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a b s t r a c t

Wedescribe an approach for the efficient calculation of a large number of four-point correlation functions
for various baryon–baryon (BB) channels, which are the primary quantities for studying the nuclear
and hyperonic nuclear forces from lattice quantum chromodynamics. Using the four-point correlation
function of a proton-Λ system as a specific example, we discuss how an effective block algorithm
significantly reduces the number of iterations. The effective block algorithm is applied to calculate
52 channels of the four-point correlation functions from nucleon–nucleon to Ξ–Ξ , in order to study
the complete set of isospin symmetric BB interactions. The elapsed times measured for hybrid parallel
computation on BlueGene/Q demonstrate that the performance of the present algorithm is reasonable for
various combinations of the number of OpenMP threads and the number of MPI nodes. The numerical
results are compared with the results obtained using the unified contraction algorithm for all computed
sites of the 52 four-point correlators.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

Determining how the nuclear force is described from a fundamental perspective is a challenging problem in physics. Characterising
an atomic nucleus as a nucleonic many body system provides successful results although a nucleon is not a true rudimentary constituent
of atomic nuclei but a composition of quarks and gluons defined in quantum chromodynamics (QCD), which is the theory of the strong
interaction. For example, high-precision nucleon–nucleon (NN) potentials are available to describe the NN scattering data at low energies
as well as the deuteron properties [1,2]. The energy levels of light nuclei are well reproduced by such an NN potential together with a
three-nucleon force [3,4]. However, in contrast to the normal nuclear force, phenomenological descriptions of hyperon–nucleon (YN) and
hyperon–hyperon (YY ) interactions are notwell constrained from experimental data because of the short life time of hyperons. The precise
determination of NN , YN , and YY interactions has a large impact on the studies of both hypernuclei [5–7] and the hyperonic matter inside
neutron stars [8–11].

Recently, a new lattice-QCD-based method for studying the interhadronic interactions has been proposed [12]. In this method, the in-
terhadron potential can be obtained first from lattice QCD bymeasuring the Nambu–Bethe–Salpeter (NBS) wave function. The observables
such as the phase shifts and the binding energies are calculated using the resultant potential [13]. This approach has been applied to various
baryonic interactions [14–25], and has been recently extended to systems in inelastic channels [26–28]. This approach is now called HAL
QCDmethod because almost all the recent developments cited above have been provided by the HAL QCD Collaboration. The flavour sym-
metry breaking is a key topic in the study of the isospin symmetric baryon–baryon (BB) interactions based on the 2+1 flavour latticeQCD. In
such a situation, it is advantageous to calculate a large number of NBSwave functions of various BB channels simultaneously in a single lat-
tice QCD calculation. Therefore, an efficient approach for performing such a computationally demanding lattice QCD calculation is crucial.

The purpose of this paper is to describe a practicable algorithm that can efficiently compute a large number of four-point correlation
functions of various BB systems. The contraction algorithm considered in this paper is different from the unified contraction algorithm [29]
and has been used to calculate the ΛN and ΣN potentials [30–32]. This is a reasonable approach for computing the various BB correlators
efficaciously. Methods following different approach for large baryon number systems are found in Refs. [33,34]. The paper is organised as
follows: Section 2 outlines a basic formulation of the HAL QCD approach. Section 3 describes an approach for calculating the four-point
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correlation function by considering the pΛ system as an example. The present contraction algorithm is generalised to various BB systems
in Section 4. In Section 5 we demonstrate the hybrid parallel computation of the four-point correlation functions. The numerical results
calculated by the hybrid parallel program are compared with the results from the unified contraction algorithm in Section 6. Section 7
summarises the paper.

2. Outline of the HAL QCD method

In the study of the nuclear force using theHALQCD approach, the equal timeNBSwave functionwith Euclidean time t is a vital quantity,
which is defined by[12,13]

φE(r⃗)e−Et
=


X⃗


0
B1,α(X⃗ + r⃗, t)B2,β(X⃗, t)

 B = 2, E

, (1)

where E =


k2 + m2

B1
+


k2 + m2

B2
is the total energy in the centre of mass system of a baryon number B = 2 state with masses mB1

and mB2 . B1,α(x) (B2,β(x)) denotes the local interpolating field of baryon B1 (B2). For simplicity, we consider a two-nucleon system in the
isospin symmetric limit. Thus,mB1 = mB2 = mN and the B1,α = pα (B2,β = nβ ) is the local interpolating field of proton (neutron) given by

pα(x) = εabc (ua(x)Cγ5db(x)) ucα(x), nβ(y) = −εabc (ua(y)Cγ5db(y)) dcβ(y), (2)
where ucα(x) (dcβ(x)) is the up (down) quark field with the colour indices denoted by a, b, and c , and the Dirac spinors denoted by α and
β . The εabc is the totally anti-symmetric tensor and C = γ4γ2 is the charge conjugation matrix. For simplicity, we have suppressed the
dummy spinor indices in the round brackets. Based on the NBS wave function, we define a non-local but energy-independent potential

∇
2

2µ −
k2
2µ


φE(r⃗) =


d3r ′ U(r⃗, r⃗ ′)φE(r⃗ ′) with the reduced mass µ = mN/2. An important point of the HAL QCD method is that the

potential defined above gives the correct scattering phase shift of the S-matrix for all values of k in the elastic region, E < Eth ≡ 2mN +mπ ,
with the pion massmπ , by construction. A more detailed account of the relation between the NBS wave function and the S-matrix in QCD
is found in the appendix A of Ref. [13].

In lattice QCD calculations, we compute the normalised four-point correlation function defined by [20]

R(J,M)
αβ (r⃗, t − t0) =


X⃗


0
B1,α(X⃗ + r⃗, t)B2,β(X⃗, t)J(J,M)

B3B4
(t0)

 0  exp{−(mB1 + mB2)(t − t0)}, (3)

whereJ
(J,M)
B3B4

(t0) =


α′β ′ P (J,M)

α′β ′ B3,α′(t0)B4,β ′(t0) is a source operator that creates B3B4 (=pn) states with the total angularmomentum J,M .
The normalised four-point function can be expressed as

R(J,M)
αβ (r⃗, t − t0) =


n

An


X⃗


0
B1,α(X⃗ + r⃗, 0)B2,β(X⃗, 0)

 En e−(En−mB1−mB2 )(t−t0) + O(e−(Eth−mB1−mB2 )(t−t0)), (4)

where En (|En⟩) is the eigen-energy (eigen-state) of the six-quark system and An =


α′β ′ P (JM)

α′β ′ ⟨En|B4,β ′B3,α′ |0⟩. At moderately large t − t0
where the inelastic contribution above the pion production O(e−(Eth−2mN )(t−t0)) = O(e−mπ (t−t0)) becomes exiguous, we can construct the
non-local potential U through


∇

2

2µ −
k2
2µ


R(r⃗) =


d3r ′ U(r⃗, r⃗ ′)R(r⃗ ′). In lattice QCD calculations in a finite box, it is practical to use the

velocity (derivative) expansion, U(r⃗, r⃗ ′) = V (r⃗, ∇⃗r)δ
3(r⃗ − r⃗ ′). In the lowest few orders we have

V (r⃗, ∇⃗r) = V0(r) + Vσ (r)σ⃗1 · σ⃗2 + VT (r)S12  
VLO

+ VLS(r)L⃗ · (σ⃗1 + σ⃗2)  
VNLO

+O(∇2), (5)

where r = |r⃗|, σ⃗i are the Paulimatrices acting on the spin space of the ith baryon, S12 = 3(r⃗ ·σ⃗1)(r⃗ ·σ⃗2)/r2−σ⃗1 ·σ⃗2 is the tensor operator, and
L⃗ = r⃗ × (−i∇⃗) is the angular momentum operator. The first three-terms constitute the leading order (LO) potential while the fourth term
corresponds to the next-to-leading order (NLO) potential. By taking the non-relativistic approximation, En−mB1 −mB2 ≃ k2n/(2µ)+O(k4n),

and neglecting the VNLO and the higher order terms, we obtain


∇
2

2µ −
∂
∂t


R(r⃗, t) ≃ VLO(r⃗)R(r⃗, t). For the spin singlet state, we extract

the central potential as VC (r; J = 0) = (∇
2

2µ −
∂
∂t )R/R. For the spin triplet state, the wave function is decomposed into the S- and D-wave

components as
Rαβ(r⃗; 3S1) = PRαβ(r⃗; J = 1) ≡

1
24


R∈O

RRαβ(r⃗; J = 1),

Rαβ(r⃗; 3D1) = QRαβ(r⃗; J = 1) ≡ (1 − P )Rαβ(r⃗; J = 1).
(6)

Therefore, the Schrödinger equation with the LO potentials for the spin triplet state becomes
P
Q


×


−

∇
2

2µ
+ V0(r) + Vσ (r)(σ⃗1 · σ⃗2) + VT (r)S12


R(r⃗, t − t0) = −


P
Q


×

∂

∂t
R(r⃗, t − t0), (7)

from which the central and tensor potentials, VC (r; J = 0) = V0(r) − 3Vσ (r) for J = 0, VC (r; J = 1) = V0(r) + Vσ (r), and VT (r) for J = 1,
can be determined.1

1 The potential is obtained from the NBS wave function at moderately large imaginary time; it would be t − t0 ≫ 1/mπ ∼ 1.4 fm even for the physical pion mass.
Furthermore, no single state saturation between the ground state and the first excited states, t − t0 ≫ (∆E)−1

=

(2π)2/(2µL2)

