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a b s t r a c t

We introduce bsmKinetic, an implementation of the stochasticmultichannel point-transition approach
to simulation of the charge transfer kinetics in molecular systems with reorganization of many
intramolecular high-frequency vibrational mode in solvents with several relaxation timescales. The
software provides simulation of the charge transfer kinetics in the molecular systems with many
electronic states involved in photochemical transformations. It also allows simulating the charge transfer
occurring in both equilibrium and nonequilibrium regimes. bsmKinetic is open-source software
distributed under the terms of the GPL without additional components. Software is implemented on
multiple computing platforms. It exploits Matsumoto and Nishimura source code for pseudorandom
number generator and a hierarchy of custom parallelization of the stochastic trajectories built on MPI.
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1. Introduction

Electron transfer as one of the most widespread reaction
in the nature plays a central role in many chemical, biological
and physical processes [1–6]. It can occur on timescale covering
huge area from seconds to few femtoseconds [7]. Such reactions
are of primary importance in the emerging areas of molecular
electronics, for example, dye/semiconductor systems applied
in dye-sensitized solar cells [6,8,9]. Intensive investigations of
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the thermal and photoinduced charge transfer kinetics by both
experimental and theoretical methods during last few decades
have led to deep understanding of the detailed mechanism of such
reactions [1,4,10–13].

Modern femtosecondUV–Vis transient absorption spectroscopy
provides possibility to explore ultrafast photoinduced processes
occurring in the excited electronic states. The data obtained in
transient absorption spectroscopymeasurements comprise a large
amount of potential information on the dynamics of the chemical
transformations. Indeed, ultrafast spectroscopic technique allows
observing many subtle details of ultrafast charge transfer. Among
them: nonexponential charge transfer kinetics [14–16], effect of
the excitation wavelength on the ultrafast charge recombination
dynamics of donor–acceptor complexes in polar solvents [16],
influence of intramolecular high-frequency vibrational mode ex-
citation on ultrafast photoinduced charge transfer and charge re-
combination kinetics [17]. These experiments clearly show that the
nonequilibrium of the nuclear subsystem in ultrafast photochemi-
cal processes can play a key role [17–22]. This requires the creation
of the theory of elementary photoinduced processes including an
explicit description of the processes of photoexcitation, probe, the
evolution of the nuclear subsystem, and the chemical dynamics oc-
curring in parallel with it. For this field of science this is especially
important because the quantitative interpretation of the results
obtained in the experiments is only possible within the framework
of certain models [3]. The fact is that the measured pump–probe
signal contains only indirect information on the dynamics of the
reactant and product populations because in the transient spectra
the chemical dynamics entangled with the intramolecular reorga-
nization and surrounding medium relaxation.

Theory which meets these challenges has to describe the
dynamics of a system with many degrees of freedom consisting
of the electronic and nuclear subsystems of the reactants and
products, as well as the surrounding solvent. One of the theories
pretending to qualitatively describe many features of the ultrafast
charge transfer kinetics is based on the multichannel stochastic
point-transition model [19,23–27]. In the base of this model lies
the Marcus concept of parabolic free energy surfaces constructed
in space of solvent polarization coordinates. Classical motion of
particles along these surfaces reflects reorganization of solvent
in the course of electron transfer and is fully characterized by
the solvent relaxation function that can be borrowed from data
of independent experiments [28]. The reorganization of several
(up to ten) intramolecular high-frequency vibrational modes is
included in the model. The molecular system is described in terms
of distribution functions along classical degrees of freedom for
every quantum state. The number of the distribution functions can
be as large as several thousands. Their evolution is determined by
the set of diffusion-like equations. The dimension of the space is
given by the number of the relaxation modes of the solvent and
typically lies in the interval 2–4.

