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a b s t r a c t

We indicate a new and a very accurate algorithm for the evaluation of the Generalized Fermi–Dirac
Integral with a relative error less than 10−20. The method involves Double Exponential, Trapezoidal and
Gauss–Legendre quadratures. For the residue correction of the Gauss–Legendre scheme, a simple and
precise continued fraction algorithm is used.
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1. Introduction

The Fermi–Dirac integral (FDI)

Fk(η) =
1

Γ (1 + k)


∞

0

tk dt
et−η + 1

(1)

is needed in a variety of problems involving the Fermi–Dirac
distribution like the calculation of charge densities of semi-
conductor devices. A detailed account is given by Blakemore [1]
for the various exact and approximate expressions available in the
literature with special emphasis on F1/2(η). If the upper limit of
integration is finite, the above integral is called the incomplete FDI.
Goano [2] provides a large and accurate collection of algorithms
to evaluate the ordinary as well as the incomplete FDI. The work
in this area broadly consists of two groups. The first set deals
with series expansions that are valid for small values of η and
the asymptotic approximations which are valid for large values
of η [3–10]. The second set consists of numerical algorithms,
based either on rational approximation [11–13] that combine both
high accuracy and minimum effort or they rely on numerical
integration [14].
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An integral related to the FDI that is needed in astrophysical
problems like the stellar evolution is defined by

Fk(η, θ) =


∞

0

tk
√
1 + θ t/2 dt
et−η + 1

. (2)

This is the Generalized Fermi–Dirac Integral (GFDI) that depends
on three parameters k, η and θ . When the parameter θ is zero, the
GFDI reduces to the FDI without its gamma function term in the
denominator.

As we remarked earlier, a detailed review of the asymptotic
and the series expansions for the FDI is available in Blakemore [1].
For the sake of completeness, here we outline very briefly some of
these approaches. Many of these expressions are derived from the
classical series expansions provided by McDougall and Stoner [6]
and Dingle [4,5]. The following is a typical one valid for integer and
half-integer values [3].

Fk(η) =

∞
r=1

(−1)r+1erη r−(k+1)
; η ≪ 0

Fk(η) = cos(kπ)Fk(−η) +
ηk+1

Γ (k + 2)
[1 + Rk(η)]; η > 0

Rk(η) =

∞
r=1

αrΓ (k + 2)
η2r Γ (k + 2 − 2r)

; αr =

∞
n=1

(−1)n+1 2 n−2r .

For evaluating the FDI, Goano [7] utilizes the fact that the term
1/[et−η

+ 1] can be expanded in a geometric series for the cases
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t > η and the t < η separately. The resulting series is integrated
term by term and the final quantities are expressed in terms
of the Kummer confluent hypergeometric functions of the first
and second kind, M(a, b, z) and U(a, b, z), respectively, for which
efficient algorithms exist.

Fk(η) =
ηk+1

Γ (k + 2)


1 +

∞
n=1

(−1)n−1
[(k + 1)U(1, k + 2, nη)

−M(1, k + 2, −nη)]


.

Bhagat et al. [13] derive series expansion for the FDI. The approach
here is to expand the term 1/[et−η

+1] in a series after appropriate
manipulations and then integrate the resulting integrand term by
term. Next, to expedite convergence, acceleration technique like
the Levin transform is made use of. It must be noted that this
approach works better if η is large. Again, for the GFDI, the term√
1 + θ t/2 is also expanded in a series (possible only for small

values of θ like 10−3) and the resulting series is integrated term
by term and this is followed by convergence acceleration.

The FDI can be expressed in terms of the Zeta or the Polyloga-
rithm or the incomplete Gamma functions. Below, we indicate an
exact series expression for Fk(η) in terms of the incomplete Gamma
function [15]. We note the Mittag-Leffler expansion of sech(z)
function [16] which leads to the following modification of the de-
nominator of the integrand of the FDI.

sech(z) =
1

cosh(z)
= π

∞
l=0

(−1)l (2l + 1)
z2 + [(2l + 1)π/2]2

1
et−η + 1

=
e−(t−η)/2

2 cosh[(t − η)/2]
.

With the substitution above, we get the FDI as

al = η + i(2l + 1)π; φl = tan−1
[(2l + 1)π/η];

l = 0, 1, 2, . . .

Fk(η) =
2πeη/2

Γ (k + 1)

∞
l=0

(−1)l (2l + 1)


∞

0

tk e−t/2 dt
(t − η)2 + [(2l + 1)π ]2

Fk(η) = 2 Im


∞
l=0

ei[π(k−1/2)−kφl] [η2

+ ((2l + 1)π)2]k/2 Γ (−k, −a∗

l /2)


; k > (−1).

After this brief outline of the series expansions, we turn to
the numerical evaluations based on quadrature. Both Pichon and
Sagar [17,18] use themodified Gauss–Laguerre schemes to achieve
a better accuracy. Gautschi also constructs modified Gaussian
schemes [19]. But these three methods [17–19] need a lot of com-
putational effort since the weight and the node generation is a
non-trivial task and also the weights and nodes change with the
parameters k, η and θ . The GFDI and its derivative with respect
to its parameters were evaluated by Gong et al. [20] by splitting
(0, ∞) into four intervals. The Gauss–Legendre scheme is used in
the first three intervals and the Gauss–Laguerre scheme is used in
the last interval. Here, the choice of break points is by trial and er-
ror.

The convergence of any quadrature scheme for the evaluation
of the integrals defined by Eqs. (1,2) is impaired by the
singularities of the integrands. If k takes half-integer values (as
in the case of the semiconductor device modeling) like k =

−(1/2), (1/2), (3/2), (5/2), . . . , then the origin t = 0 is a branch
point. In addition, the integrands of both the GFDI and the FDI have
a countable infinity of simple poles at tj defined by tj = η + i(2j +
1)π; j = 0, ±1, ±2, . . . . When k is a half-integer, the branch
point singularity can be removed by setting t = x2. Natarajan
and Mohankumar employed a variety of quadrature schemes that
took care of the singularities which resulted in reduced number of
quadrature terms. Trapezoidal and Gauss–Legendre schemes with
the correction terms for the poles were employed [14,21,22]. The
clustering of the quadrature nodes that is inherent in numerical
integration methods like the TANH, the IMT and the DE schemes
was also profitably exploited to handle the singularities of these
integrands [23,24].