−1 , is required for the present HAL QCD
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The HAL QCD method mentioned above can be applied to the baryon number B = 2 systems, including strangeness for the YN and
YY potentials. In addition to the up and down quarks, we use the strange quark operator scα(x) to define the interpolating operators of
hyperons as

Σ+

α (x) = −εabc (ua(x)Cγ5sb(x)) ucα(x), Σ−

β (y) = −εabc (da(y)Cγ5sb(y)) dcβ(y),

Σ0
α(x) =

1
√
2


Xu,α(x) − Xd,α(x)


, Λβ(y) =

1
√
6


Xu,β(y) + Xd,β(y) − 2Xs,β(y)


,

Ξ 0
α(x) = εabc (ua(x)Cγ5sb(x)) scα(x), Ξ−

β (y) = −εabc (da(y)Cγ5sb(y)) scβ(y),

(8)

where

Xu,α(x) = εabc (da(x)Cγ5sb(x)) ucα(x), Xd,α(x) = εabc (sa(x)Cγ5ub(x)) dcα(x),
Xs,α(x) = εabc (ua(x)Cγ5db(x)) scα(x). (9)

In the flavour SU(3) limit, the extension of the HAL QCDmethod to the YN and YY systems is straightforward [16,17,19]. For theNf = 2+1
flavour lattice QCD calculations, the YN and YY potentials can be obtained in a similar fashion, where the mass difference between mB1
and mB2 is appropriately considered [15,30–32]. In addition, the HAL QCD method is extended to obtain the coupled-channel potentials
above the inelastic thresholds [26–28].

3. The effective block algorithm

Let us consider the four-point correlation function of a pΛ system as a specific example. In what follows, we introduce a highly
abbreviated notation to indicate explicitly the colour, spinor, and spatial subscripts. For example, we express the interpolating field of
proton as

pα(x) = ε(c1, c2, c3)(Cγ5)(α1, α2)δ(α, α3)u(ξ1)d(ξ2)u(ξ3), (ξi = xiαici)

= ε(1, 2, 3)(Cγ5)(1, 2)δ(α, 3)u(1)d(2)u(3). (10)

Here, in the last equation, the numbers in the round brackets show the indices of colour for ε(·), the indices of Dirac spinor for (Cγ5)(·)
and δ(·) and the indices both of colour, spinor, and spatial coordinate for the quark fields u(·), d(·), and s(·).2 By using the abbreviated
notations, the pΛ four-point correlator is given by

Rαβα′β ′(r⃗, t − t0) =


X⃗


0
pα(X⃗ + r⃗, t)Λβ(X⃗, t)Jpα′Λβ′ (t0)

 0  exp{−(mp + mΛ)(t − t0)}

=


X⃗

1
6
e(mp+mΛ)(t−t0)ε(1, 4, 2)ε(5, 6, 3)ε(1′, 4′, 2′)ε(5′, 6′, 3′)(Cγ5)(1, 4)δ(α, 2)(Cγ5)(1′, 4′)δ(α′, 2′)

× {(Cγ5)(5, 6)δ(β, 3) + (Cγ5)(6, 3)δ(β, 5) − 2(Cγ5)(3, 5)δ(β, 6)}
×

(Cγ5)(5′, 6′)δ(β ′, 3′) + (Cγ5)(6′, 3′)δ(β ′, 5′) − 2(Cγ5)(3′, 5′)δ(β ′, 6′)


× ⟨u(1)d(4)u(2)d(5)s(6)u(3)ū(3′)s̄(6′)d̄(5′)ū(2′)d̄(4′)ū(1′)⟩, (12)

where

x⃗1 = x⃗2 = x⃗4 = X⃗ + r⃗, x⃗3 = x⃗5 = x⃗6 = X⃗ . (13)

The last line in Eq. (12) is evaluated through theWick’s contraction and represented in termsof quark propagators ⟨q(ξi)q(ξ ′

j )⟩ = ⟨q(i)q(j′)⟩,

⟨u(1)d(4)u(2)d(5)s(6)u(3)ū(3′)s̄(6′)d̄(5′)ū(2′)d̄(4′)ū(1′)⟩

=


⟨u(3)ū(3′)⟩ det

⟨u(1)ū(1′)⟩ ⟨u(1)ū(2′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(2′)⟩

 ⟨d(4)d̄(4′)⟩⟨d(5)d̄(5′)⟩

− ⟨u(3)ū(2′)⟩ det
⟨u(1)ū(1′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(3′)⟩

 ⟨d(4)d̄(4′)⟩⟨d(5)d̄(5′)⟩

− ⟨u(3)ū(3′)⟩ det
⟨u(1)ū(1′)⟩ ⟨u(1)ū(2′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(2′)⟩

 ⟨d(4)d̄(5′)⟩⟨d(5)d̄(4′)⟩

+ ⟨u(3)ū(2′)⟩ det
⟨u(1)ū(1′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(3′)⟩

 ⟨d(4)d̄(5′)⟩⟨d(5)d̄(4′)⟩

method [20], which becomes

(2π)2/(2µL2)

−1
≃ 4.6 fm if we consider L ∼ 6 fm and mN ≃ 1 GeV. In Ref. [14], the validity of the velocity expansion of the NN potential

has been examined in quenched lattice QCD simulations atmπ ≃ 530 MeV and L ≃ 4.4 fm.
2 In this paper, we take a conventional choice of the baryon’s interpolating field given in Eqs. (2), (8)–(9) which is expected to have large overlap with the single baryon’s

ground state. Utilising more general form of the baryon’s interpolating field is straightforward. We may replace, for example, the baryon’s interpolating field as

Bγ = εabc

q1,aΓ1q2,b


Γ2q3,c


, (11)

where q1 , q2 , and q3 denote particular quark flavours to form baryon B and the set of gammamatrices {Γ1, Γ2} is appropriately taken so as to carry the quantum numbers of
baryon B with combined spinor-space–time subscript γ . Even for the general case, we can follow the procedure in this section with taking two replacements everywhere:
(i) (Cγ5)(α, α′) → Γ1(α, α′) and (ii) δ(α, α′) → Γ2(α, α′).
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Fig. 1. Diagrammatic representation of the four-point correlation function ⟨pΛpΛ⟩. The six diagrams correspond to the six terms of Eq. (14). The cyclic permutations for
the quark fields (ds)u → (su)d → (ud)s are taken into account in the interpolating field of Λ, which correspond to the contributions from the Xu , Xd , and Xs . The parity of
each permutation is also shown as (−1)σ .

+ ⟨u(3)ū(1′)⟩ det
⟨u(1)ū(2′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(2′)⟩ ⟨u(2)ū(3′)⟩

 ⟨d(4)d̄(4′)⟩⟨d(5)d̄(5′)⟩

− ⟨u(3)ū(1′)⟩ det
⟨u(1)ū(2′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(2′)⟩ ⟨u(2)ū(3′)⟩

 ⟨d(4)d̄(5′)⟩⟨d(5)d̄(4′)⟩


⟨s(6)s̄(6′)⟩. (14)

The six terms in Eq. (14) can be depicted with six diagrams as shown in Fig. 1.
Eq. (12) includes implicit summations such as


c1,...,c6


α1,...,α6


c′1,...,c

′
6


α′
1,...,α

′
6
; the number of iterations for each summation is

Nc = 3 for the colour or Nα = 4 for the Dirac spinor. Combining the iteration due to the Wick contraction, for the system with the baryon
number B in general, the total number of iterations for such a correlator is in a naive counting (Nc !Nα)2B × Nu!Nd!Ns!, where the Nu,Nd,
and Ns are the numbers of u-quark, d-quark, and s-quark, respectively; thus the numbers satisfy Nu + Nd + Ns = 3B. Clearly, the above
counting is too naive though curtailment of the number of iterations is not trivial. We now explain briefly how the number of iterations
reduces when we calculate the four-point correlation function of the pΛ system [30]. In Ref. [15], only the limited spatial points were
evaluated on a L3 lattice because of the computational cost O(L6) in the primitive numerical approach. In this paper we employ the Fast-
Fourier-Transform (FFT) to improve the numerical performance to O(L3 log L3); we consider the diagrammatic classification of the Wick
contraction in order to make better use of the FFT.

Rαβα′β ′(r⃗) =

6
i=1

Fi

X⃗


[p(i)

α ](X⃗ + r⃗) × [Λ
(i)
β ](X⃗)


α′β ′

=
1
L3

q⃗


6

i=1

Fi

[
p(i)
α ](q⃗) × [


Λ

(i)
β ](−q⃗)


α′β ′


eiq⃗·r⃗ , (15)

where [
p(i)
α ](q⃗) =


x⃗[p

(i)
α ](x⃗)e−iq⃗·x⃗, [Λ(i)

β ](q⃗) =


x⃗[Λ
(i)
β ](x⃗)e−iq⃗·x⃗, and Fi = (−1)σi(1/6)e(mp+mΛ)(t−t0) with σi = even(odd) for the even

(odd) permutations. We omit the explicit (t − t0) dependence both of Rαβα′β ′ , [p(i)
α ], and [Λ

(i)
β ]. Six diagrams in Fig. 1 correspond to the

six baryon-block pairs ([p(1)
α ] × [Λ

(1)
β ]), . . . , ([p(6)

α ] × [Λ
(6)
β ]). Note that the number of diagrams is reduced by the factor 2B−NΛ−N

Σ0 since
the exchange between identical quarks in each baryon operator in the sink shall be taken into account in the construction of each baryon
block [p(i)

α ] or [Λ
(i)
β ], whereNΛ(NΣ0) is the number ofΛ (Σ0) in the sink.We present the explicit forms of the baryon blocks. For simplicity,

we consider only the contributions from Xu in the Λβ ′ in the source for a while and omit the contributions from the Xd and X s operators.
The contributions from Xd and X s are discussed later.

