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a b s t r a c t

A Generalized Crystal-Cutting Method (GCCM) is developed that automates construction of three-
dimensionally periodic simulation cells containing arbitrarily oriented single crystals and thin films, two-
dimensionally (2D) infinite crystal–crystal homophase and heterophase interfaces, and nanostructures
with intrinsic N-fold interfaces. The GCCM is based on a simple mathematical formalism that facilitates
easy definition of constraints on cut crystal geometries. Themethod preserves the translational symmetry
of all Bravais lattices and thus can be applied to any crystal described by such a lattice including
complicated, low-symmetrymolecular crystals. Implementations are presentedwith carefully articulated
combinations of loop searches and constraints that drastically reduce computational complexity
compared to simple loop searches. Orthorhombic representations of monoclinic and triclinic crystals
found using the GCCM overcome some limitations in standard distributions of popular molecular
dynamics software packages. Stability of grain boundaries in β-HMX was investigated using molecular
dynamics andmolecular statics simulationswith 2D infinite crystal–crystal homophase interfaces created
using the GCCM. The order of stabilities for the four grain boundaries studied is predicted to correlatewith
the relative prominence of particular crystal faces in lab-grown β-HMX crystals. We demonstrate how
nanostructures can be constructed through simple constraints applied in the GCCM framework. Example
GCCM constructions are shown that are relevant to some current problems inmaterials science, including
shock sensitivity of explosives, layered electronic devices, and pharmaceuticals.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Molecular dynamics (MD) and related particle-based simu-
lation methods are indispensable tools in the study of crystal
anisotropy [1–10], surfaces [10–13], defects [14–19], and crys-
tal–crystal interfaces such as grain boundaries [20–27] and het-
erophase interfaces [28–30]. Many of these studies [14–24,27,29,
30] have focused on materials with comparatively ‘simple’ and
highly symmetric (e.g., cubic) packing structures, including atomic
crystals of metals, ceramics, and traditional semiconductors such
as gallium arsenide. However, a wide range of technologically rel-
evantmolecularmaterials, including pharmaceuticals [31,32], high
explosives [33–36], and organic semiconductors [37,38], exhibit
packing structures with significantly lower symmetry and often
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crystallize in monoclinic and triclinic forms. Low-symmetry crys-
tal systems, especially the monoclinic and triclinic systems, can
complicate the construction of simulation cells that involve ori-
ented thin films, grain boundaries, and crystal–crystal interfaces.
Examples from materials science range from engineering layered
electronic devices [3,22,26,29,30] to predicting the shock response
anddetonation sensitivity of explosives [5,6,8,28].Wepresent here
a Generalized Crystal-Cutting Method (GCCM) that enables and
practically automates facile construction of simulation cells con-
taining oriented crystalline thin films and crystal–crystal inter-
faces.

Many MD simulations of crystals employ three-dimensional
(3D) periodic boundary conditions (PBCs),which lead to simulation
geometries corresponding to infinite stacks of thin films or ‘bulk’
material. An implicit requirement for the use of PBCs in crystal
simulations is that the simulation cell exactly preserves the crys-
tal translational symmetry. For this reason, low-symmetry crystals
with monoclinic and triclinic Bravais lattices are often modeled
in non-orthorhombic parallelepiped-shaped simulation cells. This
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requirement also places enormous constraints on translational-
symmetry-preserving rotations of the underlying crystal in a given
simulation cell. One generally cannot arbitrarily rotate a crystal in a
simulation cell with 3D PBCs to orient some direction in the crystal
along another direction in the lab frame while preserving trans-
lational symmetry. Such requirements complicate studies that
involve oriented crystals and can make it incredibly difficult to si-
multaneously model two or more different oriented crystals that
satisfy PBCs in a single simulation cell. This severely hinders sim-
ulation studies of many anisotropic properties, grain boundaries,
and crystal–crystal interfaces between different polymorphs and
materials.

Literature sources include some reports of 3D periodic cells
containing oriented crystals [1,2,4–6] and (at least apparent) or-
thorhombic representations ofmonoclinic [28] and triclinic [12,28]
crystals. We are also aware of one report [28] using cells con-
taining two-dimensionally (2D) infinite interfaces with triclinic
crystals and a recently developed method [39] for constructing in-
terfaces in graphene. However, in most of these cases there is little
to no discussion as to how the cells were constructed; where ex-
tensive discussion is given, the approach is not generalized for all
Bravais lattices. These constructions appear to have been handled
largely on a case-by-case basis.

In this report we develop a mathematical formalism and
search-and-construction algorithms for the GCCM to facilitate the
systematic construction of 3D periodic simulation cells containing
arbitrarily oriented single crystals and thin films. The GCCM
circumvents problematic (or impossible) crystal rotations by
defining new simulation cells constructed by cutting inscribed
crystals in a symmetry-preserving manner. As the GCCM is
designed to preserve the translational-symmetry of all Bravais
lattices, it can be applied to any crystal described by such a
lattice irrespective of the complexity of the atomic or molecular
structure or the symmetry of the space group. A simple formalism
for defining constraints is employed that facilitates searches
for possible orthorhombic representations of monoclinic and
triclinic crystals and can be used to generate constituents of more
complicated constructions, such as nanowires and nanoparticles.
The GCCM formalism is readily extended to find commensurate
2D infinite crystal–crystal grain boundaries and interfaces that
can be modeled in a single cell with 3D PBCs. Carefully
ordering loop searches and application of constraints greatly
reduces the computational complexity for finding commensurate
crystal–crystal interfaces using the GCCM formalism and is
necessary to make the calculation tractable.

The remainder of the article is organized as follows. The math-
ematical formalism and key algorithms for the GCCM are devel-
oped in Section 2, with constructions involving single crystals dis-
cussed in Section 2.1, extensions for 2D infinite crystal–crystal
interfaces derived in Section 2.2, and strategies for constructing
nanostructures with N-fold crystal–crystal interfaces presented in
Section 2.3. Benefits and demonstrations of the GCCM for MD
simulations are described in Section 3, namely computational ad-
vantages of using orthorhombic representations of low-symmetry
crystals in Section 3.1, a comparison study of energetics of grain
boundaries in a monoclinic molecular crystal in Section 3.2, and
results from simulations of silver nanowires and icosahedral
nanoparticles exhibiting five-fold twins in Section 3.3. Potential
applications of the GCCM to systems including energetic materials,
organic semiconductors, and pharmaceuticals are described with
corresponding constructions in Section 4. Conclusions are drawn
in Section 5. All of the GCCM software source code for construct-
ing simulation cells of arbitrarily oriented single crystals and crys-
tal–crystal interfaces is provided as Supplementary Material (see
Appendix A).

