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a b s t r a c t

A GPU accelerated inviscid flow solver is developed on an unstructured quadrilateral grid in the present
work. For the first time, the cell-based adaptive mesh refinement (AMR) is fully implemented on GPU
for the unstructured quadrilateral grid, which greatly reduces the frequency of data exchange between
GPU and CPU. Specifically, the AMR is processed with atomic operations to parallelize list operations, and
null memory recycling is realized to improve the efficiency of memory utilization. It is found that results
obtained by GPUs agree very well with the exact or experimental results in literature. An acceleration
ratio of 4 is obtained between the parallel code running on the old GPU GT9800 and the serial code
running on E3-1230 V2. With the optimization of configuring a larger L1 cache and adopting Shared
Memory based atomic operations on the newer GPU C2050, an acceleration ratio of 20 is achieved. The
parallelized cell-based AMR processes have achieved 2x speedup on GT9800 and 18x on Tesla C2050,
which demonstrates that parallel running of the cell-based AMRmethod on GPU is feasible and efficient.
Our results also indicate that the new development of GPU architecture benefits the fluid dynamics
computing significantly.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

In recent years, the GPU (Graphics Processing Unit), once used
only for graphics processing, has been extended to general purpose
computing for its high computing power and bandwidth. Some
early researches adopted graphics programming languages such as
Cg, OpenGL to accelerate particle algorithms [1–3]. These works
showed great potential of using GPU for scientific computing. But
coding for scientific computing with these languages was difficult
and the application fields were also limited. However, the devel-
opment of general purpose computing on GPU has never stopped.
NVIDIA Corporation released their parallel computingmodel called
CUDA (Compute Unified Device Architecture) for general purpose
computing in 2007 which provides an easy-to-use tool for sci-
entific computing and is now widely used in many fields. Many
researchers have used the tool in Computational Fluid Dynamics
(CFD) and obtained remarkable results of performance increas-
ing. Thibault et al. developed a Navier–Stokes solver for incom-
pressible flow on multi-GPU with a 2nd order accurate central
difference scheme and achieved 100× speedup [4]. Bailey and his
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co-workers used CUDA for accelerating Lattice Boltzmann Method
on GPU and obtained remarkable performance enhancement [5].
Frezzotti’s group adopted semi-regularmethods to solve the Boltz-
mann equation on GPUs with high efficiency [6]. Ran et al. realized
the GPU accelerated CESE method for 1D shock tube problems and
achieved high acceleration ratios [7]. Brodtkorb et al. implemented
shallowwater simulations on GPUs and performed a detailed anal-
ysis of it [8]. Lutsyshyn presented a scheme for the parallelization
of quantum Monte Carlo method on GPU and the program was
benchmarked on several models of NVIDIA GPUs [9].

Implementing CFD method on GPU greatly depends on the
mesh type used. Comparedwith the structured counterpart, meth-
ods based on unstructured mesh cannot be efficiently acceler-
ated by GPU because the unstructured configuration leads to the
non-coalescentmemory accessing onGPU. Some researchersmade
their efforts to overcome this difficulty. Corrigan et al. imple-
mented an unstructured grid based Euler solver on GPU and ob-
tained a speedup of 33×’s [10]. Kampolis et al. accomplished
a GPU accelerated Navier–Stokes solver on unstructured grid in
the same year [11] and achieved a remarkable computing perfor-
mance increasing. Waltz described the performance of CHICOMA,
a 3D unstructured mesh compressible flow solver, on GPU and ob-
served speedup of 4–5× over single-CPU performance [12]. Lani
et al. provided a GPU-enabled finite volume solver for ideal mag-
netohydrodynamics on unstructured grids within the COOLFluiD
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platform [13]. Almost all authors employed the renumbering
technique to cope the problem of non-coalescent memory access-
ing, which has been discussed in detail in [14]. As demonstrated in
their works, with the renumbering technique, shared memory can
be introduced and therefore their codes’ performance is efficiently
improved.

In fact, the renumbering technique is suitable for static un-
structured mesh and may fail for dynamic unstructured mesh. The
dynamic unstructured mesh can be generated by adaptive mesh
refinement (AMR) which is one of the most important approaches
in CFD. In the method, by refining the coarse cells where trunca-
tion error is large enough, it takes much less computing resources
to solve conservation equations thanusing fine uniformcells. How-
ever, the adaptive mesh is complicated and dynamic, which is not
easy to be parallelized, especially on GPU.Wang and his team [15],
together with group leading by Hsi-Yu Schive [16], have imple-
mented solvers on a structured mesh with the AMRmethod. How-
ever, porting the mesh adapting part on GPU was avoided in their
implementations. In the cell-based AMRmethod, if mesh adapting
is processed on CPU, the data exchanges frequently between CPU
and GPU, which will certainly introduce a bottleneck for the code’s
overall performance. Thus, removing the bottleneck is significant
for implementing a parallel algorithm of mesh adapting on GPU,
which motivates the current work. We will attempt to implement
such a solver with the cell-based AMR on GPU.

