required utility). Also, OpenFOAM R⃝

does not feature a divergent algorithm to compute averages and
variances. In general, other filtering utilities are based on the
convergent algorithm, or on the improved convergent algorithm
we describe in Section 5.

4. CPPPO statistics routines

CPPPO features a collection of sampling routines which allow
to relate fields (named sampled fields in CPPPO) with other
fields (named markers in CPPPO). The sampling utility will draw
samples of the specified quantities of interest (according to the
functions described in Section 4.1) at user-defined locations, or
alternatively over the whole domain. Every sample will contain
values of sampled fields and markers. Sampled fields are then
binned according to the related markers following user-defined
settings for discretization of the binning process. Every time a
value is added to a bin, CPPPO will automatically update the mean
value and variance related to that bin using a running statistics
approach [33]. Therefore, CPPPOwill also keep track of the number
of values added to every bin. Following this procedure, a large data-
set is reduced to a multidimensional array, in which each element
contains a (conditional) average and variance with respect to the

F. Municchi et al. / Computer Physics Communications () – 7

Fig. 3. Convergent approach (left) and divergent approach (right) for filtering. Continuous arrows represent intra-processor operations while dashed arrows indicate data
exchange between processors. Processor domains are identifiedwith the owner color, red cells represent the current cell to be filtered. Dots represent cell centers involved in
local data operations (black) and parallel data operations (purple). In the picture Ncells is the total number of cells per processor (for simplicity we consider the same number
Ncells in each processor) and Nf is the number of cells within the region to be filtered. In the divergent approach, field values at cell A are spread to the neighboring cells while
the opposite occurs in the convergent algorithm. The divergent algorithm also requires the communication of less data. (For interpretation of the references to color in this
figure legend, the reader is referred to the web version of this article.)

markers of the sampled fields. This multidimensional array is then
written to disk in the formof one dimensional arrays. CPPPO allows
to create new files (and thus, new statistics) at every time step,
or to update the current files and statistics in order to collect a
single (time-averaged) data set. This sampling/binning procedure
has been developed to perform automatic correlation of quantities
of interest during, or after a simulation run. In such a way, a user
can quickly assess whether a simulation needs to be run longer, or
can be aborted to save computational resources.

4.1. Available sampling operations

At the current state, the available sampling routines are:

• General sampling: This routine draws samples over the whole
domain, or just a portion of it. sampled fields and markers are
defined by the user. Also, General sampling allows the use of
a formula parser implemented in CPPPO to draw samples of
quantities which are not explicitly calculated in the simulator.

• Angle vector–vector: This routine can sample vector fields using
the angle between the original and a second vector field as
marker.

• Two point correlation: This routine will sample the value of the
trace of the two point velocity correlation.

5. Parallel implementation

CPPPO has been designed to (i) maximize the speed of data
averaging calculations, and (ii) to provide a flexible architecture
for the future addition of new models and algorithms. For this
reason, a separation between cell selectors and filters was needed.
Despite performance could possibly be affected by this approach
in a negative way, the philosophy behind CPPPO is to allow
the user to code new filters without implementing a new cell
selector. As we will discuss in the following, however, new
algorithms have been developed in order to increase performance
and minimize the number of parallel communications and the
amount of communicated data.

A CPPPO run is initialized via the interface class which allocates
memory for filtered fields. For every user-defined filter operation,

the interface class can trigger an FSB loop. All these operations are
encapsulated in the CPPPO core library. Note that filtered fields,
while always available in the interface class, are mapped in the
core library only once (and not for each filter, or filter size). Thus,
fields created for a certain filter are not available when running
CPPPO for another filter. This requires the interface and the core
library to run at two different levels: while the interface class has
pointers to quantities used over thewhole run, CPPPO’s core library
has pointers to relevant quantities only for the current filter (with
the exception of mesh data and source fields data). This allows an
easier and more intuitive use of pointers in the core library when
accessing filtered field data.

Parallel communication in CPPPO mainly relies on collective
MPI operations, since most of the time all processors have to
synchronize during the calculations. These MPI routines have
shown excellent performance in many applications [34,35] on
HPC hardware. The load partitioning is mainly a function of the
domain decomposition, and the distribution of sampling locations,
so that it is mostly user dependent. This is particularly true when
using Lagrangian filtering operations (i.e., filtering is performed
at pre-defined probing positions). This is because the user affects
directly the processor load in such a situation. For example, in
case all probes are positioned in a sub-domain belonging to the
same processor, the calculationwould be slow. Thus, all operations
would be focused on just one processor.

In the following we will discuss the implementation of parallel
selectors and filters in CPPPO.

5.1. Parallel selectors

At the current state CPPPO features two parallel cell selectors:
general unstructured and IJK structured. The former can deal with
any unstructured mesh, while the latter is designed for structured
meshes whose cells are equal of size. Both selectors have a similar
structure that can be summarized as follows:

(i) Evaluate the position of the current cell (or probe location) to
filter.

(ii) Communicate this position to all the other processors.

8 F. Municchi et al. / Computer Physics Communications () –

(iii) For every position, calculate the filter size (according to the
boundary conditions) and create a list of cells that reside
within the filter. For every cell added, update the total filter
volume (this volume calculation allows to deal with complex
cell shapes).

(iv) Communicate the filter volume to all the other processors
(optional, since the total volume is generally not necessary).

This algorithm does not calculate the complete cell list for a
single cell or probe location, but every processor calculates the cell
lists corresponding to the fraction of every filter residing within its
boundary. The above algorithm has been used to optimize the run
time of divergent and convergent filtering operations. A workflow
which illustrates themain steps in the selecting operation is shown
in Fig. 4.

CPPPO selectors also take periodic boundary conditions into
account. In addition, and in case the processor sub domain is
entirely inside the filter, all its cells are automatically added
to a list with no further operations. Both parallel selectors that
are currently implemented require one collective MPI operation,
during which every processor communicates the coordinates of
its currently filtered cell (i.e., in total 3np doubles where np is the
number of processors).

The structured IJK selector takes advantage of the possibility to
define a coordinate system using the grid axis. Thus, a one-to-one
correspondence between the cell id and a location in the Cartesian
reference frame can be obtained. In order to do that, we express
the new cell center coordinates ζi in the form:

ζi =
ci − δi/2

δi
(11)

where ci is the non-IJK cell center coordinate and δi is the cell size
in the ith spatial direction. This coordinate transformation allows
us to immediately evaluate the cells inside a region and their id,
consequently speeding up the calculation.

In contrast, the more general unstructured selector loops over
all the cells in the processor subdomain and checks, for every cell,
if its center lies within the filter region. Despite the fact that this
algorithm is expensive in terms of computational time, it can deal
with arbitrarily-shaped computationalmeshes. The latter are often
used in engineering applications, and are also considered in the
showcase detailed in Section 8.

5.2. Parallel filters

At the current state CPPPO features a top-Hat kernel filtering
operation that can be run in Eulerian or Lagrangian mode
depending if the filtering has to occur for every cell or at specific
Lagrangian points. Since filtering operations are repeated for each
cell/probe (see Fig. 4), in the followingwewill consider the parallel
communications required to filter at just one location (Lagrangian
mode) or one cell (Eulerian mode).

The Eulerian mode uses the divergent algorithm to update the
filtered fields, and can be summarized as follows:

(i) Calculate weighted fields for the cell at the current step.
Weights are defined by the user.

(ii) Communicate the values of weighted fields to the neighboring
processors.

(iii) Update the filtered field.

Using this algorithm, just one MPI_Allgather operation is
needed, and every processor exchanges a number of values equal to
the total number of fields to filter. Clearly, in case vector fields are
filtered, each spatial component has to be considered as a separate
field when calculating the size of communicated data.

The Lagrangian mode uses an improved convergent algorithm,
which can be summarized as follows:

(i) Calculate the locally-filtered value for the selected cell.
(ii) Communicate these filtered values, and calculate the final

filtered value accounting for the locally-filtered values from all
neighboring processors.

In the improved convergent algorithm, every processor instead
of communicating the whole list of cell values, performs a
local filtering calculation (i.e., performs the averaging using only
the cells it owns). Thus, only locally-filtered values need to be
communicated (see left panel in Fig. 5). This greatly reduces the
number of communicated data. However, still this algorithm is less
efficient than the divergent algorithm (see right panel in Fig. 5).
In fact, the divergent algorithm requires the communication of
just nf + 1 values per processor (where nf is the number of
fields to filter and the additional one is the weight). In contrast,
the improved convergent algorithm, requires the communication
of np(nf + 1) values per processor (where np is the number of
processors). This is due to the direction of the data flow which, in
the convergent algorithm, points from the neighboring processors
to the central one as shown in Fig. 3, and not vice versa. In
this context, the term central refers to the processor owning the
cell to be filtered. However, since the algorithm is running in
parallel, np cells are filtered at the same time and thus, every
processor represents the central processor with respect to the
cell it owns. This means that the convergent approach requires
the communication of, at least, 2np values so that the parallel
efficiencywill inevitably decreasewith increasing number of cores.
The variance calculation is another weak point of the improved
convergent approach (even over the classic convergent algorithm).
In fact, since the variance calculation requires the information on
the filtered value (and not the partially-filtered value), additional
communication is required to make filtered values available to
every processor. In principle, the variance calculation follows an
approach similar to the averaging step (i.e., partial variances are
computed). This results in np(2nf + 1) data to be communicated
(this calculation includes communication of the locally-computed
variances). Clearly, the original convergent algorithm does not
have this issue, since all the required values become available at
the central processor after the first (and only) communication step.
However, for the improved convergent algorithm, the number of
communicated data scales linearly with np, while for the original
convergent algorithm, this quantity is difficult to evaluate since
each processor would need to communicate a different number
of elements. That would require the use of less efficient collective
operations like MPI_Allgatherv. Anyhow, the number of cells
in the mesh is typically several orders of magnitude larger than np.
Also, the filter size is, for the majority of applications, of the order
of 10−1 times the domain length. Hence, we can conclude that,
for almost any application, the number of exchanged data in the
original convergent approach is much larger than in the improved
convergent approach.

In contrast to the improved convergent algorithm, the divergent
algorithm only requires the communication of nf + 1 doubles,
regardless of the fact whether variance calculation is performed or
not. In terms of MPI collective operations, both algorithms require
one operation per filtered cell for averaging. In case the variance is
also computed, the convergent algorithm requires two additional
MPI operations per cell.

6. Test calculations

The accuracy of CPPPO was tested by considering two well-
known problems of fluid dynamics: Stokes flow and irrotational
(i.e., potential) flow around a sphere. The main objective of these
tests is to evaluate the accuracy of the parallel filter routines, and to
illustrate the dependency of the results on the grid size. Therefore,

F. Municchi et al. / Computer Physics Communications () – 9

Fig. 4. Workflow illustrating the selector algorithm within the filtering loop. max_cell_id is the total number of cells on the processor. In case the filtering is carried over
a set of probes, max_cell_id represents the number of probes on the processor.

Fig. 5. Workflow for the convergent (left panel) and the newly proposed di-
vergent algorithm (right panel). The convergent algorithm requires an addi-
tional MPI_Allreduce operation to calculate the variance. In addition, every
MPI_Allreduce requires the exchange of more data than the MPI_Allgather.

we compared CPPPO results with analytical solutions of filtered
quantities at the particle center. Recalling the analytical solution
for Stokes flow (i.e., zero Reynolds number) around a sphere [36],
and when considering the velocity component in the stream-wise

(i.e., x-) direction, the flow field is described by:

ux = U∞

cos2 θ

1 +

R3

2r3
−

3R
2r

+ sin2 θ

1 −

R3

4r3
−

3R
4r

. (12)

Here θ and r describe the polar and radial positions in a
spherical coordinate system (the solution is symmetric with
respect to the azimuthal coordinate). U∞ is the flow velocity far
from the particle, and R is the particle radius. The corresponding
solution for irrotational flow (i.e., a flow characterized by an
infinitely large Reynolds number) past a sphere is:

ux = U∞

cos2 θ

1 −

R3

r3

+ sin2 θ

1 +

R3

2r3

. (13)

We now consider a spherical filter, and define a dimensionless
filter size as:

ρ =
Rf

R
(14)

where Rf is the filter radius. Integration of Eqs. (12) and (13)
to obtain the mean and variance of the stream-wise velocity
component leads to:

ux|Stokes =

2 ρ2

− ρ − 1

U∞

2

ρ2 + ρ + 1

 (15)

τ sgs
xx |Stokes =

18 ρ5

− 32ρ4
+ 14 ρ3

− 3ρ2
+ 2 ρ + 1

U2

∞
4 ρ4 + 8 ρ3 + 12 ρ2 + 8 ρ + 4

5 ρ3

(16)

ux|Irr = U∞ (17)

τ sgs
xx |Irr =

U2
∞

5ρ3
. (18)

10 F. Municchi et al. / Computer Physics Communications () –

Fig. 6. Comparison between CPPPO’s Lagrangian and Eulerian filtering tools with analytical results for the filtered quantities at the particle center. Results for the Favre
average are shown in panel (a), while in panel (b) the Favre variance was calculated. The average velocity is normalized with the ’far field’ velocity U∞ , while the variance
with U2

∞
.

Table 1
Computed relative error for Stokes and potential flow test cases.

Case Operation Average relative error

Stokes Eulerian Average 0.004877
Stokes Lagrangian Average 0.002028
Potential Eulerian Average Below machine precision
Potential Lagrangian Average Below machine precision
Stokes Eulerian Variance 0.006865
Stokes Lagrangian Variance 0.003445
Potential Eulerian Variance 0.011906
Potential Lagrangian Variance 0.017841

The solutions in Eqs. (15)–(18) provide a set of cases to verify
the filtering routines of CPPPO for the situation of a top-Hat filter
kernel in spherical coordinates. However, Stokes and potential
flows are not easily reproduced with standard CFD solvers unless
the convective (or the viscous) term is removed from the equation.
Even the use of specific solvers like potentialFOAM could induce
some errors due to the discrete representation of the particle
by an Eulerian mesh, or the finite size of the bounding walls.
As a consequence, we preferred to impose the flow field rather
than solving the governing equations with a CFD solver. The
two newly implemented applications that impose the Stokes and
the irrotational flow field are stokesFilter and irrotationalFilter,
respectively. Two computational grids of 100 × 100 × 100 and
160 × 160 × 160 cells were used to evaluate the flow field. These
resolutions resulted in a negligible effect of themesh resolution on
both the results for themean and the variance. Test cases were run
using 128 processes in order to assess the accuracy and speed of
the parallel computation.

Results displayed in Fig. 6 show that CPPPO is able to correctly
calculate the Favre average of a field both with Lagrangian and
Eulerian filtering routines. Table 1 shows that the average relative
error remains smaller than 1.7%, and that the variance may
experience larger errors compared to the average.

The deviations between Lagrangian and Eulerian results can be
explained considering that the two algorithms perform different
algebraical operations and, thus, are subjected to different round-
off errors.

In order to assess the runtime filtering routines, a low Reynolds
number flow past a sphere was simulated using a computational
grid of 120×120×120 cells, and a computational domain of 10dp×
10dp × 10dp. CPPPO was linked to OpenFOAM R⃝’s pisoFoam solver,
and the simulation was run until a steady-state was obtained.

The results show that there is a difference in the values
of the Favre averaged velocity field calculated by CPPPO with
respect to the analytical results. This discrepancy is due to the
incorrect velocity field computed by the solver as shown in Fig. 7.

Specifically, this is caused by the finite domain size, as can be
seen by the stronger deviations with increasing distance from the
particle surface.

7. Parallel scalability and performance

In this section, we analyze the parallel scalability and perfor-
mance of CPPPO. In particular, we compare the performance of the
divergent and convergent algorithm, as well as the performance of
the unstructured and IJK cell selector. Different metrics were used
in order to quantitatively establish the performance of every algo-
rithm, and to assess their preferred field of use.

Since CPPPO makes extensive use of MPI collective operations,
individual processes are forced to synchronize often. This will
result in acceptable parallel performance in case the load balance is
uniform. However, the total time each processor takes to complete
a certain task is subject to some fluctuations that are different for
every run. For this reason, the average time τp (where p is the
number of processes) and the time variance σp are used as main
performance metrics in the following. Specifically, these metrics
are defined as:

τp =

p
n=1

tp,n

p
(19)

σp =

 p
n=1

tp,n − τp

2
p

(20)

where tp,n is the time needed by process n to complete a certain
task in case a total of p processes are used for the computation.
In the following we refer to τp|k as the average time taken by
subroutine k when p processors are used. It should be noted that
the wall time is max(tp,n). Furthermore, the standard deviation
was, in general, observed to be small compared to the average time
due to the frequentMPI barriers used for synchronization. Thus, σp
is not discussed in further detail below.

The strong parallel efficiency is defined as:

ηs =
τ1

pτp
. (21)

In this study, we also define an advantage factor αk
n to quantify

the advantage, in terms of computational time, of using the
subroutine n instead of the subroutine k. The advantage factor is
then defined as:

αk
n =

τp|k

τp|n
. (22)

F. Municchi et al. / Computer Physics Communications () – 11

Fig. 7. Normalized Favre average (panel (a)) and variance (panel (b)) of the velocity
field based on a simulation using OpenFOAM R⃝ ’s pisoFoam solver. Fig. 7(c) shows
the calculated velocity profile along the span-wise direction, i.e., θ = π , and the
corresponding analytical solution.

Table 2
Test cases for the parallel scalability analysis.

Filtering algorithm Selector Mesh size (cells)

Divergent Unstructured 1 × 106

Divergent Unstructured 2 × 106

Divergent Unstructured 4 × 106

Divergent IJK 1 × 106

Divergent IJK 2 × 106

Divergent IJK 4 × 106

Convergent IJK 1 × 106

Convergent IJK 2 × 106

Convergent IJK 4 × 106

In particular, wewill evaluate the advantage factor of the diver-
gent filtering over the convergent filtering (αc

d) and the advantage
factor of the IJK selector over the unstructured selector (αu

i).

In order to assess the parallel performance of the implemented
algorithms,we run the stokesFilter test case introduced in Section 6
in order to evaluate the Favre averaged velocity field for every cell
in the domain using a box filter. The filter size was approximately
one quarter of the domain length in every direction. Nine test
cases were run in total, using different routines and mesh size as
reported in Table 2.

Fig. 8 shows average time and strong efficiency from the
studied cases. It can be seen that the unstructured selector requires
significantly more time compared to the IJK selector. However, the
unstructured selector shows a far better parallel efficiency. Thus,
the IJK selector shows significant advantages with respect to the
unstructured selector in case the number of cores is small (e.g.,
when using a local workstation).

This fact is well represented by the advantage factors displayed
in Fig. 9. When 128 cores are used, the IJK selector provides no
more significant advantages in terms of computational time and
αu
i drops below unity. Fig. 9(a) shows that αd

c is very close to unity
when one processor is used, but increases rapidly with the number
of cores. However, the effect on the total time is only moderate
(see Fig. 8), since filtering operations are generally faster than
selector operations. In summary, a divergent filtering approach
and (surprisingly) an unstructured selector seem to be the optimal
combination for a large number of cores.

Finally, the Vienna Scientific Cluster VSC-3 was used to test the
library up to 1024 cores. The results generally showed a higher per-
formance of VSC-3 with respect to TU Graz’ dcluster (see Fig. 10).
However, the parallel scalability was very similar to dcluster,
showing the expected drop in performance for the smaller case
involving 106 grid cells and when using less than approximately
4 103 grid cells per core. In summary, our benchmark calculations
on VSC-3 confirmed the previously described excellent scalability
of CPPPO.

8. Heat transfer in a dense particle bed

8.1. Transport in dense particle beds

Particle-resolved direct numerical simulations (PR-DNS) of flow
through dense particle beds have become key instruments to de-
velop closures for predicting momentum, heat and mass trans-
fer rates in these systems [15,37]. Typically, these simulations
require extremely large computational grids (with O(107) cells) to
resolve regions with large velocity, concentration, or temperature
gradients. Furthermore, a large number of realizations (e.g., par-
ticle configurations in a channel) are needed to represent reality
reasonably well. This naturally leads to large data sets, asking for
on-the-fly data filtering and an automation of the post-processing
workflow. In the following, we will show that such a workflow
can be carried out efficiently and in a fully-automated fashion us-
ing CPPPO. Specifically, we study a situation similar to the one
considered by [38,39], and limit our attention to the prediction of
flow and a single inert scalar.

8.2. Governing equations and numerical solution

The open source library OpenFOAM R⃝ is used in order to solve
the incompressiblemomentum transport equations, the continuity
equation and the transport equation of an inert scalar. These
equations can be re-written in their dimensionless form using the
Einstein notation to arrive at:
∂ui

∂xi
= 0 (23a)

∂ui

∂t
+

∂

ujui

∂xj

= −
∂p
∂xi

+
1
Rep

∂2ui

∂xj∂xj
(23b)

12 F. Municchi et al. / Computer Physics Communications () –

Fig. 8. Average computation time and strong parallel efficiency for the divergent filtering approachwith unstructured selector (panels (a) and (b)), as well as the IJK selector
(panels (c) and (d)). Panels (e) and (f) show average time and strong parallel efficiency for the convergent filtering approach with the IJK selector.

Fig. 9. Advantage factor of the divergent filtering approach over the convergent filtering approach (panel (a)), as well as advantage factor of the IJK selector over the
unstructured selector (panel (b)).

F. Municchi et al. / Computer Physics Communications () – 13

Fig. 10. Average time for the divergent filtering algorithm utilizing an unstructured grid selector on the VSC-3 cluster (panel (a)), as well as strong parallel efficiency (b).

∂φ

∂t
+

∂ (uiφ)

∂xi
=

1
Pe

∂2φ

∂xi∂xi
(23c)

where u is the velocity field, p is the pressure and φ is the scalar
field. The scalar transport equation canmodel heat ormass transfer
without additional source terms, e.g., due to chemical reactions.
The relevant dimensionless group is therefore represented by the
Peclet number Pe and the particle Reynolds number Rep:

Rep =
Udp
ν

(24a)

Pe =
Udp
Γ

(24b)

where U is a typical flow speed (i.e., the superficial fluid velocity),
dp is the particle diameter, ν is the fluid kinematic viscosity, and Γ

is the scalar’s diffusion coefficient. For the present simulation we
choose Rep = 10 and Pe = 20. The equations were discretized
using second order discretization schemes, and the PISO algorithm
was adopted to solve the pressure equation.

The computational domain is a cylinder of radius 3dp and a
length of 16dp. A fixed particle bedhaving a void fraction of approx-
imately 0.2 (involving 130 particles) was generated using the soft-
sphere particle motion simulator LIGGGHTS R⃝ [40]. A body-fitted
unstructured mesh was generated using the snappyHexMesh tool
available in OpenFOAM R⃝. Since constant velocity and zero gradi-
ent boundary conditions were used at the inlet and outlet surfaces,
the particle bed was positioned between x = 2dp and x = 14dp
in the cylinder’s axial (i.e., x-) direction to reduce the effect of the
above mentioned boundary conditions on the results. A no-slip
boundary condition for the velocity field was imposed at the cylin-
der’s and at the particles’ surface. For the scalar field we imposed a
zero gradient boundary condition at the cylinder wall, and a fixed
value boundary condition at the particles’ surface.

The final mesh consisted of approximately 7 million cells and
featured a local grid refinement at the particles surface. The
simulation was run until a steady-state solution was obtained.

8.3. Results and CPPPO post-processing

The casewas run and post-processed using theVienna Scientific
Cluster (VSC-3). The computational domain was decomposed
using 128 cores, and the execution of CPPPO’s routines required
approximately 1.5% of the total calculation time (i.e., 7.5 min out
of 8.55 h). CPPPO applied four box filters of different lengths df
to all the cells and the particles in the domain. In addition, the
CPPPO general sampling utilitywas used to evaluate the probability
distribution function of the filtered velocity field in the region
between x = 4.5dp and x = 12.5dp.

3.2

0

0.7

1.4

2.1

2.8

1

0.5

0

Fig. 11. Flow through a particle bed in a cylindrical channel: (unfiltered) velocity
field in the axial direction (left panel), aswell as scalar field (right panel;φp = 0.20).

The resulting unfiltered fields are shown in Fig. 11. For every
particle, a filter-size dependent bulk scalar field was defined:

φb(df) =

Vf

uxφdV
Vf

uxdV
(25)

where the filter volume Vf spans the region between the particle’s
surface and the filter radius. These quantities are calculated
by CPPPO, and subsequently used to calculate a particle-based
Sherwood number:

Shp = Pe
qs,fp

1 − φb
. (26)

Here qs,fp is the dimensionless solid–fluid scalar flux for particle
p, which is defined as:

qs,fp =
1

Sp Pe

Sp

∂φ

∂n
dS. (27)

Values of Shp as a function of the axial position are shown in
Fig. 12(a). The figure only displays values of Shp < 20, since
some particles experience extremely small differences of the scalar
quantity, i.e., 1−φb, and hencewould result in unrealistically large
Shp values. However, Table 3 shows that most of the particles have
a particle-based Sherwood number that is smaller than 20. Note,
that the use of data from multiple realizations could reduce the
standard deviation and result in a constant Shp number along the
axis of the cylinder as has been already shown in literature [15,37].
In addition, the data shown in Table 3 reveals that increasing the
filter size leads to a reduction in the data deviation.

14 F. Municchi et al. / Computer Physics Communications () –

0

5

10

15

2 4 6 8 10 12 14

Fig. 12. Particle Sherwood number experienced by a dense particle ensemble in a cylindrical channel as a function of the filter size and the axial position (left panel).
Probability distribution function of the filtered axial velocity experienced by the particles (right panel).

Table 3
Shp statistics for different filter parameters in the region 4.5 < x/dp < 12.5 (86 particles) and φb < 0.99.

ρ = df /dp Average Shp Standard deviation Shp φb < 0.99 Shp < 20

2 14.380 41.017 98.5% 87.3%
3 13.287 35.223 100% 86.0%
4 12.352 27.937 100% 86.0%
5 11.771 25.194 100% 86.0%

0.4

0.6

0.9

1.2

1.5

1.8

1

0.5

0

Fig. 13. Filtered velocity field in the axial direction and filtered scalar field.

Results obtained via CPPPO’s general sampling module show
that the larger the filter is, the more uniform the filtered velocity
will be (see Fig. 12(b)).

Finally, we show the complete filtered velocity and scalar
field in Fig. 13. These fields have been written by the CPPPO-
OpenFOAM R⃝ interface and are automatically generated. Inter-
estingly, while the filtered velocity field tends to become more
uniform by increasing the filter size, the filtered scalar field main-
tains its dependence on the axial coordinate even for large filters.
This is due to the fact that the scalar field is not statistically homo-
geneous in the axial direction.

9. Summary and conclusions

The aim of the CPPPO library is to provide a set of routines for
efficient parallel data filtering and processing. These operations are
meant to be performed ‘‘on the fly’’ during expensive numerical
simulations running on large distributedmemory clusters. In order
to perform data filtering from parallel simulations on clusters, a
novel approach to filtering named ‘‘divergent ’’ was adopted. The
divergent approach showed a linear increase of parallel efficiency
with the number of cores, and a major reduction of computational
time with respect to the standard convergent approach was
demonstrated. Overall, the parallel scalability analysis of CPPPO
showed promising results, demonstrating the computational
efficiency of our library. Furthermore, the CPU time required by
CPPPO was shown to be a small fraction (i.e., less than 2%) of
the time required by a typical simulation in the field of dense
fluid–particle systems. As recently shown in literature [17], more
insight into the governing flow physics of dense particle beds
can be gained from the analysis of individual-particle DNS data.
We have demonstrated that the filter size should be considered
when evaluating such individual-particle data, e.g., (average) fluid
quantities experienced by the particles. In addition, the ability
to perform variance calculations in CPPPO allows one to extract
additional markers that can be helpful to correlate DNS data, and
hence establish new closure models. What remains to be done
is to develop relevant transport equations for predicting these
markers in coarse-grained simulations. Then, we expect that a new
generation of closuremodels, establishedwith the help of tools like
CPPPO,will help to refine our predictions for relevant fluid–particle
systems in engineering simulations.

CPPPO allows a high flexibility in the filtering operations due to
the easy customization of the filtering kernel. This can be achieved
either by (i) including an arbitrary number of weights (which can
be defined at runtime), or (ii) by implementing the desired kernel
function (which requires some coding in C++, and recompilation of
CPPPO).

CPPPO comes with instructions for compilation, as well as
documentation covering input and usage of everymodule and sub-
module. CPPPO also comes with examples on how to be coupled to
OpenFOAM R⃝ or CFDEM R⃝ applications. A freely available version
of the code can be downloaded from the CPC program library.

F. Municchi et al. / Computer Physics Communications () – 15

To download the up-to-date version of CPPPO and get additional
documentation, the interested reader is referred to http://www.
tugraz.at/en/institute/ippt/downloads-software/.

Acknowledgments

The authors acknowledge support by the European Commission
through FP7 Grant agreement 604656 (NanoSim), and the NAWI
Graz project by providing access to dcluster.tugraz.at. CFDEM R⃝ is a
registered trademark of DCS Computing GmbH. The computational
results presented have been achieved (in part) using the Vienna
Scientific Cluster (VSC-3). OpenFOAM R⃝ is a registered trademark
of OpenCFD.

References

[1] M. Van der Hoef, M. van Sint Annaland, N. Deen, J. Kuipers, Annu. Rev. Fluid
Mech. 40 (2008) 47–70.

[2] M.A. van der Hoef, M. van Sint Annaland, J.A.M. Kuipers, China Particuol. 3
(2005) 69–77.

[3] Y. Igci, T.A.I. Arthur, S. Sundaresan, S. Pannala, T. O’Brien, AIChE J. 7 (2009)
405–410.

[4] D.L. Marchisio, R.O. Fox, Multiphase Reacting Flows: Modelling and Simula-
tion, Springer, 2007.

[5] S. Schneiderbauer, S. Pirker, J. Comput. Multiph. Flows 6 (2014) 29–48. URL:
http://multi-science.atypon.com/doi/10.1260/1757-482X.6.1.29.

[6] J. Li, W. Ge, W. Wang, N. Yang, X. Liu, L. Wang, X. He, X. Wang, J. Wang, M.
Kwauk, From Multiscale Modeling to Meso-Science, Springer, 2013.

[7] M. Germano, Phys. Fluids 29 (1980) 1755–1757.
[8] L. Berselli, J. Math. Anal. Appl. 386 (2012) 149–170. URL: http://dx.doi.org/10.

1016/j.jmaa.2011.07.044.
[9] N.G. Deen, S.H.L. Kriebitzsch, M.A. van der Hoef, J.A.M. Kuipers, Chem. Eng. Sci.

81 (2012) 329–344. URL: http://dx.doi.org/10.1016/j.ces.2012.06.055.
[10] N.G. Deen, E.A.J.F. Peters, J.T. Padding, J.A.M. Kuipers, Chem. Eng. Sci. 116 (2014)

710–724. URL: http://dx.doi.org/10.1016/j.ces.2014.05.039.
[11] N.G. Deen, J.A.M. Kuipers, Curr. Opin. Chem. Eng. 5 (2014) 84–89. URL: http://

dx.doi.org/10.1016/j.coche.2014.05.005.
[12] Z.-G. Feng, S.G. Musong, Powder Technol. 262 (2014) 62–70. URL: http://

linkinghub.elsevier.com/retrieve/pii/S0032591014003258.
[13] H. Tavassoli, S. Kriebitzsch, M.A. van der Hoef, E.A.J.F. Peters, J.A.M. Kuipers,

Int. J. Multiph. Flow 57 (2013) 29–37. URL: http://linkinghub.elsevier.com/
retrieve/pii/S0301932213001055.

[14] A.A. Zaidi, T. Tsuji, T. Tanaka, Advanced Powder Technol. 25 (2014) 1860–1871.
URL: http://linkinghub.elsevier.com/retrieve/pii/S0921883114002015.

[15] S. Tenneti, B. Sun, R. Garg, S. Subramaniam, Int. J. HeatMass Transfer 58 (2013)
471–479. URL: http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.006.

[16] S. Tenneti, S. Subramaniam, Annu. Rev. Fluid Mech. 46 (2014) 199–230.
URL: http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010313-
141344.

[17] S.H.L. Kriebitzsch, M.A. Van der Hoef, J.A.M. Kuipers, AIChE J. 00 (2012) 1–9.
[18] J. Derksen, AIChE J. 60 (2014) 1202–12015.
[19] R. Jackson, The Dynamics of Fluidized Particles, in: CambridgeMonographs on

Mechanics, 2000.
[20] J.J. Derksen, S. Sundaresan, J. Fluid Mech. 587 (2007) 303–336.
[21] H.W. Zhang, Q. Zhou, H.L. Xing, H. Muhlhaus, Powder Technol. 205 (2011)

172–183. URL: http://dx.doi.org/10.1016/j.powtec.2010.09.008.
[22] S. Radl, M. Girardi, S. Sundaresan, European Congress on Computational

Methods in Applied Sciences and Engineering, ECCOMAS 2012, Vienna,
Austria, 2012, pp. 1–15.

[23] S. Radl, S. Sundaresan, Chem. Eng. Sci. 117 (2014) 416–425. URL: http://dx.doi.
org/10.1016/j.ces.2014.07.011.

[24] S. Sundaresan, S. Radl, C.C. Milioli, F.E. Milioli, The 14th International
Conference on Fluidization—From Fundamentals to Products, 2013.

[25] S. Nakariyakul, J. Supercomput. 65 (2013) 262–273.
[26] C.-M. Tsai, Z.-M. Yeh, 2012 International Symposium on Computer, Consumer

and Control, 2012, pp. 153–156. URL: http://ieeexplore.ieee.org/lpdocs/
epic03/wrapper.htm?arnumber=6228270.

[27] M.P.I. Forum, MPI: A Message-Passing Interface Standard, Version 3.0, High
Performance Computing Center Stuttgart, 2012.

[28] P. Sagaut, Large Eddy Simulation for Incompressible Flows, Springer, 2006.
[29] G. De Stefano, O.V. Vasilyev, Phys. Fluids 14 (2002) 362–369.
[30] A. Favre, J. Appl. Mech. 32 (1965) 241–257.
[31] A. Favre, Studies in Turbulence, Springer-Verlag, 1992.
[32] B. Gschaider, swak4foam project, 2016. URL: https://openfoamwiki.net/index.

php/Contrib/swak4Foam.
[33] B.P. Welford, Technometrics 4 (1962) 419–420.
[34] A.R. Mamidala, R. Kumar, D. De, D.K. Panda, Proceedings CCGRID 2008 - 8th

IEEE International Symposium on Cluster Computing and the Grid, 2008,
pp. 130–137.

[35] T. Ma, G. Bosilca, A. Bouteiller, J.J. Dongarra, J. Parallel Distrib. Comput. 73
(2013) 1000–1010. URL: http://dx.doi.org/10.1016/j.jpdc.2013.01.015.

[36] G. Batchelor, An Introduction to Fluid Dynamics, Cambridge University Press,
2000.

[37] H. Tavassoli, E.A.J.F. Peters, J.A.M. Kuipers, Chem. Eng. Sci. 129 (2015) 42–48.
URL: http://linkinghub.elsevier.com/retrieve/pii/S000925091500130X.

[38] G.D. Wehinger, T. Eppinger, M. Kraume, Chem. Eng. Sci. 122 (2015) 197–209.
URL: http://linkinghub.elsevier.com/retrieve/pii/S0009250914005016.

[39] M. Nijemeisland, A.G. Dixon, E.H. Stitt, Chem. Eng. Sci. 59 (2004) 5185–5191.
[40] C. Kloss, C. Goniva, A. Hager, S. Amberger, S. Pirker, Prog. Comput. Fluid Dyn.

12 (2012) 140–152.

http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://www.tugraz.at/en/institute/ippt/downloads-software/
http://dcluster.tugraz.at
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref1
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref2
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref3
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref4
http://multi-science.atypon.com/doi/10.1260/1757-482X.6.1.29
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref6
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref7
http://dx.doi.org/10.1016/j.jmaa.2011.07.044
http://dx.doi.org/10.1016/j.jmaa.2011.07.044
http://dx.doi.org/10.1016/j.jmaa.2011.07.044
http://dx.doi.org/10.1016/j.jmaa.2011.07.044
http://dx.doi.org/10.1016/j.jmaa.2011.07.044
http://dx.doi.org/10.1016/j.jmaa.2011.07.044
http://dx.doi.org/10.1016/j.jmaa.2011.07.044
http://dx.doi.org/10.1016/j.jmaa.2011.07.044
http://dx.doi.org/10.1016/j.jmaa.2011.07.044
http://dx.doi.org/10.1016/j.jmaa.2011.07.044
http://dx.doi.org/10.1016/j.jmaa.2011.07.044
http://dx.doi.org/10.1016/j.ces.2012.06.055
http://dx.doi.org/10.1016/j.ces.2014.05.039
http://dx.doi.org/10.1016/j.coche.2014.05.005
http://dx.doi.org/10.1016/j.coche.2014.05.005
http://dx.doi.org/10.1016/j.coche.2014.05.005
http://dx.doi.org/10.1016/j.coche.2014.05.005
http://dx.doi.org/10.1016/j.coche.2014.05.005
http://dx.doi.org/10.1016/j.coche.2014.05.005
http://dx.doi.org/10.1016/j.coche.2014.05.005
http://dx.doi.org/10.1016/j.coche.2014.05.005
http://dx.doi.org/10.1016/j.coche.2014.05.005
http://dx.doi.org/10.1016/j.coche.2014.05.005
http://dx.doi.org/10.1016/j.coche.2014.05.005
http://linkinghub.elsevier.com/retrieve/pii/S0032591014003258
http://linkinghub.elsevier.com/retrieve/pii/S0032591014003258
http://linkinghub.elsevier.com/retrieve/pii/S0032591014003258
http://linkinghub.elsevier.com/retrieve/pii/S0032591014003258
http://linkinghub.elsevier.com/retrieve/pii/S0032591014003258
http://linkinghub.elsevier.com/retrieve/pii/S0032591014003258
http://linkinghub.elsevier.com/retrieve/pii/S0032591014003258
http://linkinghub.elsevier.com/retrieve/pii/S0301932213001055
http://linkinghub.elsevier.com/retrieve/pii/S0301932213001055
http://linkinghub.elsevier.com/retrieve/pii/S0301932213001055
http://linkinghub.elsevier.com/retrieve/pii/S0301932213001055
http://linkinghub.elsevier.com/retrieve/pii/S0301932213001055
http://linkinghub.elsevier.com/retrieve/pii/S0301932213001055
http://linkinghub.elsevier.com/retrieve/pii/S0301932213001055
http://linkinghub.elsevier.com/retrieve/pii/S0921883114002015
http://linkinghub.elsevier.com/retrieve/pii/S0921883114002015
http://linkinghub.elsevier.com/retrieve/pii/S0921883114002015
http://linkinghub.elsevier.com/retrieve/pii/S0921883114002015
http://linkinghub.elsevier.com/retrieve/pii/S0921883114002015
http://linkinghub.elsevier.com/retrieve/pii/S0921883114002015
http://linkinghub.elsevier.com/retrieve/pii/S0921883114002015
http://dx.doi.org/10.1016/j.ijheatmasstransfer.2012.11.006
http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010313-141344
http://www.annualreviews.org/doi/abs/10.1146/annurev-fluid-010313-141344
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref17
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref18
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref19
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref20
http://dx.doi.org/10.1016/j.powtec.2010.09.008
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref22
http://dx.doi.org/10.1016/j.ces.2014.07.011
http://dx.doi.org/10.1016/j.ces.2014.07.011
http://dx.doi.org/10.1016/j.ces.2014.07.011
http://dx.doi.org/10.1016/j.ces.2014.07.011
http://dx.doi.org/10.1016/j.ces.2014.07.011
http://dx.doi.org/10.1016/j.ces.2014.07.011
http://dx.doi.org/10.1016/j.ces.2014.07.011
http://dx.doi.org/10.1016/j.ces.2014.07.011
http://dx.doi.org/10.1016/j.ces.2014.07.011
http://dx.doi.org/10.1016/j.ces.2014.07.011
http://dx.doi.org/10.1016/j.ces.2014.07.011
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref24
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref25
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6228270
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6228270
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6228270
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6228270
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6228270
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6228270
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6228270
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6228270
http://ieeexplore.ieee.org/lpdocs/epic03/wrapper.htm?arnumber=6228270
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref27
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref28
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref29
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref30
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref31
https://openfoamwiki.net/index.php/Contrib/swak4Foam
https://openfoamwiki.net/index.php/Contrib/swak4Foam
https://openfoamwiki.net/index.php/Contrib/swak4Foam
https://openfoamwiki.net/index.php/Contrib/swak4Foam
https://openfoamwiki.net/index.php/Contrib/swak4Foam
https://openfoamwiki.net/index.php/Contrib/swak4Foam
https://openfoamwiki.net/index.php/Contrib/swak4Foam
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref33
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref34
http://dx.doi.org/10.1016/j.jpdc.2013.01.015
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref36
http://linkinghub.elsevier.com/retrieve/pii/S000925091500130X
http://linkinghub.elsevier.com/retrieve/pii/S0009250914005016
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref39
http://refhub.elsevier.com/S0010-4655(16)30160-6/sbref40

	Highly efficient spatial data filtering in parallel using the opensource library CPPPO
	Introduction
	Library interface to simulators
	Basic data structure
	General linking architecture
	Parallel data handling
	Coding an interface library

	Spatial filtering
	Favre filtering
	Convergent and divergent filtering algorithm

	CPPPO statistics routines
	Available sampling operations

	Parallel implementation
	Parallel selectors
	Parallel filters

	Test calculations
	Parallel scalability and performance
	Heat transfer in a dense particle bed
	Transport in dense particle beds
	Governing equations and numerical solution
	Results and CPPPO post-processing

	Summary and conclusions
	Acknowledgments
	References

