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a b s t r a c t

We present a portable platform, called PIC_ENGINE, for accelerating Particle-In-Cell (PIC) codes on
heterogeneous many-core architectures such as Graphic Processing Units (GPUs). The aim of this
development is efficient simulations on future exascale systems by allowing different parallelization
strategies depending on the application problem and the specific architecture. To this end, this platform
contains the basic steps of the PIC algorithm and has been designed as a test bed for different algorithmic
options and data structures. Among the architectures that this engine can explore, particular attention is
given here to systems equippedwith GPUs. The study demonstrates that our portable PIC implementation
based on the OpenACC programming model can achieve performance closely matching theoretical
predictions. Using the Cray XC30 system, Piz Daint, at the Swiss National Supercomputing Centre (CSCS),
we show that PIC_ENGINE running on an NVIDIA Kepler K20X GPU can outperform the one on an Intel
Sandy bridge 8-core CPU by a factor of 3.4.

Published by Elsevier B.V.
This is an open access article under the CC BY-NC-ND license

(http://creativecommons.org/licenses/by-nc-nd/4.0/).
1. Introduction

Particle-In-Cell (PIC) simulations have been intensively used
in many scientific areas, most notably in plasma physics to
solve the Vlasov–Maxwell problem or reduced forms such as the
gyrokinetic equations. The fundamentals of the PIC method were
laid down in the late 1960s and early 1970s and there are a
number of textbooks available on this subject [1,2]. Numerical
particles are used in the simulation to represent the physical
particle distribution function by sampling the phase space in a
Monte Carlo sense. Each numerical particle is evolved along the
physical particle characteristics using a Lagrangian approach. The
charge and current of each particle are deposited on neighboring
grid points according to a specific interpolation scheme. After
all the charge and current contributions are summed up in this
way, the equations for the electromagnetic fields are solved using
a grid-based solver. The calculated electromagnetic fields are
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then interpolated back to the particles positions, which can then
be advanced for another discrete time-step using an ordinary
differential equation solver.

Although the PIC method is powerful for handling nonlinear
systems, it is demanding in terms of computing power, since a
large number of particles are needed to represent the underlying
physics. In plasma physics, PIC simulations are an excellent tool
to learn about the behavior of magnetized plasmas in tokamaks.
However, to simulate plasma turbulence in large tokamaks such
as ITER, degrees of freedom on the order of 1010 particles are
required [3]. High performance computers offer a powerful tool
for gaining an understanding of such complex systems. Along this
direction, many strategies to optimize PIC codes have been studied
and implemented on parallel architectures [4–9].

As noted in Ref. [10], computers of the twenty-first century
have clearly deviated from the von Neumann architectural
model, making programming and parallelization in physics more
complex. One should keep in mind that architectural diversity and
complexity will likely continue to increase. Looking into the near
future, this poses a twofold challenge. On the one hand, algorithms
and methods need to be designed and improved to make optimal
use of new architectures; on the other hand, the portability and
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good performance of existing codes need to be ensured. In other
words, to make use of this type of computing resources, one needs
efficient simulation codes to exploit massive levels of parallelism.
The subtle issue becomes the portability and good performance of
existing codes on complex many and multi-core architectures.

We have developed a portable platform, called PIC_ENGINE,
for optimizing PIC codes on heterogeneous architectures using
NVIDIA GPU accelerators or Intel Xeon Phi processors. This plat-
form serves as a test bed for trying different algorithmic options
and parallelization strategies on various hardware platforms. The
aim is to provide scientists with performing tools that can be sub-
sequently adapted to specific application codes. With this, it is
hoped to achieve efficient simulations on future exascale systems
by allowing different parallelization strategies depending on the
application problem and the specific architecture. To this end, this
platform contains the basic steps of the PIC algorithm in their sim-
plest form and has been designed as a test bed for tuning be-
tween different algorithmic choices and data structures. As will be
pointed out later in the paper, the way to store data affects per-
formance due to data locality issues. Dealing with machine het-
erogeneity requires programming models abstract enough to be
portable between these architectures, while allowing the compiler
to generate efficient code on each platform. A range of suchmodels
has been developed in the past, all with different levels of perfor-
mance portability and compilermaturity. Among the architectures
that this engine can explore, we chose to concentrate on systems
equipped with GPUs in this work. For current GPU programming,
NVIDIA has developed a programming model called CUDA [11].
However, porting of legacy CPU-based applications with CUDA
often necessitates explicit compute and data management, thus
requiring significant structural changes to existing applications.
Therefore, we make the choice to use OpenACC [12], a directive-
based approach allowing to considerably simplify the exploitation
of the accelerated processor compared to CUDA.

In this paper, we demonstrate the feasibility of a portable and
efficient PIC implementation based on OpenACC. We provide de-
tails of the different parallelization strategies and we show a
theoretical understanding of the numerical performancemeasure-
ments. Using the Cray XC30 system, Piz Daint, at the Swiss National
Supercomputing Centre (CSCS), we show that the PIC_ENGINE
code running on a Kepler K20XGPU can outperform this same code
running on a Sandy bridge 8-core CPU by a factor of 3.4. In the fol-
lowing section, we further explain our choice of using OpenACC as
an alternative to CUDA. In Section 3, the different algorithms used
in the test bed and their implementation are detailed. Our expecta-
tions from the theoretical performancemodel are presented in Sec-
tion 4. Finally, results on a single node are discussed in Section 5,
followed by a discussion in view of physical applications.

2. OpenACC as an alternative to CUDA

Since the advent of GPUs as general purpose computational
architectures, CUDA has become the most widely adopted
programming platform for GPU computing, guaranteeing the best
possible performance on NVIDIA’s architectures and benefiting
from an excellent support from the vendor. Recently a number of
PIC algorithms have been successfully implemented on the GPU
using CUDA [13,8,14–16], efficiently exploiting the accelerator.
Such performance gain, however, comes at the expense of adopting
a highly complex programming model, which, in general, makes
the redesign, re-factoring and subsequentmaintenance of the code
hard and time consuming. Even worse, the code becomes not
portable, since CUDA can run only on NVIDIA GPUs equipped
processors. No other architectures are supported. Finally, CUDA
is not an open standard, making it difficult to contribute to and
influence its development and evolution.
The OpenACC programming model, which has been adopted
for the current work, addresses all these issues, promoting an
open standard quickly evolving in order to support users’ and,
in particular, scientific users needs. It proposes a directives
based solution similar to OpenMP (towards which it may finally
converge). Directives take care of data transfers between CPU and
accelerators and manage the work on the accelerator in a fairly
simple way, leaving all the inherent complexity to the compiler.
The impact on the code’s architecture is often limited, major re-
factoring being usually necessary only for performance tuning. The
same code can run on the CPU and on the accelerator, making
its maintainability substantially easier. Furthermore, OpenACC in
principle targets any accelerators (not only GPUs), making the
code potentially portable on a variety of different architectures.
The main drawback of this approach is represented by the
performance penalty deriving from the lack of full control on the
code performance tuning, and on the strong dependency on the
compiler.