(i) p(1)
α and Λ

(1)
β

The first diagram is the simplest case:

R(1)
αβα′β ′(r⃗) =


X⃗


[p(1)

α ](X⃗ + r⃗) × [Λ
(1)
β ](X⃗)


α′β ′

=


X⃗

[p(1)
αα′ ](X⃗ + r⃗)[Λ(1)

ββ ′ ](X⃗), (16)

where

[p(1)
αα′ ](x⃗) = ε(1, 4, 2)(Cγ5)(1, 4)δ(α, 2)ε(1′, 4′, 2′)(Cγ5)(1′, 4′)δ(α′, 2′)

× det
⟨u(1)ū(1′)⟩ ⟨u(1)ū(2′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(2′)⟩

 ⟨d(4)d̄(4′)⟩, (17)

[Λ
(1)
ββ ′ ](y⃗) = ε(5, 6, 3) {(Cγ5)(5, 6)δ(β, 3) + (Cγ5)(6, 3)δ(β, 5) − 2(Cγ5)(3, 5)δ(β, 6)}

× ε(5′, 6′, 3′)(Cγ5)(5′, 6′)δ(β ′, 3′)⟨u(3)ū(3′)⟩⟨d(5)d̄(5′)⟩⟨s(6)s̄(6′)⟩. (18)

This is just a product of two two-point correlation functions. The summations of all internal indices can be performedprior to evaluating the
FFT. This fact significantly slashes in the computational cost; the reduction factor at the first diagram is (Nc !Nα)2 × 2B−NΛ−N

Σ0 /1 = 1152.
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(ii) p(2)
α and Λ

(2)
β

The second diagram shows a one-quark exchange in u quarks:

R(2)
αβα′β ′(r⃗) =


X⃗


[p(2)

α ](X⃗ + r⃗) × [Λ
(2)
β ](X⃗)


α′β ′

=


X⃗


c′2,c

′
3

[p(2)
αβ ′ ](X⃗ + r⃗; c ′

2, c
′

3)[Λ
(2)
βα′ ](X⃗; c ′

2, c
′

3), (19)

where

[p(2)
αβ ′ ](x⃗; c ′

2, c
′

3) = ε(1, 4, 2)(Cγ5)(1, 4)δ(α, 2)ε(1′, 4′, 2′)(Cγ5)(1′, 4′)δ(β ′, 3′)

× det
⟨u(1)ū(1′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(3′)⟩

 ⟨d(4)d̄(4′)⟩, (20)

[Λ
(2)
βα′ ](y⃗; c ′

2, c
′

3) = ε(5, 6, 3) {(Cγ5)(5, 6)δ(β, 3) + (Cγ5)(6, 3)δ(β, 5) − 2(Cγ5)(3, 5)δ(β, 6)}
× ε(5′, 6′, 3′)(Cγ5)(5′, 6′)δ(α′, 2′)⟨u(3)ū(2′)⟩⟨d(5)d̄(5′)⟩⟨s(6)s̄(6′)⟩. (21)

We have additional arguments, (c ′

2, c
′

3), for the baryon blocks [p(2)
α ] and [Λ

(2)
β ] because of the exchange of the quark fields in the source.

Note that the δ(α′, 2′) in pα′ and the δ(β ′, 3′) in Λβ ′ are also exchanged between the baryon blocks [p(2)
αβ ′ ] and [Λ

(2)
βα′ ] so that the two outer

indices in the source (α′β ′) are crossed as [p(2)
αβ ′ ] and [Λ

(2)
βα′ ]. Performed thesemanipulations, the number of explicit summations of indices

reduces to only two colours which makes the reduction factor (Nc !Nα)2 × 2B−NΛ−N
Σ0 /(N2

c ) = 128.

(iii) p(3)
α and Λ

(3)
β

This case has an exchange in d quarks:

R(3)
αβα′β ′(r⃗) =


X⃗


[p(3)

α ](X⃗ + r⃗) × [Λ
(3)
β ](X⃗)


α′β ′

=


X⃗


c′4,c

′
5,α

′
4,α

′
5

[p(3)
αα′ ](X⃗+ r⃗; c ′

4, c
′

5, α
′

4, α
′

5)[Λ
(3)
ββ ′ ](X⃗; c ′

4, c
′

5, α
′

4, α
′

5), (22)

where

[p(3)
αα′ ](x⃗; c ′

4, c
′

5, α
′

4, α
′

5) = ε(1, 4, 2)(Cγ5)(1, 4)δ(α, 2)ε(1′, 4′, 2′)(Cγ5)(1′, 4′)δ(α′, 2′)

× det
⟨u(1)ū(1′)⟩ ⟨u(1)ū(2′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(2′)⟩

 ⟨d(4)d̄(5′)⟩, (23)

[Λ
(3)
ββ ′ ](y⃗; c ′

4, c
′

5, α
′

4, α
′

5) = ε(5, 6, 3) {(Cγ5)(5, 6)δ(β, 3) + (Cγ5)(6, 3)δ(β, 5) − 2(Cγ5)(3, 5)δ(β, 6)}
× ε(5′, 6′, 3′)(Cγ5)(5′, 6′)δ(β ′, 3′)⟨u(3)ū(3′)⟩⟨d(5)d̄(4′)⟩⟨s(6)s̄(6′)⟩. (24)

The number of explicit summations of indices reduces to two colours and two spinors, which makes the reduction factor (Nc !Nα)2 ×

2B−NΛ−N
Σ0 /(N2

c N
2
α) = 8.

(iv) p(4)
α and Λ

(4)
β

This is one of two-quark exchange diagrams in the ⟨pΛpΛ⟩:

R(4)
αβα′β ′(r⃗) =


X⃗


[p(4)

α ](X⃗ + r⃗) × [Λ
(4)
β ](X⃗)


α′β ′

=


X⃗


c′1,c

′
6,α

′
1,α

′
6

[p(4)
αβ ′ ](X⃗+ r⃗; c ′

1, c
′

6, α
′

1, α
′

6)[Λ
(4)
βα′ ](X⃗; c ′

1, c
′

6, α
′

1, α
′

6), (25)

where

[p(4)
αβ ′ ](x⃗; c ′

1, c
′

6, α
′

1, α
′

6) = ε(1, 4, 2)(Cγ5)(1, 4)δ(α, 2)ε(5′, 6′, 3′)(Cγ5)(5′, 6′)δ(β ′, 3′)

× det
⟨u(1)ū(1′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(3′)⟩

 ⟨d(4)d̄(5′)⟩, (26)

[Λ
(4)
βα′ ](y⃗; c ′

1, c
′

6, α
′

1, α
′

6) = ε(5, 6, 3) {(Cγ5)(5, 6)δ(β, 3) + (Cγ5)(6, 3)δ(β, 5) − 2(Cγ5)(3, 5)δ(β, 6)}
× ε(1′, 4′, 2′)(Cγ5)(1′, 4′)δ(α′, 2′)⟨u(3)ū(2′)⟩⟨d(5)d̄(4′)⟩⟨s(6)s̄(6′)⟩. (27)

Note that two tensorial factors ε(5′, 6′, 3′)(Cγ5)(5′, 6′)δ(β ′, 3′) and ε(1′, 4′, 2′)(Cγ5)(1′, 4′)δ(α′, 2′) are exchanged between [p(4)
αβ ′ ] and

[Λ
(4)
βα′ ] due to the two-quark exchange so that the two outer source indices (α′, β ′) are exchanged, too. The number of explicit summations

of indices reduces to two colours and two spinors, which makes the reduction factor (Nc !Nα)2 × 2B−NΛ−N
Σ0 /(N2

c N
2
α) = 8.
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(v) p(5)
α and Λ

(5)
β

In this case we have another exchange diagram in u quarks:

R(5)
αβα′β ′(r⃗) =


X⃗


[p(5)

α ](X⃗ + r⃗) × [Λ
(5)
β ](X⃗)


α′β ′

=


X⃗


c′1,c

′
3,α

′
1

[p(5)
αα′β ′ ](X⃗ + r⃗; c ′

1, c
′

3, α
′

1)[Λ
(5)
β ](X⃗; c ′

1, c
′

3, α
′

1), (28)

where

[p(5)
αα′β ′ ](x⃗; c ′

1, c
′

3, α
′

1) = ε(1, 4, 2)(Cγ5)(1, 4)δ(α, 2)ε(1′, 4′, 2′)(Cγ5)(1′, 4′)δ(α′, 2′)δ(β ′, 3′)

× det
⟨u(1)ū(2′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(2′)⟩ ⟨u(2)ū(3′)⟩

 ⟨d(4)d̄(4′)⟩, (29)

[Λ
(5)
β ](y⃗; c ′

1, c
′

3, α
′

1) = ε(5, 6, 3) {(Cγ5)(5, 6)δ(β, 3) + (Cγ5)(6, 3)δ(β, 5) − 2(Cγ5)(3, 5)δ(β, 6)}
× ε(5′, 6′, 3′)(Cγ5)(5′, 6′)⟨u(3)ū(1′)⟩⟨d(5)d̄(5′)⟩⟨s(6)s̄(6′)⟩. (30)

Note that both the δ(β ′, 3′) in Λβ ′ and the δ(α′, 2′) in pα′ transfer to the baryon block [p(5)
αα′β ′ ] so that the two outer indices in the source

(α′β ′) are accompanied in the [p(5)
αα′β ′ ]. The number of explicit summations of indices reduces to two colours and one spinor, which makes

the reduction factor (Nc !Nα)2 × 2B−NΛ−N
Σ0 /(N2

c Nα) = 32.

(vi) p(6)
α and Λ

(6)
β

In this case we have another two-quark exchange diagram:

R(6)
αβα′β ′(r⃗) =


X⃗


[p(6)

α ](X⃗ + r⃗) × [Λ
(6)
β ](X⃗)


α′β ′

=


X⃗


c′2,c

′
6,α

′
6

[p(6)
αα′β ′ ](X⃗ + r⃗; c ′

2, c
′

6, α
′

6)[Λ
(6)
β ](X⃗; c ′

2, c
′

6, α
′

6), (31)

where

[p(6)
αα′β ′ ](x⃗; c ′

2, c
′

6, α
′

6) = ε(1, 4, 2)(Cγ5)(1, 4)δ(α, 2)δ(α′, 2′)ε(5′, 6′, 3′)(Cγ5)(5′, 6′)δ(β ′, 3′)

× det
⟨u(1)ū(2′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(2′)⟩ ⟨u(2)ū(3′)⟩

 ⟨d(4)d̄(5′)⟩, (32)

[Λ
(6)
β ](y⃗; c ′

2, c
′

6, α
′

6) = ε(5, 6, 3) {(Cγ5)(5, 6)δ(β, 3) + (Cγ5)(6, 3)δ(β, 5) − 2(Cγ5)(3, 5)δ(β, 6)}
× ε(1′, 4′, 2′)(Cγ5)(1′, 4′)⟨u(3)ū(1′)⟩⟨d(5)d̄(4′)⟩⟨s(6)s̄(6′)⟩. (33)

Note that the two outer indices (α′β ′) in the source gather into [p(6)
αα′β ′ ] because the tensorial factors ε(5′, 6′, 3′)(Cγ5)(5′, 6′)δ(β ′, 3′) and

ε(1′, 4′, 2′)(Cγ5)(1′, 4′) are exchanged between [p(6)
αα′β ′ ] and [Λ

(6)
β ] while δ(α′, 2′) is kept in [p(6)

αα′β ′ ]. The number of explicit summations
of indices reduces to two colours and one spinor, which makes the reduction factor (Nc !Nα)2 × 2B−NΛ−N

Σ0 /(N2
c Nα) = 32.

Performed thesemanipulations based on the diagrammatic classification,most of the summations can be carried out prior to evaluating
the FFT so that the number of iterations significantly reduces; the numbers of iteration are {1, 9, 144, 144, 36, 36} for the baryon blocks
{([p(i)

α ] × [Λ
(i)
β ]); i = 1, . . . , 6}. Therefore only 370 iterations should be explicitly performed to obtain the four-point correlation function

of the pΛ system when we take the operator Xu in Λβ ′ in the source. For the sake of completeness, the total number of iterations does
not change when we take the operator X s in Λβ ′ in the source whereas the numbers of iteration are {1, 36, 36, 144, 144, 36} when we
consider the contribution from the operator Xd in Λβ ′ in the source, which slightly differ from the former cases and the total number of
iterations is 397.

4. Extension to various BB channels

The effective block algorithmmentioned above is applicable to various BB channels. In the recent few years, the 2+1 flavour lattice QCD
calculations have beenwidely performed. This is an opportunemoment to go beyond the BB potentials at the flavour SU(3) point [19] since
exploring breakdown of the flavour symmetry is not only a intriguing subject but also a major concern of the phenomenological YN and
YY interaction models. Therefore, it is beneficial to take account of a large number of BB channels. For example, we consider the following
52 four-point correlation functions in order to study the complete set of BB interactions in the isospin symmetric limit. (For the moment,
we assume that the electromagnetic interaction is not taken into account in the present lattice calculation.)

⟨pnpn⟩, (34)

⟨pΛpΛ⟩, ⟨pΛΣ+n⟩, ⟨pΛΣ0p⟩,
⟨Σ+npΛ⟩, ⟨Σ+nΣ+n⟩, ⟨Σ+nΣ0p⟩,
⟨Σ0ppΛ⟩, ⟨Σ0pΣ+n⟩, ⟨Σ0pΣ0p⟩,

(35)

⟨ΛΛΛΛ⟩, ⟨ΛΛpΞ−⟩, ⟨ΛΛnΞ 0⟩, ⟨ΛΛΣ+Σ−⟩, ⟨ΛΛΣ0Σ0⟩,

⟨pΞ−ΛΛ⟩, ⟨pΞ−pΞ−⟩, ⟨pΞ−nΞ 0⟩, ⟨pΞ−Σ+Σ−⟩, ⟨pΞ−Σ0Σ0⟩, ⟨pΞ−Σ0Λ⟩,

⟨nΞ 0ΛΛ⟩, ⟨nΞ 0pΞ−⟩, ⟨nΞ 0nΞ 0⟩, ⟨nΞ 0Σ+Σ−⟩, ⟨nΞ 0Σ0Σ0⟩, ⟨nΞ 0Σ0Λ⟩,

⟨Σ+Σ−ΛΛ⟩, ⟨Σ+Σ−pΞ−⟩, ⟨Σ+Σ−nΞ 0⟩, ⟨Σ+Σ−Σ+Σ−⟩, ⟨Σ+Σ−Σ0Σ0⟩, ⟨Σ+Σ−Σ0Λ⟩,

⟨Σ0Σ0ΛΛ⟩, ⟨Σ0Σ0pΞ−⟩, ⟨Σ0Σ0nΞ 0⟩, ⟨Σ0Σ0Σ+Σ−⟩, ⟨Σ0Σ0Σ0Σ0⟩,

⟨Σ0ΛpΞ−⟩, ⟨Σ0ΛnΞ 0⟩, ⟨Σ0ΛΣ+Σ−⟩, ⟨Σ0ΛΣ0Λ⟩,

(36)
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⟨Ξ−ΛΞ−Λ⟩, ⟨Ξ−ΛΣ−Ξ 0⟩, ⟨Ξ−ΛΣ0Ξ−⟩,

⟨Σ−Ξ 0Ξ−Λ⟩, ⟨Σ−Ξ 0Σ−Ξ 0⟩, ⟨Σ−Ξ 0Σ0Ξ−⟩,

⟨Σ0Ξ−Ξ−Λ⟩, ⟨Σ0Ξ−Σ−Ξ 0⟩, ⟨Σ0Ξ−Σ0Ξ−⟩,

(37)

⟨Ξ−Ξ 0Ξ−Ξ 0⟩, (38)

We omit four off-diagonal channels, ⟨ΛΛΣ0Λ⟩, ⟨Σ0Σ0Σ0Λ⟩, ⟨Σ0ΛΛΛ⟩ and ⟨Σ0ΛΣ0Σ0⟩, from the above list because they are expected
to be identically zero in the isospin symmetric limit.3 For an extension of the calculation of the four-point correlator to various BB channels,
we have implemented a C++ program to perform the Wick contraction together with the FFT in terms of the diagrammatic classification,
the procedures of which are automatically performed once the interpolating fields in the source and sink (i.e., the quantum numbers of
the system) are given. We also independently implemented another C++ program which performs the Wick contractions to calculate the
above 52 channels of four-point correlation function without employing the FFT. We have confirmed that the numerical results obtained
by the present effective block algorithm agree with the numerical results calculated by the latter C++ program. See also Section 6 for
thoroughgoing check between this algorithm and the unified contraction algorithm.

Table 1 lists the number of diagrams, the number of iterations together with the parity of the permutation, and the number of total
iterations for the four-point correlation functions of various BB channels with the strangeness S = 0 and −1. For the NN system, the
number of total iterations for the channel ⟨pnpn⟩ is just 586, which is quite small in comparison with the Ncontr = 2358 in Table A.3 in
Ref. [29]. As is discussed in the previous section, for the channels with S = −1, the numbers of iteration lessened by the effective block
algorithm depend on the form of the diquark combination in the baryon field operators in the source. It is therefore convenient to separate
between the contributions from the fields Xu, Xd, and X s if the correlator comprises the field(s) Λ and/or Σ0 in the source. In Table 1, we
explicitly indicate the form of diquark combination such as ⟨pΛpΛXu,s⟩ and ⟨pΛpΛXd⟩ to distinguish the diquark combinations when the
correlator includes Λ and/or Σ0. Among the numbers of the total iterations for various channels with the strangeness S = −1, the largest
number is 405 which is found at the channels of ⟨pΛΣ+n⟩ and ⟨Σ0pΣ+n⟩; it is noticeably smaller than the smallest value Ncontr = 1350
(except 0) among the Tables A.1, A.3 and A.5 in Ref. [29].

Because there are a lot of channels for the strangeness S = −2, we divide the list into two parts. Table 2 (Table 3) shows the first
(second) part of the list of the numbers of iteration for the channels with the strangeness S = −2. The five four-point correlation functions,
⟨ΛΛΛXqΛXq′ ⟩, ⟨ΛΛΣ0

XqΣ
0
Xq′

⟩, ⟨Σ0Σ0ΛXqΛXq′ ⟩, ⟨Σ0Σ0Σ0
XqΣ

0
Xq′

⟩, and ⟨Σ0ΛΣ0
XqΛXq′ ⟩ (for q = q′), are the relatively computationally

demanding channels in the Tables; the total numbers of iterations are all 596 for these channels and they are remarkably smaller than the
any Ncontr values (except 0) among the Tables A.1, A.3 and A.5 in Ref. [29].

