
Computer Physics Communications ( ) –

Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Parallel implementation of geometrical shock dynamics for two
dimensional converging shock waves

Shi Qiu, Kuang Liu, Veronica Eliasson ∗

Aerospace and Mechanical Engineering, University of Southern California, Los Angeles, CA 90089-1191, USA

a r t i c l e i n f o

Article history:
Received 2 February 2016
Received in revised form
18 May 2016
Accepted 8 June 2016
Available online xxxx

Keywords:
Geometrical shock dynamics
Parallel computing
Converging shock
Symmetric boundary conditions

a b s t r a c t

Geometrical shock dynamics (GSD) theory is an appealing method to predict the shock motion in the
sense that it is more computationally efficient than solving the traditional Euler equations, especially for
converging shock waves. However, to solve and optimize large scale configurations, the main bottleneck
is the computational cost. Among the existing numerical GSD schemes, there is only one that has been
implemented on parallel computers, with the purpose to analyze detonation waves. To extend the
computational advantage of the GSD theory tomore general applications such as converging shockwaves,
a numerical implementation using a spatial decompositionmethod has been coupledwith a front tracking
approach on parallel computers. In addition, an efficient tridiagonal system solver for massively parallel
computers has been applied to resolve the most expensive function in this implementation, resulting
in an efficiency of 0.93 while using 32 HPCC cores. Moreover, symmetric boundary conditions have been
developed to further reduce the computational cost, achieving a speedup of 19.26 for a 12-sided polygonal
converging shock.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Focusing of shock waves can generate extreme conditions, such
as high pressure and temperature, at the focal region. Shock focus-
ing occurs in a variety ofman-made andnaturally occurring events,
for example in extracorporeal shock wave lithotripsy [1], iner-
tial confinement fusion [2] and collapse of cavitation bubbles [3].
The first researcher to study shock focusing was Guderley [4],
who developed analytical solutions for converging cylindrical and
spherical shock waves. Following his work, numerous authors
have investigated on this area. Basically, there are two major nu-
merical methods used to study shock wave propagation: one is
the Navier–Stokes equations, and the other is the inviscid Euler
equations if viscosity in the shocked medium can be neglected.
The advantage of these two methods is that a full flow field can
be accurately obtained. However, the strength of the shock front
in the focusing area can be much higher than that of the ini-
tial shock front, resulting in smaller time scales to maintain the
Courant–Friedrichs–Lewy (CFL) condition. In addition, the length
of the shock front in the focusing area can be much smaller than

∗ Corresponding author.
E-mail address: eliasson@usc.edu (V. Eliasson).

that of the initial shock front. In order to resolve all small scales
close to, and in, the focal region, high resolution in both time and
space are required, which can make the computational task very
expensive. Whitham proposed an alternative method [5], named
Geometrical Shock Dynamics (GSD), that describes the motion of
shock waves in a different way. Unlike the Navier–Stokes equa-
tions and the Euler equations, this theory avoids dealing with the
flow field around the shock and only focuses on the curvature of
the shock wave itself. As a result, solving a shock focusing event
withGSD instead of theNavier–Stokes equations or the Euler equa-
tions, the computational complexity is reduced by solving a lower
dimensional problem. In addition, the actual computational cost
may be reduced by more than an order of magnitude depending
on the required grid resolution when dealing with higher dimen-
sional problems. In GSD, the shock front is discretized into small
elements. Between each element, orthogonal trajectories are in-
troduced as rays so that each shock front element can be approxi-
mated to propagate down a tube whose boundaries are defined by
the rays, a so-called ray tube. The main assumption in GSD is that
the motion of the shock only changes with the variation of the ray
tube area. Then, instead of solving the full Euler equations, themo-
tion of the shock can be predicted by deriving the relation between
shock strength, which can be represented by the Mach number,
M , and the area of the ray tube, A. This is the so-called Area-Mach

http://dx.doi.org/10.1016/j.cpc.2016.06.003
0010-4655/© 2016 Elsevier B.V. All rights reserved.

http://dx.doi.org/10.1016/j.cpc.2016.06.003
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
mailto:eliasson@usc.edu
http://dx.doi.org/10.1016/j.cpc.2016.06.003


2 S. Qiu et al. / Computer Physics Communications ( ) –

number (A–M) relation,

1
A(x)

dA
dM

= −g(M), (1)

where

g(M) =
M

M2 − 1


1 +

2
γ + 1

1 − µ2

µ

 
1 + 2µ +

1
M2


, (2)

µ2
=

(γ − 1)M2
+ 2

2γM2 − (γ − 1)
. (3)

Here, γ represents the adiabatic index, x denotes the distance in
the ray tube and the cross sectional area A(x) is a function of x, see
Ref. [6] for additional details.