Fig. 1. A simulation cell constructed by translating the crystal unit cell has faces
that coincide with the (100), (010), and (001) crystallographic faces. 2D periodic,
‘infinite’ slabwise partitions (see blue shaded region) can only be defined if the
normal vector for the slab is parallel to the normal vector of one of the faces of
the simulation cell, which in this case is also the normal of the (100) crystal face.
Analogous slabwise partitions can be defined in this simulation cell with normal
vectors parallel to the (010) and (001) face normal vectors. (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

2. Generalized Crystal-Cutting Method (GCCM)

2.1. Constructing simulation cells of oriented single crystals

Here we derive a mathematical formalism for the GCCM for
systematic construction of 3D periodic simulation cells of arbitrar-
ily oriented single crystals. The GCCM comprises two algorithms.
The first algorithm determines commensurate crystal cuts that
preserve translational symmetry of the lattice and define the edges
of new 3D periodic simulation cells. The second algorithm popu-
lates a chosen cell with atoms and/or molecules. These two algo-
rithms serve as a basis to construct cells for many kinds of single-
crystal simulations and for more complicated constructions such
as crystal–crystal interfaces.

Consider a crystal with a Bravais lattice of arbitrary symmetry
class with lattice vectors a, b, and c and an arbitrary set of basis
atoms for the unit cell. The respective lattice vector lengths are
a, b, and c and the angles between the lattice vectors are α ̸ bc,
β ̸ ac, and γ ̸ ab. Given 3DPBCs, simple unit cell translations can be
used to trivially create simulation cells with surfaces normal to the
crystal faces (100), (010), (001), (100), (010), and (001). (Recall
that the (ijk) and (ijk) faces are equivalent for centrosymmetric
crystals.) Fig. 1 shows one such simulation cell suitable for probing
properties along the normal to the (100) face. It is clearly seen that
the (100) face normal vector is exactly perpendicular to b and c,
but is not parallel to a (i.e., lattice direction [100]) for crystals with
monoclinic or triclinic symmetry. A crystal face (ijk) normal vector
is in general parallel to lattice direction [ijk] only for cubic crystals.

A critical feature of the simulation cell construction in Fig. 1
is that the periodic boundaries allow for ‘infinite’ 2D slabwise
partitions, highlighted by shading, whose normal vector is exactly
parallel to the normal of the (100) face. Clearly, analogous slabs can
be defined in this cellwith normal vectors parallel to the normals of
the (010) and (001) faces. It can also be seen that it is impossible to
use this cell to define smooth-faced infinite 2D periodic slabs with
different orientations, such as those with normal directions [100]
or perpendicular to (110). However, defining infinite 2D slabs in
the cell is desirable, or necessary, for many types of simulations.
For instance, simulations of supported shock waves often use a 2D
infinite rigid piston (or momentum mirror) with a normal vector
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that is parallel to the shock direction [1,4,19], and simulations of
1D transport require 2D slabwise partitions with normal vectors
parallel to the transport direction to impose or measure fluxes
and gradients [3,7,24,29,30,40]. Similar requirements exist for
simulations probing the directions transverse to the slab normal
vector, such as for the calculation of a gamma-surface [41] on a slip
plane [2,9]. The only requirement for slabwise partitioning of a 3D
periodic simulation cell into 2D periodic slabs is that the normal
vector of the slab be exactly parallel or antiparallel to the normal
of a face of the simulation cell. One canprobe an arbitrary direction S
in a crystal provided that S is exactly parallel to the normal of one of
the three unique faces of the simulation cell and that the simulation
cell preserves the translational symmetry of the underlying crystal.

The first GCCM algorithm determines the possible geometries
for new simulation cells that yield a face normal vector aligned
with an arbitrary direction S. The new cells are in general triclinic
and must be exactly commensurate with the underlying crystal
structure. We define the edges for an arbitrary cell that satisfies
the commensurability conditions as x1, x2, and x3, where

xj = mja + njb + pjc, (1)

andmj, nj, and pj are integers thatwill be determined later. (That is,
the xj’s are all lattice vectors.) Thus, a particular cell is specified by
thematrix (x1, x2, x3), where the xj’s are Cartesian column vectors.
Note that periodicity of a Bravais lattice with an arbitrary set of ba-
sis atoms or molecules is satisfied with edge vectors of the form
given in Eq. (1), which can be seen for the 2D projection shown in
Fig. 2. The simulation cell must have finite volume, thus the new
edge vectors must satisfy V = x1 · (x2 × x3) > 0. We assume here
and in all following discussion that x1, x2, and x3 comprise a right-
handed basis. Expressing the cell edge vectors in the form given
by Eq. (1) allows one to easily define geometrical constraints for
(x1, x2, x3) and requires only S, a,b, and c as input information. The
form of the xj’s guarantees that translational symmetry is satisfied.

To construct simulation cells for determining a property along
S, we first find vector pairs (x1, x2) such that for each pair

x1 × x2 = Ŝ, (2)

where Ŝ and x1 × x2 are unit vectors. It is through this constraint
on (x1, x2) that the normal of a simulation cell face is guaranteed to
be exactly aligned with the S direction. The possible pairs (x1, x2)
can be identified in a simple and relatively inexpensive search that
loops over values for the free parameters m1, n1, p1,m2, n2, and
p2. It should be obvious that one is not guaranteed to find finite
m1, . . . , p2 that exactly satisfy Eq. (2). The set of pairs that satisfy or
nearly satisfy Eq. (2) (within a user-specified scalar tolerance ϵ) can
be efficiently identified by checking whether Ŝ · ( x1 × x2) ≥ 1− ϵ
for all possible combinations of x1 and x2 on some finite domain for
(m1, . . . , p2). For the case ϵ ≠ 0, one has a simulation cell in which
the face normal vector and S are misaligned by an angle that is at
most θ = cos−1(1 − ϵ), but where the crystal structure is exactly
preserved and the discrepancy between these two directions can
be known exactly. In this case one should treat x1 × x2 as the
aligned direction, not Ŝ. Having found (x1, x2), one can choose any
x3 that has form given by Eq. (1) provided x̂3 · Ŝ ≠ 0.

New simulations cells (x1, x2, x3) found by following the above
approach are in general triclinic. One can identify orthorhombic
cells among the set of all possible solutions by imposing the
constraint

x1 · x2 = 0, (3)

during or after the initial search for (x1, x2) pairs and imposing the
constraint

x̂3 · Ŝ = 1, (4)

Fig. 2. Manydifferent simulation cells can be constructedwith a face normal vector
parallel to S, which in this case is S = a× b and points out of the page. The original
crystal structure and unit cell are shown in (a) along with three new simulation
cells that are commensurate with the lattice and highlighted with (b) orange, (c)
green, and (d) blue edges. All three cells preserve the translational symmetry of the
crystal, but the blue cell in (d) is the arguably the best for single-crystal simulations
as it is the closest to orthorhombic symmetry. Note, however, that the crystals in
these cells each have different faces aligned with the cell faces given by x1 × x3
and x2 × x3 and therefore have different 2D infinite slabwise partitions that can be
defined analogous to those shown in Fig. 1. (For interpretation of the references to
color in this figure legend, the reader is referred to the web version of this article.)

when searching for possible x3. One can also easily redefine
the constraint in Eq. (3) to search for approximately rectangular
transverse cross-sections within some tolerance angle ϵ′ as
|x̂1 · x̂2| < cos(90o

− ϵ′) and similarly to search for approximately
orthorhombic cells by modifying Eq. (4). Note that x1 × x2 should
be substituted for Ŝ in Eq. (4) if these two vectors are not
exactly parallel. Irrespective of finding a perfectly orthorhombic
simulation cell, in choosing x3 one would likely seek to either find
the minimum total cell volume, identified as x1 · (x2 × x3) →

minimum, or the cell closest to orthorhombic geometry, identified
as x̂1 ·


x̂2 × x̂3


→ 1, or a combination of these two criteria.

Minimizing with respect to cell volume will generally not lead to
a primitive unit cell for directions S that are not exactly parallel to
one of the crystal faces (100), (010), or (001).

The initial search for commensurate pairs (x1, x2) is by far
the most computationally demanding step for a generalized
implementation with loops over m, n, and p. The calculation
scales as O(∆m6) where ∆m is the number of elements in the
search domain for (m1,m2) and assuming ∆m = ∆n = ∆p. The
subsequent search for x3 is much cheaper, scaling approximately
as O(∆m3). Separating the searches for (x1, x2) and x3 already
drastically reduces the computational complexity fromanO(∆m9)
maximum. Although O(∆m6) may seem large, even serial
searches that loop over the domain −15 ≤ m, n, p ≤ 15
(which corresponds to a maximum cross-sectional area up to
approximately 15 × 15 square unit cells and ∆m = 31)
execute in less than a minute on a desktop computer. Obviously,
the GCCM search algorithm is also embarrassingly parallel. The
computational complexity can be reduced to O(∆m4) if one only
searches over those (x1, x2) that lie exactly in the plane with
normal vector S. Complexity reduction can be easily achieved
for S parallel to the (100), (010), and (001) face normal vectors
by respectively eliminating the loops over m, n, or p. Such
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an approach is particularly advantageous when searching for
orthorhombic representations of monoclinic and triclinic crystals.
O(∆m4) scaling can be achieved for arbitrary S using a two-step
approach whereby one first finds a small oriented cell (x1, x2, x3)
through a general search over a limited (m, n, p) domain and
then performs a second search over (m′, n′) for (x′

1, x
′

2) where
x′

j = m′

jx1 + n′

jx2 + p′

jx3. (Recall x1 and x2 lie in the plane with
normal S by construction.) Many studies require a simulation cell
that is longer along S than along either dimension of the cross-
section. In these instances one can cheaply increase the search
domain size for (m3, n3, p3) relative to the domain for (m1, . . . , p2)
when attempting to find the cell that is closest to orthorhombic
geometry.

The second GCCM algorithm automates the process of populat-
ing a chosen simulation cell (x1, x2, x3) with constituent atoms or
molecules. The approach is as follows: First, replicate the crystal
through translations of the original unit cell over a domain twice
as large as was covered in the original search. Second, rotate the
crystal such that x1 is parallel to x, x2 is the in (x, y)-plane, and x3
is in the +z half-space. Third, transform the rotated coordinates of
the atoms in the crystal to fractional coordinates with respect to
the aligned (x1, x2, x3) simulation cell and populate the new cell
with those atoms having fractional coordinates (xfrac, yfrac, zfrac) ∈

(0, 1]. Performing the intermediate rotation step is optional, but
simplifies the transformationmatrix to convert between fractional
and Cartesian coordinates and conveniently aligns S to be exactly
along +z. Because pairs of molecules that are equivalent under
PBCs can be included along the edges of the cell with this ap-
proach due to finite numerical precision, a final inspection of the
cell for such pairs usingminimum-image conventions is often nec-
essary. Sample programs to calculate edge vectors for simulation
cells of oriented single crystals and to populate those cells us-
ing the above approach are provided as Supplementary Material
(see Appendix A).

2.2. Constructing simulation cells for crystal–crystal interfaces

A straightforward extension of the GCCM formalism developed
in Section 2.1 allows for easy specification of constraints necessary
to construct fully 2D periodic crystal–crystal interfaces between
Bravais-lattice crystals of arbitrary symmetry class in a simulation
cell with 3D PBCs. Additional attention must be paid to the
implementation details for searches and application of constraints
as the computational complexity is significantly greater than
for the single-crystal case. We concern ourselves here with the
construction of an interface between two oriented crystals, which
in general may correspond to the same material, two different
polymorphs of the same chemical substance, or two completely
different substances. One can easily extend the construction
scheme to three or more different oriented crystals. Let the
initial simulation cells for two separate oriented crystals with
face normals aligned with user-specified directions S and S′ be
denoted as (x1, x2, x3) and (x′

1, x
′

2, x
′

3), respectively. Following the
conventions of Section 2.1, the face normal vectors given by x1×x2
and x′

1 × x′

2 are respectively aligned with S and S′. Define the
angles between the cell edge vectors to be θ ̸ x1x2, φ ̸ x1x3, and
ψ ̸ x2x3 and similarly for θ ′, φ′, andψ ′. Given these definitions, we
specify two sets of constraints to construct an interface following
the schematic shown in Fig. 3.

The first set of constraints forces commensurate crystal geome-
tries at the interface cross-section. Starting from the possible pairs
(x1, x2) and (x′

1, x
′

2) that separately satisfy Eqs. (1) and (2), we re-
quire that

q|x1| = q′
|x′

1|,

r|x2| = r ′
|x′

2|, (5)

θ = θ ′,

Fig. 3. Schematic for the construction of a 2D infinite crystal–crystal interface that
can be inscribed in a single simulation cell. The formalmathematical constraints for
this construction are given in Eqs. (5) and (6).

where q, q′, r , and r ′ are integers equal to or greater than one and
|xj| denotes the magnitude of xj. The commensurate pairs satisfy-
ing these equations are denoted (x1, x2, x′

1, x
′

2), and can be found
by looping over all unique combinations of (x1, x2) and (x′

1, x
′

2)
pairs. Setting q, q′, r , and r ′ to unity simplifies the specification and
computational complexity of the search. Unlike for the single crys-
tal, there are also strict requirements for simultaneously choosing
x3 and x′

3, which form the second set of constraints. Having first
found possible solutions for the cross-section (x1, x2, x′

1, x
′

2), we
require that

φ = φ′,

ψ = ψ ′, (6)

when choosing x3 and x′

3 to form a complete solution (x1, x2, x3,
x′

1, x
′

2, x
′

3) for the 2D periodic interface problem. It is not necessary
that |x3| and |x′

3| be equal within an integer multiple, but rather
only that these two vectors form the same angles with the inter-
face cross-section. As with the single-crystal constructions, user-
defined tolerances for satisfying the constraints in Eqs. (5) and (6)
can be applied, which corresponds to allowing for non-zero lattice
strains.

The existence of a solution on a user-defined domain (m1, . . . ,
p3) is by no means guaranteed and is governed entirely by the
constituent crystal structure(s). However, a search-based approach
does provide a feasible means to prove, by exhaustion, the non-
existence of a solution for a particular case on some domain.
Finite tolerances on the constraints in Eqs. (5) and (6) are often
necessary to find any solutions (x1, x2, x3, x′

1, x
′

2, x
′

3). Minimum
values for these tolerances can be chosen with respect to the
uncertainty in the lattice parameters. The two oriented crystals
are ultimately inscribed in a single simulation cell, which can be
constructed using the average values computed for the constrained
geometric parameters ⟨|x1|⟩, ⟨|x2|⟩, ⟨θ⟩, ⟨φ⟩, and ⟨ψ⟩ obtained
from the (x1, x2, x3) and (x′

1, x
′

2, x
′

3) cells. If this average cell is
used, the necessary strains imposed separately on the crystals in
(x1, x2, x3) and (x′

1, x
′

2, x
′

3) are only half the difference between
these cells, a fact that can be exploited when defining tolerances.
The two crystal cells must be rotated so that the edge vectors
(x1, x2, x3) and (x′

1, x
′

2, x
′

3) coincide and can be populated using the
same procedure described in Section 2.1.

In many cases, the number of solutions identified by the
GCCM is overwhelmingly small compared to the total number of
candidate ways to cut and join two crystals, the majority of which
do not satisfy 3D PBCs. For instance, if the domain for m, n, and
p is taken to be −15 ≤ m, n, p ≤ 15, then there are a total of
O(∆m18) ≈ O(1026) ways to cut and join two simulation cells.
However, by carefully ordering searches and the application of
constraints, the computational complexity of this algorithm can be
greatly reduced.
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In part one of the crystal–crystal interface search algorithm,
the possible cross-sections (x1, x2) and (x′

1, x
′

2) consistent with
the user specified directions S and S′ are identified in two
separate searches that each scale as O(∆m6). In our experience
for polyatomic molecular crystals these searches might find at
most O(103) to O(104) possibilities for each cross-section. It is
reasonable to consider only those cross-sections for which θ and
θ ′ are near 90o, where ‘near’ can be specified by the user, so that
the final simulation cell is not excessively tilted. In part two, all
permutations of the possible cross-sections are compared and only
the commensurate pairs satisfying the constraints in Eq. (5) are
kept. Often there are only a few dozen or hundred commensurate
cross-section pairs, or even none. In the latter case the search
domain (m1, . . . , p2) or tolerances should be increased. The third
and final part is to find appropriate x3 and x′

3 for the commensurate
cross-sections, subject to the constraints in Eq. (6). As the search
to find the best x3 and x′

3 for each commensurate cross-section
pair scales as O(∆m6), this final part of the algorithm can be the
most expensive in the event that many possible cross-sections
pairs are identified. Here we take ‘best’ to mean those x3 and x′

3
that lead to a final cell that is the closest to orthorhombic symmetry
within tolerances for φ and ψ . To reduce the total computational
cost of the algorithm, it is beneficial to perform this final search
only for the best pairs (x1, x2, x′

1, x
′

2), with ‘best’ being reasonably
defined as those cross-section pairs that are closest to being exactly
commensurate (|x1| − |x′

1| → 0, |x2| − |x′

2| → 0, θ − θ ′
→ 0)

or closest to orthorhombic symmetry (θ, θ ′
→ 90o). A sample

program to compute commensurate crystal–crystal interfaces is
provided as Supplementary Material (see Appendix A).

It should be noted when constructing interfaces with the GCCM
that the above constraints do not control the twist of one crystal
with respect to the other. For a homophase interface, this can lead
to a grain boundary with both a tilt and a twist [42]. If one is
searching for a specific twist, appropriate constraints can defined
and incorporated at relevant points in the general GCCM search
routines. In our experience with low-symmetry materials, there
are often only a fewdozen or hundred possible interfaces identified
by the GCCM, so it is likely not possible to exert a high degree of
control on the twist for those materials on a practically tractable
search domain.

2.3. Constructing N-fold crystal–crystal interfaces

The mathematical formalism developed in Section 2.1 can be
further extended to provide a systematic means to construct high-
symmetry defect structures, such as a five-fold twin, and low-
dimensional nanostructures, such as nanowires or icosahedral
quasi-nanospheres. Similar to the 2D periodic crystal–crystal in-
terface construction in Section 2.2, the existence of solutions for a
particular case is dependent on the underlying crystal symmetry,
the constraints can be simply and easily expressed, and a search al-
gorithm guarantees that all possible solutions that exist on a spec-
ified domain are found.

Fig. 4(a) shows a schematic cross-section of a nanostructure
with a 2D N-fold crystal–crystal interface. Two possible structures
that can be built using this schematic include a free-standing thin
film (which could be later adsorbed to a 2D periodic substrate)
and a nanowire constructed through translations along x2. For both
constructions, a new cell (x1, x2, x3), highlightedwith gray shading,
is found and the nanostructure generated byN−1 rotations of this
cell about the vector x2 by integer multiples of φ = 360o/N . One
must first specify the two interface normal vectors S and S′. Unlike
for a 2D periodic interface (Section 2.2), S and S′ cannot be chosen

Fig. 4. Schematics for generating (a) an N-fold interface and (b) an icosahedral
nanoparticle using the GCCM.

independently, but rathermust intersect with (approximately) the
same angle φ. The geometric constraints on the cell are

x2 × x1 = Ŝ,
x2 × x3 = Ŝ′, (7)
q|x1| = r|x3|,

where q and r are again integers equal to or greater than one. The
cross-section can be made arbitrarily large by translating the cell
along x1 and x3 prior to the N-fold rotation. One would also likely
‘smooth’ the edges of the cross-section by removing portions of the
crystal outside some well-defined domain, such as the free surface
indicated by dashed lines in the schematic.

A schematic for a particular icosahedral 3D analog to the 2D
N-fold interface is shown in Fig. 4(b). An icosahedral nanoparticle
has 20 faces and can be deconstructed into 20 separate (slightly
irregular) tetrahedrons. To construct the icosahedron, we first find
a parallelepiped-shaped cell with edge vectors (x1, x2, x3) for a
user-specified direction S. We further require that

x1 · x2 = x1 · x3 = x2 · x3 = cos(60o),

q|x1| = r|x2| = t|x3|, (8)
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where q, r , and t are integers equal to or greater than one. The cell is
then cut along the pseudo-(111) face corresponding to the (x1, x2,
x3) edges, which is not necessarily the (111) crystal face. The 3D
solid is obtained through rotations of the cut cell about the center
of the icosahedron located at O.

It should be noted that the above GCCM constructions for
the nanowire and nanoparticle examples are not perfect. Most
nanostructures likely cannot be made outright from such simple
geometric deconstructions. In the case of the nanowire, this is
because two crystal faces are highly unlikely to have normal
vectors that intersect at an angle that is exactly φ = 360o/N .
For example, five-fold twins arise in face-centered cubic (FCC)
metals because this angle is φ = 70.53o [43], which is very
close to the formal requirement φ = 72o. Likewise, an icosahedral
nanoparticle cannot be constructed outright in this way because
a regular icosahedron cannot be deconstructed into exactly
regular tetrahedra (as is assumed for the constraints in Eq. (8)).
Rather, the GCCM can be used to systematically obtain good
starting configurations that are close to the final structures that
subsequently result from either energyminimization or annealing.

3. Demonstrations

3.1. Advantages of orthorhombic simulation cells

Although many popular open-source MD simulation packages,
such as DL_POLY CLASSIC [44], GROMACS [45], LAMMPS [46], and
NAMD [47], support triclinic (parallelepiped-shaped) simulation
cells, many of the algorithms implemented in a particular package
only support orthorhombic cells. Algorithms for which triclinic
support is often limited include full stress tensor (diagonal + off-
diagonal terms) barostats, k-space solvers to handle long-range
forces such as Coulomb, and support for heterogeneous computing
architectures using accelerators such as graphics processing units
(GPUs) or Intel R⃝ Many Integrated Core (MIC) cards. Whereas
some algorithms, such as a barostat limited to diagonal terms of
the stress tensor, are generally not recommended for use with
MD simulations of any monoclinic or triclinic crystal, many of
the above computational limitations can be overcome for these
crystals provided they are modeled in an orthorhombic simulation
cell. We demonstrate the advantages of orthorhombic simulation
cells of low-symmetry crystals using LAMMPS. We chose LAMMPS
over the alternatives in part because we are more familiar with
it, but also because it supports all of the above algorithms (at
least for orthorhombic cells). In particular, as of this writing,
NAMD lacks support for full stress tensor barostats, and while
DL_POLY CLASSIC has a rich feature set, orthorhombic cells for low-
symmetry materials can be larger than the approximate 30,000-
atom scaling limit.

As a test case we considered two simulation cells containing
the monoclinic crystal β-HMX (β-octahydro-1,3,5,7-tetranitro-
1,3,5,7-tetrazocine), modeled using a variant of the established
flexible-molecule force field developed for HMX by Smith and
Bharadwaj [48]. Both simulation cells were constructed using the
average lattice parameters, which are a = 6.579 Å, b = 10.45 Å,
c = 7.683 Å, α = 89.9o

9, β = 98.6o
7, and γ = 90.0o

0, that
were obtained from the last 50 ps of a 250 ps (298 K, 1 atm)
isobaric–isothermal (NPT) MD simulation. The first simulation cell
was explicitly monoclinic and constructed by simple unit cell
translations to yield a 23a × 10b × 20c simulation cell with
edge lengths 151 Å × 105 Å × 154 Å. The second simulation cell
was exactly orthorhombic within the uncertainty of the lattice
parameters, was constructed using the method in Section 2.1 with
S equal to the (010) face normal vector, and had edge lengths
147 Å × 105 Å × 156 Å. Both simulation cells contained 9200
molecules. Substantially smaller orthorhombic cells containing

Fig. 5. Average timing data for three β-HMX MD simulation cases. The timing
components are, from left to right, the total simulation time, the calculation
of real-space non-bonded pairwise interactions, the k-space charge and force
interpolations and fast Fourier transforms, theneighbor-list build time, and the time
to compute the 2-, 3-, and 4-body bonded interactions. Contributions from all other
simulation components had shorter timings than those shown in the figure.

≈100 molecules were identified in our search, but we chose
the larger one to eliminate potential finite-volume effects in the
comparisons below.

The HMX force field consists of harmonic and truncated cosine
series functions for the various two-, three-, and four-body
covalent potentials. Non-bonded interactions, described using
Buckingham (exp-6) plus Coulomb form, are included between
atoms belonging to different molecules and between atoms
separated by three or more covalent bonds in the same molecule.
The only difference between the original parameterization of the
HMX force field by Smith and Bharadwaj [48] and that used
here is the values for two of the harmonic bond stretching
force constants in Ubond = 0.5K(r − ro)2, which are KNO =

1120.0 kcal mol−1 Å−2 for the N–O bonds and KCH = 680.1
kcal mol−1 Å−2 for the C–H bonds. These force constants were
re-parameterized to better reproduce experimental vibrational
spectra of HMX compared to the original parameterization andwill
be discussed more extensively in a subsequent publication. The
dispersion and Coulombic terms were truncated at a real-space
cutoff of 15 Å and the Coulombic interactions were calculated
beyond the cutoff using the particle–particle particle-mesh [49]
(PPPM) k-space method with a grid density of one grid point per
Ångström. As LAMMPS performs the k-space calculation using the
circumscribing orthorhombic cell, simulationswith themonoclinic
cell hadmore PPPMmesh points than did the simulations with the
orthorhombic simulation cell. The corresponding ratio of the total
number of mesh points was 1.145:1.

Timing data were collected from short 1000-timestep iso-
choric–isoergic (NVE) MD simulations of β-HMX using the
monoclinic and orthorhombic simulation cells and the default in-
tegration timestep of 1.0 fs. The results are shown in Fig. 5. All
simulations were performed on the same compute node, which is
equipped with two hexa-core Intel R⃝ Xeon R⃝ E5-2620 CPUs and a
single NVIDIA R⃝ Tesla R⃝ K40 GPU accelerator, and with the same
version of LAMMPS built with the optional GPU package [50–52].
Three cases were considered: (1) the monoclinic cell run only on
the CPUs; (2) the orthorhombic cell run only on the CPUs; and
(3) the orthorhombic cell run on the CPUs, but with real-space
non-bonded pairwise (Pair) interaction calculations, neighbor-list
builds, and k-space charge/force interpolations offloaded to the
GPU. The GPU package in LAMMPS currently does not support GPU
acceleration for neighbor-list builds and PPPM k-space computa-
tions for monoclinic or triclinic simulation cells. Therefore, fully
acceleratedGPU-enabled LAMMPS simulations forβ-HMXare only
made possible by finding an equivalent explicit orthorhombic cell.
Five separate instances of the same simulation were run for each
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Table 1
Simulation cell details and predicted energy change per unit area (∆U) for the formation of (011)|(ijk) GBs.

GB type ∆U |x1| |x2| |x3| |x′

3| Vacuum region
(mJ m−2) (Å) (Å) (Å) (Å) length along x3

(Å)

(011)|(110) −186.6 81.81 61.98 103.06 127.72 70.00
(011)|(101) −175.7 102.37 71.90 122.10 112.81 66.74
(011)|(010) −171.9 77.62 52.71 144.81 127.80 60.02
(011)|(111) −80.8 50.33 111.43 123.20 105.89 67.01
(011)|(011) −373.0 50.33 111.43 123.20 123.20 67.78
(011) −372.9 50.33 111.43 246.40 – 67.78

case and the relative run-to-run deviations in timings for each
component were found to be within 1.0%, except for the k-space
timings, for which the deviations were all within 7.0%.

The GPU-enabled simulation for the orthorhombic cell, which
was obtained using the GCCM, exhibits a 52% reduction in
wall-clock time compared to the simulation using the original
monoclinic cell. The biggest contributor to this reduction is a three-
fold reduction in pairwise interaction calculation time. While it is
not a large component of the total simulation time, the neighbor-
list build time is reduced by over 99%. The k-space calculation time
exhibits a modest increase that is likely due to communications
overhead from splitting the fast Fourier transforms (performed
on the CPU) and the charge/force interpolations (performed
on the GPU). Smaller gains are realized when comparing the
orthorhombic and monoclinic simulations performed only on the
CPUs. This can be attributed to requiring a smaller PPPM mesh for
the orthorhombic case. These speedups obtained here are likely
relatively modest compared to what would be obtained for many
other monoclinic and triclinic crystals, as computational efficiency
generally decreases with increasing tilt of the simulation cell and
the Smith Bharadwaj force field predicts that the monoclinic angle
for β-HMX is only 98.68o (in the P21/n space group).

3.2. Relative stability of Grain boundaries in β-HMX

As ademonstration of theGCCM for constructing crystal–crystal
interfaces in low-symmetry molecular crystals, we investigate
the relative stability of grain boundaries (GBs) in β-HMX using
molecular dynamics/statics simulations in conjunction with the
same HMX force field used in Section 3.1. The crystal surfaces
used for constructing the GB were chosen based on recent exper-
imental observations [53] of crystal habits and morphologies of
β-HMX grown from acetone. Rankedmorphological importance of
the five most prominent crystallographic faces was given [53] as
(011) > (110) > (010) > (101) > (111). Therefore, as a prelim-
inary investigation, we study the relative stability of four differ-
ent GBs, namely the (110), (010), (101), and (111) faces in contact
with the (011) face.We denote these separate cases as (011)|(110),
(011)|(010), (011)|(101), and (011)|(111). Note that β-HMX crystal
is centrosymmetric, therefore the (ijk) and (ijk) faces are equiva-
lent.

3D periodic simulation cells containing commensurate β-HMX
GBs were constructed using the procedures outlined in Section 2.2
with lattice parameters predicted by the HMX force field at (77 K,
1 atm). Lattice parameters were obtained from the final 50 ps
of an NPT simulation in which an equilibrated simulation cell of
β-HMX was first cooled from (298 K, 1 atm) to (77 K, 1 atm)
at a rate of 0.442 K ps−1 and then held at (77 K, 1 atm) for an
additional 250 ps. The average (77 K, 1 atm) lattice parameters
are a = 6.539 Å, b = 10.269 Å, c = 7.614 Å, α = 90.0o

0,
β = 98.6o

6, and γ = 90.0o
0. Starting configurations for the GBs

were created by placing commensurate pairs of 2D periodic free-
standing thin films (grains) into triclinic simulation cells that were
constructed using the average values for the constrained geometric

parameters ⟨|x1|⟩, ⟨|x2|⟩, ⟨θ⟩, ⟨φ⟩, and ⟨ψ⟩. The maximum relative
change applied to any simulation cell parameter to make the
individual grains commensurate was at most 0.1%. Use of the
standard PPPM k-space method requires 3D PBCs, so a vacuum
region was added in the x3 direction to simulate a free-standing
thin-film bilayer consisting of a GB sandwiched between two
exposed crystallographic faces. All simulation cell dimensions are
given in Table 1. The initial distance between the individual grains
at the GB interface plane corresponded to the potential energy
(PE) minimum for the unrelaxed configuration with the outer
surfaces exposed to vacuum. Each configuration thus obtained
was then relaxed with fixed cell parameters using the ‘FIRE’
damped dynamics minimizer [54] until the final ‘temperature’ of
the relaxed configuration was less than 2 × 10−5 K.

As ametric to predict the stability of the differentGBs,wedefine
the energy change per unit area for the formation of a GB as

∆U (011)|(ijk) =
U (011)|(ijk) − U (011) − U (ijk)

A(011)|(ijk)
. (9)

Here, U (011)|(ijk) is the total PE of the relaxed free-standing thin-
filmbilayer containing the (011)|(ijk)GB,with (011) and (ijk) outer
free surfaces exposed to vacuum; the U (ijk) are respectively the
total PEs of the relaxed single-component free-standing thin films
with (ijk) and (ijk) surfaces exposed to vacuum; and A(011)|(ijk) is
the area of the GB given by |x1 × x2| (or equivalently |x′

1 × x′

2|).
Formation of a GB is thermodynamically favored compared to
having two free-standing thin films if ∆U < 0. Therefore, the
signed values of ∆U can be used to predict and rank the relative
stabilities of the GBs. Predicted values for∆U are given in Table 1,
from which it can be inferred that the stabilities of the GBs rank
as (011)|(110) > (011)|(101) > (011)|(010) > (011)|(111).
We also include results for two control calculations, denoted as
(011)|(011) and (011). The (011)|(011) system is simply a special
case of a ‘GB’ for which (ijk) = (011) with no tilt or twist. The
(011) case corresponds to a single free-standing thin film of the
same dimensions as (011)|(011), with the outer (011) and (011)
faces exposed to vacuum as for the GBs. Very close correspondence
between the ∆U (011)|(011) and ∆U (011) cases was obtained and
establishes confidence in our simulation protocol. It can be seen
that ∆U (011)|(011) ≪ ∆U (011)|(ijk), which implies that a free-
standing thin film with exposed (011) outer surfaces and without
a GB is considerably more stable than the similarly sized thin films
with GBs.

Fig. 6(a) shows the average per-atom PE and the average
pressure P = −

1
3Tr(σ), where σ is the stress tensor, for the relaxed

GB configurations as functions of the relative z coordinate, which
is exactly perpendicular to the GB. The z coordinate for each GB
case is shifted so that the location of the GB is at zero and is
scaled so that the system length (excluding vacuum) is unity. We
define the GB location as the midpoint of the z-projection of the
line joining the nearest molecular center-of-mass positions in the
two grains in the unrelaxed configuration. The locally averaged
PE of each atom was calculated from the per-atom PEs obtained
fromLAMMPSby averaging over the surrounding spherical volume
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Fig. 6. (a) Averaged per-atom potential energy and averaged pressure in relaxed
configurations of (011)|(ijk) GBs as a function of the relative z coordinate. (b)
Relaxed configuration of the (011)|(010) GBwithmolecular centers ofmass colored
according to their locally averaged pressure. Top and bottom insets to panel
(b) respectively show the atomic details and the locally averaged pressures for
molecular centers of mass on the (011) face of the GB for the relaxed configuration.
(For interpretation of the references to color in this figure legend, the reader is
referred to the web version of this article.)

within a 15 Å radial cutoff. The average per-atom PE was then
computed as a function of z by taking the arithmetic mean of the
locally averaged atomic PEs of atoms assigned to 6 Å wide bins
along the z-direction based on their atomic coordinates. The same
local averaging schemewas used for calculation of the pressure, for
which the volume of a sphere of radius 15 Åwas used to normalize
the averaged per-atom pressure, followed by binwise averaging.
We also include results from the (011)|(011) and (011) cases for
comparison to the results from the four GB simulations.

Fig. 6(a) clearly shows excess per-atom PE at the free surfaces
and at the GB. The GBs are ordered according to increasing average
per-atom PE at the GB (i.e., at z = 0) as (011)|(110)< (011)|(010)
< (011)|(101) < (011)|(111), which is in approximate agreement
with the relative stability predicted using Eq. (9). We note that this

ranking order for the (011)|(010) and (011)|(101) GBs is opposite
to that predicted by Eq. (9), but that the predicted ∆U (011)|(ijk) for
those two cases are quite similar. The same ordering as for the per-
atom PE is obtained for the average pressure at the GB, with the
(011)|(111) case having the largest (most negative) value.

As a representative case, the relaxed (011)|(010) GB is
studied in greater detail in Fig. 6(b). (The results in Fig. 6(b)
and all subsequent figures were created using Visual Molecular
Dynamics [55] (VMD) and theOpenVisualization Tool [56] (OVITO)
software packages.) The left-hand panel contains a snapshot of
molecular centers of mass colored by locally averaged pressure
and the smaller ‘inset’ panels to the right show an atomically
detailed rendering across the interface (top) and locally averaged
pressure for molecules in the (011) face of the GB (bottom).
Periodic boundaries of the simulation cell are shown as solid lines.
The predicted pressure distribution has a complicated pattern,
with alternating regions of high and low pressure. This stands
in contrast to the more homogeneous pressure distributions that
were predicted for the other relaxed GBs investigated.

Interestingly, for all cases in panel (a) the average per-atom
PE relaxes to a ‘bulk’ value at distances less than ≈15 Å from
the GB, whereas the pressure does not. This indicates that long-
ranged stress fields exist at these GBs. The apparent, but small,
‘noise’ in the average PE may be due to finite-size effects that
result from interaction between the free surface and the GB. We
note that the pressure is only slightly tensile for the (011)|(011)
and (011) cases, as compared to the cases with GBs. This suggests
that the long-ranged stress fields arise solely from the presence of
the GB. In addition, there is near perfect correspondence between
(011)|(011) and (011) cases for the average per-atom PE and
pressure; while this establishes confidence in our simulation
protocol, further investigation would be required to quantify the
sensitivity of these preliminary predictions to system size and
other simulation parameters.

3.3. Silver nanostructures

Five-fold twins have attracted extensive interest due to their
unique properties since they were first observed in 1957 [57]
and have been found in a variety of nanostructures including
nanowires and nanorods [58], nanoparticles [14,15], and nanocrys-
talline metals and alloys [59]. Experimental studies of five-fold
twinned nanowires (FTNWs) have revealed that the presence of
the intrinsic five-fold axis alters many properties compared to the
bulk, such as enhancing the yield strength [16,60] and elastic mod-
ulus [17] and inducing coiling motion [61]. Symmetrical icosahe-
dral and truncated icosahedral nanoparticles with inner five-fold
twins are also routinely recovered in experiments [14,62] and can
spontaneously form in MD simulations [14,63]. Recent simulation
studies predict that hex-conjoint five-fold twins can form in bent
FTNWs before dynamic failure occurs [19] and that symmetrical
quasi-icosahedral structures, which have configurations that are
similar to icosahedral nanoparticles, can form in several kinds of
FTNWs under dynamic tensile loading [18]. We show here how
the GCCM can be used to easily construct nanostructures with in-
trinsic five-fold twins, such as FTNWs and icosahedral nanoparti-
cles, which facilitates preparation ofmodel systems for subsequent
atomic simulations.

Starting configurations for a silver FTNW and icosahedral
nanoparticle were prepared using the GCCM and the construction
procedures outlined in Section 2.3. Silver crystallizes in a FCC
structure with lattice constant a = 4.09 Å. We obtained the
base cell (x1, x2, x3) for the FTNW construction (see Fig. 4(a)
schematic) from the single-crystal version of the GCCM by adding
the additional constraints in Eq. (7) to the loop over possible x3
and setting S = [111] and S′

= [111]. The cell edge lengths were
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Fig. 7. Thermalized configurations of (a) a five-fold twinned Ag nanowire (FTNW)
and (b) an icosahedral Ag nanoparticle obtained from starting configurations
generated using the GCCM. Atoms are colored based on local configurations
determined using common neighbor analysis and are white for FCC, orange for
hexagonal close-packed (HCP), green for icosahedral, and blue for indeterminate
local environments. The right nanoparticle in (b) is the same as the left nanoparticle,
but with the blue indeterminate atoms removed to show the twin boundaries more
clearly. The orangeHCP atoms are on the twin boundaries and the green icosahedral
atom is at the very center of the nanoparticle. (For interpretation of the references
to color in this figure legend, the reader is referred to theweb version of this article.)

|x1| = 20a, |x2| = 10a, and |x3| = 20a, and a triangular prismatic
subsection was cut from the cell as shown in the schematic. The
starting configuration for the FTNWwas generated by rotating the
triangular prismatic subsection about the x2 axis,which in this case
is along ⟨110⟩, and removing the additional atoms generated by
the rotation that overlap at the center. The FTNW was placed in
a 3D periodic simulation cell with a large vacuum region in the
transverse dimensions (i.e., the x1-x3 plane) and the longitudinal
dimension was set to x2 = 10a. The base cell for the icosahedral
nanoparticle (see Fig. 4(b) schematic) was obtained by a similarly
modified version of the GCCM that includes the constraints in
Eq. (8) with S = [111]. The cell edge lengths were |x1| =

|x2| = |x3| = 11a, which leads to a nanoparticle with 10 ‘shells’
surrounding the single central atom, and a tetrahedron was cut
from this cell as shown in the schematic. The icosahedron was
generated by first obtaining the ‘top half’ through rotations of the
tetrahedron about the central atom at the origin and then inverting
this top half though the origin to obtain the bottomhalf. Duplicates
of atoms that form the twin boundaries were removed as were
all duplicate central atoms. The resulting pseudo-icosahedron was
placed in a 3D periodic simulation cell that was sufficiently large
to avoid any self-interactions.

The starting nanostructure configurationswere thermalized us-
ing NVT MD simulations performed with LAMMPS and are shown
in Fig. 7. A Nosé-Hoover thermostat [64,65] was used to establish
and maintain the system temperature at 298 K and the trajecto-
ries were integrated using a 1 fs time step. The embedded-atom-
method (EAM) potential developed by Daw and Baskes [66] with
the parameters from Foiles et al. [67] was used to describe the
interatomic interactions. Stable FTNW and icosahedral nanopar-
ticle configurations were obtained from the starting configura-
tions after 10 ps and 50 ps of NVT integration, respectively. In
the case of the icosahedron, the required simulation time here is
significantly lower than the 7 ns simulations previously used to
obtain a similar particle from the melt [63]. As can be seen in
Fig. 7(a), the thermalized FTNWexhibits five twin boundaries, each
consisting of a single layer of atoms in a hexagonal close-packed
(HCP) configuration, that converge to a shared center axis (along
x2) that forms the intrinsic five-fold twinned structure through-
out the nanowire. Fig. 7(b) shows the icosahedral nanoparticle
surface, which exhibits 30 twin boundaries that ‘divide’ the sur-
face into 20 faces. There are 12 five-fold twin centers that start
at the central atom and terminate at the 12 vertices on the sur-
face; these divide the solid into 20 approximately regular tetra-
hedrons. These well-defined five-fold twinned structures clearly
demonstrate that GCCM-based constructions can serve as reason-
able starting configurations for simulating FTNWs and icosahedral
nanoparticles. We anticipate that other nanostructures can also be
obtained through a similar approach and can drastically reduce
the wall-clock time required compared to obtaining nanostructure
configurations through simulated annealing and quenching pro-
cesses [63] that can be kinetically hindered.

4. Potential applications

There are many problems in materials science that can be ad-
dressed using simulation cells systematically constructed using
the GCCM. Here we highlight three additional topic areas not cov-
ered in Section 3, namely cocrystals, organic semiconductors, and
pharmaceuticals. These examples are given without correspond-
ing simulations and are included merely to emphasize how the
GCCM could be useful to a wide range of applications. In partic-
ular, it should be noted that the examples of crystal grain bound-
aries and crystal–crystal interfaces below were constructed using
experimental lattice parameters and the configurations are neither
thermalized nor energy-minimized.

Recent reactive MD studies predict [8] that some cocrys-
tals of energetic materials, such as cocrystals of TNT (2,4,6-
trinitrotoluene) and CL-20 (2,4,6,8,10,12-hexanitro-2,4,6,8,10,
12-hexaazaisowurtzitane),may have decreased sensitivity relative
to their ‘pure’ constituents. In addition to decreased sensitivity, the
possibility for significant anisotropy in the mechanical and ther-
mal response of energetic cocrystals is perhaps greater than for
most single-component crystals as cocrystals often exhibit com-
plicated layered packing motifs [35,36]. Fig. 8(a) shows nearly or-
thorhombic simulation cells for two oriented crystals of another
(monoclinic) energetic cocrystal comprised of CL-20 and HMX (2:1
ratio) that were constructed using the GCCM with the lattice pa-
rameters determined by Bolton et al. [36]. It is clearly seen that the
orientation of the HMXmolecules (in blue) relative to the surface-
normal direction S differs considerably for S perpendicular to the
(001) and (110) faces. It is natural to question whether this ori-
entational difference, taken together with the difference in angle
between the HMX layers and the shock direction, could lead to sig-
nificant anisotropy in shock response and sensitivity.

Organic molecular semiconducting materials, such as the lay-
ered triclinic molecular crystal pentacene, have received signifi-
cant attention for their potential use in electronics applications
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Fig. 8. Example systems prepared using the GCCM including: (a) oriented
2:1 cocrystals of CL-20 (orange) and HMX (blue); (b) an (001)|(100) grain
boundary between pentacene thin films; (c) a heterophase interface between the
orthorhombic and monoclinic polymorphs of acetaminophen. In all cases, the
primary 3D periodic simulation cell is drawnwith black lines and inmost instances
the cell is tilted so that the faces are not in the plane of the page. Periodic images
are shown in (a) and (b), but not in (c). Because the pentacene and monoclinic
acetaminophen polymorphs respectively shown in (b) and (c) are centrosymmetric,
the (100) and (100) faces are equivalent as are the (110) and (110) faces. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

[3,11,13,26,37,38,68–71]. Pentacene exhibitsmultiple polymorphs
characterized by differences in the separation distance between
the molecule-thick layers that stack along the normal to the
(001) crystal face. Polymorphic expression in pentacene is sensi-
tive to the manner in which the crystals are grown and whether
the crystal is adsorbed to a substrate [37,38]. Defects, such as
grain boundaries, can develop [70,71] and alter the electrical
[26,69] and potentially the thermomechanical properties com-
pared to perfect crystal. Constructing pentacene grain boundaries
and pentacene–substrate interfaces in 3D periodic simulation cells
using the GCCM facilitates use of standard MD methods to assess
the influence of these interfaces on transport properties without
additional effects due to exposed edges. Fig. 8(b) shows an ideal-
ized 2D infinite grain boundary between the (001) and (100) faces
in oriented pentacene thin films constructed using the GCCMwith
the techniques in Section 2.2 and the lattice parameters deter-
mined at 293 K by Mattheus et al. [37]. Expression of these two
faces is predicted to be energetically favorable [11,13], so it is con-
ceivable that this or other grain boundaries may develop in real
crystals. Both thin films in Fig. 8(b) were extracted from larger cells
with identical transverse dimensions, but longer extents along x3
and x′

3, and were then inscribed in a single cell that satisfies the
constraints in Eqs. (5) and (6). This example highlights the general-
ized nature of the GCCM in that it can find possible interfaces even
between two triclinic crystals and can likewise be used to construct

heterophase interfaces between pentacene and other substrates of
arbitrary symmetry class.

Acetaminophen, one of the most widely used analgesic
and antipyretic drugs, has two well characterized polymorphs,
namely form I (monoclinic, spacegroup P21/a) [32] and form II
(orthorhombic, spacegroup Pcab) [31]. Although these two poly-
morphs are known not to differ in their bio-availability, the
metastable form II polymorph of acetaminophen has better com-
paction properties compared to the stable form I polymorph, and is
therefore better suited for industrial manufacturing of tablets [72].
Differences in their compaction properties arise from the nature
of crystal packing, where the parallel, hydrogen-bondedmolecular
layers in the form II polymorph facilitate plastic deformation com-
pared to the corrugated molecular layers in the form I polymorph.
Fig. 8(c) shows a 3Dperiodic simulation supercell with an idealized
heterophase interface between the (110) plane of the form I poly-
morph and the (001) plane of the form II polymorph, constructed
using the GCCM. The individual oriented crystals were constructed
using experimental lattice parameters and atomic fractional co-
ordinates [31,32]. Interface structures such as these, between ex-
pressed crystal faces of the two polymorphs, possibly develop
during transitions from form II to form I during storage of
tablets [73] or during growth of polymorphic nuclei in evapora-
tive deposition of thin films [74]. This example illustrates how
the GCCM method can be used to construct 3D periodic simula-
tion cells to investigate the properties of heterophase interfaces
between low-symmetry polymorphs of molecular crystals such as
those used as active pharmaceutical ingredients.

5. Conclusions

In this report we develop and implement a Generalized
Crystal-Cutting Method (GCCM) for the systematic construction of
three-dimensionally periodic simulation cells containing arbitrar-
ily oriented single crystals and two-dimensionally infinite crys-
tal–crystal interfaces. A simple mathematical formalism is used to
conveniently express constraints on cut single-crystal geometries
and is readily extended to specify constraints for constructing crys-
tal–crystal homophase- and heterophase interfaces. The approach
is generalized to include all Bravais lattices and so can be applied
to complicated molecular crystals and materials that crystallize
in low-symmetry systems. Search algorithms are implemented to
find possible solutions for commensurate crystal cuts and an algo-
rithm for populating the resulting simulation cellswith constituent
atoms and molecules is outlined. The GCCM is used to identify or-
thorhombic representations of amonoclinic crystal and some com-
putational advantages of using an orthorhombic representation
in molecular dynamics simulations are demonstrated. The GCCM
is used to prepare simulation cells containing grain boundaries
in monoclinic β-HMX crystals. The ranking order of their stabili-
ties is predicted to correlate with the relative prominence of con-
stituent crystal faces observed in an experimental study of β-HMX
crystal habits and morphologies. The GCCM is applied to the con-
struction of starting configurations for nanowires and icosahedral
nanoparticles exhibiting five-fold twinned structures for subse-
quent molecular dynamics simulations. Additional example GCCM
constructions are shown that could help address relevant materi-
als science problems in areas including explosives, organic semi-
conductors, and pharmaceuticals.
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