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a b s t r a c t

A mode parabolic equation in the ray centered coordinates for 3D underwater sound propagation is
developed. The Gaussian beam tracing in this case is constructed. The test calculations are carried out
for the ASA wedge benchmark and proved an excellent agreement with the source images method in the
case of cross-slope propagation. But in the cases of wave propagation at some angles to the cross-slope
direction an account of mode interaction becomes necessary.
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1. Introduction

The problem of sound propagation by the method of summa-
tion of Gaussian beams was considered in [1–6]. In these papers
the absence of singularities appropriate to the ray methods (such
as caustics) was proven and also the tuning of themethodwas per-
formed. In the present paper we consider a method of mode Gaus-
sian beams, which enables to treat 3D problems. In this study a
method of Gaussian beams is amalgamated with the normal mode
theory. More precisely, the equations for the mode amplitudes are
reduced to the parabolic equations that are subsequently solved
along the horizontal rays. This approach may be considered as the
direct generalization of vertical modes + horizontal rays method
of Burridge and Weinberg [7], yet it also incorporates some fea-
tures of the mode parabolic equations theory. In the frame of the
proposed method we do not consider the mode interaction.

The problem of sound propagation in a three-dimensional
wedge is solved by the developed method. It appears that in the
case of the cross-slope propagation themethod gives very accurate
results despite the absence of the mode interaction in our model.
Moreover it is necessary to consider only the exited modes which
present explicitly in the final solution. On the other hand, in the
parabolic equation [8,9] we should consider the large number
of modes with their interactions. Thus, many effects previously
described in the terms of the mode interaction can be explained
in the terms of the horizontal refraction.
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In the case when the angle of the track of sound propagation to
the across slope direction gradually increases it becomes necessary
to account for the mode interaction. It is shown, that at the
angle of 18° the mode interaction becomes significant and further
increases. The mode interaction is therefore essential for the more
general models of sound propagation.

The paper is organized as follows. After formulation of the prob-
lem in Section 2, we consider an adiabatic mode Helmholtz equa-
tion. Then, by using Babich method, we obtain a mode parabolic
equation in the ray centered coordinates from the derived
Helmholtz equation. In Section 4 we discuss certain details related
to mode Gaussian beams propagation. In Section 5 the method of
mode Gaussian beams is used for the numerical solution of the ASA
wedge benchmark problem in the case of cross-slope wave propa-
gation and in the cases ofwave propagation at various angles to the
cross-slope direction. The results are compared with the solutions
obtained by the method of image sources and by adiabatic mode
parabolic equations. The paper ends with a brief conclusion.

2. Basic equations and boundary conditions

We consider the propagation of time-harmonic sound in a
three-dimensional waveguide

Ω = {(x, y, z)|0 ≤ x ≤ ∞,−∞ ≤ y ≤ ∞,−H ≤ z ≤ 0}

(the z-axis is directed upward), described by the acoustic
Helmholtz equation

(γ Px)x +

γ Py


y + (γ Pz)z + γ κ2P = 0, (1)

where γ = 1/ρ, ρ = ρ(x, y, z) is the density, κ is the
wave-number. We assume the appropriate radiation conditions at
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infinity in the x, y plane, the pressure-release boundary condition
P = 0 at z = 0 and the rigid boundary condition ∂P/∂z = 0 at
z = −H . The parameters of the medium can be discontinuous at
the nonintersecting smooth interfaces z = h1(x, y), . . . , hm(x, y),
where the usual interface conditions

P+ = P−,

γ+


∂P
∂z

− hx
∂P
∂x

− hy
∂P
∂y


+

= γ−


∂P
∂z

− hx
∂P
∂x

− hy
∂P
∂y


−

,
(2)

are imposed. Hereafter the denotations f (z0, x, y)+ = limz↓z0 f (z,
x, y) and f (z0, x, y)− = limz↑z0 f (z, x, y) are used. Aswill be shown
below, it is sufficient to consider the case ofm = 1, sowe setm = 1
and denote h1 by h.