In this paper we introduce a computer code, named
bsmKinetic to simulate ultrafast charge transfer kinetics in so-
lution within the multichannel stochastic point-transition model,
and which is being distributed under the terms of the GPL license
[29], as the individual software. In Section 2 a minimal theoretical
background is presented and some notations for the problem are
established. An algorithm implemented in bsmKinetic to simu-
late diffusion motion of the solvent, electronic transitions (surface
hoppings at electronic term intersections), vibrational relaxation,
internal conversion are described in Section 3. Description of files,
structure of source code, parallelization concept are presented in
Section 4.
2. Minimal theoretical background

For description of typical experiments on kinetics of photoin-
duced electron transfer in polar solvents, a model should include
several electronic states of the reactants and products, a num-
ber of the intramolecular high-frequency vibrational modes active
in electronic transitions, solvent and its interaction with the so-
lute as well as vibrational redistribution/relaxation of the system
[19,30]. Dynamics of a polar solvent are characterized by relaxation
function. The solvent relaxation function, X(t), can be written in
the form [31,32]

X(t) =

N
i=1

xie−t/τi ,

N
i=1

xi = 1, (1)

where xi and τi are the weight and the relaxation time constant,
respectively,N is the number of the solventmodes. Each summand
of the relaxation function Eq. (1) is associated with different
kinds of relaxation modes of the solvent. Every separate solvent
relaxation mode is described in the terms of a solvent coordinate
Qi.

In the terms of the solvent coordinates,Qi, a diabatic free energy
surface of an electronic state |q⟩ with its vibrationally excited
sublevels, can be written in the form [33]

U (n⃗)
q (Q) =

1
2

N
i=1


Qi −


2Eqr

rmi

2

+ ∆Gqr
+

M
α=1

nα h̄Ωα, (2)

where Q stands for the vector (Q1,Q2, . . . ,QN), Eqr
rmi = xiE

qr
rm is the

reorganization energy of the ith solvent mode, Eqr
rm and ∆Gqr are

the total reorganization energy of the medium and the free energy
change between the |q⟩ and reference |r⟩ states, respectively,
h̄Ωα ≫ kBT is the frequency of the αth intramolecular high-
frequency vibrational mode, kB and T are the Boltzmann constant
and the temperature, respectively, h̄ is the Planck constant, nα =

0, 1, 2, . . . is the quantum numbers of the αth high-frequency
mode,M is the number of high-frequency modes. The vector n⃗ is a
set ofM quantumnumbers (n1, n2, . . . , nα, . . . , nM). Each sublevel
is associatedwith a set of quantumnumbers. It is supposed that the
origins of the free energy and the coordinates, Qi, are placed at the
minimum of the reference state (|r⟩) term.

In the framework of the stochastic point-transition approach
[22,26,33], the time evolution of the system is described by the
equation for the probability distribution function for n⃗th sublevel
of the |q⟩ state, ρ(n⃗)

q (Q, t) [19],
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where L̂q is the Smoluchowski operators describing diffusion on the
U (n⃗)
q free energy surfaces,

L̂q =

N
i=1

1
τi


1 +


Qi −


2Eqr

rmi


∂

∂Qi
+ kBT

∂2

∂Q 2
i


. (4)

The model, Eq. (3), includes single-quantum irreversible
vibrational relaxation nα → nα − 1 proceeding with the rate
constant 1/τ (nα)

vα , where τ
(nα)
vα = τvα/nα , τvα is the vibrational

relaxation time constant [33]. The vector n⃗′
α differs from n⃗ only by

adding one vibrational quantum for the high-frequency αth mode
that is n⃗′

α = (n1, n2, . . . , nα + 1, . . . , nM).
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Transitions between vibrational sublevels of |q⟩ and |r⟩ states
are described by the Zusman parameters [19,28]

K n⃗m⃗
qr =

2π
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V qr
el
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δ
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, (5)
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Sqrα =
Eqr
rvα

h̄Ωα

, (8)

where Zqr
=

 
2Eqr

rmiQi and Zqr
# = Eqr

rm + ∆Gqr
+


nα h̄Ωα

are the reaction coordinate and the intersection points between
free energy curves along the reaction coordinate, respectively,
V qr
el is electronic coupling between |q⟩ and |r⟩ states, Eqr

rvα is the
reorganization energy of the αth vibrational mode, F qr

n⃗m⃗ and Sqrα

are the Franck–Condon and the Huang–Rhys factors, respectively.
The matrix Rn⃗m⃗

qr describes internal conversion. Usually internal
conversion occurs between locally exited states of the donor or
acceptor which can compete with ultrafast charge transfers. The
energy conservation law requires the condition U (n⃗)