The rest of the section summarizes the main motivations for
adopting OpenACC [12] for our specific application as an alterna-
tive to CUDA [11]. For further information, the OpenACC standard
is available from Ref. [12]. Launched in 2011, the OpenACC appli-
cation program interface is a high-level programming model for
today’s accelerators, allowing large regions of code to be rapidly
ported. Concerning supported platforms, up to now the existing
OpenACC implementations only support GPUs (from NVIDIA and
AMD) and multi-core x86_64 (beta), although support for Intel
Xeon Phi is being currently introduced. It is based on using di-
rectives for offloading computations and data from the host CPU
to accelerators, and it offers portability between various compiler
vendors: CRAY and PGI. Also GNU is on the way to integrate it. The
biggest virtue of OpenACC that we experienced in our study is the
significant ease of programmability and portability among compil-
ers and devices.Moreover, from a portability perspective, the same
code should still run efficiently on a pure CPU-based system. This
also allows debugging on the CPU, for which better tools are cur-
rently available.

Data transfers between CPU and GPU memory can present a
significant obstacle to performance in GPU-accelerated codes. For
effective use of the GPU, data transfers between the host processor
and the accelerator must ideally be kept to a minimum. Specific
OpenACC directives are used to manage these transfers. Other
OpenACC directives are used to execute specific regions of the
code on the GPU, typically the most compute-intensive ones. In
particular, the GPU offers massive amounts of multi-threading (for
K20X, there are specifically 2048 active threads per Streaming
Multiprocessor and there are 14 Streaming Multiprocessors).
These threads are organized into a hierarchy of three levels. At the
coarsest level are the thread blocks. At the second level, the threads
are grouped into so-called ‘‘warps’’. Finally, we have the finest level
threads. These 3 levels of multi-threading can be controlled by
adding clauses (gang, worker, vector) in OpenACC directives.

Examples of accelerating the charge deposition routine in a PIC
code can be found in Appendix B.

The OpenACC programming model allows large regions of code
to be rapidly ported with minimal effort. For applications which
already have optimized CUDA kernels, we recall that OpenACC
supports CUDA, allowing the usage of highly specialized functions
available in CUDA only, of course, at the expense of portability and
maintainability. We will later show in Section 5, that the result of
combining OpenACC and CUDA can provide the best performance.

In this paper, our focus is to use OpenACC as the main
programming model for accelerating the PIC_ENGINE on hybrid
architectures. Although the need to move data and parallelize
loops is intrinsic to accelerated computing platforms and therefore
common to both OpenACC and CUDA, the programming easiness
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and portability favor OpenACC. We performed low-level CUDA
optimizations only to the most costly routines. However, for
these routines, an OpenACC version is also available, to guarantee
portability on non-NVIDIA platforms. In general, in order to
ensure portability and maintainability, proprietary solutions, like
CUDA, should have a limited usage, in favor of open standards
like OpenACC and OpenMP, in view of their possible future
convergence.

3. The PIC_ENGINE test bed

In plasma physics applications, the PIC algorithm is used
to describe the time evolution of the distribution functions of
different particle species (ions, electrons, impurities) in their self-
consistent electromagnetic fields. The PIC_ENGINE is a three-
dimensional PIC code written in Fortran. It is developed for hybrid
architectures to provide a test bed for evaluating performance of
different algorithms and methods. This code has been deliberately
kept to a minimum, and it embeds the main pieces underlying the
PICmethod. In a typical simulation of plasma dynamics, the system
is represented by a set of numerical particles. For each particle one
needs to store the following attributes: position and velocity (x, v)
that are initialized at the start of the simulation. Particles interact
through the self-consistent electromagnetic field. The following
four consecutive subroutines are executed at each time-step for all
particles in each cell on the mesh:

i. setrho(): (x) −→ ρ
ii. field_solver(): −∆φ = ρ
iii. accel(): vt+1

= vt + ∆t Et

iv. push(): xt+1
= xt + ∆t vt+1.

In step i. the deposition of the charge density ρ (called
gather operation) of each particle on the grid is called setrho()
using the so-called particle weighting [1]. Prior to the calculation
of the forces on each particle from the electric potential, we
solve Poisson’s equation for computing the field potential φ in
field_solver(). This information is then used for moving the
particles in time according to the equations ofmotion. The particles
velocities are thus updated accounting for the E field in accel().
This involves an interpolation (called scatter operation) to obtain
the fields at the particle position from the fields on the nearest grid
points. Going from grid-based data to particle-based data, required
for estimating E at the particle positions, actually explains the
separation ofpush() andaccel() into twodistinct steps. Finally,
in the fourth step of the algorithm, called push(), the particle
positions are updated.

For the sake of simplicity, the version considered for this study
uses the full-f PIC method applied to the Vlasov electrostatic
problem in 6D phase space using Cartesian coordinates. Boundary
conditions are periodic. Magnetic fields are neglected. Step ii
involving field_solver is not considered. The electric field at
the particle’s position E(x) is assumed to be constant. Particles are
pseudo-randomly loaded uniformly between the system bounds
and linear B-splines are used for particle-to/from-grid operations.
We consider a uniform 3D Cartesian grid in real space (x, y, z),
shown in Fig. 1. Domain decomposition is applied in the z direction
where each domain is assigned to a different compute node with
inter-node communication using MPI. In this paper, we focus
on parallelization strategies on a single node using OpenACC.
It is important to note that the PIC_ENGINE is very simple

with respect to realistic PIC codes having significantly more
arithmetic operations. For example, in plasma physics simulations,
gyrokinetic PIC application codes such as ORB5 [17,18] and
GTC [19–21] have many more arithmetic operations in the accel
and push routines than PIC_ENGINE. Also setrho involves
higher order B-splines and therefore, together with accel and
Fig. 1. In this figure we show the domain decomposition of the PIC_ENGINE 3D
grid space (x, y, z) on n nodes. Only one slice (in blue) is considered in the present
study for benchmarks on a single node. In a (x, y) plane, particle data are sorted into
buckets, each containing a certain number of grid cells. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

push, dominates the timings. This engine is intended to be used
as the core of actual PIC application codes where its components
will be respectively called depending on the physics problem and
the given architecture.

3.1. Data structures

PIC codes have two main data structures, particles and fields,
that need to communicate with one another. Particles are a priori
randomly distributed in space. As a consequence, particle data is
totally unstructured leading to pseudo-randommemory access for
the grid-to-particle and particle-to-grid operations. The challenge
to address at this level is related to organizing particle data
structures so that data locality is improved both in the grid-to-
particle interpolation step, i.e. getting the electric field at the
particle position in accel, and in the particle-to-grid operations
in the charge deposition step setrho. For each particle, we assign
six attributes: three coordinates for the position (x, y, z) and three
velocity components (vx, vy, vz). The grid is uniform in real space
(xi, yj, zk).

For an identical numerical algorithm the particle data can be
stored in multiple ways. The first option is to store particles into
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Fig. 2. Different data structures in the code: binned, contiguous, and contiguous sorted. The numbers correspond to the particle key index.
multidimensional bins defined according to their position with
respect to the grid and to keep particles in each bin stored together
in memory. This procedure, called binning has been used in
[8,22,23]. It requires reordering of particles into bins after every
particle push(). Each bin can then be processed independently
in parallel. The particle data is represented in this case by
the particle arraypart_att(max_numpart,natt,tot_bins),
wheremax_numpart is themaximumnumber of particles per bin,
tot_bins is the total number of bins and natt is the number
of attributes here equal to 6 (3 positions and 3 velocities). An
additional arraynpbin(tot_bins) is used to specify the number
of particles in each bin. Binning is advantageous as particles in
specific bins can be accessed directly without the need to offset
variables. And if thenumber of particles in a bin changes, then there
is no need for rearrangement of other particles in memory.

With this approach, memory usage is not optimized. Memory
has to be over-allocated and gaps between the particles of the
different bins occur. Thus the alternative option is to store
particle data contiguously in memory and declare it as follows:
part_att(num_part, natt), where num_part is the number
of particles and natt refers to the number of attributes. In this
second data layout, the particles are stored contiguously and
have a priori an arbitrary order in the array. The contiguous data
structure has the advantages that it is optimal with respect to
memory requirements, no gaps exist in memory. In order to get
better performance, one might improve the data locality in the
contiguous structure by sorting the array of particles into buckets
which are defined with respect to the grid (see next subsection).

Moreover, for the above two data layouts, the particle positions
and velocities stored in the part_att array can be organized in
two different ways. The first way is to store particles attributes
in rows and every column points to a different particle, like
for example part_att(1:natt,1:num_part). This is the so-
called array of structures (AOS). The second way is to assign
each row to a particle and columns will contain each particle’s
attributes, likepart_att(1:num_part,1:natt). This is the so-
called structure of arrays (SOA). In the PIC_ENGINE, a Fortran
memory layout where particle data is stored as a Structure of
Arrays (SOA) showed higher performance on both GPU and CPU.
We thus consider it for our benchmarks. The two data layouts
that we consider for storing particle data part_att in arrays are
illustrated in Fig. 2 where the particle’s key index written in each
cell corresponds to the target bucket assigned to that particle.

3.2. Sorting

The concurrency of particle-to-grid operations occurs when
particles deposit their charge on the same grid point. This
constitutes a key challenge for parallelizing the PIC algorithm.
While the fields are fixed to the mesh lattice and can be stored
on a local subset of the memory, the field update depends on the
charge density updated from the particle positions. Sorting the
particles according to their position in real space is necessary for
increasing data locality, therefore improving performance.We sort
the particles for the different PIC implementations we consider.
The particles are sorted with respect to a partition of the grid into
subdomains that, in the remainder of this paper, will be called
‘‘buckets’’. A bucket can consist of a single grid cell or can contain
multiple cells. Depending on how particles are deposited to the
grid, we consider different granularity of the sorting with different
bucket sizes. In a realistic implementation of a global plasma
domain, particles cross cell boundaries. Therefore, the field data of
grid cells along the border between buckets must be transferred
at each time-step and particle crossings require data sorting at
every time-step to retain data locality (associating the particles
to the bucket they are in). In the context of the PIC method on
GPUs, various sorting algorithms have been employed. Decyk and
Singh [23] applied particle sorting to a two-dimensional system
where it was a constraint that particles can move at most to
the nearest neighboring buckets every time-step. The algorithm
of Stantchev et al. [24] also only exchanges particles between
nearest neighboring buckets. A recursive sorting approach is then
suggested to account for fast particles. Mertmann et al. [25]
implemented a particle reordering method with a bucket sort
algorithm. Joseph et al. [26] investigated a particle in cell method
based on a triangular mesh where a bucket sort algorithm was
applied to the particles. Roźen et al. [27] implemented a bucket
sort algorithm using linked lists.

For our application, we use two different implementations of
the bucket sort algorithm where particles are sorted according to
their keys (which represent their target bins). Our first option is
the standard bucket sort algorithm: For the binned data structure
a second temporary particle data array of the same size and
structure as the primary particle data array is used together with
a field of counters which represent the number of particles in each
bucket. All counters are set to zero. Afterwards all particles of the
primary particle data array are moved in their correct bins in the
temporary particle data array. Counters give the positions in the
bins which are updated atomically for every particle moved.
That is, atomic operations are used to resolve collisions of threads
trying to access the same address inmemory. Thus the particles are
sorted. Since the standard bucket sort is an out-of-place sorting
algorithm (that is, results are at a different location in memory
than the original data), and since we want the particle data in the
primary array, the temporary array is copied back to the primary
particles array.

For the contiguous data layout we apply the bucket sort
implementation of Sintorn and Assarsson presented in [28].
All particles of the array are divided into groups assigned to
different threads. For every particle, a counter of the target bin
is incremented using atomic directives in order to determine the
bin sizes. At the same time the value of the counter is stored
in an array at the particle’s position. The particles are copied to
the target array, where the offset for every particle is the sum of
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Fig. 3. Bucketsort for pre-ordered particles, in case of binned data structure. Numbers are particle keys except for holes buffer where they are offsets.
Fig. 4. Bucketsort for pre-ordered particles, contiguous data structure, numbers are particle keys except for holes buffer where they are offsets.
the corresponding counter and the stored value. The target array
then contains the sorted particles. For this out-of-place method a
second array of identical structure is required. Since the particles
are required in the primary array, they need to be copied back
to the source array. For our application this algorithm is faster
than the radix sort algorithm provided by the Thrust and CUDPP
libraries [29].

Depending on the size of the buckets, the time-step, the
particles velocity and the geometry, the fraction of particles
moving between buckets within one time-step varies. If we are in
a regime where only a small portion of particles moves between
buckets, we apply a bucket sort algorithm which exploits that the
particles are pre-ordered. This is explained in detail in Ref. [30].
The method is more efficient than a standard bucket sort because
only data of particleswhich change their bucket aremoved. For the
rest of this paper, this sorting algorithm is considered. It is shortly
summarized here:

For the binned data structure (Fig. 3, Algorithm 1) a particles
buffer (particles_buffer) of sufficient size (we chose the bin
size of the particles array) is allocated for every bin. Furthermore
for every bin a buffer for the holes (holes_buffer) is allocated
(we chose the same size as for the particles buffer) where the
indices of the particles having to be moved are stored. For the
indices in the particles buffer and the holes buffer, counters are
allocated and set to zero. All particles which are not in their target
bin are moved into their target buffer and the hole is marked in
the holes buffer of the source bin (Fig. 3 left). The counters for the
indices in the particles buffer and the holes buffer are incremented
atomically. Then the particles in the particles buffer are moved
to their target bins (Fig. 3 right) at the location of the holes in holes
buffer (Fig. 3 the first three bins) or, if no holes are marked, to the
end of the particles buffer (Fig. 3 the fourth bin). Afterwards the
remaining holes are compacted (in Fig. 3 the fifth bin needs to be
compacted) and the particles are sorted.

For the contiguous memory layout (Fig. 4, Algorithm 2) all par-
ticles are counted with respect to their key, a histogram is com-
puted. With the histogram data a reference array bucket_num
with the sorted keys is established. The number of particles leaving
each bucket is counted (second histogram) in order to determine
the size of the buffers and the offsets for the buckets in them. Two
buffers are used: one for the particles (particles_buffer) and
one for the holes left in the particle array if particles are taken out
(holes_buffer). In addition, variables for the number of entries
in the buffers are used. All particles which are not in their bucket
Fig. 5. Parallelize the charge assignment routine with threads on the grid.

are moved to the particles buffer and the holes are registered in
the holes buffer, the variables for the number of entries are incre-
mented with atomic operations (Fig. 4 left). After this, the particles
are put into their target buckets according to the entries in holes
buffer (Fig. 4 right). Thus the particles are sorted.

3.3. Parallel charge assignment

Calculating the charge density ρ is carried out by depositing
charge, assuming a linear particle shape, from the set of scattered
particle positions onto the fixed spatial grid. This operation consti-
tutes the first step of the PIC code, and is referred to as the charge
deposition. It is also the most critical and computationally chal-
lenging step because race conditions canhappenwhen two threads
attempt towrite to the samememory location simultaneously. This
requires either synchronization or atomicity of the operations to
resolve it. Otherwise the result can be arbitrarily wrong. In this
section, we will present different approaches to parallelize the de-
position step. We distinguish between two types of algorithms:
collision-free algorithms and collision-resolving algorithms. Note
that for all options one can have either binned or contiguous data
structures.

3.3.1. Collision-free: threads on splines
The first approach consists of associating the threads with the

grid data. We refer to this routine as setrho_splines(). In this
case, different threads may read the same particle data, but do not
need to update the particle data. With this procedure, we avoid
race conditions and synchronization is no more necessary. A 1D
illustration is given in Fig. 5. This approach can be costly if each
thread loops over all particles to read data. One remedy is to have
data sorted in buckets, as shown in Fig. 6. By counting the loop
iterations, the cost of this routine is found to be proportional to

(Nx + d)(Ny + d)(Nz + d)
Np

Nbuckets
,
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Fig. 6. Parallelize the charge assignment routine with threads on the grid and
bucket-sorted particles.

Fig. 7. Parallelize with threads on buckets of particles. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

where Np is the total number of particles. Nx,Ny, and Nz are
respectively the number of grid intervals in x, y and z. Nbuckets is
the total number of buckets, and d is the order of the interpolation
(d = 1 in our case). So theminimum cost is obtained bymaximizing
the number of buckets for fixed grid size and number of particles,
i.e. for buckets containing just one grid cell.

This algorithm can be applied with either binned or contiguous
data structures.

3.3.2. Collision-resolving: threads on buckets
In this approach, one thread is assigned per bucket. In order

to provide parallelism the particles should be sorted where we
only implemented the fully sorted case, i.e.: buckets contain one
grid cell only. Compared to Section 3.3.1, the main particle loop
is now replaced by an outer loop over the buckets, and an inner
loop over the particles within each bucket. The outer loop is
partitioned across the threadblocks while the inner loop is serial.
Since different threads of the outer loop write to the same grid
points, parallelization on the outer loop on buckets requires the
atomic directive to resolve collisions.

3.3.3. Collision-free: threads on buckets with data replication
The approach is similar to the one in Section 3.3.2 but atomics

are not used. Instead, as suggested in [23], one solution is to
replicate the grid data from global to local data and sort particles
in buckets (according to their position on the grid). An example is
illustrated in Fig. 7. The parallel approach consists of associating
threads with buckets of particles. This ensures that each thread
does the charge assignment on its local grid thus preventing race
conditions. Guard-cells defining the border of buckets (red points
in Fig. 7) provide temporary memory for data exchange. They
are added separately to the global grid data. The outer loop on
buckets is collision-free by constructing the charge on local spatial
subdomains which include guard cells, shared with their right
neighbor subdomain, in each of the 3 directions. An additional
procedure has to be performed to assemble the global charge
deposition. This requires two steps in the algorithm. In the first
step, reduction can be applied to local temporary variables (red
points in Fig. 7) without atomics in global memory. In the second
step, threads are assigned to the grid and collect the data from the
temporary variables in global memory.
Fig. 8. Parallelize with threads on particles.

3.3.4. Collision-resolving: threads on particles
An illustration of a 1D case is given in Fig. 8 where threads asso-

ciated with particle data are represented by diamonds of different
colors. In this case, different threads can update the same grid data,
thus leading to race conditions. The conflicts should therefore
be resolved. On the NVIDIA GPUs, this concurrency of particle-to-
grid operations can be avoided by using atomic operations. One
thread is assigned to eachparticlewhich uses atomic add to deposit
the charge to the grid. An optimization of this algorithm is possible
in CUDA by using sharedmemory as an intermediate step to do the
reduction (see example in Appendix B). In this case, sorting is re-
quired and the reduction is done with two steps: first with CUDA
to shared memory, then from shared memory to global memory
where the grid is stored. An alternative to this collision-resolving
algorithm avoids direct reduction to the grid. The reduction from
every particle can be done on a temporary thread-private variable
without atomics. The result of the temporary variables is put only
once with atomic adds to the grid.

3.3.5. Collision-free: threads on buckets with staggered arrangement
Here we follow the procedure of Sections 3.3.2 and 3.3.3 but we

use a staggered arrangement of the threads on the buckets [31].
We exploit the local properties of the interpolation scheme and put
buckets together in the execution which have sufficient distance
to each other. Between the execution for the groups of buckets
a synchronization is done in order to avoid race conditions, no
atomic operations are needed. Again a sorting is required for
parallelization, where we consider the case of a full sort only.

4. Performance model

This paper examines the particle-in-cell algorithm on a single
node of the CRAY XC30, Piz Daint supercomputer, to see how well
it performs. Piz Daint consists of 5272 compute nodes each with
one Intel

R⃝

Xeon
R⃝

E5-2670@2.60GHzCPU (8 cores, 16 virtual cores
with hyperthreading enabled, 32GB RAM) and oneNVIDIA

R⃝

Tesla
R⃝

K20X GPU.
We present results of a study on modeling the performance of

the PIC_ENGINE components on Piz Daint. We model computa-
tion time by counting coalescedmemory accesses as the size of the
accessed data type, and non-coalesced accesses as 32 Bytes [32].
The GPU executes small groups of threads called warps. The term
coalesced refers to adjacent threads (within a wrap) accessing ad-
jacent locations in memory. These are in turn, summed up, and
divided by global memory bandwidth. The following calculations
assume 106 particles and 512 × 256 grid cells, knowing that the
achievable practical global memory bandwidth is about 180 GB/s
for a K20Xwith ECC enabled (error-correcting codememorywhich
reduces the available usable bandwidth). Recall that the size of a
double is 8 bytes compared to 4 bytes for a single or integer preci-
sion. Wewill present our model estimates separately for each rou-
tine in double and single precision.

4.1. Push

In this routine we count 6 coalesced loads (x, y, z, vx, vy, vz)
and 3 coalesced writes (x, y, z) per particle. The estimated com-
putation time for double precision is tdouble = 9 × 8 B/(180 GB/s)
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= 0.4 ns and the estimated time for single precision is tsingle =

9 × 4 B/(180 GB/s) = 0.2 ns.

4.2. Accel

In this casewehave scattered reads through theGPUs read-only
data cache, so the actual global memory transactions depend on
the fraction of cache misses (miss rates), which might not be easy
to calculate from first principles. Assuming working sets are small
enough or we have good locality the lower bound on miss rate is:
Bytes/Bytes accessed. Or, in other words, the assumption is that
each element is loaded exactly once even if used multiple times
(this assumes that cache bandwidth is high enough not to affect
the timings). Here we count 6 coalesced loads (x, y, z, vx, vy, vz),
3 coalesced writes (vx, vy, vz), and 12 scattered reads through
read-only data cache, from three grids (x, y, and z components
of the electric field) of 512 × 256 cells each. We consider N =

106 particles. For perfect cache efficiency, the estimated best case
computation time for double precision is tdouble = (9 + 3 ×

512 × 256/106) × 8 B/(180 GB/s) = 0.417 ns and the worst
case, with 100% cache miss rate, computation time is tdouble =

(9 × 8 B + 12 × 32 B)/(180 GB/s) = 2.53 ns. For single precision,
the estimated best case computation time is tsingle = (9 + 3 ×

512×256/106)×4 B/(180 GB/s) = 0.2087 ns and the worst case
gives tsingle = (9 × 4 B + 12 × 32 B)/(180 GB/s) = 2.3333 ns.
Thanks to the sorting, we shall see that we are almost in the best
case.

4.3. Setrho

In the following calculations, the charge deposition algorithm
with threads on particles, setrho_3.3.4, is considered. For the
scattered writes that appear in this step we need to use atomic
operations since two particles can cause concurrent writes to the
same memory location. Since the GPU provides hardware atomics
for single precision, we ignore the additional overhead and model
the writes as regular scattered (i.e. non-coalesced) writes. In the
kernel we count 3 coalesced loads (x, y, z) and 8 scattered atomic
writes. Similar to the scattered loads from before we count non-
coalesced writes as 32 bytes transactions in terms of consumed
bandwidth. The estimated computation time for double precision
is tdouble = (3× 8 B+ 8× 32 B)/(180 GB/s) = 1.56 ns and the one
for single precision is tsingle = (3 × 4 B + 8 × 32 B)/(180 GB/s) =

1.49 ns.
In the case of accel we also considered the impact of locality

and the read-only data cache under the assumption that the cache
bandwidth is sufficiently high not to appear in the calculation. The
same locality assumption also holds in this case but the assumption
for the cache does not since we cannot use the read-only data
cache for write operations. We might still see a benefit from data
being cached in the GPUs L2 cache but the exact impact of that is
hard to estimate. One should also note that the used K20X GPU
does not support native double precision atomics which have to
be implemented in terms of compare and swap operations instead.
This estimate may therefore underestimate the cost for double
precision.

4.4. Psort

The cost of the sorting scales with the amount of particles.
The practical cost of sorting can be broken down into the cost for
reading a particle’s data plus the cost of storing if the particle is
misplaced. Since the cost ofmisplaced particles involves expensive
non-coalesced writes, it has significant impact on performance
even if the misplaced particles are few. Additionally there are
histogram and prefix sum operations in the algorithm. But since
these are hard to model, they are not incorporated in the model.
We define N to be the number of particles and M the number
of misplaced particles. In addition to the 8 B double transactions
there are 4 B integer transactions and non coalesced loads of both
types that cost 32 B. The total transactions per particle for double
precision is therefore t = [(3 × 8 B + 3 × 4 B) × N + (12 ×

8 B+ 2× 4 B+ 14× 32 B) ×M]/(N × 180 GB/s). For the specific
problem considered in our benchmarks for this study, only 23% of
particles are misplaced, in which case the model should account
for M = 230 000. We get t = 0.91 ns for double precision and
t = 0.78 ns for single precision.

5. Results on GPU

In this section, we give performance results using a single GPU
with the CRAY OpenACC production compiler. Note that the PGI
compiler produces similar results. The benchmark case that will be
used for the rest of the paper has a grid of 512 × 256 × 1 with 106

particles, a typical size for realistic simulations. We perform our
tests on aCRAYXC30 systemhaving oneNVIDIA

R⃝

Tesla
R⃝

K20XGPU
with ECC enabled (Error-correcting code memory) and running at
745MHz. The hostmachine uses an Intel

R⃝

Xeon
R⃝

E5-2670, running
at a clock speed of 2.60 GHz. In the following, our measurements
are takenwith the CRAYOpenACC compilercce/8.3.12 and time
reported is per particle per time-step.

5.1. Performance of the different charge assignment routines

The particle-to-grid charge deposition step is the most critical
for parallelization. We herein study the timings of the different
setrho algorithms discussed in Section 3.3. In this subsection,
only double precision will be considered. We plot the total time
of this routine in nanoseconds per particle per time-step in Fig. 9
as a function of the number of buckets. The collision-free algorithm
in setrho_3.3.1 with threads on grid points is first considered.
We distinguish the contiguous (blue solid line with circles) and the
binned (blue dashed linewith circles) data structures. As expected,
the minimum cost is obtained for the maximum number of bins.
For low number of bins, the particle data has to be loaded many
times. Each threadwill loop over all particles in the bucket, but not
all particles contribute to the charge deposition on that particular
grid point, except in the case where we sort totally (meaning
1 cell per bucket). This explains the jump that we see in the
timing of the blue lines from 256 × 128 buckets to 512 × 256
buckets. Furthermore, the contiguous version slightly outperforms
the binned version in general. It strongly outperforms it for total
sorting though (i.e.: 1 grid cell/bucket).

Second, threads on buckets are considered with a contiguous
data structure. The collision-resolving setrho_3.3.2 algorithm
is represented by a black times symbol whereas the collision-free
algorithm referred to as setrho_3.3.3 is represented by a violet
star. Both cases are only considered in the case where particles
are fully sorted, that is 1 cell per bucket. On certain physical
applications, these algorithms may suffer from load balancing
when the buckets are differently filled. Other options for data
replication can also be considered.

Third, the case where threads are assigned on particles,
setrho_3.3.4, is considered. Here we distinguish the binned
data structure (red dashed line with triangles) and the contiguous
data structure (red solid line with triangles). The binned version
performs at its best for 64 × 32 buckets, which is the critical
value beyondwhich the time starts increasing again. There are two
possible reasons for this: as the number of particles per bucket gets
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Fig. 9. Comparison of the different charge assignment algorithms presented in
Section 3.3 as a function of the total number of buckets.

Fig. 10. Timings of the charge assignment routine with threads on particles
with/without atomic operations revealing the cost of double precision atomics.

smaller, any load imbalance between bins becomes more evident,
and as the number of bins increases the occupancy of the GPU
decreases. The contiguous version does not show better timings
except for the maximum number of bins considered when the
binned case suffers from load balancing.

Finally, we consider the staggered arrangement of threads on
buckets with a contiguous data structure. This is also a collision-
resolving algorithm (setrho_3.3.5, green plus symbol). As for
setrho_3.3.2 and setrho_3.3.3 the fully sorted case is
considered only. For all three cases sorting into a smaller number
of buckets might improve the performance.

The comparison among all algorithms for the charge assign-
ment reveals that up to 256 × 128 buckets, the threads on grid
points algorithm are costly compared to the algorithm having
threads on particles. The rightmost points on the graph correspond
to the fully sorted case given 512 × 256 bins where the best tim-
ing is obtained with the collision-resolving threads on bins algo-
rithm setrho_3.3.2. For the rest of the paper, we consider
the collision-resolving setrho_3.3.4 algorithmwith threads on
particles as we believe this is one of the potentially competitive
options for our ultimate gyrokinetic application. A more detailed
argumentation will be presented in Section 6. The plot in Fig. 10
shows essentially the binned and contiguous versions of this al-
gorithm (previously shown in Fig. 9) compared to the same con-
tiguous version (purple solid line) where atomics where removed.
The cost of atomics increases with the number of buckets since the
number of conflicts increases, thus the cost of collisions becomes
more evident. An attempt to optimize the contiguous setrho al-
gorithm in CUDA is shown in Fig. 11. The best timings are obtained
Fig. 11. Optimization of the thread on particles charge assignment algorithm using
CUDA in the prefix sum and histogram kernels.

with a CUDA optimization for 32 × 16 and 64 × 32 buckets. This
can be explained by the fact that particle data uses sharedmemory
in CUDA. For higher number of buckets, this version becomesmore
expensive than the pure OpenACC versions. This is mainly due to
the cost of the atomics in shared memory.

5.2. Performance model compared to numerical experiments

In Fig. 12, we show a comparison between the model and the
numericalmeasurements for the benchmark reference case in both
double and single precision. The kernels perform reasonably close
to the model in most cases: push and accel are estimated by
the model compared to measured values within approximately
60%–80% in both single and double precision. For setrho,
however, we observe that the model overestimates the cost for
single precision but underestimates it for double precision. The
single precision result is explained by the model not accounting
for the impact of caching which makes it more pessimistic than
what we can achieve in this case where the particles expose some
locality as a result of the sorting. The discrepancy for double
precision, on the other hand, is explained by the absence of native
double precision atomics on the Kepler architecture. The compiler
therefore has to generate a compare and swap loop for the double
precision case. Experiments using 64-bit integer atomics as well as
the single precision results suggest that a built-in double precision
atomic could provide a significant speedup for our application.
For the other kernels the model is expected to underestimate the
cost since it makes optimistic assumptions (such as 100% cache hit
rate after initial fetch) and only considers the assumed/observed
bottleneck. The single precision version of the code, even though
used for comparison here, will not be considered for the final
benchmarks. This version served for testing the native atomics on
the NVIDIA cards.

As for the sorting (psort), we recall that prefix sums and
histograms are not included in the performance model. Thus, we
show in the green bar of Fig. 12 the measurement – prefix sum –
histogram,which corresponds to themeasurement of the total sort
minus the measured values for the prefix sums and histograms.
The point made with this is that the model is pretty good for
the actually modeled parts of the sorting algorithm, but does not
account for all the parts of the algorithm.

As illustrated above, the performance model has various
limitations and cannot predict the exact performance figures.
Causes are algorithms that are hard tomodel (such as prefix sums),
approximations of the hardware capability and dependence of the
performance on the actual data. Still, the benefits are that the



78 F. Hariri et al. / Computer Physics Communications 207 (2016) 69–82
Fig. 12. (a) Performance model in double precision; (b) Performance model in
single precision.

model confirms that the observed performance is of the expected
order of magnitude.

5.3. Benchmark results: CPU vs GPU

We show in Fig. 13 the timings of the different implementations
using MPI, OpenMP and OpenACC in double precision. CUDA is
only used for fine-tuning optimization. The first two columns from
the left correspond to the timings of the versions run on CPU
only with MPI and OpenMP, respectively, both using 8 cores. It
should be noted that these two versions are not sorted on the
CPU. We tried applying different sorting algorithms on the CPU
for both the MPI and OpenMP implementations. We noted a gain
in performance of a factor of 1.7 for setrho and a factor of 2
for accel. However, the sorting turned out to be expensive and
dominating the total time. Therefore, we observed that there is
no gain in total performance on the CPU by sorting the particles.
The OpenMP non-sorted implementation will thus be considered
as our reference case for the benchmark. Using 8 OpenMP threads,
the final time is 19.24 ns. TheMPI implementation is about 2 times
slower than the OpenMP reference one. The MPI implementation
is based on domain cloning, i.e.: field data on the grid (in one case
the charge density and the electrostatic field) is replicated and
assigned to different CPU cores. Particle data is split among the
clones. Charge deposition is made separately in each clone and
then grid data has to be reduced across the clones. The OpenMP
case does not actually require any replicas of the electric field or
charge density.

The third column has the timings of the implementation on the
GPU using OpenACC without particle sorting. In setrho_3.3.4
we use atomic updates to resolve the conflicts. The gain is mainly
noticed in push, not in accel because of the interpolation that
requires indirect memory access. In total, we note a 1.6 times
gain in performance with respect to the reference OpenMP CPU
version. The fourth column corresponds to timings using binned
data structures with OpenACC using the sorting introduced in
Section 3.2 and setrho_3.3.4. We consider the optimal case
with 64 × 32 buckets. Even with the cost of the sorting, and
the cost of the charge assignment routine being dominant, this
Fig. 13. Timings of the PIC_ENGINE: comparison of various implementations
using MPI, OpenMP and OpenACC in double precision (fine tuning optimization in
CUDA).

implementation on GPU is 3 times faster than the reference case
on a single CPU.Most importantly, if we examine in detail themost
relevant routines for this study: setrho is now improved by a
factor of 2.4 and accel is improved by a factor of 10.8with respect
to the reference version on CPU.

For the sake of flexibility and simplicity, using the alternative
data structure, which consists of keeping the data contiguous and
sorting the particles is more advantageous. It has some potential
advantages in view of its implementation in application codes. The
timings for this implementation are shown in the fifth column.
The charge assignment routine dominates the time having a cost
double than the one in the binned version. When compared to the
reference case, this implementation is still 2 times faster though.
We optimized the prefix sum and the histogram kernels of the
charge assignment routine using CUDA with which we managed
to reduce the time by a factor of 2. Themain achievement is shown
in the 6th column revealing a performance factor 3.4 times better
when executing on the GPU as compared to 8 CPU cores.

The timings of the different algorithms in the code using
OpenACC and low-level optimization in CUDA for setrho_3.3.4
are plotted in Fig. 14 as a function of the number of buckets. Both
binned and contiguous data structures are considered. Increasing
the number of buckets improves data locality, thus leading to
better performance for both the contiguous and the binned data
structures. For the contiguous case (on the left), we notice that
the time of push and accel does not change with increasing
number of buckets. Starting from 64 × 32 buckets, the cost of
setrho increases. This is due to the increasing number of buckets
which implies high probability of particle collisions, thus more
conflicts. The binned version (on the right) shows a similar total
performancewith increasing number of buckets and it suffers from
load balancing and occupancy starting from 64×32 buckets. There
is an optimum for 64 × 32 buckets where we get a comparable
time for both contiguous and binned data structures. The sorting
algorithm performs at its best for medium grain level.

6. Discussion in view of physical applications

The purpose of this study has been to identify the most
promising algorithms using the basic PIC_ENGINE in view of
an ultimate implementation in various application codes on GPU.
Gyrokinetic codes such as ORB5 [17,18] and GTC [19–21] can
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Fig. 14. Timings of the PIC_ENGINE vs number of bins for contiguous (left) and binned (right) data structures.
benefit from lessons learned with this test bed. The final flowchart
of the PIC_ENGINE is shown in Appendix A.

In view of preparing applications requiring many nodes
implementation, we have also developed MPI/OpenMP and
MPI/OpenACC versions of the code. The PIC_ENGINE problem,
being simple at this stage, is dominated by the time of moving the
particles between nodes (pmove_z routine in the flowchart). This
will not be the case in the application code as it will have much
more arithmetic operations. The details of our multi-node results
will be discussed in a future publication.

Of interest to us is the optimization of the ORB5 code. Thinking
of the steps towards porting it to hybrid machines, we conclude
the following from our study. First, from Fig. 13, we note a factor 2
gain when going from a pure MPI to an OpenMP implementation
with 8 threads. The next step for ORB5 will thus be moving to the
hybridMPI/OpenMP implementation. A potential problem that we
did not address here is the loss of locality due to gyro-averaging.
This will be studied in future work. Second, ORB5 has many more
arithmetic operations especially in accel and setrho, which
typically dominate the timings. The promising finding is that
accel is improved by a factor of 10.8 by going from a CPU-
only version (8 OpenMP threads) to a GPU version with OpenACC
(binned data structure); setrho is also improved by a factor of
2.8. This implies that the actual potential for gain is important in a
realistic application, such as ORB5.

Concerning data structures, the loss of performance in these
routines for high number of buckets and binned data structure
(Fig. 14, right) will become much more important for the overall
timings in the application code than for the PIC_ENGINE. Thus,
the contiguous version has probably more chances to suit our
application. Moreover, the contiguous data structure is easier
to generalize, for instance for higher order elements and more
complicated grid structures.

Since the performance of the charge assignment algorithm,
setrho, depends on the problem size and the architecture, we
would like to test all possible algorithms in our application. The five
algorithmic choices for setrho presented in this paper are by no
means a complete list of possibilities and alternatives exist which
may prove favorable, e.g. for higher order interpolation schemes,
which we leave for future works.

7. Conclusions

A hard problem in modern computing is how to deal with
legacy codes so that they can benefit from the current and future
High Performance Computing (HPC) resources. The challenge
 Fig. A.15. Flowchart of the PIC_ENGINE showing the main subroutines.
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Code I.
became apparent with the advent of hybrid architectures offering
massive amounts of multithreading. An integrated programming
environment, preferably applicable to both traditional multicore
HPC systems as well as to new hybrid CPU/GPU architectures, is
therefore key in the quest for exascale computing.

The main objective behind our work is the development of
a platform, which we refer to as a PIC_ENGINE, for testing
the performance of PIC algorithms on hybrid CPU + GPU and
many-core platforms CPU + Xeon Phi. This permits a valuable
testing ground for the algorithmic choices in a more efficient way
than on a full application production code. Of course, depending
on the physical application, different algorithms are best suited
for different hardware. This paper focuses on CPU/GPU systems.
The PIC_ENGINE can be run on the Intel Many Integrated Core
architecture (Xeon Phi) as well. Results on the latter architecture
are subject to ongoing efforts thatwill be shown in a separatework.

In this paper, we considered a simple Vlasov electrostatic
problem in 6D phase space using Cartesian coordinates and linear
particle-to-grid interpolations. For the sake of simplicity, the
field-solver was not included and particles move into a frozen
given electric field. We took the option to rely on the OpenACC
programming standard which allows existing HPC applications
to be ported to run on one or more GPUs with only modest
changes to the original code. It also offers more portability and
maintainability for the code base.Most importantly, since the tools
for debugging on the CPU are currently better supported, the same
code can still be run efficiently on a pure CPU-based system. We
focused on single node performance and compared CPU and GPU
implementations. An extension to multiple GPUs on a drift-kinetic
problem is currently being carried out and will be evaluated in
future work.

We discussed several algorithms for particle sorting and charge
deposition using twomain data structures: binned and contiguous.
Two ways of storing data were considered: Array of structures
(AOS) and Structure of arrays (SOA). We found that SOA gives
higher performance on both the CPU and the GPU.

Different options were considered for the charge deposition
algorithm setrho. Associating the threads to the grid is a choice
where no race condition can happen: this is a collision-free
algorithm. Associating threads with buckets of particles and grid
data replication (local grids) is a second collision-free option.
In this case, one can either use atomics for the inner particle
loop, or use additional local temporary variables without atomics.
The next option is to assign threads with particles and resolve
collisions with atomic operations. In this latter option, a hand-
optimized low-level version with CUDA allows using the GPU
shared memory as an intermediate step in the reduction. The last
option considered here is to assign the threads to the buckets in a
staggered arrangement as a further collision-free approach.

Various sorting algorithms were also implemented and tested
on both the CPU and the GPU. Sorting did not improve the overall
performance on the CPU, but it did so on the GPU. The sorting
algorithm proposed in [30] and described in Section 3.2 requires
a smaller memory footprint and shows a better performance for
cases where a fraction of particles less than 50% have to be moved
at every time-step. There is an optimum number of buckets where
this sorting is beneficial.

For the given benchmark platform, we have a theoretical
understanding of the measurements showing a significant impact
of non-nativeness of atomics for double precision data. Results
show that the code performs reasonably well compared to this
idealized model, i.e.: roughly 80% of the performance is achieved
except for the charge assignment routine. The latter does not
perform as expected by the model mainly due to the lack of native
atomic operations in double precision. In single precision, we show
a much improved performance in setrho as the NVIDIA card
supports single precision atomics.

Finally, our numerical experiments on a single node show that
a performance gain of a factor of 3 can be obtained by porting
the PIC algorithm on the GPU using only OpenACC. The algorithms
we presented are scalable with size of the mesh and can be
easily ported to execute on multiple GPUs. The use of shared
memory is, however, critical for optimal performance. CUDA is
therefore employed for low-level optimization in such away to use
sharedmemory with atomics. Our results show that the optimized
GPU version of the code is 3.4 times faster than on 8-core CPU
implementation.
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Appendix A. Flowchart of the PIC_ENGINE

See Fig. A.15.
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Appendix B. Fortran examples for accelerating the charge
deposition routine

An example of the setrho() routine with parallelization over
grid points (Section 3.3.1) while considering binned particle data
(see Code I).

To offload a region of the code to the device, one should
add directives to the source code. For performance reasons, the
main program runs on the host and compute-intensive regions
are offloaded to the GPU. The execution and data management
are guided by the programmer using OpenACC directives. In the
example above, we used the parallel directive which indicates
that the following region of code can be accelerated. Then we
specify through the present clause which variables are already
present on the accelerator. A loop construct is applied to the
immediately following nested loops. The loop iterations will
then be divided over the threads of the GPU by the compiler.
These threads are organized in a three-level hierarchy in the
GPU hardware. The so-called gangs are at the highest level.
Within these are workersmade up of vectors. Therefore, gang
parallelism is coarse-grain,worker parallelism is fine-grainwhere
each gang has one or more workers. Within the parallel region, a
loop directive instructs the work sharing among the accelerator’s
workers. We insert additional clauses in the loop directive to
optimize the implicit data management chosen by the compiler.
Here we used the three levels, gang worker vector, then
we specified as private the variables that need to be created
as private copies for each thread that executes the loop. The
collapse(3) clause applies the loop directive to the 3 tightly
nested loops. Finally, acc atomic is used in order to resolve the
memory collisions in updating the charge density.

It is important to note that calls to CUDA kernels and libraries
can be made within regions accessible by the accelerator. These
may be used to hand-optimize low-level versions of performance-
critical routines (such as the charge deposition routine). In a
CUDA code, the setrho() routine is more complex and is harder
to understand. CUDA has been used to optimize the setrho()
routine (Section 3.3.4) which we show hereafter (see Code II).
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