We introduce a small parameter ϵ (the ratio of the typical
wavelength to the typical size of medium inhomogeneities), the
slow variables X = ϵx and Y = ϵy and the fast variables
η = (1/ϵ)Θ(X, Y ) and ξ = (1/

√
ϵ)Ψ (X, Y ) and postulate

the following expansions for the acoustic pressure P and the
parameters κ2, γ and h:

P = P0(X, Y , z, η, ξ)+
√
ϵP1/2(X, Y , z, η, ξ)+ · · · ,

κ2
= n2

0(X, Y , z)+ ϵν(X, Y , z, ξ),
γ = γ0(X, Y , z)+ ϵγ1(X, Y , z, ξ),
h = h0(X, Y )+ ϵh1(X, Y , ξ).

(3)

To model the attenuation effects, we allow ν to be complex. More
precisely, we put Imν = 2µβn2

0, where µ = (40π log10 e)−1 and
β is the attenuation in decibels per wavelength.

Following the generalized multiple-scale method [10], we
replace the derivatives in Eq. (1) according to the rules

∂

∂x
→ ϵ


∂

∂X
+

1
√
ϵ
ΨX

∂

∂ξ
+

1
ϵ
ΘX

∂

∂η


,

∂

∂y
→ ϵ


∂

∂Y
+

1
√
ϵ
ΨY

∂

∂ξ
+

1
ϵ
ΘY

∂

∂η


.

Given the postulated expansions, the equationunder consideration
becomes

ϵ2

∂

∂X
+

1
√
ϵ
ΨX

∂

∂ξ
+

1
ϵ
ΘX

∂

∂η

 
(γ0 + ϵγ1)

·


∂

∂X
+

1
√
ϵ
ΨX

∂

∂ξ
+

1
ϵ
ΘX

∂

∂η


· (P0 + ϵP1 + · · · , )


+ the same term with the Y -derivatives
+ ((γ0 + ϵγ1) (P0z + ϵP1z + · · · , ))z

+ (γ0 + ϵγ1)(n2
0 + ϵν) (P0 + ϵP1 + · · · , ) = 0. (4)

We now put

P0 + ϵP1 + · · · = (A0(X, Y , z, ξ)+ ϵA1(X, Y , z, ξ)+ · · · )eiη.

Using the Taylor expansion, we can formulate the interface
conditions at h0 which are equivalent to interface conditions (2)
up to O(ϵ):

(A0 + ϵh1A0z + ϵA1)+ = (the same terms)−, (5)
((γ0 + ϵh1γ0z + ϵγ1)

× (A0z + ϵh1A0zz + ϵA1z − ϵiΘXh0XA0 − ϵiΘYh0YA0))+

= (the same terms)− . (6)

2.1. The problem at O(ϵ0)

At O(ϵ0)we obtain

(γ0A0z)z + γ0n2
0A0 − γ0


(ΘX )

2
+ (ΘY )

2 A0 = 0, (7)

with the interface conditions A0+ = A0−, (γ0A0z)+ = (γ0A0z)− at
z = h0, and the boundary conditions A0 = 0 at z = 0 and A0z = 0
at z = −H . We seek a solution to problem (7) in the form

A0 = Bj(X, Y , ξ)φ(X, Y , z). (8)

From Eq. (7) we obtain the following spectral problem for φ with
the spectral parameter k2 = (ΘX )

2
+ (ΘY )

2

(γ0φz)z + γ0n2
0φ − γ0k2φ = 0,

φ(0) = 0, φz = 0 at z = −H,
φ+ = φ−, (γ0φz)+ = (γ0φz)− at z = h0.

(9)

This spectral problem, considering in theHilbert space L2,γ0 [−H, 0]
with the scalar product

(φ, ψ) =

 0

−H
γ0φψ dz, (10)

has countably many solutions (k2j , φj), j = 1, 2, . . . where the
eigenfunctions can be chosen as real functions. The eigenvalues
k2j are real and have −∞ as a single accumulation point. The
normalizing condition is

(φ, φ) =

 0

−H
γ0φ

2 dz = 1. (11)

2.2. The problem at O(ϵ1/2) and at O(ϵ1)

The solvability condition for the problem at O(ϵ1/2) is

ΘXΨX +ΘYΨY = 0, (12)
from which we conclude that we can take P1/2 = 0.