q = U (m⃗)
r have

to be met for internal conversion.
To describe quantitatively the chemical and physical transfor-

mations, the qth term population, Pq(t), and a time-independent
effective rate constant are often used

k−1
q =

 t0

0
Pq(t)dt, Pq(t) =


n⃗


ρ(n⃗)
q (Q, t)


dQi (9)

where t0 is the time interval of the population reduction down
to minimal value (from 1% to 5%), which can be monitored in
experiments. The initial distribution function is determined by
the physical formulation of the problem. As a rule it is a thermal
distribution at the lowest electronic state of the donor term or it is
arbitrary distribution at the specified term, for example the excited
state can be prepared by a laser pulse.

In the classical problem of two-level thermal electron transfer,
the initial conditions can be written in the form

ρ(0)
p (Q, t = 0) = 0, (10)

ρ(0)
r (Q, t = 0) = Aexp


−

U (0)
r

kBT


, (11)

where A—the normalization factor, r and p are the reactant and
product stats, correspondingly.

In the study of photoinduced electron transfer, initial condition
of the excited state is formed by short laser pulse with the carrier
frequency ωe and the duration of excitation τe. The pump pulse is
assumed to be of the Gaussian form

E(t) = E0exp

iωet −

t2

τ 2
e


. (12)

The duration τe is short so that the solvent is considered to be
frozen during excitation. All high-frequency vibrational modes are
supposed initially to be in the ground state. The initial probability
distribution function of exited state can bewritten in the following
Fig. 1. Cuts in the free energy surface of the ground, first and second excited states,
and the CS state. The dashed lines are the vibrational sublevels of the CS, GS, and S1
electronic states. Reversible transitions are shown by double sided arrows. Solvent
relaxation is shown by single sided arrows. Vibrational relaxation is shown bywave
arrows.

general form [22]

ρ(n⃗)
e (Q, t = 0)

= APn⃗exp
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Pn⃗ =


α

(Segα )nα

nα!
exp


−Segα


, (14)

where A is the normalization factor, h̄δω(n⃗)
e = Eeg

rm + ∆Geg
−

nα h̄Ωα + h̄ωe, Pn⃗ is the Franck–Condon factor at the excitation
stage. In general a number of wave packets simultaneously appear
on different vibrational sublevels of the excited state.

At the end of this section we describe a model incorporating
the four electronic states with vibrational sublevels. The excitation
of the system from the ground state to the state S2 leads to
appearance of a wave packet in the vicinity of the S2 term bottom
(see Fig. 1). Further two competing processes proceed. The first is
the internal conversion S2 → S1 (not shown in Fig. 1) and the
second is the charge separation at the points of the term crossings
US2 = U (n⃗)

CS to populate the vibrational sublevels of the CS state
(dashed lines in Fig. 1). Next, the systems created in the CS state at
the termcrossing pointsmove to theU (n⃗)

CS termminimumdue to the
medium relaxation (straight single sided arrows in Fig. 1). During
the medium relaxation, the systems pass the crossing points of
the terms U (m⃗)

S1 and U (n⃗)
CS that results in hot transitions to the first

excited state S1 (curved double sided arrow in Fig. 1). In parallel
with the hot transitions the intramolecular vibrational relaxation
occurs that is imagined as vertical transitions between neighbor
sublevels (wavy arrow in Fig. 1).

Although, many features of experimental kinetics can be repro-
duce by using formal kinetic treatment nevertheless the stochas-
tic model provides considerable advantages. Firstly, the stochastic
model allows simulating the kinetics based on the known values
of the physical parameters of the system (reorganization energies,
free energy gaps, electronic couplings, vibrational frequencies,
dynamic parameters of the solvents and others) that can be deter-
mined in independent experiments. As a result, there are correla-
tions between the rate constants of different stages because they
are determined at least partly by the same parameters. Contrary
to this the formal kinetics consider the rate constants to be free
parameters. Secondly, the approach of formal kinetics is applica-
ble only when the reactions proceed in the kinetic mode, that is,
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the nuclear subsystem is close to its equilibrium state while the
stochastic model can describe even strongly nonequilibrium reac-
tions. This is especially important for ultrafast reactions that typi-
cally includes strongly nonequilibrium stages.