Table 4 shows the numbers of iterations to calculate the four-point correlation functions of the strangeness S = −3 and −4 systems.
There are similarities in the list of numbers between S = −3 and S = −1 since the isospin quantum number of Ξ is same as the isospin
of N . Therefore the efficiency for the calculation of correlators of S = −3 systems is similar to that of S = −1 systems. On the other hand,
the numbers of iterations to calculate the four-point correlation function of the S = −4 system differ from the numbers of iterations
to calculate the correlator of the S = 0 system. The total number of iterations is 370 for ⟨Ξ−Ξ 0Ξ−Ξ 0⟩ whereas the total number of
iterations is 586 for ⟨pnpn⟩.

5. Hybrid parallel computation of the four-point correlators

The message passing interface (MPI) is a message-passing standard designed for distributed memory parallel computers. In an
MPI parallel computation, the communication among distributed computer systems is handled by a communicator object such
as MPI_COMM_WORLD. Open Multi-Processing (OpenMP) is an application programming interface to control the multithreading
computation on the shared-memory multiprocessor. The master thread forks several slave threads when an OpenMP directive such as
‘‘#pragma omp parallel’’ appears in the program; and each thread concurrently executes the computation on the sharedmemory and
finally joins the master thread at the end of the current block. The MPI and OpenMP are basically independent approaches to parallel
computation. In recent years, hybrid parallel computing on massive supercomputers such as BlueGene/Q has become inevitable for
obtaining a better computational performance.

We develop a hybrid parallel C++ program using both MPI and OpenMP to calculate the four-point correlation functions of
various BB channels. The program works on general purpose computers such as the BlueGene/Q at the High Energy Accelerator
Research Organisation (KEK) and HA-PACS at the University of Tsukuba. In a hybrid parallel computer program, the function
MPI_Init_thread(int* argc, char ***argv, int required, int *provided) is called instead of MPI_Init(int*
argc, char ***argv). For the third argument,we take theMPI_THREAD_MULTIPLE togetherwith partitioning theMPI_COMM_WORLD
into a number of sub-communicators in order to perform the multiple MPI communication through the sub-communicators concurrently
from each forked multithreads.

Table 5 shows several elapsed times measured using the 32-node job class of BlueGene/Q at KEK during the calculations of the 52
channels of the four-point correlation functions. The calculations are performed for a gauge configuration provided by CP-PACS and
JLQCD Collaboration with a size of L3 × T = 163

× 32 [35]. Table 5 presents the results of the calculation of the four-point correlation
functions and is divided into two parts: the first part shows the data for the calculations of all single baryon blocks together with its
FFT (step-1). From the forms of the baryons’ interpolating fields in Eqs. (2), (8)–(9), it turns out that only six (constituents of) single
baryon blocks, B = p, Σ+, Ξ 0, Xu, Xd, and Xs, are actually computed so that all single baryon blocks, B = p, n, Σ+, Σ0, Σ−, Ξ 0, Ξ−,

3 In this paper, we focus on the 2 + 1 flavour lattice QCD calculation for the study of the octet–baryon–octet–baryon interactions in the isospin symmetric limit. An
extension to the other charge states than the channels given in Eqs. (34)–(38) is straightforward. Moreover, even though the system comprises decuplet baryons such as
Ω− ’s, we can take Eq. (11) and the gamma matrices Γ1 = Cγℓ and Γ2 = 1 with spatial vector index ℓ.
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Table 1
The number of diagrams, the number of iterations together with the parity of the permutation for each diagram, and the number of total iterations for the four-point
correlation functions of various BB channels with the strangeness S = 0 and −1. See text for details.

Channel # of diagrams {(# of iterations)sign} # of total iterations

⟨pnpn⟩ 9 {1+, 36−, 144−, 36+, 36+, 144−, 144+, 9−, 36+
} 586

⟨pΛpΛXu,s ⟩ 6 {1+, 9−, 144−, 144+, 36+, 36−
} 370

⟨pΛpΛXd ⟩ 6 {1+, 36−, 36−, 144+, 144+, 36−
} 397

⟨pΛΣ+n⟩ 6 {144−, 36+, 36+, 144−, 9−, 36+
} 405

⟨pΛΣ0
Xup⟩ 6 {144+, 36−, 9−, 36+, 144+, 1−

} 370

⟨pΛΣ0
Xd
p⟩ 6 {144−, 36+, 36+, 144−, 36−, 1+

} 397

⟨Σ+npΛXu ⟩ 3 {144−, 144+, 36−
} 324

⟨Σ+npΛXd ⟩ 3 {144−, 36+, 9−
} 189

⟨Σ+npΛXs ⟩ 3 {36−, 144+, 36−
} 216

⟨Σ+nΣ+n⟩ 3 {1+, 36−, 144+
} 181

⟨Σ+nΣ0
Xup⟩ 3 {144−, 36+, 144−

} 324

⟨Σ+nΣ0
Xd
p⟩ 3 {36+, 9−, 144+

} 189

⟨Σ0ppΛXu,s ⟩ 6 {36+, 144−, 144+, 36−, 9+, 1−
} 370

⟨Σ0ppΛXd ⟩ 6 {36+, 144−, 36+, 144−, 36+, 1−
} 397

⟨Σ0pΣ+n⟩ 6 {36−, 144+, 36−, 9+, 36−, 144+
} 405

⟨Σ0pΣ0
Xup⟩ 6 {1+, 36−, 9+, 144−, 36+, 144−

} 370

⟨Σ0pΣ0
Xd
p⟩ 6 {1−, 144+, 36−, 36+, 36−, 144+

} 397

and Λ, are obtained from the above because of the symmetry under the interchange of the up and down quarks except for the
overall phase factors in the isospin symmetric limit. The Second part shows the calculations of the 52 four-point correlation functions

X⃗


B1,α(X⃗ + r⃗, t)B2,β(X⃗, t)JB3,α′B4,β′ (0)


, (t = 0, . . . , T − 1) from the baryon blocks by performing the summations of the indices of

colour and spinor together with its inverse FFT (step-2). The elapsed time is measured for various combinations of the number of MPI
processes (tasks_per_node) and the number of threads (OMP_NUM_THREADS). The elapsed time indicated by ‘‘64×1’’ is obtained from
the so-called flat-MPI calculation. Sometimes, during hybrid parallel computations, there is a problem that hybrid parallel executions are
not faster than the flat-MPI calculation. Our calculations do not show such a behaviour and the present program exhibits almost stable
and reasonable performances for various combinations of the number of MPI processes and the number of threads.

In step-1, thememory size can be reduced by sharing thememory of each baryon block if the samediagramappears (i.e. the components
are numerically equivalent) throughout the 52 channels of the BB four-point correlation functions. At present, this provides a benefit only
for the memory usage, because computational cost of mapping the sharing of baryon blocks nullifies the gain in timing performance (see
Appendix A for further details).

6. Benchmark with the unified contraction algorithm

In order to see the correctness of the present implementation of the effective block algorithm developed in Section 5, we benchmarked
the numerical output with the corresponding data from the unified contraction algorithm [29]. The benchmark has been done by using
a gauge configuration provided from CP-PACS and JLQCD Collaboration with a size of L3 × T = 163

× 32 [35]. We have used a wall
quark source with Coulomb gauge fixing and the periodic (Dirichlet) boundary condition has been imposed in the spatial (temporal)
direction. Table 6 shows just 16 lines of the comparisons as an example. For the correlator Rαβα′β ′(r⃗, t − t0) in the low-energy states,
we adopt the Dirac representation and calculate upper (lower) two components of each spinor index to see the positive (negative) parity
states of each single baryon (antibaryon) in the forward (backward) direction in time. Because of equivalence between the baryon–baryon
states in forward direction in time and the antibaryon–antibaryon states in backward direction in time under the charge conjugation,
parity, and time reversal operations, we effectively double our Monte Carlo samples by taking the data in both the forward and backward
directions in time. We then reallocate the spinor indices, from (α, β, α′, β ′) to (α̃, β̃, α̃′, β̃ ′), to run 0 to 1 for both cases in the numerical
computation. The left panel of Fig. 2 shows the relative difference, | Diff

This work |, of the correlator


X⃗


pα(X⃗ + r⃗, t)Λβ(X⃗, t)Jpα′Λβ′ (t0)


at

t − t0 = 10, between this effective block algorithm and the unified contraction algorithm as a function of one-dimensionally aligned data
point ξ = α̃ + 2(β̃ + 2(α̃′ + 2(β̃ ′ + 2(x + 16(y + 16(z)))))); there are 163

× 24
= 65,536 data points per time-slice per channel. The

comparison is performed for all 52 channels over 31 time-slices, 163 points for spatial, and 24 points for the spin degrees of freedom. The
right panel of Fig. 2 shows the result of the entire comparison between the effective block algorithm and the unified contraction algorithm,
as a function of one-dimensionally aligned data point ξ = α̃+2(β̃+2(α̃′+2(β̃ ′+2(x+16(y+16(z+16(c+52((t−t0+T ) mod T )))))))),
where c = 0, . . . , 51 selects one of 52 channels given in Eqs. (34)–(38).4 All numerical results are in good agreement with an accuracy of
almost the double precision.

4 The correlator,


x⃗⟨B1,α(x⃗ + r⃗)B2,β (x⃗)B3,α′B4,β ′ ⟩, vanishes due to the anticommutation relation of the baryon fields when two baryon fields become identical. It occurs
in the following cases, (i) for the identical two baryons in the sink, B1,α = B2,β , the correlator vanishes at r⃗ = a cyclic permutation of (0, 0, 0), (L/2, 0, 0), (L/2, L/2, 0), or
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Table 2
Same as Table 1 but for the first part of channels with the strangeness S = −2.

Channel # of diagrams {(# of iterations)sign} # of total iterations

⟨ΛΛΛXqΛXq′ ⟩(q = q′) 8 {1+, 9−, 144−, 144+, 144−, 144+, 9+, 1−
} 596

⟨ΛΛΛXqΛXq′ ⟩(q ≠ q′) 8 {1+, 36−, 144−, 36+, 36−, 144+, 36+, 1−
} 434

⟨ΛΛpΞ−⟩ 8 {36+, 144−, 9−, 36+, 36−, 9+, 144+, 36−
} 450

⟨ΛΛnΞ 0⟩ 8 {36+, 36−, 9−, 144+, 144−, 9+, 36+, 36−
} 450

⟨ΛΛΣ+Σ−⟩ 8 {36−, 144+, 36+, 9−, 9+, 36−, 144−, 36+
} 450

⟨ΛΛΣ0
XqΣ

0
Xq′

⟩(q = q′) 8 {1+, 9−, 144−, 144+, 144−, 144+, 9+, 1−
} 596

⟨ΛΛΣ0
XqΣ

0
Xq′

⟩(q ≠ q′) 8 {1−, 36+, 144+, 36−, 36+, 144−, 36−, 1+
} 434

⟨pΞ−ΛXqΛXq ⟩(q = u, s) 2 {36+, 36−
} 72

⟨pΞ−ΛXqΛXq′ ⟩((q, q
′) = (d, u), (u, d), (s, d), (d, s)) 2 {36+, 144−

} 180

⟨pΞ−ΛXqΛXq′ ⟩((q, q
′) = (s, u), (u, s)) 2 {9+, 144−

} 153

⟨pΞ−ΛXdΛXd ⟩ 2 {144+, 144−
} 288

⟨pΞ−pΞ−⟩ 2 {1+, 144−
} 145

⟨pΞ−nΞ 0⟩ 2 {36+, 144−
} 180

⟨pΞ−Σ+Σ−⟩ 2 {144−, 36+
} 180

⟨pΞ−Σ0
XuΣ

0
Xu ⟩ 2 {36+, 36−

} 72

⟨pΞ−Σ0
XqΣ

0
Xq′

⟩(q ≠ q′) 2 {36−, 144+
} 180

⟨pΞ−Σ0
Xd

Σ0
Xd

⟩ 2 {144+, 144−
} 288

⟨pΞ−Σ0
XuΛXu ⟩ 2 {36+, 36−

} 72

⟨pΞ−Σ0
XqΛXq′ ⟩((q, q

′) = (d, u), (u, d), (d, s)) 2 {36−, 144+
} 180

⟨pΞ−Σ0
Xd

ΛXd ⟩ 2 {144−, 144+
} 288

⟨pΞ−Σ0
XuΛXs ⟩ 2 {144+, 9−

} 153

⟨nΞ 0ΛXuΛXu ⟩ 2 {144+, 144−
} 288

⟨nΞ 0ΛXqΛXq′ ⟩((q, q
′) = (d, u), (u, d), (s, u), (u, s)) 2 {144+, 36−

} 180

⟨nΞ 0ΛXqΛXq ⟩(q = d, s) 2 {36+, 36−
} 72

⟨nΞ 0ΛXqΛXq′ ⟩((q, q
′) = (s, d), (d, s)) 2 {9+, 144−

} 153

⟨nΞ 0pΞ−⟩ 2 {36+, 144−
} 180

⟨nΞ 0nΞ 0⟩ 2 {1+, 144−
} 145

⟨nΞ 0Σ+Σ−⟩ 2 {144−, 36+
} 180

⟨nΞ 0Σ0
XuΣ

0
Xu ⟩ 2 {144+, 144−

} 288

⟨nΞ 0Σ0
XqΣ

0
Xq′

⟩ (q ≠ q′) 2 {144−, 36+
} 180

⟨nΞ 0Σ0
Xd

Σ0
Xd

⟩ 2 {36+, 36−
} 72

⟨nΞ 0Σ0
XuΛXu ⟩ 2 {144+, 144−

} 288

⟨nΞ 0Σ0
XqΛXq′ ⟩((q, q

′) = (d, u), (u, d), (u, s)) 2 {144−, 36+
} 180

⟨nΞ 0Σ0
Xd

ΛXd ⟩ 2 {36−, 36+
} 72

⟨nΞ 0Σ0
Xd

ΛXs ⟩ 2 {144−, 9+
} 153

7. Summary

In this paper, we present an approach for the efficient simultaneous calculation of a large number of four-point correlation functions,
which are the primary quantities for studying the nuclear and hyperonic nuclear forces from lattice QCD. The effective block algorithm
significantly reduces the number of iterations required for the Wick contraction, and is applied to calculate the 52 channels of four-
point correlation functions in order to study the complete set of BB interactions in the isospin symmetric limit. The elapsed time is
measured for hybrid parallel computation on the BlueGene/Q supercomputer. The hybrid parallel executions of the 163

× 32 lattice show
reasonable performances for various combinations of the number of MPI processes and the number of threads. The numerical values of
the calculated 52 four-point correlation functions are comparedwith the results obtained using the unified contraction algorithm.We find
that all numerical results are in good agreement and the two different algorithms give virtually identical results. This is advantageous for
performing the large scale computation of various BB potentials at the physical quark mass point.

(L/2, L/2, L/2) under spatially periodic boundary conditions, (ii) for the identical two baryons in the source, B3,α′ = B4,β ′ , the correlator vanishes under the present choice
of wall quark source fields. These vanishing data points are not included in the figure.
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Table 3
Same as Table 1 but for the second part of channels with the strangeness S = −2.

Channel # of diagrams {(# of iterations)sign} # of total iterations

⟨Σ+Σ−ΛXqΛXq ⟩(q = u, d) 2 {36−, 36+
} 72

⟨Σ+Σ−ΛXqΛXq′ ⟩((q, q
′) = (d, u), (u, d)) 2 {9−, 144+

} 153

⟨Σ+Σ−ΛXqΛXq′ ⟩((q, q
′) = (s, u), (s, d), (u, s), (d, s)) 2 {36−, 144+

} 180

⟨Σ+Σ−ΛXsΛXs ⟩ 2 {144−, 144+
} 288

⟨Σ+Σ−pΞ−⟩ 2 {144−, 36+
} 180

⟨Σ+Σ−nΞ 0⟩ 2 {36−, 144+
} 180

⟨Σ+Σ−Σ+Σ−⟩ 2 {1+, 144−
} 145

⟨Σ+Σ−Σ0
XqΣ

0
Xq ⟩(q = u, d) 2 {36−, 36+

} 72

⟨Σ+Σ−Σ0
XqΣ

0
Xq′

⟩(q ≠ q′) 2 {9+, 144−
} 153

⟨Σ+Σ−Σ0
XqΛXq ⟩(q = u, d) 2 {36−, 36+

} 72

⟨Σ+Σ−Σ0
XqΛXq′ ⟩((q, q

′) = (d, u), (u, d)) 2 {9+, 144−
} 153

⟨Σ+Σ−Σ0
XqΛXs ⟩(q = u, d) 2 {144−, 36+

} 180

⟨Σ0Σ0ΛXqΛXq′ ⟩(q = q′) 8 {1+, 9−, 144−, 144+, 144−, 144+, 9+, 1−
} 596

⟨Σ0Σ0ΛXqΛXq′ ⟩(q ≠ q′) 8 {1+, 36−, 144−, 36+, 36−, 144+, 36+, 1−
} 434

⟨Σ0Σ0pΞ−⟩ 8 {36+, 144−, 9−, 36+, 36−, 9+, 144+, 36−
} 450

⟨Σ0Σ0nΞ 0⟩ 8 {36+, 36−, 9−, 144+, 144−, 9+, 36+, 36−
} 450

⟨Σ0Σ0Σ+Σ−⟩ 8 {36−, 144+, 36+, 9−, 9+, 36−, 144−, 36+
} 450

⟨Σ0Σ0Σ0
XqΣ

0
Xq′

⟩(q = q′) 8 {1+, 9−, 144−, 144+, 144−, 144+, 9+, 1−
} 596

⟨Σ0Σ0Σ0
XqΣ

0
Xq′

⟩(q ≠ q′) 8 {1−, 36+, 144+, 36−, 36+, 144−, 36−, 1+
} 434

⟨Σ0ΛpΞ−⟩ 8 {36+, 144−, 9−, 36+, 36−, 9+, 144+, 36−
} 450

⟨Σ0ΛnΞ 0⟩ 8 {36+, 36−, 9−, 144+, 144−, 9+, 36+, 36−
} 450

⟨Σ0ΛΣ+Σ−⟩ 8 {36−, 144+, 36+, 9−, 9+, 36−, 144−, 36+
} 450

⟨Σ0ΛΣ0
XqΛXq′ ⟩(q = q′) 8 {1+, 9−, 144−, 144+, 144−, 144+, 9+, 1−

} 596

⟨Σ0ΛΣ0
XqΛXq′ ⟩(q ≠ q′) 8 {1−, 36+, 144+, 36−, 36+, 144−, 36−, 1+

} 434

Table 4
Same as Table 1 but for the channels with the strangeness S = −3 and −4.

Channel # of diagrams {(# of iterations)sign} # of total iterations

⟨Ξ−ΛΞ−ΛXu,s ⟩ 6 {1+, 36−, 144+, 144−, 36+, 9−
} 370

⟨Ξ−ΛΞ−ΛXd ⟩ 6 {1+, 36−, 144+, 36−, 144+, 36−
} 397

⟨Ξ−ΛΣ−Ξ 0⟩ 6 {36−, 9+, 144−, 144+, 36−, 36+
} 405

⟨Ξ−ΛΣ0
XuΞ

−⟩ 6 {36+, 9−, 144+, 36−, 144+, 1−
} 370

⟨Ξ−ΛΣ0
Xd

Ξ−⟩ 6 {144−, 36+, 36−, 36+, 144−, 1+
} 397

⟨Σ−Ξ 0Ξ−ΛXu ⟩ 3 {36−, 144+, 36−
} 216

⟨Σ−Ξ 0Ξ−ΛXd ⟩ 3 {9−, 36+, 144−
} 189

⟨Σ−Ξ 0Ξ−ΛXs ⟩ 3 {36−, 144+, 144−
} 324

⟨Σ−Ξ 0Σ−Ξ 0⟩ 3 {1+, 144−, 36+
} 181

⟨Σ−Ξ 0Σ0
XuΞ

−⟩ 3 {36−, 36+, 144−
} 216

⟨Σ−Ξ 0Σ0
Xd

Ξ−⟩ 3 {144+, 9−, 36+
} 189

⟨Σ0Ξ−Ξ−ΛXu,s ⟩ 6 {9+, 36−, 144+, 144−, 36+, 1−
} 370

⟨Σ0Ξ−Ξ−ΛXd ⟩ 6 {36+, 144−, 36+, 144−, 36+, 1−
} 397

⟨Σ0Ξ−Σ−Ξ 0⟩ 6 {36−, 36+, 144−, 144+, 9−, 36+
} 405

⟨Σ0Ξ−Σ0
XuΞ

−⟩ 6 {1+, 144−, 36+, 144−, 9+, 36−
} 370

⟨Σ0Ξ−Σ0
Xd

Ξ−⟩ 6 {1−, 144+, 36−, 36+, 36−, 144+
} 397

⟨Ξ−Ξ 0Ξ−Ξ 0⟩ 6 {1+, 36−, 9+, 144+, 36−, 144+
} 370
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Table 5

Measured elapsed time for various hybrid parallel computations of the 52 four-point correlation functions


X⃗


B1,α(X⃗ + r⃗, t)B2,β (X⃗, t)JB3,α′ B4,β′ (0)


, (t = 0, . . . , T − 1), by

using the 32 node of BlueGene/Q on a L3 × T = 163
×32 lattice, changing the number of MPI processes (tasks_per_node) and the number of threads (OMP_NUM_THREADS).

A computational job consists of two steps; to calculate all of the single baryon blocks [B(I)
α ] together with its FFT (step-1), and to calculate the 52 four-point correlation

functions by performing the summations of indices of colour and spinor together with its inverse FFT (step-2).

[tasks_per_node] × [OMP_NUM_THREADS] 64 × 1 32 × 2 16 × 4 8 × 4 4 × 8 2 × 16 1 × 32

Step-1 00:14 00:16 00:09 00:09 00:07 00:06 00:06
Step-2 00:10 00:11 00:12 00:12 00:12 00:13 00:14

Table 6

Comparisons of numerical results between thiswork and the other [29] are shown for only 16 lines of the four-point correlation function


X⃗


pα(X⃗+r⃗, t)Λβ (X⃗, t)Jpα′ Λβ′ (t0)


at t − t0 = 10. ‘‘Diff’’ is the difference between ‘‘This work’’ and ‘‘Other’’.

α̃ β̃ α̃′ β̃ ′ x y z This work Other [29] Diff

0 1 0 1 0 0 0 -3.075847140449e-21 -3.075847140449e-21 3.4e-36
0 1 0 1 1 0 0 -8.786230541230e-21 -8.786230541230e-21 -3.0e-35
0 1 0 1 2 0 0 -1.138496114849e-20 -1.138496114849e-20 -3.8e-35
0 1 0 1 3 0 0 -8.109792412599e-21 -8.109792412599e-21 -2.4e-35
0 1 0 1 4 0 0 -1.086965914839e-20 -1.086965914839e-20 -2.9e-35
0 1 0 1 5 0 0 -9.926801964792e-21 -9.926801964792e-21 -6.0e-36
0 1 0 1 6 0 0 -6.647331180826e-21 -6.647331180826e-21 2.0e-35
0 1 0 1 7 0 0 -1.640062750340e-21 -1.640062750340e-21 5.0e-35
0 1 0 1 8 0 0 -2.553910496200e-21 -2.553910496200e-21 7.0e-35
0 1 0 1 9 0 0 -1.250692150908e-22 -1.250692150907e-22 7.3e-35
0 1 0 1 10 0 0 4.866793580424e-21 4.866793580424e-21 9.4e-35
0 1 0 1 11 0 0 1.379986127982e-20 1.379986127982e-20 1.2e-34
0 1 0 1 12 0 0 1.680166855166e-20 1.680166855166e-20 9.9e-35
0 1 0 1 13 0 0 1.176203581648e-20 1.176203581648e-20 6.2e-35
0 1 0 1 14 0 0 2.994087733578e-21 2.994087733579e-21 3.1e-35
0 1 0 1 15 0 0 -9.904925605073e-22 -9.904925605073e-22 2.4e-35
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Fig. 2. (Left) The relative difference, | Diff
This work |, of the correlation function


X⃗


pα(X⃗ + r⃗, t)Λβ (X⃗, t)Jpα′ Λβ′ (t0)


at t − t0 = 10, between the effective block algorithm and

the unified contraction algorithm as a function of one-dimensionally aligned data point ξ = α̃ +2(β̃ +2(α̃′ +2(β̃ ′ +2(x+16(y+16(z)))))). (Right) The relative difference
of the correlators of entire 52 channels from NN to ΞΞ given in Eqs. (34)–(38), over 31 time-slices, 163 points for spatial, and 24 points for the spin degrees of freedom,
between the effective block algorithm and the unified contraction algorithm as a function of one-dimensionally aligned data point ξ = α̃ + 2(β̃ + 2(α̃′ + 2(β̃ ′ + 2(x +

16(y + 16(z + 16(c + 52((t − t0 + T ) mod T )))))))), where c = 0, . . . , 51 selects one of the 52 channels provided that the correlator has non-vanishing value.

by using the Blue Gene/Q computer under the ‘‘Large scale simulation program’’ at KEK (Nos. 12–11, 12/13–19). Part of this research
was supported by Interdisciplinary Computational Science Program in CCS, University of Tsukuba. This research was supported in part by
Strategic Program for Innovative Research (SPIRE), theMEXTGrant-in-Aid, Scientific Research on Innovative Areas and (C) (Nos. 25105505,
16K05340).

Appendix. The aggregation of effective blocks

When calculating a large number of four-point correlation functions such as 52 channels of NBS wave functions simultaneously, we
can economise on computer resource by aggregating the same effective blocks which appear several times through the whole calculation.
In this section, we show how the aggregations are performed by considering the explicit form of the ⟨Σ+nΣ+n⟩ correlator.
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Fig. A.3. Diagrammatic representation of the four-point correlation function ⟨Σ+nΣ+n⟩. Three diagrams correspond to the three terms in Eq. (A.3). The parity of each
permutation is also shown as (−1)σ .

A.1. Explicit form of the ⟨Σ+nΣ+n⟩ correlator

The result of diagrammatic classification of the ⟨Σ+nΣ+n⟩ correlator is found in Table 1. We show the explicit forms of the baryon
blocks in this channel. The four-point correlator is given by

X⃗


0
Σ+

α (X⃗ + r⃗, t)nβ(X⃗, t)JΣ
+

α′nβ′
(t0)

 0 =


X⃗

ε(1, 6, 2)ε(3, 4, 5)ε(1′, 6′, 2′)ε(3′, 4′, 5′)

× (Cγ5)(1, 6)δ(α, 2)(Cγ5)(3, 4)δ(β, 5)(Cγ5)(1′, 6′)δ(α′, 2′)(Cγ5)(3′, 4′)δ(β ′, 5′)

× ⟨u(1)s(6)u(2)u(3)d(4)d(5)d̄(5′)d̄(4′)ū(3′)ū(2′)s̄(6′)ū(1′)⟩, (A.1)
where

x⃗1 = x⃗2 = x⃗6 = X⃗ + r⃗, x⃗3 = x⃗4 = x⃗5 = X⃗ . (A.2)
We have suppressed the explicit summations for the indices of colour and spinor on the right hand side. The last line in Eq. (A.1) is Wick
contracted and represented in terms of the quark propagators,

⟨u(1)s(6)u(2)u(3)d(4)d(5)d̄(5′)d̄(4′)ū(3′)ū(2′)s̄(6′)ū(1′)⟩

=


⟨u(3)ū(3′)⟩ det

⟨u(1)ū(1′)⟩ ⟨u(1)ū(2′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(2′)⟩

− ⟨u(3)ū(2′)⟩ det
⟨u(1)ū(1′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(3′)⟩


+ ⟨u(3)ū(1′)⟩ det

⟨u(1)ū(2′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(2′)⟩ ⟨u(2)ū(3′)⟩

 det
⟨d(4)d̄(4′)⟩ ⟨d(4)d̄(5′)⟩

⟨d(5)d̄(4′)⟩ ⟨d(5)d̄(5′)⟩

 ⟨s(6)s̄(6′)⟩. (A.3)

Fig. A.3 shows the diagrammatic representation of the correlator ⟨Σ+nΣ+n⟩. The four-point correlation function is calculated using the
FFT. We show the explicit forms of the three baryon-block pairs


[Σ+

α
(1)

] × [n(1)
β ]


,

[Σ+

α
(2)

] × [n(2)
β ]


,

[Σ+

α
(3)

] × [n(3)
β ]


.

(i) Σ+

α
(1) and n(1)

β

This is a product of two two-point correlators.

R(1)
αβα′β ′(r⃗) =


X⃗


[Σ+

α

(1)
](X⃗ + r⃗) × [n(1)

β ](X⃗)


α′β ′
=


X⃗

[Σ+

αα′

(1)
](X⃗ + r⃗)[n(1)

ββ ′ ](X⃗), (A.4)

where

[Σ+

αα′

(1)
](x⃗) = ε(1, 6, 2)(Cγ5)(1, 6)δ(α, 2)ε(1′, 6′, 2′)(Cγ5)(1′, 6′)δ(α′, 2′) det

⟨u(1)ū(1′)⟩ ⟨u(1)ū(2′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(2′)⟩

 ⟨s(6)s̄(6′)⟩, (A.5)


n(1)

ββ ′


(y⃗) = ε(3, 4, 5)(Cγ5)(3, 4)δ(β, 5)ε(3′, 4′, 5′)(Cγ5)(3′, 4′)δ(β ′, 5′)⟨u(3)ū(3′)⟩ det

⟨d(4)d̄(4′)⟩ ⟨d(4)d̄(5′)⟩

⟨d(5)d̄(4′)⟩ ⟨d(5)d̄(5′)⟩

 . (A.6)

All of the summation of internal indices (


c1,...,c6


c′1,...,c

′
6


α1,...,α6


α′
1,...,α

′
6
) can be performed separately for [Σ+

αα′

(1)
] and


n(1)

ββ ′


.

(ii) Σ+

α
(2) and n(2)

β

This is a one-quark exchange diagram.

R(2)
αβα′β ′(r⃗) =


X⃗


[Σ+

α
(2)

](X⃗ + r⃗) × [n(2)
β ](X⃗)


α′β ′

=


X⃗


c′2,c

′
3,α

′
3

[Σ+

α

(2)
](X⃗+ r⃗; c ′

2, c
′

3, α
′

3)[n
(2)
βα′β ′ ](X⃗; c ′

2, c
′

3, α
′

3), (A.7)

where

[Σ+

α

(2)
](x⃗; c ′

2, c
′

3, α
′

3) = ε(1, 6, 2)(Cγ5)(1, 6)δ(α, 2)ε(1′, 6′, 2′)(Cγ5)(1′, 6′)

× det
⟨u(1)ū(1′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(1′)⟩ ⟨u(2)ū(3′)⟩

 ⟨s(6)s̄(6′)⟩, (A.8)

[n(2)
βα′β ′ ](y⃗; c ′

2, c
′

3, α
′

3) = ε(3, 4, 5)(Cγ5)(3, 4)δ(β, 5)ε(3′, 4′, 5′)(Cγ5)(3′, 4′)δ(β ′, 5′)δ(α′, 2′)⟨u(3)ū(2′)⟩

× det
⟨d(4)d̄(4′)⟩ ⟨d(4)d̄(5′)⟩

⟨d(5)d̄(4′)⟩ ⟨d(5)d̄(5′)⟩

 . (A.9)
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We have additional arguments (c ′

2, c
′

3, α
′

3) for the baryon blocks [Σ+
α

(2)
] and [n(2)

β ] because of the exchange of u-quark in the source. Note

that the summation of α′

2 can be always omitted because of the presence of δ(α′, 2′) located in [n(2)
β ].

(iii) Σ+

α
(3) and n(3)

β

This is another exchange diagram.

R(3)
αβα′β ′(r⃗) =


X⃗


[Σ+

α

(3)
](X⃗ + r⃗) × [n(3)

β ](X⃗)


α′β ′

=


X⃗


c′1,c

′
3,α

′
1,α

′
3

[Σ+

αα′

(3)
](X⃗+ r⃗; c ′

1, c
′

3, α
′

1, α
′

3)[n
(3)
ββ ′ ](X⃗; c ′

1, c
′

3, α
′

1, α
′

3), (A.10)

where

[Σ+

αα′

(3)
](x⃗; c ′

1, c
′

3, α
′

1, α
′

3) = ε(1, 6, 2)(Cγ5)(1, 6)δ(α, 2)ε(1′, 6′, 2′)(Cγ5)(1′, 6′)δ(α′, 2′)

× det
⟨u(1)ū(2′)⟩ ⟨u(1)ū(3′)⟩
⟨u(2)ū(2′)⟩ ⟨u(2)ū(3′)⟩

 ⟨s(6)s̄(6′)⟩, (A.11)

[n(3)
ββ ′ ](y⃗; c ′

1, c
′

3, α
′

1, α
′

3) = ε(3, 4, 5)(Cγ5)(3, 4)δ(β, 5)ε(3′, 4′, 5′)(Cγ5)(3′, 4′)δ(β ′, 5′)⟨u(3)ū(1′)⟩

× det
⟨d(4)d̄(4′)⟩ ⟨d(4)d̄(5′)⟩

⟨d(5)d̄(4′)⟩ ⟨d(5)d̄(5′)⟩

 . (A.12)

A.2. Finding reusable baryon blocks

In the isospin symmetric limit, the single neutron correlator in Eq. (A.6) is identical with the single proton correlator in Eq. (17) because
the interpolating fields of proton and neutron in Eq. (2) are symmetric under the interchange of the up and down quarks except for the
overall phase factors. Thus we may avoid the actual numerical calculation of the [n(1)

ββ ′ ](y⃗) in ⟨Σ+nΣ+n ⟩ by using the result of [p(1)
αα′ ](x⃗)

in ⟨pΛpΛ⟩ instead:

[n(1)
ββ ′ ](y⃗)⟨ Σ+n Σ+n ⟩

=


[p(1)

αα′ ](x⃗)⟨pΛpΛ⟩

 α → β
α′

→ β ′

x⃗ → y⃗


. (A.13)

The usage of Eq. (A.13) gives right result provided that the spatial reflection in momentum space is taken into account when performing
the FFT with the replacement of the space coordinate x⃗ → y⃗. See Eq. (15), where the argument of the second baryon is (−q⃗)while the first
baryon serves (q⃗). The above first example might be a very trivial case. The second example is to find that the [n(2)

β ](y⃗) in ⟨Σ+nΣ+n ⟩ in

Eq. (A.9) is a special case of [n(3)
β ](y⃗) in ⟨Σ+nΣ+n ⟩ in Eq. (A.12),

[n(2)
βα′β ′ ](y⃗; c ′

2, c
′

3, α
′

3)⟨Σ+nΣ+n⟩ =


[n(3)

ββ ′ ](y⃗; c ′

1, c
′

3, α
′

1, α
′

3)⟨Σ+nΣ+n⟩


c ′

1 → c ′

2
α′

1 → α′

2 = α′

 . (A.14)

These kinds of reusable baryon blocks can be found in various parts in the entire 52 channels of the NBS wave functions. We list only a
few more examples that figuring in one’s head is possible from the above explicit forms of the baryon blocks shown in this paper:

[n(3)
ββ ′ ](y⃗; c ′

1, c
′

3, α
′

1, α
′

3)⟨Σ+nΣ+n⟩ =


[p(4)

αα′ ](x⃗; c ′

4, c
′

5, α
′

4, α
′

5)⟨pΛpΛ⟩


(c ′

4, α
′

4) → (c ′

3, α
′

3)

(c ′

5, α
′

5) → (c ′

1, α
′

1)
α → β
α′

→ β ′

x⃗ → y⃗



, (A.15)

[p(6)
αα′β ′ ](x⃗; c ′

2, c
′

6, α
′

6)⟨pΛpΛ⟩ =


[p(4)

αβ ′ ](x⃗; c ′

1, c
′

6, α
′

1, α
′

6)⟨pΛpΛ⟩


c ′

1 → c ′

2
α′

1 → α′

2 = α′

 , (A.16)

[Λ
(2)
βα′ ](y⃗; c ′

2, c
′

3)⟨pΛpXu⟩ =


[Λ

(5)
β ](y⃗; c ′

1, c
′

3, α
′

1)⟨pΛpXu⟩


c ′

1 → c ′

2
α′

1 → α′

2 = α′

 . (A.17)

Table A.7 summarises that how the memory size reduces by considering the aggregations of the effective baryon blocks throughout the
entire 52 channels of the NBS wave functions.
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Table A.7
The number of effective baryon block objects declared and thememory size of each baryon block object for a calculation of the 52 NBSwave functions given in Eqs. (34)–(38)
for taking a normal approach or the improved (aggregative) approach described in Appendix A. The ratio of aggregative to normal is also presented. For the 2 + 1 flavour
lattice QCD calculation, a quantity of Xd can be replaced by the corresponding quantity from Xu . Thus no actual memory is required for the Xd for the improved algorithm.

p Σ+ Ξ 0 Xu Xd Xs

Number of baryon blocks Normal 304 124 298 1784 1784 984
Aggregative 28 18 19 36 0 32
Ratio (%) 9.21 14.5 6.38 2.02 0 3.25

Memory size (×16 Bytes/site) Normal 120,144 46,960 106,104 554,896 554,896 305,896
Aggregative 10952 7208 7784 12128 0 10968
Ratio (%) 9.12 15.3 7.34 2.19 0 3.59
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