2.3. The problem at O(ϵ1)

At O(ϵ1), we obtain

(γ0A1z)z + γ0n2
0A1 − γ0k2j A1

= −iγ0XkjA0 − 2iγ0kjA0X − iγ0kjXu0 + γ1k2j A0 − γ0(ΨX )
2A0ξξ

− the same terms with Y -derivatives

−
∂

∂z
(γ1A0z)− n2

0γ1A0 − νγ0A0, (13)

with the boundary conditions A1 = 0 at z = 0, A1z = 0 at z = −H ,
and the interface conditions at z = h0(X, Y ):

A1+ − A1− = h1(A0z− − A0z+),

γ0+A1z+ − γ0−A1z−

= h1

((γ0A0z)z)− − ((γ0A0z)z)+


+ γ1−A0z− − γ1+A0z+

− ikjh0XA0(γ0− − γ0+)− ikjh0YA0(γ0− − γ0+).

(14)

Multiplying (13) by φj and then integrating the resulting equation
twice from −H to 0 by parts with the use of the corresponding
interface conditions (14), we obtain the solvability condition for
the problem at O(ϵ1)

2i(ΘjXBjX +ΘjYBjY )+ i(ΘjXX +ΘjYY )B

+ ((ΨX )
2
+ (ΨY )

2)Bjξξ + αjBj = 0, (15)

where A0 = Bjφj and αj is given by the following formula

αj =

 0

−∞

γ0νφ
2
j dz +

 0

−∞

γ1

n2
0 − k2j


φ2
j dz −

 0

−∞

γ1

φjz

2 dz

+


h1φj


(γ0φjz)z


+

−

(γ0φjz)z


−


− h1γ

2
0


φjz

2 
1
γ0


+

−


1
γ0


−


z=h0

.
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Using the spectral problem (9), the interface terms introduced
above can be rewritten also as
h1φ

2
j


k2j (γ0+ − γ0−)−


n2
0γ0


+

+

n2
0γ0


−


− h1γ

2
0


φjz

2 
1
γ0


+

−


1
γ0


−


z=h0

.

3. The adiabatic mode Helmholtz equation and the ray
parabolic equation in ray centered coordinates

To obtain the adiabaticmode Helmholtz equation from Eq. (15),
we introduce the new amplitude

Dj(x, y) = Bj(X, Y , ξ),

where (x, y) =
1
ϵ
(X, Y ) are the initial (physical) coordinates. One

can easily obtain the following formulas for the x-derivatives of Dj:

Djx = Bjξ ·
√
ϵΨX + ϵBjX , (16)

Djxx = Bjξξ · ϵ(ΨX )
2
+ ϵ3/2(2BjξXΨX + BjξΨXX )+ ϵ2BjXX , (17)

and analogous formulas for the y-derivatives.
The solvability condition for the problem at O(ϵ3/2) is written

as

2BjξXΨX + BjξΨXX + 2BjξYΨY + BjξΨYY = 0.

Substituting the obtained expressions for the derivatives into
Eq. (15) we obtain after some algebra the reduced Helmholtz
equation for D

2i(θxDjx + θxDjy)+ i(θxx + θyy)Dj + Djxx + Djyy + ᾱjDj = 0, (18)

where θ(x, y) =
1
ϵ
Θ(X, Y ), ᾱj = ϵαj.

This equation can be transformed into the usual Helmholtz
equation

D̄jxx + D̄jyy + k2D̄j + ᾱjD̄j = 0, (19)

where k2 = (θx)
2

+ (θy)
2 by the substitution D̄j = Dj exp(iθ).

Consider the ray equations for the Hamilton–Jacobi equation

(θx)
2
+ (θy)

2
= P 2

+ Q2
= k2

in the form

xt =
P

k
, yt =

Q

k
, Pt = kx, Qt = ky. (20)

We have (xt)2 + (yt)2 = 1, so t is a natural parameter for the
ray, and introduce n⃗ to be orthogonal to the ray (ray-centered
coordinates).