3. Algorithm

A set of the probability distribution functions ρ
(n⃗)
q (Q, t) plays

the central role in the considered problem. The function ρ
(n⃗)
q (Q, t)

allows calculating different physical characteristics of practical
interest, for example: state populations, quantum yields, reaction
rate constants. The description of the ensemble evolution can be
given in the terms of Brownian particle packet. Motion of a particle
is characterizes by a stochastic trajectory. It can be calculated by
using the stochastic algorithm [34]. In what follows we describe
each process included in Eq. (3) in detail.

3.1. Diffusion

At the base of the stochastic algorithm lies the Green’s function
Gq(Q, t, |Q0) =


i Gq(Qi, t, |Q0i) which describes an evolution of

particle distribution on the parabolic term U (n⃗)
q . It is the solution of

the one-dimensional diffusion equation L̂qiGq(Qi, t, |Q0i) = 0 with
the initial condition Gq(Qi, t = 0, |Q0i) = δ(Qi − Q0i)

Gq(Qi, t, |Q0i) =
1

2πσ 2
i (t)

exp

−

(Qi − Mi(Q0i, t))2

2σ 2
i (t)


, (15)

Mi(Q0i, t) =


2Eqr

rmi + (Q0i −


2Eqr

rmi)e
−t/τi , (16)

σ 2
i (t) = kBT


1 − e−2t/τi


. (17)

Wehavepresented thediffusiondescription based on thedistri-
bution functions. There is an alternative but equivalent description
in the terms of Langevin equation that deals with stochastic trajec-
tories known also as the Brownian trajectories. The Green function
Eq. (15) allows connecting these two approaches. Since the packet
conserves the Gauss formunder the evolution on the parabolic sur-
face with the mean value for ith coordinate,Mi(Q0i, t), and the dis-
persion, σi(t), the Brownian trajectory is [34]

Q (k+1)
i = Mi(Q

(k)
i , ∆tk) + σi(∆tk)X (k), (18)

where ∆tk = tk+1 − tk is a small time interval, Q (k)
i is a particle

coordinate on kth time step, X (k) is the Gaussian random number
with zero mean value and unit dispersion.

3.2. Transitions

A particle on the kth step can change its state due to hopping
between electronic terms, vibrational relaxation, and internal
conversion. The survival probability for each type of transitions is
calculated by the equation

S(tk+1) = exp

−

 tk+1

tk
K


t ′

dt ′


, (19)

where K (t) can be one of the next rates K n⃗m⃗
qr (Zqr(t)), 1/τ (nα)

vα , Rn⃗m⃗
qr .

3.2.1. Hoppings
Calculating the integral in Eq. (19) with K (t) = K n⃗m⃗

qr (Zqr(t)),
the survival probability for single crossing is written in the form
[22]

Sh(tk+1) = exp

−

2π(V qr
el )

2F qr
n⃗m⃗∆tk

h̄(Zqr
k+1 − Zqr

k )


. (20)
Obviously, a particle passes through term crossings on the kth step
if the condition Zqr

# ∈ (Zqr
k , Zqr

k+1) is met. The total number of the
crossings between two electronic terms can be very large because
of manifold of the vibrational sublevels. To find a set of crossings
for ∆tk interval (so called kth set) a binary search algorithm is
used. Since the total probability of electronic transitions at the
kth step is small, it is the sum of the probabilities of transitions
into specific states. In this case the single term intersection from
the set can be randomly selected. To simulate a hopping event a
random number χ of uniform distribution on the interval [0, 1] is
compared with the hopping survival probability Sh. If Sh < χ then
the particle turns on the other term, else the crossing is randomly
selected again. The number of repetitions cannot exceed the size
of the kth set. As well transitions between multiple electronic
states |q⟩ → |r⟩, where q is fixed and r = 0, 1, . . . ,N , can be
realized by the N repetition of a random selection of the pairs
(q, 1), (q, 2), . . . , (q,N).