There exists a variety of algorithms to implement GSD numer-
ically. Here, only a part of those works are listed. The method of
characteristics was used by Bryson and Gross [7] to analyze shock
diffractions. Decades later, a front tracking approach was devel-
oped by Henshaw [8] in two dimensions and Schwendeman [9] in
three dimensions. A conservative finite differencemethodwas for-
mulated by Schwendeman [10].Most recently, a fast-marching like
algorithmwas developed by Noumir et al. [11]. Among all these al-
gorithms, the front tracking method is the most used one due to
its computational accuracy and simplicity of implementation. For
example, Schwendeman applied this method to study shock mo-
tion in non-uniformmedia [12]. Best modified it to investigate un-
derwater explosions [13,14], and Apazidis and Lesser utilized it to
comparewith the shock converging experiments [15]. However, in
order to utilize the front trackingmethod to study shockmotion for
large scale applications, the computational cost is still a large bot-
tleneck, which can be addressed through parallel computing tech-
niques.

In our work, the front tracking method has been implemented
on parallel computers and symmetric boundary conditions has
been developed in order to reduce the computational expense dra-
matically.

2. Numerical methods

2.1. Serial scheme

In this study, the numerical implementation of GSD is based on
previous front tracking methods [8,13,14]. A short review about
implementation of the numerical scheme is given as follows. In a
two dimensional condition, the shock front is discretized into N
points denoted by xi(t), where i = 1, 2, . . . ,N . The shock front
propagates along the direction of its normal vector, and the speed
is determined by the A–M relation. The motion of the shock is
described by

dxi(t)
dt

= a0Mi(t)ni(t), i = 1, . . . ,N, (4)

where Mi(t) and ni(t) denote the Mach number and shock front
normal at xi(t), respectively. The speed of sound in ambient air
is fixed as a0 = 1 in all of our calculations. A fourth-order
Runge–Kutta scheme is adopted to numerically integrate equation
(4).

The Mach number, M(t), is calculated by combining the A–M
relation from Eq. (1) with the shock front relation dtA = a0MdxA.
Thus, Eq. (1) can be converted into

dM
dt

=
M

−g(M)

A′

A
. (5)

In Eq. (5), A′ denotes dxA and A′/A can be expressed explicitly
as [13],

A′

A
=

∂x(s(t), t)
∂s(t)

∂n(s(t), t)
∂s(t)

, (6)

where, as is shown below, the arclength s(t) represents the
geometry of the shock front and n(s(t), t) indicates the norm
vector of the shock front,

si(t) =


0, if i = 1;
si−1(t) + |xi(t) − xi−1(t)|, if i = 2, . . . ,N;

(7)

n(s(t), t) =


∂y(s(t), t)

∂s(t)
, −

∂x(s(t), t)
∂s(t)


. (8)

Following [8], there are two extra procedures. One is a point
insertion and deletion approach that maintains the resolution of
the shock front and the CFL condition. Additionally, a time-step
reduction scheme [16] should be applied to replace this approach
for a particular converging shock scenario. The other scheme is
a two-step smoothing procedure to reduce the high frequency
errors. The main focus of this study is to implement the algorithm
for converging shocks. Thus, here the time-step reduction scheme
is adopted. However, the parallel implementation can be coupled
with the point insertion and deletion approach to tackle other
shock wave simulations.

The time-step reduction scheme can be expressed by the
following equation:
∆t < f (R(t),M(t)), (9)
where f (R(t),M(t)) is a function of shock radius R(t) and M(t)
at time t . More details of this scheme can be found in [16]. If this
condition fails, ∆t will be reduced as ∆tnew = 0.75∆t and Eqs. (4)
and (5) are restarted by using ∆tnew.

The two-step smoothing procedure is given as follows:

xi(t) =
1
2
(xi−1(t) + xi+1(t)), (10)

and it is applied every ns iterations, where ns depends on the
time increment,∆t , and the average shock arclength between each
discrete point,∆savg . When∆savg = 0.01, ns is usually set between
10 and 50.

A schematic flow chart shown in Fig. 1 illustrates how this al-
gorithm works. In general, the algorithm consists of four func-
tions during the time marching process. At time t , A′

i/Ai is calcu-
lated first by Eq. (6). The two components ∂x(s(t), t)/∂s(t) and
∂n(s(t), t)/∂s(t) in Eq. (6) can be obtained by applying a cubic
spline interpolation method using discrete data si(t), xi(t) and
si(t), ni(t), i = 1, . . . ,N under adequate boundary conditions,
which vary according to the task settings. This step is named up-
dateAda. The advantage of setting updateAda initially is that it can
also be used to generate the norm vector of the shock front, see Eq.
(8), which is required for updating the shock location in the third
step. Next, a fourth-order Runge–Kutta scheme is employed, see
Eq. (5), to update the Mach number at the current time iteration.
This step is named updateM. In the next function, called updateX,
the shock location for the next time iteration is calculated by using
Eq. (4) so that x(t + ∆t) is obtained. Later, the time-step reduc-
tion scheme is applied to maintain the CFL condition, see Eq. (9).
The next function, updateS, computes s(t + ∆t) through Eq. (7). In
addition, the smoothing procedure, see Eq. (10), is implemented
after updateS. At the end of each iteration, a terminate condition
is given to determine whether the program should be aborted. In
order to run this algorithm, a set of coordinates, xi(t0), and Mach
number, Mi(t0), representing the initial location and strength of
the shock front are given as initial conditions. In addition, updateX
and updateS need to be called before the time marching to obtain
si(t0+∆(t)), which is the arclength for the first iteration. These ini-
tial steps are implemented in the parameter initialization, shown
in Fig. 1.



S. Qiu et al. / Computer Physics Communications ( ) – 3

Fig. 1. Flow chart for serial version. The equation to maintain the CFL condition is
marked by ∗.

2.2. Parallel scheme

Performance profiling has been done to detect the computa-
tional cost for each function described in the previous section. The
test setup is a 10-sided polygonal (decagon) shape shock wave
propagating towards its center point. Three different cases have
been tested, see Table 1. The Mach number, smooth step inter-
val and the initial shock arclength between each discrete point are
kept constant as Mi(t0) = 15, ns = 200, ∆s(t0) = 0.002 for all
cases while the apothem of the decagon (a line segment from the
center to the midpoint of one of its sides) varies from 1 to 100. All
three cases are terminated after 10,000 iterations. Fig. 5 shows an
example when the apothem equals 1 and the program terminates
after 55,000 iterations. The blue solid polygons represent the initial
and the first reconfiguration steps, which will be explained in the
validation section. The red solid polygons represent the successive
shock fronts at each iteration sequence.

Table 1 shows the computational costs of each function in dif-
ferent cases. It can be seen that most of the computations are
conducted by the first four functions, occupying over 98% of the
total running time. And updateAda is the most expensive one,
which occupies over 64% of the total running time. The reason
is that to solve Eq. (6), ∂x(s(t), t)/∂s(t) needs to be obtained
first by applying four cubic spline functions since periodic bound-
ary conditions are used. Then, n(s(t), t) can be achieved through
Eq. (8) automatically. Later, another four cubic spline functions
are employed to access ∂n/(s(t), t)∂s(t), where n = (nx, ny).
Thus, there are eight tridiagonal systems of linear equations in
total that have to be solved because each cubic spline function
can be considered as a tridiagonal system. Commonly, Gaussian
elimination can solve linear systems in a serial manner. However,
for parallelization purpose, it is not efficient compared to other
schemes [17–21]. In this study, a recent approach [17] for a paral-
lel tridiagonal solver has been applied with the following features:
the new solver, under the model of the SPIKE algorithm [20,21],

Fig. 2. Flow chart for hybrid MPI and OpenMP scheme. The equation to maintain
the CFL condition is marked by ∗.

utilizes message passing interface (MPI) for interprocessor com-
munication. In addition, the collective communication is not re-
quired and the machine-zero accuracy is guaranteed. The solver
can compute a number of distinct tridiagonal systems together
by being executed only once which is more efficient than being
called multiple times to solve each single system. Multiple bound-
ary conditions, such as periodic boundary conditions and natu-
ral boundary conditions, can be achieved without modifying the
solver. Therefore, the solver is used in the function updateAda.

For the rest of the functions, both the shared-memory multi-
processing interface OpenMP and MPI have been implemented for
parallelization. Thus, combinedwith the function updateAda under
MPI, thewhole algorithm is parallelized using two approaches: hy-
brid MPI combined with OpenMP, and pure MPI.

2.2.1. Hybrid MPI combined with OpenMP approach
In the hybrid scheme, the MPI section and the OpenMP section

are designed to be independent of each other to reduce the
implementation difficulty. A flow chart is shown in Fig. 2 to
represent the architecture. At first, the input data is partitioned
into multiple subsets, each of which is assigned to a particular
node, to satisfy the precondition of the MPI tridiagonal solver in
the updateAda function. Fig. 3 shows an example of the spatial
decomposition for the case with a 5-sided polygonal shock in
which the shock front has been split into 21 points that are
distributed among five processors. It can be seen that the first
point and the last point on the shock front share the same location
because of the closed geometry. After calculation by the MPI
tridiagonal solver, the resulting data is gathered into one node as
a whole, and then, broadcasted to all nodes. The purpose of this
broadcast is to guarantee that every node has the entire dataset.
The gather and broadcast are referred as allGather in MPI section.
In the OpenMP section, each node conducts the same computation
by using its own processors with the same spacial decomposition
method as shown in Fig. 3. At the end of each iteration, each node
will contain the whole resulting data. Consequently, there is no
cost due to communication between nodes in the data partitioning
step, so in other words, the communication only happens in the
MPI tridiagonal solver and the allGather steps. Themain advantage



4 S. Qiu et al. / Computer Physics Communications ( ) –

Table 1
Computational cost of each function for three different tests. A* and N* denote the apothem and the total number of points of the polygon.

A∗
= 1N∗

= 3,242 A∗
= 10N∗

= 32,491 A∗
= 100N∗

= 324,911
Time (s) Percentage Time (s) Percentage Time (s) Percentage

updateAda 21.5 64.56% 223.19 65.01% 2539.98 67.82%
updateM 9.36 28.11% 94.52 27.53% 937.56 25.03%
updateX 1.13 3.39% 11.99 3.49% 115.32 3.08%
updateS 0.75 2.25% 8.38 2.44% 92.01 2.46%
Time-step reduction 0.11 0.33% 1.05 0.3% 10.78 0.29%
Smooth function 0.188 0.56% 2.12 0.60% 20.51 0.55%

Fig. 3. Example of spatial decomposition of a 5-sided polygonal shock front split
into 21 points distributed among five processors.

of this approach is that all processors share the same memory,
and as a result, parallelization can be easily achieved for all
the loop-independent functions with little communication cost.
The implementation process is considerably simpler compared
to the MPI approach because of the limited amount of data
communication.

2.2.2. MPI approach
The pure MPI structure is presented in Fig. 4. In the beginning,

all the data is partitioned and assigned into multiple nodes.
Compared to the previous hybrid approach, the data-gathering
step is eliminated by rescheduling data allocation for loop-carried
functions so that each node can conduct its own work without
requiring additional information from the other nodes. To be
specific, in the functions updateAda and updateS, point-to-point
communications have been used to allocate the data to avoid
data dependency across adjacent nodes. Although this approach
increases the difficulty in both the implementation and debugging
process, it is expected to achieve a better parallel performance than
the previous approach.