To obtain the ray parabolic equation in the ray-centered
coordinates, we first rewrite Eq. (19) in the slow variables (X, Y ) =

(ϵx, ϵy) (ray scaling)

ϵ2D̄jxx + ϵ2D̄jyy + k2D̄j + ϵαjD̄j = 0. (21)

Then, in the vicinity of a given ray, Eq. (21) can be written in the
form

ϵ2
1
h


1
h
D̄jt


t
+ ϵ2

1
h
(hD̄jn)n + k2D̄j + ϵαjD̄j = 0, (22)

where t is a natural parameter of the ray (arc length), and n is the
distance from a given point to the ray (in ray-centered coordinates)
and h = 1 −

k1
k0
. Hereafter we use the following notations for any

given function f = f (t, n): f0 = f |n=0, f1 = fn|n=0 and f2 = fnn|n=0.

Substituting into Eq. (22) the Taylor expansions

k2 = k20 + 2k1k0n + (k21 + k0k2)n2

= k20 +
√
ϵ2k1k0N + ϵ(k21 + k0k2)N2,

1
h

= 1 +
k1
k0

n +
k21
k20

n2
= 1 +

√
ϵ
k1
k0

N + ϵ
k21
k20

N2,

1
h2

= 1 + 2
k1
k0

n + 3
k21
k20

n2
= 1 +

√
ϵ2

k1
k0

N + ϵ3
k21
k20

N2,

where N =
1

√
ϵ
(parabolic scaling), and the WKB-ansatz D̄j =

(u0 + ϵu1 + · · · ) exp((i/ϵ)θ), we obtain at O(ϵ0)

θt = ik0

and at O(ϵ1) the parabolic equation in the ray-centered coordi-
nates [11]

2ik0u0t + ik0tu0 + u0NN + [(k0k2 − 2k21)N
2
+ αj0]u0 = 0. (23)

4. Mode Gaussian beam equation

To solve Eq. (23), we first introduce the following substitution:

u0(t,N) =
1

√
k0(t)

exp


i
2

 t

0

αj0(s)
k0(s)

ds

Uj(t,N). (24)

Then our equation becomes

2ik0Ujt + UjNN + (k0k2 − 2k21)N
2Uj = 0. (25)

Following [1], we seek a solution of this equation in the form of the
Gaussian beam ansatz

Uj(t,N) = A(t) exp


i
2
N2Γ (t)


, (26)

where Γ (t) is an unknown complex-valued function. Substitution
of (26) into (25) gives

i(2k0At + AΓ )− AN2
[k0Γt + Γ 2

− (k0k2 − 2k21)] = 0.

We require separately

k0Γt + Γ 2
− (k0k2 − 2k21) = 0, and 2k0At + AΓ = 0. (27)

To solve the first ordinary non-linear differential equation of the
Riccati type, we introduce new complex-valued variables q(t) and
p(t) by the formulas

Γ =
k0
q
qt =

p
q
.

Then

qt = k−1
0 p, pt = (k2 − 2k1k−1

0 )q. (28)

The solution of the second equation in (27) can be expressed in the
following form

A(t) =
Ψ

√
q(t)

,

where Ψ is a complex value, which is constant along the ray, but
may vary at different rays.

Finally for u0 we have:

u0(t,N) =
Ψ (ϕ)

√
k0(t)q(t)

exp


i
2

 t

0

αj0(s)
k0(s)

ds +
i
2
N2 p(t)

q(t)


. (29)

Here ϕ is the parameter, that parameterizes the rays. For p and q
we have the system of ordinary differential equations (28), which
can be solved simultaneously with the ray equations (20). It is
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Fig. 1. The geometry for the ASA wedge benchmark. The wedge angle is ≈2.86°
with a distance to the apex 4 km. The source is located at depth 100 m. The bottom
depth at the place of the source H = 200 m.

convenient to split variables p and q onto real and imaginary parts
as follows p = p2−iεp1, q = q2−iεq1 where ε is a sufficiently large
positive real number, defining the width of the Gaussian beam. As
shown in [1] and discussed in [2], the choice ε = Lr ensures the
minimal value of the Gaussian beam width at the receiver point
in a homogeneous medium, where Lr is the arc length of the ray
from the source to the receiver. Initial conditions for p and q are as
follows

q1(0) = 1, p1(0) = 0, q2(0) = 0, p2(0) = k0(0).

The acoustic field at the point M can be expressed as the integral
over all rays

p(M) =

 2π

0

Ψ (ϕ)
√
k0(t)q(t)

exp

i
 t

0


k0(s)+

αj0(s)
2k0(s)


ds

+
i
2
N2 p(t)

q(t)


dϕ. (30)

Here t andN are the ray-centered coordinates of the receiver point
for each ray.

One can determine the value of Ψ (ϕ) by comparing the
following two fields. First, the one obtained for the homogeneous
medium from the formula (30) by the steepest descent method.
Second, the one obtained from the fundamental solution of the
Helmholtz equation for this case. So we have

Ψ =
φ(zs)φ(zr)
ρ(zs)

·


ik0(0)ε ·


1 −

αj0(0)x
2ik0(0)2ε


1 +

αj0(0)
2k0(0)2

−1

.

5. Numerical experiments

We consider the case of cross-slope propagation in a standard
ASAwedge benchmark problemwith thewedge angle≈2.86° (see
Fig. 1). The typical bottom depth is 200 m along the track aligned
along the X axis for X = 0 . . . 25 km, but it can vary in some
experiments from 159 to 286.5 m. The sound speed in the water
is 1500 m/s. The sound speed in the fluid bottom is 1700 m/s. The
bottom density is 1500 kg/m3, the water density is 1000 kg/m3.
We assume that there is no attenuation in thewater column, while
in the bottom the attenuation is 0.5 dB/λ. In the all cases the point
source is located at depth 100 m, and depth of receivers is 30 m.
For calculation purposes we restrict the total depth to 600 m.

To illustrate the efficiency of our equation, we performed 3
series of numerical experiments. In the first series of experiments
(see Figs. 2–4), we investigate the cross-slope sound propagation
for the standard ASA wedge benchmark up to distance 25 km.
In Fig. 2, we present comparisons between the solution of our
equation with only 3 propagating modes and the image sources
solution [12]. One can see that the curves are quite close, and the
root mean square difference between curves is about 1.4 dB. To
improve the accuracy of the method on the first 1.5 km we can

Fig. 2. The transmission loss for the ASA wedge, the source depth is 100 m. The
receiver depth is 30 m, 3 modes, attenuation is 0.5 dB/λ. Propagation across the
slope.

Fig. 3. The transmission loss for the ASA wedge, 7 modes, attenuation is 0.5 dB/λ.
Propagation across the slope.

Fig. 4. The transmission loss for the ASA wedge, 7 modes, attenuation is 0.5 dB/λ.
Propagation across the slope. The depth of watery layer is 250 m.

use more than 3 modes. For example, in the case of 7 modes (see
Fig. 3), the field in the vicinity of the source is represented correctly,
and the root mean square difference reduces to 1 dB. In both cases
the bottom depth at the places of the source and the receivers
was 200 m. In Fig. 3 the same results are presented for the case of
the bottom depth 250 m and 7 propagating modes. Here the root
mean square difference between curves is about 1.7 dB, and one
can see pretty good coincidence of the curves from distance 10 km.
Calculations by the adiabatic MPE [13] provide significantly worst
accuracy.
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Fig. 5. The first 10 wavenumbers in dependence from the bottom depth of the ASA
wedge at some point in X–Y plane.

Fig. 6. The transmission loss for the ASA wedge. Propagation across the slope. The
depth of watery layer is 159 m (resonant).

Calculations by mode parabolic equations naturally split into
two stages. In the first stage we calculate eigen numbers and
functions in the considered area of the sound propagation, and
determine the coefficients of the equations. In the second stage
we solve the equations by some or other method and obtain the
transmission losses in the places of the receivers. In our case the
area has rectangular form 25 × 8 km. Due to uniformity of the
problemonX variable it is sufficient to calculate the eigen numbers
and functions only along the Y variable. We choose grid step on Y
variable of 12.5 m to provide good accuracy. Angle step for the ray
pattern calculations was 0.5°.

The calculation time for the 7-mode problemwas about 81 s on
the one core of the Intel R⃝ CoreTM2 Duo Processor E8400, 3.00 GHz.
For the 3-mode problem the time of calculations was about 32 s.

In the second series of experiments (see Figs. 6–8), we also
investigate the cross-slope sound propagation for the standard
ASA wedge benchmark up to distance 25 km, but for the resonant
bottom depth (see Fig. 5) in the sense of work [14]. In Fig. 6 the
bottom depth is 159 m, which corresponds to the transformation
of the 3rd mode. In Figs. 7 and 8 the bottom depths are 222.5 and
286.5 m, at which 4th and 5th modes transform respectively. The
size of the area and the other parameters are the same as in the
previous cases. The root mean square difference between curves is
from 1.2 to 1.9 dB, sowe can state, that the accuracy of calculations
for the resonant depth is comparable with the one for the non-
resonant bottom depth.

The third series of experiments (see Figs. 9–14) is devoted
to the sound propagation with a small angle to the cross-slope

Fig. 7. The transmission loss for the ASA wedge, 7 modes, attenuation is 0.5 dB/λ.
Propagation across the slope. The depth of watery layer is 222.5 m (resonant).

Fig. 8. The transmission loss for the ASA wedge. Propagation across the slope. The
depth of watery layer is 286.5 m (resonant).

Fig. 9. The transmission loss for the ASA wedge, the source depth is 100 m. The
receiver depth is 30m, 7 modes, attenuation is 0.5 dB/λ. The track has an angle 12°
to the cross-wedge direction.

direction for bottom depth 200 m at the source place. In our case
the angles are ±12° for Figs. 9 and 10, ±18° for Figs. 11 and 12,
±24° for Figs. 13 and 14. One can see, that if for the angles ±12°
the accuracy of the rayMPE is sufficiently good, then for the angles
±24° it becomes not so good. For the angles ±18° the accuracy
has transitional behavior. This effect probably related with the
necessity to take into account the mode interaction.
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Fig. 10. The transmission loss for the ASA wedge, the source depth is 100 m. The
receiver depth is 30 m, 7 modes, attenuation is 0.5 dB/λ. The track has an angle
−12° to the cross-wedge direction.

Fig. 11. The transmission loss for the ASA wedge, the source depth is 100 m. The
receiver depth is 30m, 7 modes, attenuation is 0.5 dB/λ. The track has an angle 18°
to the cross-wedge direction.

Fig. 12. The transmission loss for the ASA wedge, the source depth is 100 m. The
receiver depth is 30 m, 7 modes, attenuation is 0.5 dB/λ. The track has an angle
−18° to the cross-wedge direction.

6. Conclusions

The results of test calculations show that at small angles of the
sound propagation track to the cross-wedge direction the acoustic
field in the water is determined by the water modes only, without
interaction between them, even in the case of the resonant depths.
With the increase of the angle of the track to the cross-wedge

Fig. 13. The transmission loss for the ASA wedge, the source depth is 100 m. The
receiver depth is 30m, 7 modes, attenuation is 0.5 dB/λ. The track has an angle 24°
to the cross-wedge direction.

Fig. 14. The transmission loss for the ASA wedge, the source depth is 100 m. The
receiver depth is 30 m, 7 modes, attenuation is 0.5 dB/λ. The track has an angle
−24° to the cross-wedge direction.

direction the necessity to take into account the interaction
between modes also increases, including the bottom modes.

As it is stated in the paper [8] concerning the speed of
calculations by the modern 3D parabolic equation method: ‘‘In
a MATLAB R2011a double precision programming environment,
using one central-processing-unit core on an Intel R⃝ Xeon R⃝ X5492
Quad-core Processor, the Pade ADI method can complete one
marching step in 54 s’’. It means that in the case of our ASA
wedge cross-slope track with the length of 25 km the total number
of marching steps is 2500. So the time of calculation should be
around 37.5 h. Meanwhile, the time of calculations by the method
developed in the current paper, with the use of the alike processor
(mentioned above), consists only 32 s. Thus the developedmethod
was proved to be very efficient in calculations of the acoustic fields.
At present time we develop the method also based on the ray
mode parabolic equations, but including the mode interaction. We
hope that this method will be applicable to the case of an arbitrary
environment.
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