3.2.2. Vibrational relaxation
The particle in an excited vibrational sublevel with the energy

U n⃗′

q , has a non-zero probability of transition to the lower sublevel
with the energy U n⃗

q . Using K(t) = 1/τ (nα)
vα , the survival probability

of a particle with αth quantum on the kth step is calculated by

Sv(tk) = exp

−

nα∆tk
τα


. (21)

The αth value is randomly selected from the vector n⃗′
=

(n1, n2, . . . , nα + 1, . . . , nM) M times. A simulation of vibrational
transition to the lower sublevel determined by the vector n⃗ =

(n1, n2, . . . , nα, . . . , nM) includes a generation of a new χ and
comparison Sv < χ .

3.2.3. Internal conversion
Internal conversion can play important role in photochemical

processes. It is included in the stochastic algorithm as a particle
transition from U n⃗

q to U m⃗
r that is possible at the following condition

U n⃗
q ≥ U m⃗

r . This procedure is applicable for transitionswith Eqr
rm = 0.

Using K(t) = Rn⃗m⃗
qr = 1/τ qr

IC , the conversion survival probability of
a particle is calculated by

Sc(tk) = exp

−

∆tk
τ
qr
IC


, (22)

where τ
qr
IC is the internal conversion time constant. Simulation of

internal conversion event consists of a generation of new χ and
comparison Sc < χ .

3.3. Summary

Assuming all of the above processes are independent of each
other, the type of particle transition has a random character.
General algorithm for N particles is:

1. The particle state {Q, q, n} on the current time step is deter-
mined.

2. The new particle coordinates Q are calculated (see Section 3.1).
3. The (q, r) pair is played out and the reaction coordinate Zqr is

calculated.
4. The transitions are played out (see Section 3.2).
5. Repeat items 3, 4 N times.
6. Go to the next time step.

The distribution on a sublevel, ρ(n⃗)
q (Q, t), is formed by a large

set of particles. Initialization of the state {Q , q, n} in zero time is
performed by a random number generation with the distribution
from Eq. (11) or (13).
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4. Description and usage of software

4.0.1. Files

Amodel of charge transfer from the second excited state is used
to illustrate the possibilities of the software. The model involves
four electronic states as well as their vibrational sublevels and
transitions between them (see Fig. 1). The model is rather realistic
and is able quantitatively describe complex nonequilibrium
dynamics observed in the electron transfer from the second excited
state in Zn–porphyrin–imide dyads [26].

The executable file bsmKinetic performs the stochastic
simulation and calculates the kinetics. The configuration file
has text format and arbitrary name. This name is a single
argument to the program. If the argument is not specified, the
program generates a configuration example and runs it. This
example contains a model incorporating four electronic states
(the first and the second singlet excited, the charge separated,
and the ground states) as well as their vibrational sublevels
for the computation of kinetics of the charge separated state
population. The kinetics of all four electronic state is written to
bsm_term_populations.txt. The first column is the current
time, the second and following columns are the term populations.
The term numeration is specified from 0 to 3 (0—the second
singlet excited, 1—the first singlet excited, 2—the charge separated
state, 3—the ground states). The kinetics of vibrational sublevels
of term i is written to bsm_subterms_of_term i .txt The
information about the simulation progress and the rate constant
Eq. (9) for the each state are written to bsm_kinetics.txt.
Information about vibrational quanta of the first thousand of
vibrational sublevels for a set of vibrational modes is written
to bsm_subterm_structure_of_term i.txt (i runs from 0
to 3 in accordance with the term numbers). Information about
the current state of the particles is written to the binary file
bsm_state_of_particles. It is used to continue the system
evolution and kinetics calculation. The file names generated by the
program have a suffix in the form _rvi_id j (i is the number of the
record version, j is the process identifier).

4.0.2. Structure of the configuration file

The configuration file contains groups in which the model
parameters are initialized. Any group name begins with the
character $ and the group name is written with the capital letters.
All groups in the file must be terminated by the keyword $END.
Order of the groups is arbitrary. The group parameters are set
in the following format, keyword = value. If a parameter is an
array consisting ofN elements, then the format keyword is [value1,
value2, . . . , valueN]. All keywords are case sensitive.

In the $MAIN group the dimension of the calculation space is
determined. In the considered example the mandatory keywords
are numModes_c for the number of solvent modes, numModes_v
for the number of vibrational modes, numTerms for the number of
electronic terms, numPairs for the number of term pairs between
which there is an interaction,numParticles for the total number
of the particles, numTimeLayers for the number of the time
layers, timeStart and timeEnd for the time interval of the
electron transfer evolution.