The rest of this paper is organized as follows: Section 2 will
provide a brief introduction of the numerical method and the
cell-based AMR method used in this work. In Section 3, the
implementation of the method on GPU is described in detail. The
numerical results and the solver performance on GPU will be
discussed in Section 4. Finally conclusions are drawn.

2. Numerical method

Consider the two-dimensional Euler equations for an inviscid,
compressible flow, given as:
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where ρ, u, v, p, E, e and γ denote the density, x and y velocities,
pressure, total energy, internal energy and specific heat, respec-
tively.

The numerical method in this study is based on VAS2D
developed by Sun and Takayama [17,18]. An adaptive unstructured
quadrilateral mesh is adopted in the method and the finite volume
method is adopted to discretize Eq. (1) by directly applying them
to each control volume Ω:
d
dt


Ω

UdΩ +


∂Ω

−Fdy+ Gdx = 0. (4)

In the control volume of the ith quadrilateral cell, Eq. (4) can
be approximated by evaluating the two integrals to a 2nd order
accuracy both in space and time. The variation of physical variables
is the flux through the cell’s four edges, which yields:

Un+1
i = Un

i −
∆t
Ωi

4
k=1

F̂i,k, (5)
Fig. 1. Averaged percentage of computational time taken by each part for the serial
code running on CPU.

Fig. 2. The main computational procedure for the GPU-enabled flow solver based
on unstructured quadrilateral mesh with the AMR.

where F̂i,k is the numerical flux vector on an edge and it is solved
by the status at the midpoint of the edge (left side and right side).

Here, theMUSCL-Hancock scheme [19] is adopted for solving the
status. At first, the gradients of primitive variables in a cell are
evaluated by the least squares methodwith the cell’s four neighbor
cells. Then, the status can be computed by interpolation with
gradients from the centroid to the edge midpoint. With the status
at both sides of the edge, the flux can be solved by a Riemann
solver. The AUFS scheme is adopted as the Riemann solver for its
low artificial dissipation in this study, which is developed by Sun in
2003 [20]. When the numerical flux is obtained, following Eq. (5),
the flow field is updated by the matching scheme.

As generally, the present computational procedure in every
time step can be divided into three major parts: Flow Solving, Cell
Flagging andMeshAdapting. In the Flow Solving part, the primitive
variables and their gradients are computed at each cell. In the part
of Cell Flagging, based on the variation of physical quantity (usually
density), each cell is determined to be adaptive or not and all the
cells needed to be coarsened or refined are flagged as Coarsen
or Refine. Then, in the Mesh Adapting part, the flagged cells are
compressed or refined and the relative data is updated according
to the data structure of mesh.

Fig. 1 sketches the averaged percentages of computational time
taken by each part of the serial code when simulating the shock
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diffraction problem as will be discussed in Section 4. The Flow
Solving part takes the major part (64.4%) of the consumed time
while the Cell Flagging and the Mesh Adapting take the minor
ones. The Flow Solving part and Cell Flagging are processed by
looping edges or cells and can be divided into some individual
loops. Therefore, they are easy to be implemented in parallel way.
However, we have to overcome the difficulty of parallelizing the
Mesh Adapting part before the serial code can be accelerated by
GPU.

3. GPU implementation

Because the data exchanging between GPU and CPU is
expensive, as a golden rule, it should be avoided as far as possible.
Thus, to achieve a higher computing performance, the solver
is designed as totally running on GPU in this study. The main
computational procedure is sketched in Fig. 2. First, in the data
initialization, the program allocates a block of large size memory,
reads the mesh data, initializes the flow field and carries out the
initial adaption. Then the initialized data is sent to GPU. After that,
those solver kernels loop by time step and update the flow field.
When the computation is finished or a specific time step is reached,
the data will be sent back to the Host Memory from the Device
Memory for postprocess. Finally, the processed data is saved in
files.

Asmentioned in the previous section, the Flow Solving part and
Cell Flagging are easy to be implemented on GPU. Here, we shall
discuss mainly how to implement Mesh Adapting on GPU.

3.1. Adaptive unstructured quadrilateral mesh

The present AMR method which is also developed by Sun
and Takayama [18] is a locally adaptive method and the
adaptation procedure is suitable for parallelization. Unstructured
quadrilateralmesh is used. Cells and their edges are connected via a
Cell-Face structure as shown in Fig. 3(a). A cell stores its 4 neighbor
edges’ indexes in {Neighbor edge list}, and correspondingly, an edge
saves its 2 neighbor cells’ indexes in {Neighbor cell list}. A ‘List ’
is an array for storing cell/edge’s indices and all the data related
to cell/edge is stored in a plain way in the memory. The present
parallelization method is based on these ‘Lists’. During computing,
one thread corresponds to one element stored in the ‘List ’ and
threads pick up the addresses of cells/edges from the ‘List ’, then
access data and do the actual process. Information exchanging
between cell and edge is performed by reading both lists. In
this arrangement, a cell only communicates with its neighbor
edges while an edge only communicates with its neighbor cells.
As a result, the cells and edges can be processed individually in
each loop so that the parallelization can be easily implemented.
It should be pointed out that, with the Cell-Face structure, the
method can be easily extended to the three-dimensional case.

With the cell-based AMR method adopted in this study, each
cell is individually processed when the mesh is adapting. In the
refining process as shown in Fig. 3(b), an original cell is divided
into four smaller cells, while the smaller cell is called ‘son’ and the
original cell is called ‘father’. At the same time, the father’s each
edge splits into two shorter edges, while the shorter edge is called
‘daughter’ and the original edge is called ‘mother’. If a cell is refined,
the cell’s index is added into the {Father list} and its edges’ indexes
are added into the {Mother list}. The son’s refinement level is 1
greater than its father’s. The original cell and its edges’ information
are still stored because the cell and edges’ information can be used
directly in case that the cell needs be coarsened. The coarsening
process is opposite to the refining one.

The cell’s adaption is determined by its truncation error.
Because a 2nd order numerical method is employed in this study,
the distribution of physical quantity is linear in each cell. If the
distribution of physical quantity is nonlinear, information higher
than 2nd order is missed. Therefore, the refinement is adopted for
this situation and the 2ndorder derivative term is considered in the
truncation error estimation. Here the truncation error estimation
on an edge ϵV is given as:

ϵV = max

|rji((∇V )c − (∇V )i)|

αf ρc + |rji(∇rV )i|
,
|rji((∇V )c − (∇V )j)|

αf ρc + |rji(∇rV )j|


, (6)

where V is the physical quantity (usually density) used for
estimation, αf is introduced to prevent a zero denominator, i, j
denote the edge’s neighbor cells i and j, rji represents the space
vector between the two cell centers, ρc is the average density of
cells i and j. The (∇V )c is the gradient directly computed by the
primary variables’ difference of the edge’s neighbor cells divided
by |rji|. (∇rV )i and (∇rV )j are the cell’s gradients along rji.

Then the adaption criterion is given as:
Refine, ϵT > ϵr
Coarsen, ϵT < ϵc,

(7)

where ϵT is the cell’s truncation error estimation, which is the
maximum one of its four neighbor edges’ ϵV . As a default situation
in this work, ϵr = 0.08, ϵc = 0.05 and αf = 0.03.

In addition, the difference of refinement level between two
neighbor cells of an edge is restricted to a maximum of 1. Or, even
when the cell’s truncation error is satisfied with Eq. (7), the cell is
not refined or coarsen.

3.2. Mesh adapting on GPU

As stated before, Mesh Adapting is not easy to be implemented
on GPU. Both Wang’s and Schive’s groups have chosen to
manipulate this part on CPU [15,16]. On the other hand, Sun’s
work has shown that the mesh adapting in VAS2D can be partly
vectorized with list operations, which provides a very important
reference for parallel implementation of the mesh adapting [17,
18]. However, the vectorization of themesh adapting is insufficient
for two reasons. First, the list generation procedures are not
vectorized and, without optimization, it will be a bottleneck of the
code running on GPU. In addition, the method does not recycle
wasted physical variables’ memory. It is important to perform
the memory recycling in the AMR method because the adapting
mesh will consume memory quickly if new memory is constantly
allocated for the new cells and edges. In this study, list generation
procedures are optimized and the physical variables’ memory
is recycled. As a result, the method of mesh adapting can be
implemented on GPU in a parallel manner.

In the present work, the Mesh Adapting on GPU consists three
major procedures, Coarsening flagged father cells, Recycling null
cells & edges and Refining flagged cells. First, the cells flagged as
Coarsen are picked out from the {Father list} and added into the
{Temp list}. The {Father list} has to be compressed because the
picked-out cells are no longer fathers after coarsened. A father cell
in the {Temp list} is decomposed as follows. Its 4 inner edges are
deletedwhile the neighbor edges daughters are also deleted if they
are no longer needed. The deleting process is executed by flagging
these edges’ Flag as Null. The same procedure is performed for
the son cells which are not in use. Then, the physical variables
in the father cell are updated by interpolating with the 4 sons.
The sons are deleted and the father’s Flag is flagged as Non which
means that the cell or the edge is in the normal status. Also, the
{Mother list} should be compressed, for some mothers having lost
their daughters during the father cells’ decomposition. Algorithm
1 shows the detailed procedure of coarsening cells.
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a b

Fig. 3. Adaptive unstructured quadrilateral mesh. (a) Cell and edges. (b) An adapting cell.
Table 1
Key parameters of NVIDIA Geforce GT9800, Tesla C2050 and Intel Xeon E3-1230 V2.

GT9800 C2050 E3-1230 V2

Type G92 Fermi Xeon E3-1200 V2
CUDA/CPU cores 112 448 4
Device memory/DRAM 1 GBytes 3 GBytes 16 GBytes
Shared memory 16 KBytes 48 KBytes N/A
Register memory 32 KBytes 64 KBytes N/A
Clock rate 1.50 GHz 1.15 GHz 3.3 GHz
Peak value 504 GFLOPS 1030 GFLOPS 87.8 GFLOPS
Algorithm 1: Coarsening flagged father cells.

Require: Inputs:V, the primary variables; Flag , the flag of cells and
edges; {Father list}; {Son list}; {Daughter list}.

Ensure: Outputs: V; Flag .
CounterC ← 0; CounterR ← 0.
for all father ∈ {Father list}, parallel do

if (Flag)father=Coarsen then
P1 ← Atomicadd(CounterC , 1).
{Temp list}P1 ← father .

end if
if (Flag)father=Refined then

P2 ← Atomicadd(CounterR, 1).
{Temp list}HALF+P2 ← father .

end if
end for
Maxfather ← CounterR
for i = 1 to CounterR, parallel do
{Father list}i ← {Temp list}HALF+i

end for
for i = 1 to CounterC , father ← {Temp list}i, parallel do

Read {Son list}, find father cell’s son cells s1 ∼ s4.
Read {Neighbor edge list}, find inner edges ie1 ∼ ie4.
(Flag)ie1∼ie4 ← Null.
Read {Neighbor edge list}, find father’s neighbor edges ne1 ∼
ne4.
Read {Neighbor cell list}, find father’s neighbor cells nc1 ∼ nc4.

Read {Daughter list}, find nej’s daughter d1 and d2, j ∈ [1, 4].
if Any (Flag)ncj = Refined then
{Neighbor cell list}d1,d2 ← father .

else
(Flag)d1,d2 ← Null; (Flag)nej ← Non.

end if
Vfather ← Interpolate(Vs1∼s4).
(Flag)s1∼s4 ← Null; (Flag)father ← Non.

end for

Because the AMR process deletes and generates cells, the size
of mesh usually varies. Therefore, the memory of deleted cells
and edges should be recycled and reused for the new ones. The
recycling process is quite simple. Those cells and edges flagged as
Null are first found and their addresses are then added into the
{Null list} and are ready for reusing by new cells or edges. Detailed
information of recycling cells and edges is listed in Algorithm 2.

Algorithm 2: Recycling memory of cells & edges not in use.

Require: Input: Flag , the flag of cells and edges; Maxrootc ,
maximumnumber of the root cells;Maxroote, maximumnumber
of the root edges.

Ensure: Outputs:{Null list}, the list for null sons and edges’
storage; CounterNC , counter of null cells; CounterNE , counter of
null edges.
CounterNC ← 0; CounterNE ← 0.
for all cell, parallel do

i = cell−Maxrootc .
if (Flag)cell=Null and i mod 4 = 0 then

P1 ← Atomicadd(CounterNC , 1).
{Null list}P1 ← cell.

end if
end for
for all edge, parallel do

j = edge−Maxroote.
if (Flag)edge=Null and jmod 2 = 0 then

P2 ← Atomicadd(CounterNE, 1).
{Null list}HALF+P2 ← edge.

end if
end for

Refinement begins with picking out the cells flagged as Refine
and adding them into the {Temp list}. Each cell in the {Temp list}
becomes a new father cell adding into the {Father list}, and is
flagged as Refined. The new father creates 4 son cells and 4 inner
edges. The new cell edges are taking the positions provided by
the {Null list} preferentially. If the space recorded in the {Null
list} is not enough, their information will be placed at the tail of
arrays. At the same time, the geometrical information is also built
for new edges by using the father’s information. The new father’s
neighbor edges are prepared for splitting and flagged as Refine if
they were not split (the Flag is not Refined). Also, the neighbor
information between cells and edges is updated since 4 new son
cells and 4 inner edges are created. These procedures are described
particularly in Algorithm 3.
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Fig. 4. The list processing with Global atomic operations. (a) Original. (b) Primary (basically optimized).
Algorithm 3: Refining flagged cells, part 1: Creating son cells.

Require: Inputs: Flag , the flag of cells and edges; {Null list};
CounterNC , counter of null cells; CounterNE , counter of null edges.

Ensure: Outputs:Flag; {Father list}; {Son list}.
CounterRC ← 0.
for all cell, parallel do

if (Flag)cell=Refine then
P ← Atomicadd(CounterRC , 1).
{Temp list}P ← cell.

end if
end for
for i = 1 to CounterRC , cell← {Temp list}i, parallel do

if i < CounterNC then
Pc ← {Null list}i.

else
Pc ← 4 ∗ (i− CounterNC )+Maxcell.

end if
{Son list}cell ← Pc ; Give index to 4 sons: sj ← Pc + j − 1, j ∈
[1, 4].
if 2 ∗ i+ 1 < CounterNE then

Pe1 ← {Null list}HALF+2∗i; Pe2 ← Pe1 + 2.
else

if 2 ∗ i+ 1 > CounterNE then
Pe1 ← 4 ∗ (2 ∗ i− CounterNE)+Maxedge; Pe2 ← Pe1 + 2.

else
Pe1 ← {Null list}HALF+2∗i; Pe2 ← Maxedge.

end if
end if
Create 4 inner edges: ie1 ← Pe1, ie2 ← Pe1 + 1, ie3 ←
Pe2, ie4 ← Pe2 + 1.
Compute geometrical information of 4 inner edges ie1∼4.
Create neighboring relationship between s1∼4 and ie1∼4.
Read {Neighbor edge list}, find cell’s 4 edges nek, k ∈ [1, 4]
if (Flag)nek = Non then

(Flag)nek ← Refine, k ∈ [1, 4].
end if
(Flag)sj ← Non; (level)sj ← (level)cell + 1; (Flag)cell ←
Refined.
{Father list}Maxfather+i ← cell.

end for
The next step is splitting new father cell’s neighbor edges, as listed
in Algorithm 4. Those edges flagged as Refine are added into the
{Temp list} and prepared for splitting. They will be split into 2 new
daughter edges, flagged as Refined and added into the {Mother
list}. If addresses provided by the {Null list} are still available,
the new daughters occupy them. Otherwise, they are placed after
the tail. The new daughters succeed their mothers’ information of
geometrical and boundary type.

Algorithm 4: Refining flagged cells, part 2: Splitting flagged edges.

Require: Inputs: Flag , the flag of cells and edges; {Temp list}; {Null
list}; CounterRC , counter of new fathers; CounterNE , counter of
null edges.

Ensure: Outputs:{Mother list}; {daughter list}.
CounterRE ← 0
for all edge, parallel do

if (Flag)edge=Refine then
P ← Atomicadd(CounterRE, 1).
{Temp list}HALF+P ← cell.
(Flag)edge ← Refined.

end if
end for
for i = 1 to CounterRE , edge← {Temp list}HALF+i, parallel do

if i < CounterNE − 2 ∗ CounterRC then
Pe ← {Null list}HALF+2∗CounterRC+i.

else
if CounterNE < 2 ∗ CounterRC then

Pe ← 4 ∗ (2 ∗ CounterRC − CounterNE)+Maxedge+ 2 ∗ i.
else

Pe ← 2 ∗ (2 ∗ CounterRC − CounterNE + i)+Maxedge.
end if

end if
Give index to 2 daughters: d1 ← Pe, d2 ← Pe + 1.
{Daughter list}edge ← Pe.
Read {Neighbor cell list}, find edge’s neighboring cell l and r .
Add l and r to {Neighbor cell list} of d1 and d2.
Compute geometrical information of d1 and d2.
(Flag)d1,d2 ← Non.
{Mother list}Maxmother+i ← edge.

end for

The neighbor information between cells and edges should be
updated again due to new daughter edges. After the neighbor
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Fig. 5. The list processing optimized with Shared atomic operation. (The warp size is assumed as 8 here.)
relations of new cells and edges are established, the new sons’
geometrical information is built by their neighboring edges’
information. With the geometrical information, the new sons’
physical variables are generated by the interpolation of fathers’.

3.3. Optimization

The optimization is closely related to the GPU architectures.
Two GPUs and one CPU are chosen for discussion in the present
study, namely NVIDIA Geforce GT9800, Tesla C2050 and Intel CPU
Xeon E3-1230 V2 (Single Core is used). Their key parameters are
given in Table 1.

3.3.1. Parallel list operations
The original implementation of parallel list operations is

sketched in Fig. 4(a), in which the flagged cells (or edges) in the
{Input list} are first picked out and added into the {Output list}.
Each flagged cell (or edge) obtains its position in the {Output list}
by atomic add instruction, which means that only one thread can
access the position’s variable because the atomic operation locks
the variable when processing it. As a result, most threads are in
the waiting queue for obtaining their positions and, obviously, the
efficiency is very poor.

For the old GPU architectures such as G92, the list processing
with atomic operations can be optimized. In the primary (basically
optimized) implementation of parallel list operations, as shown
in Fig. 4(b), each thread processes multiple cells (or edges) in a
loop and picks out the flagged ones to the {Temp list}. Then the
threads obtain the positions for the flagged ones in the {Output
list} by atomic add and write them in. With this method, the
frequency of using Global AtomicAdd is rapidly reduced. Thus,
the list processing’s performance can be enhanced. The primary
implementation of parallel list operations brings out the primary
GPU code which can be run on the old GPU GT9800 (GT9800-
primary) and the newer GPU C2050 (C2050-primary) in the
present study.

For the newer GPU architecture such as Fermi, more powerful
functions are provided and therefore more optimizations can be
realized. The optimized implementation of parallel list operations
in the present study as shown in Fig. 5 uses warp vote functions
in a warp to obtain the number of flagged cells (or edges) and
their positions in the {Temp list} first. The new GPU code (C2050-
optimized) is quite simple as:

Predicate=Flag ;
Warpstat= __ba l lo t ( Predicate ) ;
Pos i t ion=__popc (Warpstat&((1<<(Threadid%Warpsize ))−1));
Countoff lag=__popc (Warpstat ) ;
where the function __ ballot(Predicate) evaluates Predicate for all
active threads of the warp and returns an integer whose Nth bit
is set. Function __ popc(Warpstatus) returns the number of bits
equal 1 in Warpstat. More information is provided in NVIDIA’s
CUDA C Programming Guide [21]. After the flagged cells (or edges)
are picked out in a warp, one thread of a warp obtains a position
in the {Shared list} by Shared AtomicAdd and appends the {Temp
list} to the {Shared list}. Finally, one thread of a Block obtains the
Shared list’s position in the {Output list} with Global AtomicAdd
and adds the {Shared list} to the {Output list}.With thismethod, the
frequency of using Global AtomicAdd can be minimized. Because
the Shared AtomicAdd does not hamper other Blocks’ processing,
the degree of parallelism can be much higher than that of the
method shown in Fig. 4.

3.3.2. Device memory accessing
For the Flow Solving part, these operations are completely

parallel processed by GPU. But there is a serious problem of
coalescent accessing memory in the current study because the
neighbor cells or edges are normally not neighbors in the lists
in an unstructured mesh. As a result, when the cell or edge
accesses data from its neighbor cells or edges by the neighbor
lists, the data cannot be accessed in a coalescent way. This
usually drags performance seriously. Some researchers have
improved performance by adopting renumbering scheme for the
problem [10,11]. However, it is infeasible for the mesh generated
by the AMRmethod. Since themesh is always varying, using such a
scheme means that once the mesh is adapted, the memory storing
physical variables, gradients and lists should be re-arranged
accordingly. It is very likely that the scheme consumes more time
than the non-coalescent accessing does, which has been addressed
as well in [15].

Although the coalescent Device Memory accessing is not
available, the L1 and L2 caches available in the newer Fermi GPU
can increase the performance of Device Memory accessing. On the
other hand, the L1 cache is built with Shared Memory on the chip.
They have two configurations: SharedMemory/L1 48 KB/16 KB and
16 KB/48 KB. Obviously, a larger L1 cache can perform better in this
study, which is also adopted in the C2050-optimized code.

4. Results and analysis

In this section, the simulation results of shock diffraction
problem are presented to verify the two GPU codes (the primary
code running on GT9800 and C2050, and the optimized code on
C2050) and analyze their performances. All the codes are based on
CUDA C and CUDA 5 and the simulation results are computed with
the single-precision floating-point format.
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Fig. 6. The shock diffraction problem: incident shock wave with Ms = 2.43. GPU result is given with the CFL number 0.7, 4-level refinement at a dimensionless time of
0.125. (a) The refined mesh. (b) The numerical schlieren illustrating the wave configuration. (c) Experimental result for comparison.
Source: Reproduced courtesy of Professor Beric Skews, University of the Witwatersrand, published in [22].
a b

Fig. 7. Performance analysis of the shock diffraction problem: (a) execution time and (b) speedups β .
4.1. Verification of GPU’s numerical results

In the shock diffraction problem, an incident shock passes
around a convex corner and a part of it moves along the wall. The
shock bends due to the reflected rarefactionwave. A slipstreamand
a contact surface are generated after the shock diffraction. A vortex
is formed since the slipstream and the contract surface interact
each other. If the incident shock is strong enough, a second shock
will appear. This problem has been studied experimentally and
numerically [22,23]. The simulation configuration in the present
work is set as the same as one of the experiments by Professor Beric
Skews [22]. The computational area is 0.64× 0.64 and the convex
corners’ angle is 135°. The incident shock has a Mach number of
Ms = 2.43 and CFL = 0.7 is used. Initially, the unstructured mesh
contains 3640 cells and has a mesh size of ∆x ≈ ∆y ≈ 0.01. The
maximum refinement level is set as 4. The dimensionless initial
conditions of primary variables are given as:

(ρ, u, v, p) =

(3.249, 1.990, 0, 6.722), x < 0.26, y > 0.32
(1.0, 0, 0, 1.0), otherwise.

With no surprises, the two GPU codes provide the same results.
The refined mesh with 4-level refinement is illustrated in Fig. 6(a),
which contains 44,689 cells inside. Numerical schlieren is shown
in Fig. 6(b), in which the wave configuration of the incident
shock, the diffracted shock, the second shock, the slipstream, the
contact surface and the vortex can be identified clearly. As shown
in Fig. 6(c), the positions of the shock waves agree with the
experimental results very well [22].

4.2. Acceleration performance

To analyze the code’s performance, the running time of the
parallel code on GPU is compared with that of the serial one on
CPU. The speedup β is defined as:

β =
tCPU
tGPU

, (8)

where the total executing time on CPU, tCPU , comprises only the
time of the main loop executed while the total processing time on
GPU, tGPU , which includes the additional time of transferring data
between Host and Device for fairness. Single-precision floating-
point format is adopted in both GPU and CPU. Key parameters
of chosen GPU and CPU are listed in Table 1. Two benchmark
problems are analyzed here.

The computing times and speedups of the shock diffraction
problem are shown in Fig. 7. The x-coordinate shows the final
number of cells for different refinement levels (from 1 to 4) in a
logarithmic scale. In Fig. 7(a), the total executing times of GPUs
and CPU rise in a nearly linear way as the cell number increases
under the logarithmic scale. Fig. 7(b) illustrates the speedups β
of primary parallel code (basically optimized) running on GT9800,
C2050 and the optimized code running on C2050. The speedup β
of GT9800-primary has a little increase from refinement level 1 to
4, which is about 3.5 in average. The speedups β of code on C2050
rise obviously as the cell number increases. When the refinement
level is 4, β = 15 and 20 for the C2050-primary case and for the
C2050-optimized one, respectively, are obtained.

Generally, the speedup of the parallel code running on GT9800
is limited mainly by the non-coalescent accessing of Device
Memory. As described before, the unstructured mesh with AMR
makes it very difficult to coalescent accessing of Device Memory.
It is an extremely serious problem for such an old GPU with
strict conditions of coalescent accessing. At the same time, running
the same code on Fermi GPU C2050 is about 3 times faster than
that on GT9800. As shown in Table 1, the C2050 has a higher
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(a) Whole computation. (b) Adapting process.

Fig. 8. The average percentages of time consuming taken by different parts of the optimized code running on C2050 against cell number.
Table 2
The execution time and speedups of codes’ different parts for shock diffraction
problemat refinement level 4. GPUs’ time consumingdata is obtained by theNVIDIA
Visual Profiler.

Flow solving Cell flagging Mesh adapting

E3-1230 V2 40.71 s 9.09 s 13.40 s
GT9800-pri (β) 6.92 s (5.9) 3.03 s (3.0) 6.95 s (1.9)
C2050-pri (β) 1.90 s (21.4) 0.93 s (9.8) 1.38 s (9.7)
C2050-opt (β) 1.61 s (25.3) 0.73 s (12.5) 0.75 s (18.0)

theoretical peak value of floating-point computing (about 2 times
of GT9800). Besides, the Fermi architecture has less restriction on
coalescent accessing and the L1 & L2 caches are introduced which
make it have better performance of Device Memory accessing. The
considerable performance increasing of the same code running
on the newer device has showed that the new development of
GPU architecture brings with significant improvements for fluid
dynamics computing.

For cases running on C2050, the optimized code can have
a larger L1 cache and can adopt atomic operations on Shared
Memory. As given in Table 2, with a larger L1 cache, the
performance of the Flow Solving part is enhanced about 15.3% and
the Cell Flagging part about 21.5%. Meanwhile, with the optimized
list processing, the Mesh Adapting part’s performance is improved
by 45.7%. These results imply that the optimized method is
effective and successful, especially for the Mesh Adapting process.

The average percentages of time consuming taken by each
part of optimized code running on C2050 against cell number
are illustrated in Fig. 8. Comparing with the results of serial code
running on CPU (see Fig. 1), the Flow Solving part does not take up
themost percentage since the other twoparts consumemuch time.
Especially, if less cell is used in the computation, more percentage
of cell has to be refined or coarsened and the Adapting process
takes up more time. So, it is reasonable that the percentages
of Flow Solving and Cell Flagging increase and percentage of
Adapting decreases when the cell number increases, as shown in
Fig. 8(a). On the other hand, if the CFL number is lower, time steps
increase and subsequently the executing time also increases. But
the Adaption Processing will be executed less frequently. As an
inference, despite the executing time increases, the speedup will
increase, too. Thus, it is significant for the cases requiring a low
CFL number. It should be noted that the changing tendency of
Refinement, Coarsening and Recycling with the cell number is the
same as that of Mesh adapting. The percentages of time taken by
the three kernels over the Adapting time change hardly with the
cell number, as shown in Fig. 8(b). Therefore, a different method is
needed to further improve the adaption performance on GPU.
5. Conclusions

The cell-based AMR on unstructured quadrilateral mesh is
realized on GPU in this study. Specifically, we implemented
and optimized the well-validated numerical method-VAS2D on
GPU: Null memory recycling is added to improve the utilization
efficiency of memory; List processing is parallelized on GPU with
low frequency atomic operations. In this way, we have made one
step further to realize the AMR on GPU. Our work is, to the best
of our knowledge, the first unstructured cell-based algorithm that
has been fully implemented on GPU.

The shock diffraction problem is simulated with the solver
running on CPU (Intel E3-1230 V2) and on GPUs (Geforce
GT9800 and Tesla C2050) for comparison. The simulation results
are consistent with the experimental result, which validates
the method implemented on GPU. The non-coalescent memory
accessing is a serious problem which drags the performance of
the GPU code and is nearly impossible to be solved in the cell-
based AMR. However, 4×’s speedup on GT9800 and 15× on
C2050 are still achieved by the GPU code to the series code on
the CPU E3-1230. With the optimization of configuring a larger
L1 cache and adopting Shared Memory based atomic operations,
the optimized code gains a 20×’s speedup on the C2050. In the
Mesh Adapting part, 2×’s speedup on GT9800 and 18× on Tesla
C2050 are obtained by the parallelized algorithms, respectively.
As a whole, the considerable speedups show our implementation
is successful, and it has proved that running cell-based AMR
method on GPU, including the mesh adapting processes, can be
practicable and high-efficiency. Our results also indicate that the
new development of GPU architecture benefits the fluid dynamics
computing significantly.

In the future work, we will extend our code to three-
dimensional for more practical usages. Implementing it on GPU
cluster is also considered. However, for multiple nodes’ parallel
computing, the AMR algorithm used in present research maybe
not efficient and the dynamic load balancing issues would be a big
challenge. The mesh partitioning algorithm based on space filling
curves (SFC) [24] which is a proximity preserving linear mapping
of any multi-dimensional space cells maybe is very useful and
suitable for our future work on multiple GPUs.
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