2. Existing methods for the FDI and the GFDI evaluation

In this section, we discuss our earlier methods for the evalua-
tion of the FDI and the GFDI. This will help us to identify the im-
provements that are needed for our earlier algorithms. In addition,
it provides the necessary background for the new algorithms that
are presented in the next two sections.

For the FDI needed in semiconductor applications, typical k
values belong to the set {−(1/2), (1/2), (3/2), (5/2)} and typical
η values lie in the range [−10, 50]. For this range of parameters, we
first make a change of the integration variable from t to x defined
by t = x2 and this has the positive effect of removing the branch
point singularity at the origin. The resulting FDI (with an integrand
that is even) and its new singularities {zj} are given below and for
the sake of simplicity, we omit the factor 1

Γ (1+k) .

Fk(η) =


∞

−∞

x2k+1 dx

ex2−η + 1
(3)

zj = ±


η + i(2j + 1)π; j = 0, ±1, ±2, . . . . (4)

A simple trapezoidal scheme with residue correction for the poles
{zj} of this integrand can yield a double precision accuracy (i.e a
minimum of 14 digit accuracy) with a maximum of 29 quadrature
terms and 7 residue correction termswith η in the range [−10, 50]
and for half-integer k values. This accuracy stemming from this
very modest computational requirements must be sufficient for
routine estimation of the FDI. These results were reported in
Mohankumar et al. [14]. Table 1 gives sample values of the FDI
without its gamma function term. An algorithm based on this
scheme is available as a matlab routine called fermi.m that can be
freely downloaded by users [25]. For the sake of completion, a brief
derivation of this trapezoidal scheme, the residue correction and its
discretization error are outlined in Appendix A.

For the above mentioned scheme, it must be noted that the
number of trapezoidal terms is proportional to η1/2. Hence, for
large η values, this implies more computational cost. To overcome
this aspect, the recent quadrature methods, namely, the TANH, the
IMT and the Double Exponential (DE) schemes were employed.
Essentially, all the three methods are just trapezoidal schemes
after a specific change of integration variable. We only outline
the DE scheme since it is superior to the other two methods. The
details of the TANH and the IMTmethods can be found inNatarajan
et al. [23]. With t and u as the old and the new variables, the DE
transformation introduced by Takahasi andMori [26,27] is defined
as follows.

t ∈ (a, b); u ∈ (−∞, ∞) (5)

tk = φ(uk) = (1/2)(b + a) + (1/2)(b − a) tanh
π

2
sinh(uk)


(6)

dt
du

= φ′(u) =
π(b − a)

4
sech2

π

2
sinh(u)


cosh(u) (7)

uk = kh, k = 0, ±1, ±2, . . . . (8)

tk, the images of the equi-spaced nodes uk get clustered at the
ends t = a and t = b of the old interval (a, b). This specific
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Table 1
The FDI values by the trapezoidal scheme with residue correction.

k η n npole Integral

−0.5 −10 20 0 8.046669716113732e−5
−0.5 10 24 4 6.29713724453385
−0.5 20 25 5 8.93497266616697
−0.5 30 26 5 10.94942130440661
−0.5 40 27 6 12.64585068849794
−0.5 50 29 7 14.13980529101102
2.5 −10 20 0 1.508792951864649e−4
2.5 10 24 4 1.034684254181534e3
2.5 20 25 5 1.059063917661438e4
2.5 30 26 5 4.292925758509994e4
2.5 40 27 6 1.166899210191305e5
2.5 50 29 7 2.539925685770061e5

property is exploited to take care of the requirement of increased
sampling near the singularities of the integrand in the following
way. First due to finite machine precision, we truncate the semi-
infinite interval (0, ∞) to (0, η + m) where m lies in the range
[40, 80]. Then, we split this truncated range into two intervals
I1 = (0, η) and I2 = (η, η + m) and the interval (a, b) defined
in Eq. (5) is either I1 or I2. Since the point t = η is an end point for
both I1 and I2, therewill be a node clustering at t = η onceweapply
the DE transformation to both these intervals. This node clustering
results in increased sampling around the point t = η in the vicinity
of which the singularities tj = η + i(2j + 1)π, j = 0, ±1, ±2, . . .
are located. This results in a drastic reduction of the number of
quadrature steps and high accuracy [23,22]. For a convergence of at
least 14 digits, we need about 180 quadrature steps in each of the
intervals I1 and I2. In the next section, we show a new method to
cut down this effort almost by a factor 2 for a near double precision
evaluation of the GFDI for routine evaluation.

3. A new GFDI evaluation algorithmwith near double precision
accuracy

The first step is to split the interval (0, η + m) as two intervals,
I1 = (0, η − m) and I2 = (η − m, η + m). With m set to 55, we
use a Gauss–Legendre (GL) quadrature over the interval I2 with a
residue correction strategy for the poles of the integrand. For this
correction, we use a continued fraction algorithm [24]. When the
interval (η − m, η + m) is mapped onto (−1, 1), the poles of the
integrand tj = η + i(2j+ 1)π, j = 0, ±1, ±2, . . . are transformed
to ζj = i(2j+1)π/m, j = 0, ±1, ±2, . . . . That is, the transformed
poles are purely imaginary. For the interval I1, we employ the DE
scheme. For the computation, the parameter η ranges from 100 to
50000 and the parameter θ can take values 50 or 1. The results are
shown in Table 2. The number of DE quadrature steps is 140. A GL
scheme of order 21 with 7 residue correction terms is sufficient
for the second interval. The maximum absolute relative error is
1.2d − 13 for η = 50 000 and in the remaining cases, the actual
errors are much less. When we employ the DE scheme for both the
intervals I1 and I2 with I1 = (0, η) and I2 = (η, η+m) as indicated
earlier [22], we require about 160 quadrature steps in each interval
and hence a total of about 320 quadrature terms is required. Thus,
the method just outlined cuts the computational effort roughly
by a factor two and hence for routine evaluation close to double
precision accuracy, this newapproach that combines theDE andGL
schemes is more suitable. It must be kept in mind that the residue
correction for the poles of the GFDI plays a key role in the reduction
of the computational effort.

4. A new algorithm for a very accurate evaluation of the GFDI
for η > 1000

For repeated and very quick evaluation of the FDI and
the GFDI, rational approximations are desirable. These rational
Table 2
Near double precision values of the GFDI.

k η θ Integral Rel err.

0.5 50000. 1. 0.35364187040847D+05 0.2709D−13
−0.5 50000. 50. 0.25000164249487D+06 0.2731D−13
−0.5 30000. 1. 0.21221690213566D+05 0.4996D−14
−0.5 30000. 50. 0.15000159141232D+06 0.4663D−14
−0.5 10000. 1. 0.70787777771944D+04 0.4219D−14
−0.5 10000. 50. 0.50001481551154D+05 0.3109D−14
−0.5 5000. 1. 0.35427537775051D+04 0.8882D−15
−0.5 5000. 50. 0.25001412236531D+05 0.8882D−15
−0.5 2000. 1. 0.14207856243402D+04 0.1110D−15
−0.5 2000. 50. 0.10001320607723D+05 0.8882D−15
−0.5 1000. 1. 0.71318888985478D+03 0.4441D−15
−0.5 1000. 50. 0.50012512933820D+04 0.1110D−14
−0.5 500. 1. 0.35914571973243D+03 0.0000D+00
−0.5 500. 50. 0.25011819791704D+04 0.2220D−15
−0.5 200. 1. 0.14636680265558D+03 0.7772D−15
−0.5 200. 50. 0.10010903496424D+04 0.6661D−15
−0.5 100. 1. 0.75167663793253D+02 0.9992D−15
−0.5 100. 50. 0.50102102757876D+03 0.1443D−14
0.5 50000. 1. 0.88391882909172D+09 0.5440D−13
0.5 50000. 50. 0.62500050082097D+10 0.5529D−13
0.5 30000. 1. 0.31821926218746D+09 0.9326D−14
0.5 30000. 50. 0.22500030082103D+10 0.9104D−14
0.5 10000. 1. 0.35362407965613D+08 0.6883D−14
0.5 10000. 50. 0.25000100821135D+09 0.7772D−14
0.5 5000. 1. 0.88423683822408D+07 0.1332D−14
0.5 5000. 50. 0.62500508212048D+08 0.1332D−14
0.5 2000. 1. 0.14156261832902D+07 0.4441D−15
0.5 2000. 50. 0.10000208212964D+08 0.5551D−15
0.5 1000. 1. 0.35425914961760D+06 0.4441D−15
0.5 1000. 50. 0.25001082136574D+07 0.2220D−15
0.5 500. 1. 0.88740797995433D+05 0.1110D−15
0.5 500. 50. 0.62505821435052D+06 0.6661D−15
0.5 200. 1. 0.14282776850221D+05 0.5551D−15
0.5 200. 50. 0.10002821526679D+06 0.1887D−14
0.5 100. 1. 0.36057078101240D+04 0.1221D−14
0.5 100. 50. 0.25018215959958D+05 0.7772D−15
1.5 50000. 1. 0.29463666531558D+14 0.8282D−13
1.5 50000. 50. 0.20833345915575D+15 0.8282D−13
1.5 30000. 1. 0.63642792879173D+13 0.1354D−13
1.5 30000. 50. 0.45000045493450D+14 0.1454D−13
1.5 10000. 1. 0.23573763546629D+12 0.1110D−13
1.5 10000. 50. 0.16666718311502D+13 0.1021D−13
1.5 5000. 1. 0.29471631252003D+11 0.2220D−14
1.5 5000. 50. 0.20833466557520D+12 0.2665D−14
1.5 2000. 1. 0.18870362459970D+10 0.2220D−15
1.5 2000. 50. 0.13333566230179D+11 0.8882D−15
1.5 1000. 1. 0.23605779007707D+09 0.6661D−15
1.5 1000. 50. 0.16667331151720D+10 0.2220D−15
1.5 500. 1. 0.29552160576083D+08 0.0000D+00
1.5 500. 50. 0.20835405766836D+09 0.4441D−15
1.5 200. 1. 0.19001577547295D+07 0.1221D−14
1.5 200. 50. 0.13338623166142D+08 0.5551D−15
1.5 100. 1. 0.23943781385534D+06 0.2220D−15
1.5 100. 50. 0.16688116653945D+07 0.1554D−14
2.5 50000. 1. 0.11048838166683D+19 0.1099D−12
2.5 50000. 50. 0.78125042283505D+19 0.1097D−12
2.5 30000. 1. 0.14319549013278D+18 0.1910D−13
2.5 30000. 50. 0.10125009222062D+19 0.1910D−13
2.5 10000. 1. 0.17680029865191D+16 0.1421D−13
2.5 10000. 50. 0.12500035800688D+17 0.1465D−13
2.5 5000. 1. 0.11051498017274D+15 0.3997D−14
2.5 5000. 50. 0.78125478350614D+15 0.2665D−14
2.5 2000. 1. 0.28303259988149D+13 0.5551D−15
2.5 2000. 50. 0.20000365361426D+14 0.2220D−15
2.5 1000. 1. 0.17701571289681D+12 0.3331D−15
2.5 1000. 50. 0.12500580072302D+13 0.4441D−15
2.5 500. 1. 0.11078835747196D+11 0.5551D−15
2.5 500. 50. 0.78135335265741D+11 0.0000D+00
2.5 200. 1. 0.28486137798016D+09 0.6661D−15
2.5 200. 50. 0.20012537297285D+10 0.8882D−15
2.5 100. 1. 0.17946771869476D+08 0.1443D−14
2.5 100. 50. 0.12528015816436D+09 0.9992D−15
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Table 3
High precision values of the GFDI for k = −0.5, 0.5.

k η θ Integral Rel err.

−0.50 50000.0 1.0 0.3536418704084667035585Q+05 0.237D−22
−0.50 50000.0 50.0 0.2500016424948669740361Q+06 0.668D−23
−0.50 30000.0 1.0 0.2122169021356624350124Q+05 0.182D−24
−0.50 30000.0 50.0 0.1500015914123178137903Q+06 0.144D−24
−0.50 10000.0 1.0 0.7078777777194397814013Q+04 0.109D−26
−0.50 10000.0 50.0 0.5000148155115415139652Q+05 0.326D−24
−0.50 5000.0 1.0 0.3542753777505076514192Q+04 0.119D−25
−0.50 5000.0 50.0 0.2500141223653116032111Q+05 0.653D−24
−0.50 2000.0 1.0 0.1420785624340173885433Q+04 0.960D−25
−0.50 2000.0 50.0 0.1000132060772342750592Q+05 0.163D−23
−0.50 1000.0 1.0 0.7131888898547841924222Q+03 0.776D−24
−0.50 1000.0 50.0 0.5001251293381995769676Q+04 0.324D−23
−0.50 500.0 1.0 0.3591457197324293220682Q+03 0.235D−23
−0.50 500.0 50.0 0.2501181979170435537181Q+04 0.654D−23
−0.50 200.0 1.0 0.1463668026555839773112Q+03 0.987D−21
−0.50 200.0 50.0 0.1001090349642369135891Q+04 0.375D−22
−0.50 100.0 1.0 0.7516766379325351669122Q+02 0.198D−19
−0.50 100.0 50.0 0.5010210275787624073402Q+03 0.430D−21
0.50 50000.0 1.0 0.8839188290917235569124Q+09 0.103D−23
0.50 50000.0 50.0 0.6250005008209745385371Q+10 0.476D−25
0.50 30000.0 1.0 0.3182192621874612242511Q+09 0.236D−23
0.50 30000.0 50.0 0.2250003008210256210730Q+10 0.870D−24
0.50 10000.0 1.0 0.3536240796561302005264Q+08 0.281D−22
0.50 10000.0 50.0 0.2500010082113548216996Q+09 0.941D−23
0.50 5000.0 1.0 0.8842368382240759744773Q+07 0.133D−21
0.50 5000.0 50.0 0.6250050821204796692953Q+08 0.977D−22
0.50 2000.0 1.0 0.1415626183290248476293Q+07 0.343D−21
0.50 2000.0 50.0 0.1000020821296425200689Q+08 0.186D−21
0.50 1000.0 1.0 0.3542591496176005289693Q+06 0.398D−20
0.50 1000.0 50.0 0.2500108213657390421289Q+07 0.100D−20
0.50 500.0 1.0 0.8874079799543254891119Q+05 0.131D−19
0.50 500.0 50.0 0.6250582143505225371098Q+06 0.603D−20
0.50 200.0 1.0 0.1428277685022098417591Q+05 0.483D−19
0.50 200.0 50.0 0.1000282152667878170774Q+06 0.224D−20
0.50 100.0 1.0 0.3605707810123979799996Q+04 0.220D−18
0.50 100.0 50.0 0.2501821595995843557070Q+05 0.198D−18
approximation algorithms for the FDI were provided by Cody,
Macleod and Antia [11,12,28]. The rational approximation of
Antia is about 12 digits accurate [28]. In order to generate this
12 digit accurate approximation, he needs a 20 digit accurate
reference integral values that are generated by a repeated Simpson
quadrature involving about 2000 function evaluations. In the
following, we provide an efficient algorithm based on the DE
method and the GL scheme with residue correction where we get
a relative error smaller than 1.d(−20). The computational cost is
moderate since the number of quadrature terms is about 270 or
less for η > 1000. For η < 1000, a quadruple precision version of
our earlier trapezoidal scheme with pole correction will meet the
requirement.

As in the double precision case that has been described in
Section 3, the key to the high precision evaluation is the use of
the GL quadrature with the residue correction over the interval
(η−m, η+m). This is done with a 35 point GL quadrature with 14
residue correction terms and using a quadruple precision Fortran
that guarantees a minimum of 32 digit computational accuracy.
Computational experiments indicate that the remaining interval
namely (0, η − m) be better split into two intervals. This implies
that the total interval (0, η + m) is split into three intervals, I1 =

(0, X), I2 = (X, η − m) and I3 = (η − m, η + m). For both I2
and I3, we employ the GL integration. For the interval I1, we have
the following variation. For k = −0.5, 0.5, we employ the GL
quadrature with X = 40 and for k = 1.5, 2.5, we employ the
DE quadrature with X = 5. It must be emphasized that precise
values of the break point X are not critical. Figs. 1–4 gives a plot
of the GFD integrand (after the transformation t = x2), given
by [2 x2k+1


1 + θ x2/2]/[ex

2
−η

+ 1] as a function of x for k =

−(1/2), (1/2), (3/2), (5/2) with θ = 50 and η = 100. When k
is either −(1/2) or (1/2), we find that the integrand varies rather
Fig. 1. Plot of the GFD integrand with θ = 50 and k = −0.5.

smoothly away from the point t = η, suggesting the use of the
GL quadrature in I1. When k is either (3/2) or (5/2), the function
variation is relatively sharp compared to the previous case and
hence we use the DE quadrature in I1.

The results of these computations are indicated in Tables 3
and 4. The parameter m is set to 80. For k = −0.5, 0.5, the GL
quadrature order for I1 and I2 are 80 and 60 respectively. Hence, the
total number of quadrature terms in this case is 175 (=80+60+35)
and in addition we need another 14 residue correction terms. For
k = 1.5, 2.5, the order of the DE quadrature for I1 is 160 and a GL
quadrature of order 76 is employed for I2. In this case, the number
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Table 4
High precision values of the GFDI for k = 1.5, 2.5.

k η θ Integral Rel err.

1.50 50000.0 1.0 0.2946366653155763612430Q+14 0.182D−23
1.50 50000.0 50.0 0.2083334591557505315427Q+15 0.304D−23
1.50 30000.0 1.0 0.6364279287917260305225Q+13 0.371D−23
1.50 30000.0 50.0 0.4500004549345038482949Q+14 0.596D−23
1.50 10000.0 1.0 0.2357376354662919003693Q+12 0.980D−22
1.50 10000.0 50.0 0.1666671831150238104540Q+13 0.296D−22
1.50 5000.0 1.0 0.2947163125200264342004Q+11 0.450D−21
1.50 5000.0 50.0 0.2083346655752014149320Q+12 0.296D−21
1.50 2000.0 1.0 0.1887036245996978060962Q+10 0.189D−20
1.50 2000.0 50.0 0.1333356623017939115956Q+11 0.124D−20
1.50 1000.0 1.0 0.2360577900770671647288Q+09 0.516D−20
1.50 1000.0 50.0 0.1666733115172042147916Q+10 0.549D−20
1.50 500.0 1.0 0.2955216057608261692426Q+08 0.193D−19
1.50 500.0 50.0 0.2083540576683607109113Q+09 0.311D−19
1.50 200.0 1.0 0.1900157754729512569093Q+07 0.854D−19
1.50 200.0 50.0 0.1333862316614184123116Q+08 0.126D−18
1.50 100.0 1.0 0.2394378138553367408718Q+06 0.573D−18
1.50 100.0 50.0 0.1668811665394463425748Q+07 0.105D−17
2.50 60000.0 1.0 0.2291076894658379659970Q+19 0.582D−23
2.50 60000.0 50.0 0.1620000728882465940703Q+20 0.210D−23
2.50 50000.0 1.0 0.1104883816668302452537Q+19 0.432D−23
2.50 50000.0 50.0 0.7812504228350460680636Q+19 0.151D−23
2.50 30000.0 1.0 0.1431954901327768149597Q+18 0.229D−22
2.50 30000.0 50.0 0.1012500922206169829476Q+19 0.143D−22
2.50 10000.0 1.0 0.1768002986519106705713Q+16 0.138D−21
2.50 10000.0 50.0 0.1250003580068778049412Q+17 0.924D−22
2.50 5000.0 1.0 0.1105149801727356288101Q+15 0.400D−21
2.50 5000.0 50.0 0.7812547835061435891367Q+15 0.649D−21
2.50 2000.0 1.0 0.2830325998814878278095Q+13 0.299D−20
2.50 2000.0 50.0 0.2000036536142551150616Q+14 0.270D−20
2.50 1000.0 1.0 0.1770157128968074473624Q+12 0.827D−20
2.50 1000.0 50.0 0.1250058007230163189644Q+13 0.214D−19
2.50 500.0 1.0 0.1107883574719588980671Q+11 0.517D−19
2.50 500.0 50.0 0.7813533526574107411922Q+11 0.137D−19
2.50 200.0 1.0 0.2848613779801571491146Q+09 0.996D−18
2.50 200.0 50.0 0.2001253729728458653736Q+10 0.818D−18
2.50 100.0 1.0 0.1794677186947610710955Q+08 0.156D−16
2.50 100.0 50.0 0.1252801581643626285527Q+09 0.166D−16
Fig. 2. Plot of the GFD integrand with θ = 50 and k = 0.5.

of quadrature terms is 271 (=160 + 76 + 35) with the addition
of another 14 residue related terms. If we confine to the results
in these tables with η > 1000, then the absolute relative error
for the k values considered is found to be of the order of 1.d(−20)
or less. Thus, the three interval evaluation strategy guarantees a
very precise evaluation of the GFDI for η > 1000. This must
be contrasted with the results quoted by Antia where one needs
something like a 2000 function evaluations to realize a similar
accuracy [28].
Fig. 3. Plot of the GFD integrand with θ = 50 and k = 1.5.

The loss of accuracy is more pronounced for small η values like
η = 100 and for large θ values like θ = 50 as we see in Tables 3
and 4. This is an inherent complication that can be easily explained
as a result of the influence of the branch point singularity t0 =

−(θ/2) which stems from the term
√
1 + θ t/2. This singularity

affects the quadrature over all the three intervals acutely for lower
values of η and higher values of θ . Unlike the residue correction
for the pole tj = η + i(2j + 1)π of the integrand, we have no
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Table 5
High precision the GFDI values for larger θ values with η ≤ 1000 by Trapezoidal scheme with pole correction.

k η θ Integral n np Rel. err

−0.5 100. 1. 0.7516766379325351669276Q+02 70 4 0.7374D−21
−0.5 100. 50. 0.5010210275787624073392Q+03 404 1 0.2400D−20
−0.5 200. 1. 0.1463668026555839773114Q+03 86 6 0.6838D−21
−0.5 200. 50. 0.1001090349642369135890Q+04 494 1 0.1201D−20
−0.5 500. 1. 0.3591457197324293220689Q+03 163 7 0.1762D−20
−0.5 500. 50. 0.2501181979170435537167Q+04 653 2 0.5844D−20
−0.5 1000. 1. 0.7131888898547841924219Q+03 147 16 0.4711D−21
−0.5 1000. 50. 0.5001251293381995769653Q+04 872 3 0.4634D−20
0.5 100. 1. 0.3605707810123979800774Q+04 70 4 0.3969D−20
0.5 100. 50. 0.2501821595995843557569Q+05 336 1 0.1111D−20
0.5 200. 1. 0.1428277685022098417663Q+05 69 8 0.2178D−20
0.5 200. 50. 0.1000282152667878170780Q+06 376 1 0.3927D−20
0.5 500. 1. 0.8874079799543254891202Q+05 97 12 0.3747D−20
0.5 500. 50. 0.6250582143505225371149Q+06 510 2 0.2032D−20
0.5 1000. 1. 0.3542591496176005289723Q+06 118 20 0.4526D−20
0.5 1000. 50. 0.2500108213657390421307Q+07 631 4 0.6345D−20
1.5 100. 1. 0.2394378138553367410086Q+06 51 6 0.1605D−20
1.5 100. 50. 0.1668811665394463427497Q+07 257 1 0.1404D−20
1.5 200. 1. 0.1900157754729512569254Q+07 62 9 0.7401D−21
1.5 200. 50. 0.1333862316614184123282Q+08 288 2 0.1381D−20
1.5 500. 1. 0.2955216057608261692481Q+08 89 14 0.6340D−21
1.5 500. 50. 0.2083540576683607109159Q+09 326 4 0.8845D−20
1.5 1000. 1. 0.2360577900770671647296Q+09 110 21 0.1830D−20
1.5 1000. 50. 0.1666733115172042147920Q+10 414 6 0.3567D−20
2.5 100. 1. 0.1794677186947610682909Q+08 47 7 0.4223D−20
2.5 100. 50. 0.1252801581643626264703Q+09 176 2 0.2417D−20
2.5 200. 1. 0.2848613779801571488319Q+09 52 11 0.3727D−20
2.5 200. 50. 0.2001253729728458652110Q+10 173 3 0.5745D−20
2.5 500. 1. 0.1107883574719588980624Q+11 62 20 0.8806D−20
2.5 500. 50. 0.7813533526574107411845Q+11 195 6 0.3866D−20
2.5 1000. 1. 0.1770157128968074473643Q+12 82 28 0.1997D−20
2.5 1000. 50. 0.1250058007230163189673Q+13 221 11 0.1868D−20
Fig. 4. Plot of the GFD integrand with θ = 50 and k = 2.5.

way of correcting the quadrature sum for the effect of this branch
point. In Appendix B, we deal with this in more detail and we
give a criterion for excluding this branch point from our region of
analyticity for the GL integration over (η−m, η+m). Another way
of understanding the loss of accuracy for these parameter values
is as follows. The third interval I3 combines both the tail portion
of the integrand where it dies off exponentially and the region in
the vicinity of the poles tj = η + i(2j + 1)π, j = 0, ±1, ±2, . . ..
When we set m = 80, for η values around 100, this region I3
constitutes the bulk of the total interval (0, η+m) and a35orderGL
quadraturewill be clearly insufficient. To circumvent this problem,
one can reduce m to a lesser value and this in turn will require
a separate quadrature for the exponentially dying tail portion of
Table 6
Comparison of the DE and the trapezoidal schemes for aminimum relative accuracy
better than 1d(−20).

k η θ n1 n2 n + np

−0.5 1000 50 520 400 872+3
0.5 1000 50 520 450 631+4
1.5 1000 50 550 400 414+6
1.5 100 50 425 425 257+1
2.5 100 50 400 400 176+2

the integrand. This implies that the total interval is split into four
subintervals. We do not adopt this strategy here.

5. High precision evaluation of the GFDI for η < 1000

Due to the effect of this branch point singularity t0 that affects
the accuracy of the GFDI evaluation, we need a reliable scheme
that covers the η interval [0, 1000] and for large values of θ . If
θ is much less than unity, the trapezoidal scheme with residue
correction is sufficient as we have seen in the results of Table 1.
A quadruple precision evaluation of the same scheme will give
a guaranteed precision better than 1.d(−20). These results are
shown in Table 5. Of course for η = 1000, k = −0.5 and θ = 50,
we need 872 quadrature terms plus 3 residue correction terms.
This is the largest number in this tabulation and for the same η
value and other k values we need lesser terms. If θ is of the order
of unity, we need just 147 summation terms for η = 1000. But
this computational effort must be compared with the case where
one can split the interval as (0, η) and (η, η + m) and do a DE
quadrature over these two subintervals. In Table 6,we compare the
number of quadrature terms needed for the Trapezoidal scheme
with pole correction and the DE quadrature over I1 = (0, η) and
I2 = (η, η + m). Here, n1 and n2 denote the quadrature terms
needed by the DE scheme in I1 and I2, respectively. n and np denote
the number of quadrature steps and the pole correction terms



N. Mohankumar, A. Natarajan / Computer Physics Communications 207 (2016) 193–201 199
needed for the trapezoidal scheme, respectively. We find that the
trapezoidal scheme is relativelymore economical in this range of η
and θ values. Before we close, we need to make two observations.
For the trapezoidal method with pole correction, we transform
the integrand by making the substitution t = x2. The square
root term of the integrand of the GFDI given by

√
1 + θ t/2 gets

transformed as

1 + θx2/2. This implies that the branch point of

the transformed integrand is given by ±i
√
2/θ . That is, the branch

points are purely imaginary. If θ values are large, then d, the width
of the strip of analyticity can not exceed

√
2/θ and since we set

h = ad, where a is a constant factor, our step size h is limited by this
restriction on d. This explainswhywe need an increased number of
quadrature steps for large θ values for the trapezoidal schemewith
pole correction. In addition, we must remember that the number
of quadrature steps increases proportionately as

√
η + m for this

scheme. The second point to be noted concerns the generation of
the reference values for fixing the relative errors. For this purpose,
we have used a two range DE quadrature over the intervals I1 =

(0, η) and I2 = (η, η + m) in quadruple precision. The number
of quadrature terms are 1200 and 800 for the intervals I1 and I2
respectively. Hence, to generate 32 digit accurate reference values,
we have utilized 2000 quadrature terms in all.

6. Summary

We summarize the results here.
(1) For the FDI needed in semiconductor modeling where θ is
zero and η lies in the range [−10, 50], the simple trapezoidal
integrationwith pole correction that was indicated earlier [14] can
yield double precision accuracy with about 29 quadrature terms
and 7 pole correction terms which is adequate for routine use.
(2) For the routine double precision evaluation of the GFDI, the
DE quadrature algorithm that splits the range as I1 = (0, η) and
I2 = (η, η + m) was indicated earlier [22] and this method needs
about 320 quadrature steps. This can be replaced by the present
algorithm indicated in Section 3 that splits the interval as (0, η−m)
and (η − m, η + m). The DE quadrature is employed in the first
interval and the GL integrationwith pole correction is employed in
the second interval. This method needs just 161 quadrature terms
totally and 7 pole correction terms and offers a minimum of about
13 digits of relative accuracy at half the computational cost of the
previous algorithm.
(3) For reference purposes and for η > 1000 and for large θ
values, the algorithm indicated in Section 4 that offers a relative
accuracy better than 1.d(−20) can be used. The range is split as
I1 = (0, X), I2 = (X, η − m) and I3 = (η − m, η + m). The GL
quadrature is employed in the last two intervals and in addition,
the residue correction is implemented in the third interval. For
k = −0.5, 0.5, the GL quadrature is implemented in I1. In all
we need 175 quadrature terms and 14 residue correction terms.
For the case, k = 1.5, 2.5, the DE scheme is used in I1. For this
we need 271 quadrature terms and 14 residue correction terms.
To achieve a similar accuracy by employing the DE scheme after
splitting the range as I1 = (0, η) and I2 = (η, η + m), we need
about 1000 function evaluations. Thus, the presentmethod cuts the
computational effort by a factor 1000/285 or 1000/189 which is a
significant reduction.
(4) For η < 1000 and for large θ values, the inherent nature
of the singularities of the integrand of the GFDI warrants more
computational effort. For this range, the quadruple precision
version of the trapezoidal scheme with pole correction is
preferable and this offers an accuracy better than 1.d(−20).

Finally, few comments are in order regarding certain analytical
evaluation of these integrals found in the literature.
I. The FDI can be evaluated in closed form in a series that in-
volves any one of the following special functions like the Polyloga-
rithm function [29], the Zeta function [30], the incomplete Gamma
function and the Error function [15,31]. It must be emphasized
that the evaluation of these functions needs special algorithms and
this involves an additional computational cost which is not negli-
gible. Also, the rapidity of convergence of these series is another
aspect which may not be favorable. On the otherhand, the quadra-
ture based methods presented here involve only very elementary
functions and hence there is no extra computational cost and the
convergence is robust and rapid.

II. Unlike the FDI, as of now theGFDI does not have a closed form
series (except for very small values of θ ) primarily due to the term√
1 + θ t/2 of the integrand.
III. The final point concerns the need for reference numerical

values of high precision. Quite often the FDI integrals are needed in
iterative loops in semiconductor device modeling [32]. Similarly,
the GFDI is needed in stellar evolution calculations [33]. Here,
it is desirable to have good rational approximations for these
integrals and this in turn needs very accurate reference values. The
minimum accuracy of one part in 1020 guaranteed by the present
algorithms serves these reference purposes quite well.

7. Conclusions

We have indicated two new algorithms for the evaluation of
the GFDI. The first one provides the values of the GFDI with near
double precision accuracy. Compared to its earlier variant, the
computational effort is halved and this recipe is suitable for routine
evaluation. The second algorithm provides the values of the GFDI
with a relative error less than 10−20. As far as we know, this is the
most accurate algorithm at present that can be used for reference
purposes. Compared to the methods indicated in the literature,
the present one cuts down the function evaluation roughly by
a factor 10 which is a significant reduction. These methods are
backed by rigorous error estimates [15,26,27,34]. In particular, the
effect of the branch point of the integrand of the GFDI is dealt
with thoroughly. These methods can be easily extended to the
generalized Boltzmann integrals [13]. The Matlab and the Fortran
routines that evaluate these integrals can be obtained from the first
author upon request.
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Appendix A. The discretization error of the quadrature

Let L be a contour that encloses the interval (X1, X2) as well as
an enumerable set of simple poles z1, z2, . . . of the integrand f (z)
in the complex z plane. The contour is traversed counter clockwise.
We assume that the function f (z) is analytic everywhere within L
except at the simple poles {zj}. Consider the contour integral I0 that
is given below with φn(x) as the basis function.

I0 =
1

2π i


L

f (z)dz
(z − x)φn(z)

The singularities of the above integrand consist of the poles {zj} of
f (z), z = x and the zeros {x1, x2, . . . , xn} of φn(x). The application
of the Residue theorem yields the following expression.

I0 =
f (x)
φn(x)

+

n
i=1

f (xi)
(xi − x)φ′

n(xi)
+


j

R(zj)
(zj − x)φn(zj)

R(zj) = Res[f (z)]z=zj
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A slight rearrangement of the above equation leads to the following
equation that can be recognized as the expansion of the function
f (x) in terms of the basis φn(x).

f (x) =

n
i=1

f (xi) φn(x)
φ′
n(xi)(x − xi)

+


j

R(zj)φn(x)
φn(zj)(x − zj)

+ I0 φn(x)

We multiply both sides by the weight function W (x) and then
integrate over (X1, X2) that leads to the following expression. X2

X1
W (x) f (x)dx −


n
1

wif (xi) +


j

R(zj)Φn(zj)
φn(zj)



=
(−1)
2π i


L

f (z)Φn(z)dz
φn(z)

= Ed (A.1)

The term Φn(z) is given by

Φn(z) =

 X2

X1

W (x) φn(x)dx
(x − z)

.

The first term inside the curly brackets of Eq. (A.1) is the quadrature
sum and the second summation term is the correction that is
needed for the quadrature sum due to the poles {zj} of f (z). We
assume that f (z) is such that the contour integral term Ed that can
be identified as the discretization error tends to zero in the limit
for large n.

Trapezoidal Integration
For the trapezoidal integration over (−∞, ∞), with a step size

h, the required basis is the sinc function defined by φk(x) =
sin(θ)

θ
, θ = [

π
h (x − kh)]. Here, the contour L is a rectangle of semi-

width d with the real axis symmetrically lying midway between
the top and bottom sides of the rectangle [14,22]. With W (x) =

1, the function Φ is simply evaluated in closed form due to the
following elementary result [35].

∞

−∞

sin(αx) dx
(x − β)

= πeiαβ
; α > 0; Im(β) > 0.

We only quote the final result and the details can be found in
Mohankumar et al. [14,22].

Ed =


∞

∞

f (x) dx −


∞

k=−∞

hf (kh) +


j

R(zj)ei
π
h zj S(zj)

sin(π
h zj)



Ed = e−2πd/hM; M =


∞

−∞

[f1 + f2] dt

f1 =
f (t + id)

e−i2π t/h − e−2πd/h
; f2 =

f (t − id)
ei2π t/h − e−2πd/h

Here, S(z) denotes the sign of Im(z) and the summation over j is
the summation over the simple poles of f (z) that lie within the
strip of analyticity of semi-width d. Also the discretization error
Ed is dominated over by the term e−2πd/h. We take this dominant
quantity e−2πd/h as an order of magnitude of the error since the
other quantity M is bounded as a consequence of the nature of
the integrand. The calculation procedure is as follows.We truncate
the upper limit of integration to xmax. Then, we choose the ratio
d/h such that the quantity e−2πd/h is of the order of the machine
precision limit ϵ (e.g 10−16 in the double precision case). Having
fixed the quantity d/h, we then fix d by including a finite number
of poles and from this set of poles, the distance of the pole farthest
from the real axis is set as d. Knowing the ratio d/h and d, we get
h. Since we know both h and xmax, the number of quadrature steps
n is also fixed finally.

Gauss–Legendre integration
For the GL integration, the contour integral error estimate

provided by Eq. (A.1) is valid. The interval of interest is (X1, X2) =
(−1, 1). The integrand function f (z) is analytic but for some simple
poles within the region enclosed by L. The only difference is that
this region is an ellipse that will be defined shortly below.

The following integral is evaluated by the Gauss–Legendre
integration with correction for its poles {tj}. Here, m values are
about 50 and 80 in the double and quadruple precision cases,
respectively.

I =

 η+m

η−m

tk
√
1 + θ t/2 dt
et−η + 1

tj = η + i(2j + 1)π; j = 0, ±1, ±2, . . . .

By the change of variable t = η + mx, t ∈ (η − m, η + m),
x ∈ (−1, 1), this t interval of width 2m is mapped on to the
Gauss–Legendre interval (−1, 1). The images of the poles of the
integrand tj = η + i(2j + 1)π are purely imaginary and they are
given by ζj = i(2j + 1)π/m, j = 0, ±1, ±2, . . .. With W (x) = 1,
the function Φn(z) is given by

Φn(z) =

 X2

X1

W (x) φn(x)dx
(x − z)

=

 1

1

Pn(x) dx
(x − z)

= −2Qn(z).

Here, Qn(z) is the second kind Legendre function defined by [36]

Qn(z) = (1/2)
 1

1

Pn(x) dx
(z − x)

From Eq. (A.1), it is seen that for the correction to the quadrature
sum, we need only the residue term R(ζj) and the quantity Φn(ζj)

φn(ζj)
.

That is, we need only the ratio involving Φn(ζj) and φn(ζj) and not
the individual quantities. For the Gauss–Legendre case, this ratio
Qn(ζj)/Pn(ζj) is evaluated accurately by a simple continued frac-
tion algorithm [37]. The details can be found in Mohankumar [38].

Next, we consider the elliptic region enclosed by the contour L.
This ellipse is defined below [36].

z = x + iy ∈ L; z = (1/2)(ξ + ξ−1);

ξ = ρ eiθ ; θ ∈ [0, 2π ].

The ellipse has foci at z = ±1. The semi-axes a and b are given by

a = (1/2)(ρ + ρ−1); b = (1/2)(ρ − ρ−1)

Let ρ be greater than unity and let f (z) be analytic inside this
ellipse but for the poles {ζj} which lie on the imaginary axis.
Then, the dominant error of the Gauss–Legendre quadrature of
order n is given by πρ−2n (theorem 3, [34]). In order to apply this
theorem, we need to correct the quadrature sum by incorporating
the residues of the poles that lie within the ellipse. Let np denote
the index of the farthest pole for which residue correction is taken
care of. Then, the index (np+1) denotes the first pole starting from
which residue evaluation is omitted. Then, we take b, the semi-
minor axis of the ellipse, as b = (1/2)|(ζnp+ζnp+1)|. In otherwords

b = (1/2)(π/m) {[2np − 1] + [2(np + 1) − 1]} . (A.2)

Knowing b, we can get ρ by solving the equation b = (1/2)(ρ −

ρ−1). The dominant error of the quadrature is found as πρ−2n.

Appendix B. The effect of the branch point on the quadrature
over the interval I3

The results from Tables 2–4 indicate that the accuracy of the
quadrature gets impaired for lower values of η and higher values
of θ , as seen in the case, θ = 50 and η < 1000. This loss of
accuracy can be explained as a consequence of the branch point
stemming from the term

√
1 + θ t/2 of the integrand of the GFDI.
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In the following, we indicate in detail how this branch point can
violate the analyticity assumptions for low values of η and higher
values of θ . We indicate a criterion for avoiding this violation.
For the quadruple precision evaluation, we split the total interval
(0, η+m) into three intervals andwe do not invoke the analyticity
assumption in the first two intervals. However, for the integration
in the third interval (η − m, η + m), we must ensure that this
branch point lies outside the elliptical region we have considered
just now. The only singularities that should lie within the ellipse
are the finite number of poles from the set given by tj = η + (2j +
1)π; j = 0, ±1, ±2, . . . and for this finite number of poles, the
residue correction is applied to the quadrature sum. This ellipse has
foci at ±1. For this ellipse, we fix the semi-minor axis b in terms of
the farthest pole for which the residue correction is taken care of.
Oncewe know b, the parameter ρ and a, the semi-major axis of the
ellipse get fixed as follows [34].

ρ = b +


b2 + 1; a = (1/2)


ρ +

1
ρ


(B.1)

The branch point t0 = −(2/θ) stems from the square root term√
1 + θ t/2. Here t lies in the interval I3 = (η − m, η + m)

that gets mapped on the Gauss–Legendre interval (−1, 1) by the
relation.

t = η + mx; t ∈ (η − m, η + m); x ∈ (−1, 1) (B.2)

The image x0 of this branch point t0 under the above mapping is
given by x0 = −(1/m)[(2/θ) + η]. For small values of η and large
values of θ , because of the factor m, this branch point that lies on
the real axis can enter the interior of the ellipse of analyticity. If it
happens, the contour integral error estimate given by Eq. (A.1) is
not valid. The poles of the integrand tj are given by tj = η + (2j +
1)π; j = 0, ±1, ±2, . . .. Under the mapping given by Eq. (B.2), ζj,
the images tj are given by ζj = i(2j + 1)π/m, j = 0, ±1, ±2 . . ..
These the poles ζj are purely imaginary. As seen earlier, np be the
index of the farthest pole on the imaginary axis for which the
residue correction is included in the quadrature sum. Then, the
index (np + 1) denotes the first pole starting from which residue
evaluation is omitted. From Eq. (A.2), we have

b = (1/2)(π/m) {[2np − 1] + [2(np + 1) − 1]} . (A.2)

Once b is known, we can find ρ and hence the semi-major axis
can be found from the relation a = (1/2)(ρ + ρ−1). Then, if we
require the branch point x0 to be located outside the ellipse, we
must satisfy the following condition.

|x0| > a.
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