The type of numbered groups, $GROUPNAME i, appears in the
configuration file. The index i runs from 0 to N − 1, where N
is the number specified in the $MAIN group. The group $MAIN
involves the keyword numModes_c = 3. The configuration
file must contain $MODE_C0, $MODE_C1 and e.t.c. Similarly, the
other groups appear. For DMF solution, the weights and relaxation
time constants are [35] x1 = 0.508, x2 = 0.453, x3 =

0.039, τ1 = 0.217 ps, τ2 = 1.70 ps, and τ3 = 29.1 ps. In
$MODE_C i group the keywords x and tau are the ith weight
and ith time relaxation constant. Intramolecular reorganization
of phenylcyclopropane/tetracyanoethylene complex involves 5
active vibrationalmodes [26]. In the$MODE_Vi group the keywords
x,tau,omega,numQuantaMax, are the ithweight, time relaxation
constant, vibrational frequency (in the energy units) and the
maximum number of the vibrational quanta. In the $TERMi group
the keywords DeltaG and Erm ≥ 0 specify the free energy
change and the total reorganization energy of the relaxationmodes
relatively to the reference term. For convenience, the reference
term can be determined by the conditions DeltaG = 0 and
Erm = 0. In the example considered the reference term is S2.
The term positions are recalculated for each connected pair terms.
In $PAIR i group the keyword-array termsNo determines the
indexes of the terms constituting a pair. If there is a pair intersected
terms and interaction between them then electronic coupling Vel
keyword must be larger zero. If levels are not intersected then the
tau keyword can be larger zero to specify internal conversion.
Franck–Condon factors for a pair of terms are specified by the
vibrational reorganization energy and its distribution among the
vibrational modes through the keyword Erv. The $SUBTERMS i
group is associated with ith term. It is not mandatory, but both
keywords isExistence, mcfLimiter reduce the number of
subterms to accelerate calculation. For example [26], the term S2
does not contain the subterms and keyword isExistence = 0.

The initial distribution parameters are defined in unnumbered
group $INITDISTR_THERMAL. The keyword Erm specifies the
thermal distribution (see Eq. (11)) on the term defined by the
keyword termNo. Alternatively, the initial distribution can be
created on an arbitrary term by setting the pumping parameters
in a group $INITDISTR_PUMP. The keyword pairNo is an index
for pair which contains Eqr

rm, E
qr
rv , ∆Gqr . The keywords x_c and x_v

are arrays of values that specify the ith parts Eqr
rm, E

qr
rv to classical

and vibrational modes in the pumping process. The pump pulse
parameters are set by keyword tau and omega. Note these groups
are mutually exclusive.

The additional parameters governing time of simulation are in-
cluded in the group $KINETICS. The keyword numSTimeLayers
specifies the number of saved time layers to calculate and save
populations. This key is need to reduce total time required for cal-
culations average values of populations.

4.0.3. Structure of source code

bsmKinetic code is based on classes. Some classes are
associated with physical objects of the electron transfer model.
For example classical and vibrational modes are described in
classes Mode_c, Mode_v. Pairs, terms and subterms are described
in the classes with the same names. The most of the names of
the class fields have the names similar to the group parameters
in the configuration file. The class Particles incorporates
methods which realize the algorithms of diffusion motion and
transitions. All information about physical model from these
classes is accumulated in the class Environment. The method
evolve of the Environment class realizes cycle by time
layers and accepts references to objects of classes Particles
and Calculator. Abstract class Calculator contains virtual
method compute that accepts index of time layer and references
to class object of Particles. It can provide an alternative
implementation for the some problems. In this source code
the class CalculatorKinetics is a child of Calculator. Its
method of compute both the population and rate constant.
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4.0.4. Parallelization

Source code of bsmKinetic uses Message Passing Interface
(MPI). The total number of particles is divided per processes in
accordance with the specified weights in the configuration file. By
default the number of the particles per a process is distributed
uniformly. Data exchange between the host and the rest of the
processes occurs in end of calculation.

To avoid correlation of random numbers between processes
Mersenne Twister pseudorandomnumber generator (PRNG) in the
realization of M. Matsumoto and T. