
Computer Physics Communications 207 (2016) 282–286
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Geometric integrator for charged particle orbits in axisymmetric
fusion devices
S.V. Kasilov a,b, A.M. Runov c,∗, W. Kernbichler b
a Institute of Plasma Physics, National Science Center ‘‘Kharkov Institute of Physics and Technology’’, 61108, Kharkov, Ukraine
b Fusion@ÖAW, Institut für Theoretische Physik - Computational Physics, Technische Universität Graz, Petersgasse 16, A–8010 Graz, Austria
c Max-Planck-Institut für Plasmaphysik, D-17491 Greifswald, Germany

a r t i c l e i n f o

Article history:
Received 12 February 2016
Received in revised form
23 June 2016
Accepted 7 July 2016
Available online 20 July 2016

Keywords:
Plasma physics
Kinetic modelling
Numerical integrators

a b s t r a c t

A semi-analytical geometric integrator of guiding centre orbits in an axisymmetric tokamak is described.
The integrator preserves all three invariants of motion up to computer accuracy at the expense of reduced
orbit accuracy and it is roughly an order ofmagnitudemore efficient than a direct solution of the equations
of guiding centre motion with a standard high order adaptive ODE integrator.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

An evaluation of the distribution function and/or its moments
by direct modelling of particle orbits is widely used in plasma
physics (see, e.g., codes like EUTERPE [1,2] or ASCOT [3]). An ef-
ficient algorithm for calculation of trajectories of charged particles
in complex (quasi-)stationary magnetic and electric fields is one
of the key issues in such codes because of the high number of test
particle orbits required tominimize the statistical error of such cal-
culations, which scales inversely with the square root of the num-
ber of test particles. This issue is especially important for global
transport modelling (e.g., see Ref. [4]) where the profiles of plasma
parameters are calculated self-consistently from test particle tra-
jectories, which have to be traced over the profile relaxation (con-
finement) time.

Within transport modelling, computation of stochastic test
particle orbits [5] requires the solution of guiding centre equations
[6,7], which is usually performed with help of general-purpose
ODE integrators. In case of axisymmetric systems (tokamaks) the
guiding centre motion is fully integrable, because there exist
three integrals of motion, which fully determine each orbit in the
5D phase space: The total energy w, magnetic moment µ and
the canonical toroidal angular momentum pϕ , respectively are
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with electrostatic potentialΦ , magnetic field module B, co-variant
toroidal component of the magnetic field Bϕ , co-variant toroidal
component of the vector potential Aϕ , speed of light c , particle
charge e, mass m, perpendicular velocity v⊥, and parallel velocity
v∥. An accurate conservation of the invariants (1) is of primary
importance for transport modelling in drift kinetic or drift fluid
approximationwhile other accuracy requirements related to orbits
can be significantly relaxed. Algorithms with such exact (up to
computer accuracy) conservation of invariants are called geometric
integrators (see, e.g., Ref. [8]). These integrators preserve the
geometry of the exact phase space flow (in particular, orbits
resulting from the integrator of this paper stay exactly closed in
the poloidal plane ϕ = const unless they cross the boundary of
the computation domain), but the orbits do not necessarily satisfy
Hamiltonian equations of motion with some (slightly modified)
Hamiltonian as in the case of the symplectic integrators [9] being
a sub-class of geometric integrators.

In the following sections we will introduce and study such an
integrator suitable for transport modelling of axisymmetric fusion
devices. In a comparison with commonly used general-purpose
ODE integrators one can expect two advantages: First, in numerical

http://dx.doi.org/10.1016/j.cpc.2016.07.019
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.07.019&domain=pdf
mailto:runov@ipp.mpg.de
http://dx.doi.org/10.1016/j.cpc.2016.07.019


S.V. Kasilov et al. / Computer Physics Communications 207 (2016) 282–286 283
efficiency; and second, such an algorithm should be less sensitive
to the accuracy of the representation of the electromagnetic field
allowing also for numerical inaccuracies resulting, in particular,
from the statistical noise in the data.

2. Derivation of the integrator

In general magnetic field geometry, equations of guiding centre
motion with invariants w and µ used as velocity space variables
are [7]

ṙ =
v∥B∗

Bh∗

∥

, B∗
= ∇ ×
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∥
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whereB andA aremagnetic field and vector potential, respectively,
and v∥ = v∥(r, w,µ, σ ) is determined by the first two Eqs. in (1)
and parallel velocity sign σ = ±. In axisymmetric geometry using
cylindrical variables (R, ϕ, Z), equations of motion omitting the
symmetry variable ϕ take the form
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The varying part of Bϕ = Bϕ(ψ) as a function of poloidal flux
ψ = −Aϕ is of the order of plasma beta or of the square of the
ratio of the poloidal and toroidal field strengths. In most tokamaks
this variation is only a few percent and can be safely ignored. With
this assumption, Eqs. (3) are rewritten as

Ṙ = −
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H, Ż =

1
Rh∗

∥

∂

∂R
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where a Hamiltonian like function H is
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Particle orbits are then determined by the condition H = 0. A
numerically efficient low order approximation of these orbits can
be obtained if one uses in (5) a linear interpolation for the following
functions of coordinates x = (x1, x2) ≡ (R, Z),

fA(x) ≡ Aϕ, fB(x) ≡
1
B
, fΦ(x) ≡

Φ

B2
, (6)

discretized on a triangularmesh required for the continuous piece-
wise linear interpolation. As a result, H (5) becomes a continuous
piecewise quadratic function,
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1
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where the coefficients aij are constant within a given triangle and
are determined by initial values of the particle coordinates x0 and
the velocity components v⊥0 and v∥0 in this triangle as follows,
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Here, α = e
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−1, and the constants xia are the solution to the
following linear equation set,
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The spatial particle trajectories,H = 0, are then continuous piece-
wise second order curves. Note that vector potential and magnetic
field module in (6) are treated as independent functions within
the above linear interpolation, which does not hold the relation
B = |∇ × A| anymore. Consequently, gradient-B drift is retained
in the orbits while it would be absent if Bwould be computed from
that relation. Due to continuous interpolation of all functions of
the coordinates in Eq. (1), orbits are continuous also in the veloc-
ity space where preferable variables are (v⊥, v∥). Those are more
convenient for modelling of collisions and of anomalous trans-
port, both required in transport simulations. A parametric (time-
dependent) form of orbit segments is obtained from the equations
of motion (4), which are further simplified by ignoring the Lar-
mor radius correction, h∗

∥
→ 1 and by replacing R with a con-

stant R̄ being the radial coordinate of the centre of mass of a given
triangle,

ẋi =
(−1)i

R̄

2
j=1

a3−i,j
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. (10)

This approximation does not affect the orbit shape. Namely, par-
ticles move along exactly the same orbits in the phase space but
time dependence of phase space coordinates is slightly changed.
Depending on the sign of the determinant D = det(aij), orbits are
either ellipses (D > 0) or hyperbolas D < 0, respectively given by

xi = xia + xic cos(ω∆t)+ xis sin(ω∆t), D > 0,

xi = xia + xic cosh(ω∆t)+ xis sinh(ω∆t), D < 0, (11)

where∆t is the integration time step,
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2
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The numerical implementation of this integrator is quite
straightforward: One follows the test particle for the time step∆t
(usually determined by collisions or anomalous transport) using
Eqs. (11) and modifies its velocities (v⊥, v∥) according to the
conservation laws (1). If∆t exceeds the time to reach a boundary of
the triangle, one stops the trajectory at this point of intersection. Its
coordinates, xb, satisfy a quadratic equation, and the corresponding
time can be found from (11) for x = xb. Then one follows the
particle in the next triangle using the point of intersection as a new
starting point x0 and its local velocities as new v⊥0 and v∥0.

3. Benchmarking

We now compare the results obtained by the geometric inte-
grator derived in the previous section and a conventional adaptive
ODE integrator, odeint (Ref. [10]). The magnetic configuration we
use is ITER-like (the same had been used in Ref. [4]) with zero elec-
tric field everywhere.

The triangular mesh required for the geometric integrator has
been produced from a nearly orthogonal field-aligned quadran-
gular mesh used for fluid modelling by the B2 code [11]. The
odeint [10] solver has been employed here for the full 3D system
of guiding centre equations [7] in the covariant representation [12]
for cylindrical coordinates. A very accurate divergence-free repre-
sentation of the magnetic field based on 2D spline interpolation
(5th order) of the poloidal flux function has been used for this in-
tegrator, which acts as a reference case.

As an example, a few collisionless trajectories calculated by
the geometric integrator for trapped deuterium and iron ions
are presented in Fig. 1 together with pertinent orbits from the
reference case. In addition, the used triangular mesh is also shown.
All orbits almost coincide in the overview figure (a), but the
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Fig. 1. (a)—Geometry of an ITER-like configuration and example orbits triangles, green—D ions, geometric integrator (Section 2); squares, blue—D ions, odeint [10]; circles,
black—Fe ions, geometric integrator; diamonds, red—Fe ions, odeint. (b) and (c)—Magnification of the pertinent zones in (a). The arrow points to the starting point of all four
trajectories depicted.
magnification of the zones (b) and (c) shows a noticeable difference
in some details of the trajectories, especially in the region of
the banana tips shown in (c). This shift is related to the crude
representation of the field-related values, Eq. (6), on themesh. The
integrator preserves all constants of motion exactly, therefore, an
initial error introduced by a linear interpolation at the start point
(arrow in Fig. 1(b)) propagates along the whole trajectory. Indeed,
if one starts the trajectories near the corner of a cell (where this
error vanishes), the shift between the banana tips vanishes, too.
It should be noted that the B2 mesh is optimized to represent
the hydrodynamical plasma parameters. For transport studies, this
interpolation can be essentially improved without suffering from
larger costs. The strategy of grid refinement is to improve the
accuracy of linear interpolation of the poloidal flux function, which
is mainly responsible for the error in Fig. 1. Such a refinement
is needed only in the regions where accurate orbits are required,
namely, in pre-separatrix and pedestal regions but not in the
plasma corewhere, as shown below, errors in the orbits have small
effect on the radial transport.

The crucial point is how, if at all, inaccuracies of the orbits affect
the overall transport properties of the system. To check this, we
add collisions to our model according to Ref. [5], i.e. introducing
specific random changes of pitch parameter and velocity module
between the integration steps of the guiding centre equations. Test
particles are started at the same point as before, but with random,
evenly distributed pitch parameters v∥0(v

2
⊥0 + v2

∥0)
−1/2, and are

followed for 10 collisional times τcoll. During this process, the time
evolution of the poloidal flux at the particle location is stored. The
variance of the poloidal flux deviation ⟨(ψ − ψ0)

2
⟩ (ψ0 is the flux

at the start point) serves as a measure of the neoclassical radial
diffusion coefficient of the system. The results of the Monte Carlo
computations of this variance (normalized to the mass ratio for
D and Fe), obtained with help of the geometric integrator and of
the reference case integrator are presented as functions of time
in Fig. 2(a). Again, the curves almost coincide. To emphasize the
difference, we plot the relative error, (⟨(ψ − ψ0)

2
⟩geoint − ⟨(ψ −

ψ0)
2
⟩odeint)/⟨(ψ −ψ0)

2
⟩odeint in percent, see Fig. 2(b). A significant

relative difference is present only at the start of the trajectories,
t ≤ τcoll, where the change ofψ due to collisions is small compared
to the orbit width and thus is of no importance. After one collision
time the difference converges to an acceptable value of a few
percent. As it was mentioned above, this value can be reduced
further by optimization of the mesh.

The estimation of the relative numerical efficiency of the
integrators is a subtle matter: The systems which are solved are
not quite the same. Moreover, the CPU time ratio strongly depends
on details of the implementation of both integrators, even on the
realization of the compiler intrinsic functions (see Eq. (11)). One
can estimate the overall effect of our effort by a rule of thumb
comparing the computing times for calculations pertinent to Fig. 2
where, of course, the CPU time spent on collisions was excluded
from the measurement. For the same statistical error, one gains
a factor of ten when using the geometric integrator. This value
would be even higher if one compares the efficiency for a self-
consistent transport problem, like the one described in Ref. [4]. A
frequently used tool in transport studies is a so-called track length
estimator (see, e.g., the textbook Ref. [13]), where the knowledge
of the dwell time of each particle per cell is required. This means,
thatwhen using a conventional integrator also the computations of
any intersection of trajectories with cell boundaries are required.
To find all these intersection points makes the usage of the
conventional integrator even more expensive relative to our
algorithm, because those points are already automatically obtained
when using the geometric integrator.

Another aspect is the quality of the fields entering Eq. (2).
The magnetic field used in these test calculations had been rep-
resented very accurately and is smooth, and the electric field
was set to zero—this allows us to use a high-order adaptive in-
tegrator, at least for purposes of this test. However, in a realis-
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Fig. 2. (a)—Variance of the poloidal flux deviation ⟨(ψ −ψ0)
2
⟩ normalized to the mass ratio as a function of normalized time: solid line—D, geometric integrator, dash–dot

line—D, conventional integrator, dash line—Fe, geometric integrator, dotted line—Fe, conventional integrator. (b)—The relative error of the variance, (⟨(ψ − ψ0)
2
⟩geoint −

⟨(ψ − ψ0)
2
⟩odeint )/⟨(ψ − ψ0)

2
⟩odeint in percent: solid line—D, dash line—Fe.
Fig. 3. Test of the geometric integrator for Fe ions moving in the field with errors: Squares—10% error introduced in |B|, circles—10% error introduced inψpol , triangles—case
without error. (a)—Orbits of Fe ions, magnification of the zone ‘‘c’’ (see Fig. 1). (b)—Variance of the poloidal flux deviation ⟨(ψ − ψ0)

2
⟩ normalized to the mass ratio as a

function of normalized time.
tic case the electric field should be calculated self-consistently.
This electric field is represented piecewise by constants within
mesh cells and, therefore, it is discontinuous at cell boundaries.
In addition, this field has a significant numerical noise in case
of Monte Carlo modelling and cannot be represented by smooth
dependences in the whole space. This makes the usage of high-
order numerical schemes problematic and would require filter-
ing of the statistically obtained electric field. This might introduce
artefacts and introduces further CPU expenses. However, the low-
order representation of all field-related values in Eq. (6) allows
one to use the noisy field quantities directly within the geometric
integrator.

Effect of the noise in field quantities on the orbits and transport
is demonstrated in Fig. 3. In this test, random errors with relative
value of 10% have been introduced in the values of the magnetic
field module B and poloidal flux ψ at the grid nodes. Despite the
visible local change of the orbits, effect of the errors on the variance
⟨(ψ − ψ0)

2
⟩ is not dramatic and is of the order of the noise level.

Note that change of this quantity can be both, positive and negative
depending on the noise pattern. In particular, larger radial orbit
excursions from the exact flux surfaces induced by the noise in the
poloidal flux ψ do not lead indefinitely to the increase in radial
transport because this transport is computed with respect to flux
surfaces approximated by linear interpolation (their cross sections
are polygons of high order) which are affected by the noise in the
same way as the orbits.
4. Summary

The semi-analytical geometric integrator described here has
roughly an order of magnitude higher efficiency than a conven-
tional method for guiding centre orbit integration. Essentially this
is due to the fact that all analytical results employed by this in-
tegrator are expressed in terms of elementary functions, which
are intrinsic functions of FORTRAN compilers with a pertinent CPU
cost of the order of a single algebraic operation. In transport mod-
elling, the efficiency of this geometric integrator is even higher
because the track length estimator frequently used for the eval-
uation of macroscopic parameters from Monte Carlo test particle
distributions does not require any additional search of orbit in-
tersections with the given mesh. These data are obtained by the
geometric integrator as a by-product of orbit tracing. The integra-
tor has been already employed in 2D kinetic transport modelling
in a tokamak [4] and can also be applied for the modelling of ki-
netic effects in combination with 2D fluid and neutral transport
codes.
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