
Computer Physics Communications 207 (2016) 375–385
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

FabSim: Facilitating computational research through automation on
large-scale and distributed e-infrastructures✩

Derek Groen a,b,∗, Agastya P. Bhati a, James Suter a, James Hetherington c,
Stefan J. Zasada a, Peter V. Coveney a,∗∗

a Centre for Computational Science, University College London, 20 Gordon street, London, WC1H 0AJ, United Kingdom
b Department of Computer Science, Brunel University, St John’s Building, Kingston Lane, Uxbridge, UB8 3PH, United Kingdom
c Research Software Development Group, University College London, Podium Building, 1 Eversholt Street, London, NW1 2DN, United Kingdom

a r t i c l e i n f o

Article history:
Received 14 December 2015
Received in revised form
16 May 2016
Accepted 19 May 2016
Available online 30 May 2016

Keywords:
Automation
Workflows
Distributed computing
Software
Bloodflow modelling
Molecular dynamics
Multiscale modelling
Clay-polymer nanocomposites

a b s t r a c t

We present FabSim, a toolkit developed to simplify a range of computational tasks for researchers in
diverse disciplines. FabSim is flexible, adaptable, and allows users to perform a wide range of tasks with
ease. It also provides a systematic way to automate the use of resources, including HPC and distributed
machines, and to make tasks easier to repeat by recording contextual information. To demonstrate
this, we present three use cases where FabSim has enhanced our research productivity. These include
simulating cerebrovascular bloodflow, modelling clay-polymer nanocomposites across multiple scales,
and calculating ligand–protein binding affinities.

Program summary

Program title: FabSim
Catalogue identifier: AFAO_v1_0
Program summary URL: http://cpc.cs.qub.ac.uk/summaries/AFAO_v1_0.html
Program obtainable from: CPC Programme Library, Queen’s University, Belfast, N. Ireland
Licensing provisions: BSD 3-Clause
No. of lines in distributed program, including test data, etc.: 268282
No. of bytes in distributed program, including test data, etc.: 2791792
Distribution format: tar.gz
Programming language: Python.
Computer: PC or Mac.
Operating system: Unix, OSX.
RAM: 1 Gbytes
Classification: 3, 4, 6.5.
External routines: NumPy, SciPy, Fabric (1.5 or newer), PyYaml
Nature of problem:
Running advanced computations using remote resources is an activity that requires considerable time and
human attention. These activities, such as organizing data, configuring software and setting up individual
runs often vary slightly each time they are performed. To lighten this burden, we required an approach
that introduced little burden of its own to set up and adapt, beyond which very substantial productivity
ensues.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
∗ Corresponding author at: Centre for Computational Science, University College London, 20 Gordon street, London, WC1H 0AJ, United Kingdom.

∗∗ Corresponding author.
E-mail addresses: Derek.Groen@brunel.ac.uk (D. Groen), p.v.coveney@ucl.ac.uk (P.V. Coveney).
http://dx.doi.org/10.1016/j.cpc.2016.05.020
0010-4655/© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY license (http://creativecommons.org/licenses/by/4.0/).

http://dx.doi.org/10.1016/j.cpc.2016.05.020
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.05.020&domain=pdf
http://cpc.cs.qub.ac.uk/summaries/AFAO_v1_0.html
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:Derek.Groen@brunel.ac.uk
mailto:p.v.coveney@ucl.ac.uk
http://dx.doi.org/10.1016/j.cpc.2016.05.020
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

376 D. Groen et al. / Computer Physics Communications 207 (2016) 375–385

Solution method:
We present a toolkit which helps to simplify and automate the activities which surround computational
science research. FabSim is aimed squarely at the experienced computational scientist, who can use the
command line interface and a system of modifiable content to quickly automate sets of research tasks.
Restrictions:
FabSim relies on a command-line interface, and assumes some level of scripting knowledge from the user.
Unusual features:
FabSim has a proven track record of being easy to adapt. It has already been extensively adapted to
facilitate leading research in the modelling of bloodflow, nanomaterials, and ligand–protein binding.
Running time:
FabSim can be used interactively, typically requiring a few seconds to perform a basic task.

© 2016 The Authors. Published by Elsevier B.V.
This is an open access article under the CC BY license

(http://creativecommons.org/licenses/by/4.0/).
1. Introduction

Research based on computational science and technology
continues to advance at a rapid pace, driven in part by the continual
evolution, and recent diversification, of computing infrastructures.
At the top end, supercomputers are both highly parallel (at time of
writing, the number one supercomputer has 3.1 million cores) and
highly heterogeneous (four of the top ten supercomputers feature
accelerators). Because computing infrastructures are growing in
parallelism and becoming more diverse, we require sophisticated
computational techniques to take full advantage of the power
available.

Recent advances in modelling methods, such as ensemble and
multiscale computing, allow us to solve complex problems more
efficiently using high-end infrastructures [1–4]. These techniques
tend to require users to construct, execute, validate, analyse and
curate a number of different models (and model executions)
for each computation. Care must be taken when performing
these tasks, as a simple mistake can render the full computation
useless. For example, computationsmay produce incorrect results,
or produce too little information to allow for reproduction or
replication.

In an era where compute resources are arguably easier to
obtain than human resources, this requirement for continued
human attention can become a bottleneck, limiting the pace of
computational research to the number of person hours invested
in it. Indeed, within our own research group we have realized
that much of our daily work was spent on the attention-requiring
activities that accompany the need to run ensemble or multiscale
computations. To lighten this burden, we sought an approach that
introduced little burden of its own to set up and adapt, beyond
which very substantial productivity benefits ensue by ‘‘automating
away’’ routine activities.

Here we present our approach, based on FabSim, for managing
computations and automating the research tasks that accompany
them. FabSim includes a software toolset, as well as a set of best
practices which serve to aid researchers in maintaining a compu-
tational environment which is simple to use, navigate, interpret
andmodify. FabSim allows researchers to reduce the complexity of
administrative tasks to that of issuing single-line commands, and
saves time by introducing a systematic structure for curating input
and output files, user andmachine configurations, as well as appli-
cation execution instances. The tool is straightforward to use ‘‘out
of the box’’, and as simple to customize.

In Section 2, we present a range of related research and
development activities. In Section 3 we present FabSim, describe
its architecture as well as its key features for users and developers.
In Section 4 we present three research activities where FabSim
is currently in use, and describe how FabSim is being deployed
and adapted in these contexts. We provide concluding remarks in
Section 5.

2. Related work

To some extent, the functionality offered by FabSim is similar
to that provided by manifold grid middleware projects, developed
over the last decade or more. By allowing a computational
scientist to runworkloads on remote high performance computing
resources, FabSim shares functionality with middleware toolkits
such as Globus [5], Unicore [6] and gLite [7]. However, the
focus of FabSim is very different to these monolithic toolkits.
Firstly, FabSim is aimed squarely at the experienced computational
scientist, presenting a command line interface that is easy for
the developer/scientist to extend. In this respect, FabSim shares
similarities with the Growl Toolkit [8], an example of a lightweight
middleware system designed to address some of the shortcomings
of other grid middlewares, using both a combination of Web
service components and wrapper scripts to automate tasks
performed by Globus grid middleware client tools.

Additionally, FabSim is built on SSH, found on practically
every Unix- or Linux-based system, and does not mandate the
installation of an additional heavyweight middleware stack on the
resources being accessed. This means that FabSim can be used
widely on any HPC resource that supports SSH or GSISSH.

FabSim is more directly comparable with tools such as Long-
bow [9], which is used for molecular dynamics pertaining to com-
putational biology, and also aims to provide shorthand commands
to run applications (including ensembles) on distributedmachines.
Longbow is, however, more limited in scope, as it provides no ex-
plicit support formulti-stepworkflows or for tasks associatedwith
code compilation and deployment. Ruffus [10] is a light-weight
Python tool which automates complicated analysis activities, with
less concern for computations on distributed resources. Snake-
make [11] offers a workflow definition language, and provides
an execution environment. Snakemake workflows can be run re-
motely, although the tool does not provide further facilities for us-
ing distributed resources (e.g., curating information for its users as
to how to access different machines).

Many other tools provide functionalities that complement
FabSim. Coupling environments such as MUSCLE 2 [12],
DataSpaces [13] and MPWide [14] allow codes to efficiently ex-
change data at runtime, and can be used to speed up the remote
execution of coupled tasks in FabSim.

http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/

D. Groen et al. / Computer Physics Communications 207 (2016) 375–385 377
In addition, there are a number of simulation environments
which serve to combine functionalities from existing codes to
construct and run multiscale simulations [1], such as AMUSE [15],
CouPe [16], MOOSE [17] and OASIS [18]. In particular, the
Application Hosting Environment [19] provides an easy-to-use
environment by centralizing the application deployment in the
hands of one expert-user, though it provides no automation
for those users who deploy new software. Both GEL [20] and
Swift [21] assist in the coordination and efficient execution of large
numbers of scripts, while workflow engines such as Kepler [22,23],
Taverna [24] and GridSpace [25] provide a graphical environment
to help users perform complex simulation workflows. Ludascher
et al. [26] provide a comprehensive overview of key challenges and
advances inworkflowmanagement and scientific task automation.
Amajor strength of FabSim, compared to the aforementioned tools,
is its strong focus on accelerating and simplifying development
activities. Its aim is not only to simplify the execution of workflows
that have been previously defined, but also to simplify the creation
of newworkflows, and indeed of new computational approaches in
general.

3. Overview of FabSim

The central purpose of FabSim is to save time for compu-
tational researchers by simplifying key tasks when performing
computation-driven research. With FabSim we achieve this by of-
fering a set of useful functionalities in a highly transparent and
modifiable program structure. By pairing customizable software
with a set of best practices we provide researchers with a method-
ological framework which helps them to perform a range of tasks
in a simpler, quicker and more systematic way.

FabSim has a range of built-in functionalities. It supports the
execution of jobs on remote resources (through SSHorGSISSH), au-
tomates the transfer of data to and from those resources, and pro-
vides an administrative framework for curating job information,
including its inputs, outputs and environmental parameters.More-
over, FabSim allows for defining complex computations by com-
bining job executions on remote resources with (local or remote)
data processing steps and data conversion routines. It is possible
for these computations to be cyclic, or to have a dynamic number
of steps (e.g., determined at run-time by FabSim based on conver-
gence criteria), or to encompass an ensemble of tasks covering a
large parameter space.

The predecessor of FabSim (FabricHemeLB) was developed in
2011 to automate the deployment and execution of the HemeLB
bloodflow simulator [27]. We then repurposed the toolkit in 2013
to provide the same convenience formaterialsmolecular dynamics
simulations. At this stage, we acknowledged the potential of the
software and proceeded to develop a general-purpose version
of the toolkit, FabSim. FabSim is now actively maintained and
enhanced by academic researchers at both University College
London andBrunelUniversity London. At timeofwriting, the active
contributors to the FabSim codebase are Derek Groen, Agastya
Bhati and James Suter. James Hetherington has done extensive
work on the initial development phases of the toolkit, while Stefan
Zasada has made key enhancements in terms of security and
usability. Peter Coveney has aligned FabSim with several leading
research efforts, and helped capture the key concepts of FabSim in
this publication. The extended versions of FabSim are maintained
by several research groups, based at UCL, Brunel, as well as at the
University of Edinburgh.

FabSim is written in Python and requires no administrative
privileges to install. It relies on the Fabric [28] library to
embed convenient, light-weight and non-invasivemechanisms for
accessing and managing remote machines. In addition, FabSim
uses the YaML [29] library, which provides features to work with
a compact, intuitive and human-readable data format. The code is
freely available at the Computer Physics Communications Program
Library, as well as on Github (www.github.com/UCL-CCS/FabSim).

3.1. Architecture

We provide an overview of the FabSim architecture in Fig. 1.
FabSim contains seven modules, six of which are developed to
be easy to modify by users. Key low-level functionalities are
defined within the FabSim function library, and are variously
general-purpose, domain-specific, problem-specific or for sin-
gle use. Here, functions with a different scope are placed in
different files. Both the Construction and Automation Module
(CAM) and the Data Processing Module (DPM) are used to de-
fine one-liner commands for higher-level functions and auto-
mated workflows. These three modules are commonly extended
by defining new Python functions, which combine existing fea-
tures in FabSim with domain-specific scripts or other resources.
Any command defined in the CAM or the DPM which involves
the use of remote resources requires the use of the FabSim
Security module, which is indicated using a red dashed line.
The CAM and DPM modules also rely on three other modules
to obtain machine-specific configuration information (from the
Machine Configs module), application-specific configuration in-
formation (Application Configs module), and key data process-
ing functionalities (Data Processing Scripts Repository). Content in
both the Machine Configs and the Application Configs module can
be superseded by user-specific configuration files.

The security module is the only module which is not intended
to bemodified by users. It enables the use of FabSim commands on
remote resources using either SSH or GSISSH access mechanisms
which are supported by the vast majority of Top 500 supercom-
puters.

3.2. Using FabSim

Once installed, all FabSim features are called from the terminal,
using commands that adhere to the following structure:
fab <hostname> <command>:<configuration_name>,
<parameter1=x1>,(...),<parameterN=xn>

We describe a number of commands commonly used in FabSim
in Table 1. Each function can be given parameters if convenient,
or uses machine-specific defaults if no parameters are specified
by the user. We have also defined a range of commands which
are specific for FabSim in different domains. We discuss these
commands separately in the examples provided in Section 4, and
describe how these functions can be used as part of more complex
user-made commands.

3.3. Remote execution

FabSim allows users to perform computations on remote
resources using one-line commands. For example, to launch an
instance of the LAMMPS molecular dynamics code on nodes on a
supercomputer named ‘‘exa’’, one could use:
fab exa lammps

As part of this command, FabSim stages in a directorywith input
files from the local machine to the remote resource, and then uses
SSH or GSISSH to submit the job using the remote job scheduling
system. One can use (or define) similar commands to perform tasks
directly on the head node of the remote resource. For example,
to locate all modules containing the name ‘‘lammps’’ on the ‘‘exa’’
machine, one could use:
fab exa probe:lammps

http://www.github.com/UCL-CCS/FabSim

378 D. Groen et al. / Computer Physics Communications 207 (2016) 375–385
Fig. 1. Diagrammatic overview of the modules present in FabSim. Information dependencies are indicated by black arrows (e.g., the data processing module makes use of
information provided by the application configs module). Security is managed using Paramiko (www.paramiko.org), which in turn relies on SSH. All modules are installed
on a user’s local workstation. User activities involving remote resources are indicated by light green arrows passing through the security layer (which is indicated by the red
dotted line). Small icons are provided by gentleface.com. (For interpretation of the references to colour in this figure legend, the reader is referred to the web version of this
article.)
Table 1
List of commands commonly used in FabSim.

Command name Brief description

probe Probes target host for presence of a module with a given name
stat Provides a status report of jobs running on the target host
monitor Does a stat on the target machine once every two minutes, and displays the output
fetch_results Fetches all the application results from the target host and saves them on the local host
cancel Cancels a job on the target machine which is in the queue or running
analyse Performs shallow data analysis of a results file
run_job Runs an application job remotely
run_ensemble Runs an ensemble of application jobs remotely (packed into one job if supported)
blackbox Runs a script through FabSim on the local machine
archive Archives a directory containing application results

cold Copies a source code to a remote resource, compiles and builds everything (application-specific)
<application name> Runs an application job using the <application name> code specifically (application-specific)
It is also possible to combine the execution of multiple jobs on
remote resources in a single FabSim command (see Section 4.3), or
to construct a cyclic scheme of interdependent jobs interspersed
with local data processing tasks (see Section 4.2).

3.4. Limitations

Although FabSim can be integrated and extended for a wide
range of purposes, the scope of the core software has some
important constraints. FabSim is intended primarily for user-
developers without administrative rights, and therefore does not
contain features that require these privileges to set up.

For example, FabSim itself does not have resource brokering
capabilities, as job scheduling is considered to be an important
administrative responsibility. Instead, FabSim relies on remotely
installed schedulers such as PBS Pro or LoadLeveller to manage
jobs on remote machines. Support for newly released schedulers
can be added by adjusting themachine-specific configurations and
creating a template file for the job submission script. Likewise,
FabSim does not enable users to create accounts on remote
machines, as this too requires administrative privileges.
3.5. Customizing FabSim

A key strength of FabSim is its ease of customization. FabSim
uses a template/variable substitution system to enable users to
easily introduce customized scripts, and relies on the ease of use
of Python to allow users to define custom functionalities. The
substitution system relies on a set of YaML files (see Section 3.6 for
an example), which specify the default values for all the important
variables in FabSim. Customized values can be assigned to these
variables on a machine-specific basis, on a user-specific basis, or
both. When the user invokes a FabSim command, the relevant
variables are provided to the context of that command, eliminating
the need for users to specify these on the command line.

FabSim also relies on a number of templates, for example to
identify the formatting required to make a correct header for a
batch job script, or to flexibly insert commands for executing a
specific MPI implementation. When templates are used, FabSim
uses the variables within its context to determine which values
to insert into the templates, and which templates to combine.
For example, we can combine templates for executing specific
applications with those for specific scheduling systems, without
the need to define new templates for each combination of the two.

http://www.paramiko.org

D. Groen et al. / Computer Physics Communications 207 (2016) 375–385 379
Table 2
List of customizable components in FabSim. The name of the component is given in the first column, the module where it is located
(see Fig. 1 for a diagrammatic overview of the modules) in the second column. The scope within which the component is applied and
customized is given in the third column. Possible scopes include general-purpose (general), domain-specific (domain), problem-specific
(problem) and machine-specific (machine). A short summary of the contents of the component is given in the fourth column.

Name Location Scope Summary of contents

config_files Application configs Problem Input data for specific computations.
fab.py Constr. and auto. module General General Fabsim commands.
data_proc/dataXX.py Data processing module Domain Data processing commands.
data_proc/dataYY.py Data processing module Problem Data processing commands.
data_proc/data.py Data processing module General Data processing commands.
blackbox/ Data processing scripts repo Domain Plug-in scripts, binaries.
python/ Data processing scripts repo Domain Linkable Python plug-ins.
fabXX.py Function library Domain FabSim commands.
fabXX/fabYY.py Function library Problem FabSim commands.
machines.yml Machine configs Machine Default machine settings.
machines_user.yml Machine configs Machine User machine settings.
In Table 2 we present the configuration and software hooks
that FabSim provides, each of which can be modified by the
user. Within FabSim we define a number of different scopes,
as the features in FabSim differ in their range of applicability.
The base scope of FabSim is general-purpose, which includes
features that are deemed to be of value for any user installing
FabSim (e.g., job submission, file transfer and so on). Features can
be added on this level by adding functions to fab.py. Machine-
specific customizations can be added in one of two separate scopes
(‘‘machine-specific’’ and ‘‘machine and user-specific’’). Perhaps
the scope most important to the user is the domain-specific
scope. The script files that reside in this scope contain features
that are specific to the user domain (e.g., multiscale materials
modelling, blood flow simulation, or molecular ligand–protein
binding calculations), but which can be reused for existing and
future research problems. In some projects we have been working
on, the amount of customization in this scope has become so
large that the community adopted a modified name for the tool
altogether (e.g., FabHemeLB and FabMD). Last, there is the scope
which is problem-specific, which includes bespoke scripts and
features that are used for highly-specific research purposes.

3.6. Best practices

FabSim is accompanied with a number of best practices which
aid the user in maintaining a simple and consistent environment.
Here we describe several examples of best practices that are key to
keeping FabSim simple to use and modify.

Machine-specific configurations, which are applicable to all
users of that machine, are defined in machines.yml, User-
specific information for each machine is stored locally in ma-
chines_user.yml. An entry in themachines.yml YaML configuration
could for example look as follows:

petaflop_machine:
job_dispatch: "qsub"
run_command: "aprun -n $cores"
batch_header: pbs
remote: "login.petaflop.ac.uk"
home_path_template: "/home/$project/$username"
runtime_path_template: "/work/$project/$username"
modules: ["load lammps", "load namd"]
queue: "standard"
corespernode: 32

As best practice, we keep general-purpose features in fab.py (or
libraries that are included in fab.py), and domain-specific features
in separate python files (e.g., fabNanoMD.py), distinct from any
source files which contain problem-specific features.
3.7. Provenance, curation, reproducibility

When a user performs a computation remotely with FabSim,
a number of extra actions are executed to help improve the
repeatability and reproducibility of the computation. First, FabSim
stores the full internal context in YML format in the results
directory of the executed computation, allowing users to identify
FabSim variables that may have been wrongly set. Second,
FabSim stores the environment variables used at the remote
resource in another text file, allowing users to spot changes in
the configuration of the remote resource between jobs. Third,
FabSim retains the generated job submission script for future
reference. And fourth, when FabSim creates results directories for
submitted computations, it allows users to modify the name of
these directories using variables (e.g., code version number, time
stamp, configuration file used, or the number of cores used). In
particular, by using time stamps in naming results directories one
can prevent new computations from overwriting results that were
generated by previous computations.

In our experience, we have frequently been able to repeat our
runs using the FabSim logging infrastructure. However, it may still
occur that repeated computations lead to different results. We
have experienced this occasionallywhenexistingmodules residing
on remote machines are recompiled with different settings or
using a different compiler, or when the computations are repeated
using a different set of resources.

3.8. Security

Access to grid resources is usually secured through authenti-
cation and authorization mechanisms based on X.509 certificates,
a security credential used to authenticate the user when access-
ing a grid. To access the resources on a particular distributed
e-infrastructure, the user needs a certificate recognized by that in-
frastructure. Certificates are generally issued on a national basis,
by a national research certificate authority (CA). The Interoperable
Grid Trust Federation [30] exists to ensure mutual trust between
different national certificate issuing bodies. This means that cer-
tificates issued in one country will be accepted by e-infrastructure
resources based in a different country.

Efforts to address the usability of e-infrastructures have long
been hampered by existing security mechanisms imposed on
users. Typically, these require a user to obtain one or more digital
certificates from a certificate authority, as well as to maintain
and renew these certificates as necessary. The difficulty in doing
this leads to widespread certificate sharing and misuse and a
substantial reduction in the number of potential users [31], and
has causedmanyHPC resource providers and users to abandon grid
middleware tools. This has in turn led to secure certificate sharing

380 D. Groen et al. / Computer Physics Communications 207 (2016) 375–385
mechanisms to be promoted which seek to ameliorate some of the
worst aspects of certificate misuse [32].

With FabSim, we provide support using either grid certificates
(through GSISSH) or using the SSH protocol (using the Paramiko
library, www.paramiko.org). We explicitly enable SSH support
because almost all HPC resources support this protocol to
allow remote users to access the machine. FabSim uses the
Fabric and Paramiko libraries to allow users to perform remote
operations using basic SSH as the transport middleware. As such,
FabSim’s security model is essentially the SSH security model;
public/private keys are used to authenticate FabSim operations on
target resources, and the ˜/.ssh/known_hosts file is used to
allow users to configure mutual authentication.

Unlike grid basedX.509 authentication (which is also supported
through GSISSH), the SSH setup is entirely controlled by the end
user. Typically, on a grid using X.509 certificates, an administrator
must set up details of a user’s certificate on their resources
while SSH based authentication requires that the user sets up
their own keys on a target resource. Although key management
does potentially increase the management overhead of setting up
FabSim security, the ubiquity of SSHmeans thatmost FabSim users
will have already taken steps to set up SSH keys for the resources
that they wish to access.

The use of SSH keys and Fabric also means that FabSim can
make use of Fabric extensions for key management, such as the
keymanager add-on [33], which allows users to manage keys on
multiple servers very easily, using Fabric itself.

4. Exemplar FabSim use cases

In this section we present exemplar FabSim use cases in three
scientific domains where FabSim has so far been applied. These
include simulations of cerebrovascular bloodflow, multiscale sim-
ulations of clay-polymer nanocomposites, and ensemble molecu-
lar dynamics simulations used to calculate ligand–protein binding
affinities.

4.1. Cerebrovascular bloodflow

FabSim is widely used in combination with the HemeLB
bloodflow simulator [34,27], which we use to investigate the flow
properties of blood in arterial networks (e.g., a segment of the
middle cerebral artery or a network of vessels in the retina).
HemeLB is specifically optimized to efficiently model flow in
sparse networks, and scales to up to 49,152 cores [35,27]. Using
both HemeLB and FabSim, we have been able to make reliable
predictions of the blood flow properties in cerebral arteries [36]
and in mouse retinas [37,38]. Accurate predictions of the blood
flow under realistic conditions are essential to gain a further
understanding of important medical conditions, such as aneurysm
formation and tumour growth. For example, the risk of bleeding in
the brain appears to correlatewith abnormal flow properties in the
vicinity of brain aneurysms, such as a high wall shear stress [39].

HemeLB is in use across a range of supercomputer platforms,
andmany of its applications require complexworkflows consisting
of multiple simulations. Here, the HemeLB-adapted version of
FabSim (named FabHemeLB) allows users to systematically run
and curate results of sets of simulations (see the workflow on the
right side of Fig. 2 for an example). This makes it considerably
easier to perform scalability and accuracy studies which require
a large number of simulation runs [27,40].

The HemeLB version of FabSim features three major adapta-
tions:

First, FabHemeLB provides a range of domain-specific features,
primarily to enable automated execution of ensemble multiscale
simulations. In the workflow depicted on the left in Fig. 3, we first
Fig. 2. Example of a benchmark which was systematically acquired using FabSim
on the HECToR supercomputer at EPCC in Edinburgh, United Kingdom. We show
the performance impact of running HemeLB with a connected steering client [34].
We show results for 1024 and 2048 cores without steering client (plotted at frame-
rate zero), with the client used only for image streaming (images, dotted lines) and
with the client used both for image streaming and steering the HemeLB simulation
(both, solid lines). This figure is reproduced from Groen et al. [27], in which the
significance of this data is discussed in detail.

collect patient-specific heart parameters (e.g., heart rate, cardiac
output volume) at different levels of physical activity. We then
use a 1D model (The Python Network Solver [41]) to calculate the
expected inflow profile in a cerebral artery, which is used with
HemeLB to model a patient-specific cerebral arterial network in
3D. We then collect the results of our ensemble of simulations
using a one-line FabSim command.

Second, FabSimuses the FabSim templating system to automate
the installation of HemeLB on new supercomputers. This process
was previously labour-intensive as the existing CMake systemonly
permits a limited amount of automation, and lacks an intuitive
way to store machine-specific information about the required
configuration flags and environment settings. We present the
added value of FabSim in the remote installation of HemeLB
in Fig. 4. Here, FabSim saves time by allowing researchers to
provision installation details in a compact and readable way,
thereby automating the installation process for future users.

Third, we extended FabSim to enable a new kind of simulation
analysis with HemeLB, in which we can quickly run a set of
simulations on a large supercomputer to compare wall shear
stresses in arterial bloodflow as a function of exercise intensity.
We present a detailed description of this workflow, used on the
2.6 PFLOPs ARCHER supercomputer in Edinburgh, UK, in Itani
et al. [36].

4.2. Multiscale modelling of clay-polymer nanocomposite materials

Multiscale modelling approaches offer large advantages in the
domain of materials modelling. Here, a key challenge in the field
is to predict large scale materials properties, whilst taking into
account the chemical specificity of the constituent atoms and
molecules, as well as processing conditions.

We have created an adapted version of FabSim (named FabMD)
to construct and apply a multiscale modelling methodology
for the study of clay-polymer nanocomposite materials [42,43].
These composite materials, due to a combination of their low
density with superior materials properties, have already been
applied in industries such as packaging, automotive, aviation, and
drug transport [44]. However, it is costly, time-consuming and
labour-intensive to search for new materials using experimental
approaches, whereas multiscale simulations are relatively fast and

http://www.paramiko.org

D. Groen et al. / Computer Physics Communications 207 (2016) 375–385 381
Fig. 3. Workflows which have been automated using FabHemeLB. (a) Diagram of the workflow used to perform ensemble multiscale simulations of blood flow in middle
cerebral arteries (presented in detail in [36]). (b) A commonly applied workflow to do systematic performance tests (applied for example in Groen et al. [1]).
Fig. 4. Example of the speed-up obtained through the use of FabSim. We present typical tasks performed by a team of researchers when installing HemeLB manually (on
the left), or using FabSim (right).
cheap. As a result, using these approaches we can identify systems
that are likely to possess superior materials properties, focusing
the laboratory searches for much greater efficiency and hence
accelerated discovery.

We present a diagrammatic description of our multiscale
materials modelling workflows in Fig. 5. We use FabSim to coarse-
grain our clay-polymer systems, and we extended FabSim to
automate the two iterative techniques used to determine accurate
course-grained potential parameterizations: Iterative Boltzmann
Inversion (IBI) and Potential of Mean Force (PMF) calculations.

In the IBI procedure we combine remote job execution with
data processing on the local host to iteratively adjust pair poten-
tials. We launch a single simulation per iteration to determine the
radial distribution function which results from using these poten-
tials, until they match the distribution functions from all-atom
molecular dynamics simulations [42] within a desired tolerance.
IBI is computationally efficient, but can be inaccurate, particularly
when the number of particles is small (e.g., solutes dissolved in so-
lution) or when the interaction potentials are particularly attrac-
tive.

Whenever IBI is ineffective we instead apply PMF, which is
computationally more expensive but more robust. In the PMF
procedure we combine an ensemble of remote jobs with data
processing on the local host. Here each simulation job in the
ensemble has its particles constrained at a given distance; this is
done to calculate the mean force between two particle types at
a given distance. For each PMF iteration, we then perform a set
of ∼20–40 simulations with the particles constrained at various
distances.

As an example, we summarize the input and output of several
IBI iterations in Fig. 6. Here we performed four iterations to
parameterize a suitable coarse-grained potential between two
polymer particles [42]. In our case the full procedure of creating a
new and chemically specific coarse-grained system required over
1000 submitted simulation jobs. FabMD was essential in enabling
us to perform these procedures in a quick, automated fashion,
providing adaptable quick-hand commands to generate suitable
potentials for new systems as our study proceeded.

4.3. Calculating ligand–protein binding affinities from ensemble
molecular dynamics

The ability to calculate the free energy of binding a lead
compoundwith a target protein, also known as the binding affinity,
is of great importance in the field of personalized medicine and
drug discovery as, in most cases, it forms the basis of ranking
drugs/lead molecules based on their potency. Several in silico
methods are available to calculate binding affinities, but the field
has gained a degree of notoriety since, frequently, results reported
in the literature have not been repeatable by others [2,45]. This lack
of reproducibility is due to the insufficient sampling of phase space,
arising from the extreme sensitivities of calculated properties
to the initial conditions of a molecular dynamics system. Such

382 D. Groen et al. / Computer Physics Communications 207 (2016) 375–385
Fig. 5. Workflows which have been automated using FabMD to create a coarse-grained model of a mixture of montmorillonite clay and polymers. (a) Workflow used to
perform Iterative Boltzmann Inversions. (b) Workflow used to calculate the Potential of Mean Force. (c) Diagrammatic overview of the steps involved to do a full coarse-
grained parameterization (applied e.g. by Suter et al. [42]). Here the molecule names have been abbreviated: TMA for tetra-methyl ammonium and C2 for ethane particles.
unreproducible binding affinities are clearly unreliable for medical
or industrial applications.

Using an ensemble simulation approach we have shown
that, if the entire protocol of binding affinity calculation is
repeated a sufficient number of times for a biomolecular system,
then the computed binding affinities have a Gaussian frequency
distribution and their ensemble average is the theoretical estimate
of the binding affinity for that biomolecular system, with
bootstrapping providing tight error bounds. Such precise and
reproducible binding affinity estimates are expected to be useful
in drug discovery and drug selection in personalized medicine.

Our ensemble simulation approach to control errors and
ensure reproducibility, which uses the Binding Affinity Calculator
(BAC [46,47,2]) in combination with an adapted version of FabSim
(FabBioMD), is shown in Fig. 7.

Here we use FabSim to automate the execution of ensemble
simulations and analysis procedures.We launchmultiple instances
of a given molecular model, each of which has different initial
atomic velocities and is called a ‘‘replica’’. For each replica we then
perform equilibration, production molecular dynamics, followed
by post-processing of the MD trajectories to determine the free
energy of binding based onour ESMACSprotocol [45]. As a last step,
we perform a statistical analysis on the collected results to report
binding affinities with error estimates. Without the automation
provided by FabBioMD, this activity would have a very substantial
manual overhead, reducing the rate of progress and being prone
to human errors. On a sizeable HPC resource, the approach has the
considerable advantage that all replicas can be run concurrently:
in the time it takes to run one, we can run all of them.

Specifically for FabBioMDwe included specific functions to run
ensemble molecular dynamics simulations and data analytics in
the form of free energy calculations. For example, we implemented
one-liner commands to execute ensembles of simulation and
analysis steps, and mechanisms to integrate FabBioMD with
support mechanisms for so-called ‘‘block jobs’’. Schedulers with
block job support allow users to group a number of simulations
within a single supercomputer job, allowing these simulations to
be run simultaneously and reducing the number of jobs that need
to be submitted to the scheduler. We have used our approach on
major supercomputers such as ARCHER (EPCC, UK), BlueWonder
(STFC, UK) and SuperMuc (LRZ, Germany). FabBioMD currently
supports NAMD for ensemble MD simulation and AMBER [48] for
the calculation of free energy contributions to the binding affinity
based on MMPBSA [49] and normal mode methods respectively.

A number of related tools introduce automated workflows
into free energy calculations. These tools include for example the

D. Groen et al. / Computer Physics Communications 207 (2016) 375–385 383
Fig. 6. Example output of the first three Iterative Boltzmann Inversions (IBI), used to parameterize polymer–polymer interactions. The changes in potential obtained through
the procedure are shown in the top row for iterations 1–3 (left to right). The resulting changes in the radial distribution functions (RDF) for each potential are provided in
the bottom row for iterations 1–3 (left to right). Here we also plot the desired RDF, which we obtained from an atomistic simulation of the same system (‘‘target’’), as well as
two error measures (the mean absolute difference and the mean squared difference) which can be used as convergence criteria. For reasons of simplicity we have omitted
information on the pressure correction, which is simultaneously performed in these IBI iterations [42].
Fig. 7. Example of an ESMACS workflow, automated using FabSim, as it is employed in the pMHC binding affinity prediction, reproduced from Wan et al. [45]. Here, 50
trajectory calculations (known as replicas) are performed concurrently in three phases (equilibration, production, MMPBSA&NMODE), each replica using up to 144 cores.
After these calculations have completed, the peptide–protein binding affinity is obtained through statistical analysis. We show the ensemble simulations required in a single
trajectory calculation for which we need to have access to 7,200 cores for simulations and to 4,800 cores for free energy calculations. For a concurrent three-trajectory case
we need 19,200 cores for simulations and 14,400 cores for free energy calculations. Theworkflow requires approximately 9 hours to complete, given that sufficient resources
are available. To compute more than one binding affinity concurrently, one needs to multiply the requirement by the number of peptides of interest.
Amber suite [50], FESetup [51], free energy workflow (FEW) [52],
free energy perturbation (FEP) workflow [53], as well as an
automation approach using Copernicus [54] in combination with
Gromacs [55]. In general, these tools are limited to the traditional
one-off MD simulation approach, which is limited by unreliable
free energy predictions, and do not support the ensemble
simulation approach we described here.

As an example result from our ensemble approach using
FabBioMD,we present a set of predictions of peptide-MHC (MHC is
the Major Histocompatibility Complex protein) binding affinities.
The binding between a peptide and MHC is central to the human
immune response. We briefly summarize this study here but it is
described in full by Wan et al. [45], a set of 12 different peptide
sequences bound to HLA-A*02:01 MHC allele were selected, and
their calculated binding affinities (using ensembles of 50 instances)
were compared with those determined experimentally. In Fig. 8(a)
and (b) we present an example normalized frequency distribution
of the ensemble of binding affinities of two of the 12 peptides.

384 D. Groen et al. / Computer Physics Communications 207 (2016) 375–385
-120 -90 -60 -30 0 30
Binding affinity (kcal/mol)

-120 -90 -60 -30 0 30
Binding affinity (kcal/mol)

0

0.01

0.02

0.03

0.04

D
is

tr
ib

ut
io

n

0

0.01

0.02

0.03

0.04

D
is

tr
ib

ut
io

n

-16 -14 -12 -10 -8 -6 -4

ΔGexp (kcal/mol)

ΔG
ca

l
 (

kc
al

/m
ol

)

-10

-8

-6

-4

-2

0

no
rm

a

b

c

Fig. 8. (a) and (b) Example outcomes of two peptide binding affinity calculations (WIKTISKRM and AAAKTPVIV) using ESMACS within BAC (from Wan et al. [45]). Each
simulation performed resulted in one data point; 50 simulations were run in total leading to the Gaussian frequency distribution shown. (c): Comparison of the peptide
binding affinity calculation results with experimental results. Each data point consists of one binding affinity calculation, with the two points in the top right corresponding
respectively, from top to bottom, to the outcomes shown in (b) and (a). These results are discussed in detail in Wan et al. [45].
Each distribution is a Gaussian and corresponds to a single point in
Fig. 8(c), where we provide the correlation between experimental
binding affinities and our predictions.

5. Conclusion

In the present work, we have described and made available
FabSim, a new approach to reduce the complexity of tasks
associated with computational research. We illustrate the scope
and flexibility of FabSim by presenting its application in three
diverse domains where it has been, and continues to be, used to
simplify computational tasks and to improve their reproducibility.
Our use cases in bloodflow modelling, materials modelling and
binding affinity calculation provide evidence that FabSim benefits
computational research on a generic level.

In the area of brain bloodflow, we have described how Fab-
Sim can be used to do systematic benchmarking, to execute an
ensemble of multiscale simulations, and to simplify the deploy-
ment of HemeLB on remote machines. In the nanomaterials area,
we have shown how FabSim automates iterative parameterization
of coarse-grained potentials, and allows us to systematicallymodel
the self-assembly of layered composite materials with chemical
specificity. FabSim has also been applied to streamline the calcula-
tion of ligand–protein binding affinities through our Binding Affin-
ity Calculator, allowing users to automatically launch ensemble
computations, and thereby controlling uncertainties and produc-
ing reproducible results. In all cases, FabSim assists in the curation
of run data by furnishing information about the job specification
and the environment variables. The extent to which FabSim has
been applied and adapted in these three domains serves to demon-
strate its flexibility and ease of adoption. Indeed, using FabSim we
have been able to publish our research findings in leading scientific
journals in each domain.
As part of this software paper, we provide the FabSim code
base to the scientific community under a permissive BSD 3-clause
licence. As part of so doing, we hope to encourage computational
researchers to begin ‘‘automating away’’ some of their more
tedious tasks, and to free up more human effort for advancing
science.

Acknowledgements

We thank Dr. Shunzhou Wan for his help in constructing the
Binding Affinity Calculation section of this article, and Miguel
Bernabeu, Rupert Nash, Sebastian Schmieschek, Mohamed Itani
and Hywel Carver for their contributions to FabHemeLB. This work
was funded in part by the EU FP7 MAPPER, CRESTA, P-medicine
and VPH-SHARE project (Grant Nos. 261507, 287703, 270089,
269978), by the EU H2020 ComPat project (Grant No. 671564)
by EPSRC via the 2020 Science Programme (EP/I017909/1), the
Qatar National Research Fund (Grant No. 09–260–1–048), MRC
Bioinformatics project (MR/L016311/1) and the UCL Provost. AB is
funded by an INLAKS Foundation Scholarship and a UCL Overseas
Research Studentship Award (2014–2017). Supercomputing time
was provided by the Hartree Centre (Daresbury Laboratory)
on BlueJoule and BlueWonder via the CGCLAY project, and
on HECToR and ARCHER, the UK national supercomputing
facility at the University of Edinburgh, via EPSRC through grants
EP/F00521/1, EP/E045111/1, EP/I017763/1 and the UK Consortium
on Mesoscopic Engineering Sciences (EP/L00030X/1).

References

[1] D. Groen, S.J. Zasada, P.V. Coveney, IEEE Comput. Sci. Eng. 16 (2) (2014) 34–43.
[2] D.W. Wright, B.A. Hall, O.A. Kenway, S. Jha, P.V. Coveney, J. Chem. Theory

Comput. 10 (3) (2014) 1228–1241.
[3] A. Hoekstra, B. Chopard, P.V. Coveney, Phil. Trans. R. Soc. A 372 (2021) (2014).

http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref1
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref2
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref3

D. Groen et al. / Computer Physics Communications 207 (2016) 375–385 385
[4] J. Borgdorff, M. Ben Belgacem, C. Bona-Casas, L. Fazendeiro, D. Groen, O.
Hoenen, A. Mizeranschi, J.L. Suter, D. Coster, P.V. Coveney, W. Dubitzky, A.G.
Hoekstra, P. Strand, B. Chopard, Phil. Trans. R. Soc. A 372 (2021) (2014).

[5] I. Foster, J. Comput. Sci. Tech. 21 (4) (2006) 513–520.
[6] The UNICORE Project, 2016, http://www.unicore.org.
[7] gLite Middleware, 2016, http://glite.web.cern.ch/glite/.
[8] M. Hayes, L. Morris, R. Crouchley, D. Grose, T. Van Ark, R. Allan, J. Kewley, in:

4th UK e-Science All Hands Meeting, Nottingham, UK, 2005.
[9] Longbow, 2015. http://www.hecbiosim.ac.uk/wikis/index.php/Longbow.

[10] L. Goodstadt, Bioinformatics 26 (21) (2010) 2778–2779.
[11] J. Koester, S. Rahmann, Bioinformatics 28 (19) (2012) 2520–2522.
[12] J. Borgdorff, M.Mamonski, B. Bosak, K. Kurowski,M. Ben Belgacem, B. Chopard,

D. Groen, P.V. Coveney, A.G. Hoekstra, J. Comput. Sci. 5 (5) (2014) 719–731.
[13] C. Docan, M. Parashar, S. Klasky, Clust. Comput. 15 (2) (2012) 163–181.
[14] D. Groen, S. Rieder, S.P. Zwart, J. Open Res. Softw. 1 (1) (2013) e9.
[15] S.F. Portegies Zwart, S.L. McMillan, A. van Elteren, F.I. Pelupessy, N. de Vries,

Comput. Phys. Comm. 184 (3) (2013) 456–468.
[16] CouPE, 2015. sites.google.com/site/coupempf/.
[17] D. Gaston, C. Newman, G. Hansen, D. Lebrun-Grandié, Nucl. Eng. Des. 239 (10)

(2009) 1768–1778.
[18] J.B. Gregersen, P.J.A. Gijsbers, S.J.P. Westen, J. Hydroinform. 9 (3) (2007)

175–191.
[19] S.J. Zasada, P.V. Coveney, Comput. Phys. Comm. 180 (12) (2009) 2513–2525.
[20] C.C. Lian, F. Tang, P. Issac, A. Krishnan, J. Parallel Distrib. Comput. 65 (7) (2005)

857–869.
[21] M. Wilde, M. Hategan, J.M. Wozniak, B. Clifford, D.S. Katz, I. Foster, Parallel

Comput. 39 (9) (2011) 633–652.
[22] I.J. Taylor, E. Deelman, D.B. Gannon, M. Shields, Workflows for e-Science:

Scientific Workflows for Grids, Springer Publishing Company, Incorporated,
2014.

[23] B. Ludäscher, I. Altintas, C. Berkley, D. Higgins, E. Jaeger, M.B. Jones, E.A. Lee, J.
Tao, Y. Zhao, Concurr. Comput.: Pract. Exp. 18 (10) (2006) 1039–1065.

[24] K. Wolstencroft, R. Haines, D. Fellows, A. Williams, D. Withers, S. Owen, S.
Soiland-Reyes, I. Dunlop, A. Nenadic, P. Fisher, et al., Nucleic Acids Res. (2013)
328.

[25] K. Rycerz, M. Bubak, E. Ciepiela, D. Harelak, T. Gubaa, J. Meizner, M. Pawlik, B.
Wilk, Future Gener. Comput. Syst. 53 (0) (2015) 77–87.

[26] B. Ludäscher, I. Altintas, S. Bowers, J. Cummings, T. Critchlow, E. Deelman, D.D.
Roure, J. Freire, C. Goble, M. Jones, S. Klasky, T. McPhillips, N. Podhorszki, C.
Silva, I. Taylor, M. Vouk, in: Arie Shoshani, Doron Rotem (Eds.), Scientific Data
Management, Challenges, Technology and Deployment, in: Computational
Science Series, 230, Chapman and Hall/CRC, ISBN: 978-1-4200-6981-5, 2009,
pp. 476–508.

[27] D. Groen, J. Hetherington, H.B. Carver, R.W. Nash,M.O. Bernabeu, P.V. Coveney,
J. Comput. Sci. 4 (5) (2013) 412–422.

[28] J. Forcier, Fabric, 2014. http://www.fabfile.org.
[29] YAML, 2015. www.yaml.org.
[30] IGTF: Interoperable Global Trust Federation, https://www.igtf.net/.
[31] B. Beckles, V. Welch, J. Basney, Int. J. Hum. Factors Manuf. 63 (1/2) (2005)

74–101.
[32] S.J. Zasada, A.N. Haidar, P.V. Coveney, Phil. Trans. R. Soc. A 369 (1949) (2011)
3413–3428.

[33] Fabric SSH Keymanager, 2015, https://github.com/farridav/keymanager.
[34] M.D. Mazzeo, P.V. Coveney, Comput. Phys. Comm. 178 (12) (2008) 894–914.
[35] Neurological simulation milestone reached after UCL embraces Allinea’s tools

on UK’s largest supercomputer, 2014,
http://www.allinea.com/news/201406/neurological-simulation-milestone-
reached-after-ucl-embraces-allinea%E2%80%99s-tools-uk%E2%80%99s.

[36] M.A. Itani, U.D. Schiller, S. Schmieschek, J. Hetherington, M.O. Bernabeu, H.
Chandrashekar, F. Robertson, P.V. Coveney, D. Groen, J. Comput. Sci. 9 (2015)
150–155.

[37] M.O. Bernabeu, M.L. Jones, J.H. Nielsen, T. Krüger, R.W. Nash, D. Groen, S.
Schmieschek, J. Hetherington, H. Gerhardt, C.A. Franco, P.V. Coveney, J. R. Soc.
Interface 11 (99) (2014).

[38] C.A. Franco, M.L. Jones, M.O. Bernabeu, I. Geudens, T. Mathivet, A. Rosa, F.M.
Lopes, A.P. Lima, A. Ragab, R.T. Collins, L.-K. Phng, P.V. Coveney, H. Gerhardt,
PLoS Biol. 13 (4) (2015) e1002125.

[39] J.R. Cebral, F. Mut, J. Weir, C. Putman, Am. J. Neuroradiol. 32 (1) (2011)
145–151.

[40] R.W. Nash, H.B. Carver, M.O. Bernabeu, J. Hetherington, D. Groen, T. Krüger,
P.V. Coveney, Phys. Rev. E 89 (2014) 023303.

[41] S. Manini, L. Antiga, L. Botti, A. Remuzzi, Ann. Biomed. Eng. (2014) 1–13.
[42] J.L. Suter, D. Groen, P.V. Coveney, Adv. Mater. 27 (6) (2015) 966–984.
[43] J.L. Suter, D. Groen, P.V. Coveney, Nano Lett. 15 (12) (2015) 8108–8113.
[44] S.S. Ray, Macromol. Chem. Phys. 215 (12) (2014) 1162–1179.
[45] S. Wan, B. Knapp, D.W. Wright, C.M. Deane, P.V. Coveney, J. Chem. Theory

Comput. 11 (7) (2015) 3346–3356.
[46] S.K. Sadiq, D. Wright, S.J. Watson, S.J. Zasada, I. Stoica, P.V. Coveney, J. Chem.

Inf. Model. 48 (9) (2008) 1909–1919.
[47] S.K. Sadiq, D.W. Wright, O.A. Kenway, P.V. Coveney, J. Chem. Inf. Model. 50 (5)

(2010) 890–905.
[48] D.A. Pearlman, D.A. Case, J.W. Caldwell, W.S. Ross, T.E. Cheatham, S. DeBolt, D.

Ferguson, G. Seibel, P. Kollman, Comput. Phys. Comm. 91 (1) (1995) 1–41.
[49] P.A. Kollman, I. Massova, C. Reyes, B. Kuhn, S. Huo, L. Chong, M. Lee, T. Lee, Y.

Duan, W. Wang, O. Donini, P. Cieplak, J. Srinivasan, D.A. Case, T.E. Cheatham,
Acc. Chem. Res. 33 (12) (2000) 889–897.

[50] D.A. Case, T.E. Cheatham, T. Darden, H. Gohlke, R. Luo, K.M.Merz, A. Onufriev, C.
Simmerling, B. Wang, R.J. Woods, J. Comput. Chem. 26 (16) (2005) 1668–1688.

[51] FESetup, 2015. http://www.hecbiosim.ac.uk/fesetup/download/0-/3-fesetup.
[52] N. Homeyer, H. Gohlke, J. Comput. Chem. 34 (11) (2013) 965–973.
[53] L.Wang, Y.Wu, Y. Deng, B. Kim, L. Pierce, G. Krilov, D. Lupyan, S. Robinson,M.K.

Dahlgren, J. Greenwood, D.L. Romero, C. Masse, J.L. Knight, T. Steinbrecher, T.
Beuming,W. Damm, E. Harder, W. Sherman, M. Brewer, R. Wester, M. Murcko,
L. Frye, R. Farid, T. Lin, D.L. Mobley, W.L. Jorgensen, B.J. Berne, R.A. Friesner, R.
Abel, J. Am. Chem. Soc. 137 (7) (2015) 2695–2703.

[54] S. Pronk, I. Pouya, M. Lundborg, G. Rotskoff, B. Wesén, P.M. Kasson, E. Lindahl,
J. Chem. Theory Comput. 11 (6) (2015) 2600–2608.

[55] S. Pronk, S. Pall, R. Schulz, P. Larsson, P. Bjelkmar, R. Apostolov, M.R. Shirts, J.C.
Smith, P.M. Kasson, D. van der Spoel, B. Hess, E. Lindahl, Bioinformatics (2010).

http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref4
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref5
http://www.unicore.org
http://glite.web.cern.ch/glite/
http://www.hecbiosim.ac.uk/wikis/index.php/Longbow
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref10
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref11
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref12
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref13
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref14
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref15
http://sites.google.com/site/coupempf/
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref17
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref18
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref19
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref20
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref21
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref22
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref23
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref24
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref25
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref26
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref27
http://www.fabfile.org
http://www.yaml.org
https://www.igtf.net/
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref31
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref32
https://github.com/farridav/keymanager
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref34
http://www.allinea.com/news/201406/neurological-simulation-milestone-reached-after-ucl-embraces-allinea%25E2%2580%2599s-tools-uk%25E2%2580%2599s
http://www.allinea.com/news/201406/neurological-simulation-milestone-reached-after-ucl-embraces-allinea%25E2%2580%2599s-tools-uk%25E2%2580%2599s
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref36
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref37
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref38
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref39
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref40
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref41
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref42
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref43
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref44
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref45
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref46
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref47
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref48
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref49
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref50
http://www.hecbiosim.ac.uk/fesetup/download/0-/3-fesetup
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref52
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref53
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref54
http://refhub.elsevier.com/S0010-4655(16)30144-8/sbref55

	FabSim: Facilitating computational research through automation on large-scale and distributed e-infrastructures
	Introduction
	Related work
	Overview of FabSim
	Architecture
	Using FabSim
	Remote execution
	Limitations
	Customizing FabSim
	Best practices
	Provenance, curation, reproducibility
	Security

	Exemplar FabSim use cases
	Cerebrovascular bloodflow
	Multiscale modelling of clay-polymer nanocomposite materials
	Calculating ligand--protein binding affinities from ensemble molecular dynamics

	Conclusion
	Acknowledgements
	References