2.3. Comparison with analytical solution

To compare the two parallel schemes, numerical simulations of
regular polygonal converging shocks with 9 sides (enneagon) and
10 sides (decagon) have been conducted on the above schemes
with the same initial conditions as indicated in Section 2.2 and
the apothem is one. Fig. 5 shows the numerical results, in which
the successive shock fronts of each iteration sequence are plotted.
As the polygonal converging shock propagates towards the center,
the original shape keeps reshaping and a Mach stem is generated
at each corner. In Fig. 5, r0 and M0 represent the distance from
the center to the initial side of the polygon and the initial Mach
number, respectively,while r1 andM1 denote the distance from the
center to the first repeated polygon of the same shape as the initial
polygon, and its Mach number. From Table 2, it can be seen that
the numerical results from the parallel schemes agree well with
the analytical solutions.

Fig. 4. Flow chart for MPI scheme. The equation to maintain the CFL condition is
marked by ∗.

3. Results and discussion

3.1. Benchmark

Performance analysis has been conducted for the two paral-
lel schemes on the high performance computing facility (HPCC) at
University of Southern California. The nodeset, HPCC sl250s, con-
sists of 256 Dual-Octacore Intel Xeon CPUs operating at 2.4 GHz
with 64 GB memory. A strong-scaling test has been performed for
both schemes by simulating a decagon converging shockwith a to-
tal number of 3242,911 discrete points. The initial conditions are
the same as those described in Section 2.2. As previously men-
tioned, in the hybrid scheme the MPI section and the OpenMP sec-
tion are independent of each other. To perform the strong-scaling
test for both sections, the number of nodes is defined as Nnode and
the number of processors per node is denoted as Ppn. In addition,
the granularity in theMPI section can be defined asN/Nnode, where
N denotes the number of discrete points on the shock front, while
in the OpenMP section, the granularity is defined as N/Ppn. Then,
the strong-scaling test for the hybrid scheme is performed as fol-
lows: the granularity in both sections is kept consistent with each
other, whichmeansNnode is always set to be equal to Ppn, whileN is
kept constant. In this test,we defineβ = Nnode = Ppn, which ranges
from 1 to 16. Consequently, the efficiency of the hybrid scheme is
defined as the ratio of the speedup of the parallel code divided by
β . Fig. 6 shows thewall-clock time and the efficiency for the hybrid
scheme. As a baseline, the ideal case is calculated by the ratio of the



S. Qiu et al. / Computer Physics Communications ( ) – 5

Table 2
Comparison of numerical results with analytical solutions from [16].

Enneagon simulation (MPI) Decagon simulation (hybrid)
Analytical Numerical Difference Analytical Numerical Difference

M1/M0 1.175 1.161 1.2% 1.155 1.159 0.3%
r1/r0 0.442 0.446 0.8% 0.482 0.486 0.8%

Fig. 5. Converging shock propagation showing successive positions for an enneagon (MPI schemewith 4 cores) and a decagon (hybrid schemewith 2 nodes and 2 processors
per node). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)

Fig. 6. Wall-clock time of strong scaling for hybrid scheme using 3242,911-point
shock front on β nodes and β processors per node.

wall-clock time for the case with Nnode = Ppn = 1 over the number
of different β .

For the MPI scheme, the strong-scaling test is performed with
the same setup as above, except that Nnode is varied from 1 to 64
and Pppn is set to 1 for all cases. Therefore, the efficiency of the
MPI scheme is defined as the ratio of the speedup of the parallel
code divided by Nnode, and the ideal case is calculated by the ratio
of thewall-clock time on a single node over the number of different
nodes. As shown in Fig. 7, the hybrid scheme has a comparable
performance with the MPI scheme up until the case of β = 8.
The efficiency of the hybrid scheme for the case of β = 2 is 0.92
and for β = 4 it is 0.83. However, as β increases, the efficiency
drops from 0.72 with β = 8 to 0.6 with β = 16 cores. In contrast,
the efficiency of the MPI scheme stays above 0.9 until 64 nodes are
used. The main reason of the difference between the two schemes
is that there is a data gather-broadcast step in the hybrid scheme
to connect the MPI section with the OpenMP section, which is
denoted as allGather in Fig. 2. This additional, albeit necessary step,
makes the communication/computation ratio in thehybrid scheme

Fig. 7. Wall-clock time of strong scaling for MPI scheme using 3242,911-point
shock front on Nnode nodes.

higher than that of MPI scheme. With the increment of Nnode and
Ppn in use, the communication/computation ratio increases, and
results in a loss of performance. In the MPI scheme, without this
extra allGather step, the wall-clock time decreases nearly linearly
with the granularity (N/Nnode). The reason that the efficiency in the
MPI scheme drops slightly for the case with Nnode = 2 is likely due
to that the communication cost is introduced in the computation
compared to the case with a single node. When the number of
nodes increases to 64, the communication cost starts to have a
notable effect on the performance.

Additionally, an isogranular-scaling test, where the number
of discrete points on the shock front in each node, N/Nnode, is
fixed, has been performed for the MPI scheme. The test case is
a decagonal shock with 25,991Nnode discrete points while Nnode
ranges from 2 to 128 and Ppn is set to be 1 for all cases. The weak
scaling efficiency for the case of Nnode nodes is calculated as t2/tn,
where t2 and tn denote the wall-clock time for a 2-node test and
a Nnode-node test, respectively. Fig. 8 shows the wall-clock time
versus the number of nodes scaled with the number of points. The



6 S. Qiu et al. / Computer Physics Communications ( ) –

Fig. 8. Wall-clock time of scaled workloads using 25,991Nnode-point shock front on
Nnode nodes.

efficiency remains nearly constant around 0.95 until the case of 64
nodes, which indicates a good scalability.

3.2. Symmetric boundary condition

A symmetric boundary condition has been developed to further
improve the speedup for converging shock configurations. From
Fig. 5, it can be observed that as the polygonal converging shock
propagates towards the center, the lines of symmetry of the shock
front is independent from its reconfiguration process. Thus, it is
possible to compute only one section of the shock front instead
of the full geometry. This symmetry feature indicates that the
norm vector at each point where the line of symmetry meets
with the shock front is always directed to the center. This is the
boundary condition for each symmetric part of the shock front.
For example, since the shock front features a polygonal shape,
geometrical symmetry is used such that only a triangular portion of
the converging shock, from a corner where two shocks meet to the
mid-point of a neighboring planar side, is considered. The shock
velocity on either side of this triangle is always directed along the
sides of the triangle, i.e. the symmetry lines. With this condition,
the problem size can be reduced from N down to N/2nl, where N
denotes the number of discrete points and nl denotes the number
of symmetric lines. A test on 12-sided polygonal (dodecagon)
converging shock has been performed to verify the boundary

Table 3
Computational cost and speedup of 1/2, 1/4, 1/24 of the full geometrical simulation
using symmetric boundary conditions. All the simulations are terminated after
10,000 iterations.

Problem size Full size 1/2 size 1/4 size 1/24 size

Computational cost 17.15 8.65 4.44 0.89
Speedup 1.0 1.98 3.86 19.26

condition. Three different symmetric parts (1/2, 1/4 and 1/24) have
been computed independently and compared with the full size,
see Fig. 9. It can be seen that all of the symmetric parts match the
full size result very well. For performance analysis, the speedup
of the symmetric boundary condition is defined as wall-clock
time ratio of the full geometry versus the reduced geometry using
a single core. Results are summarized in Table 3, and it is shown
that for the dodecagon shock front, the speedup can be obtained
up to 19.26.

4. Conclusions

In this study, a spatial decompositionmethod to implement the
GSD simulation on parallel computerswas adopted. At first, perfor-
mance profiling was conducted to analyze computational hot-spot
in the serial scheme. Two schemeswere designed to parallelize the
simulation, inwhichMPI andOpenMPwere employed. An efficient
tridiagonal solver [17] based on the SPIKE algorithm [20,21] was
also incorporated into the parallel implementation to handle the
most computationally expensive function.

Performance analysis and comparisonbetween the two schemes
were investigated. The hybrid scheme shows its advantage of
implementation ease and the running result demonstrates its
speedup, 9.7, on 16 HPCC node-processors. On the other hand, the
MPI scheme leads to an improved performance in efficiency and
scalability. The strong-scaling experiment proves a high efficiency
of 0.93 using 32 HPCC cores, while the isogranular-scaling exper-
iment shows that the efficiency holds up to 0.83 using 64 HPCC
cores.

To further improve the speedup for symmetric converging
shock simulations, symmetric boundary conditions were devel-
oped to reduce the problem size considerably. Results have shown
that for a dodecagonal converging shock front, a speedup of up to
19.26 can be achieved.

Although this study only focuses on converging shock configu-
rations, the parallel schemes can be easily extended to solve more
generalized shock setups by changing the boundary conditions. In
the future, parallelization on three dimensional GSDmodel will be
investigated.

References

[1] A.G. Mulley Jr., N. Engl. J. Med. 314 (13) (1986) 845–847.
[2] C.K. Li, A.B. Zylstra, J.A. Frenje, F. Séguin, N. Sinenian, R.D. Petrasso, P.A. Amendt,

R. Bionta, S. Friedrich, G.W. Collins, et al., New J. Phys. 15 (2) (2013) 025040.

(a) 1/2. (b) 1/4. (c) 1/24.

Fig. 9. Dodecagon shock front propagation at successive time instants. Red dashed line represents the full geometrical simulation, blue solid line represents, from left to
right, 1/2, 1/4, 1/24 of the full size simulation using symmetric boundary conditions.

http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref1
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref2


S. Qiu et al. / Computer Physics Communications ( ) – 7

[3] G. Iosilevskii, D. Weihs, J. R. Soc. Interface 5 (20) (2008) 329–338.
[4] G. Guderley, Luftfahrtforschung 19 (9) (1942) 302–312.
[5] G.B. Whitham, J. Fluid Mech. 2 (02) (1957) 145–171.
[6] G.B. Whitham, Linear and Nonlinear Waves, Vol. 42, John Wiley & Sons, 2011.
[7] A.E. Bryson, R.W.F. Gross, J. Fluid Mech. 10 (01) (1961) 1–16.
[8] W.D. Henshaw, N.F. Smyth, D.W. Schwendeman, J. Fluid Mech. 171 (1986)

519–545.
[9] D.W. Schwendeman, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 416 (1850)

(1988) 179–198.
[10] D.W. Schwendeman, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci. 441 (1912)

(1993) 331–341.
[11] Y. Noumir, A. Le Guilcher, N. Lardjane, R.Monneau, A. Sarrazin, J. Comput. Phys.

284 (2015) 206–229.

[12] D.W. Schwendeman, J. Fluid Mech. 188 (1988) 383–410.
[13] J.P. Best, Shock Waves 1 (4) (1991) 251–273.
[14] J.P. Best, Shock Waves 2 (2) (1992) 125–125.
[15] N. Apazidis, M.B. Lesser, J. Fluid Mech. 309 (1996) 301–319.
[16] D.W. Schwendeman, G.B. Whitham, Proc. R. Soc. Lond. A Math. Phys. Eng. Sci.

413 (1845) (1987) 297–311.
[17] D. Ghosh, E.M. Constantinescu, J. Brown, SIAM J. Sci. Comput. 37 (3) (2015)

354–383.
[18] H.S. Stone, J. ACM 20 (1) (1973) 27–38.
[19] H.H. Wang, ACM Trans. Math. Software 7 (2) (1981) 170–183.
[20] E. Polizzi, A.H. Sameh, Parallel Comput. 32 (2) (2006) 177–194.
[21] E. Polizzi, A. Sameh, Comput. Fluids 36 (1) (2007) 113–120.

http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref3
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref4
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref5
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref6
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref7
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref8
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref9
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref10
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref11
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref12
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref13
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref14
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref15
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref16
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref17
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref18
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref19
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref20
http://refhub.elsevier.com/S0010-4655(16)30165-5/sbref21

	Parallel implementation of geometrical shock dynamics for two dimensional converging shock waves
	Introduction
	Numerical methods
	Serial scheme
	Parallel scheme
	Hybrid MPI combined with OpenMP approach
	MPI approach

	Comparison with analytical solution

	Results and discussion
	Benchmark
	Symmetric boundary condition

	Conclusions
	References


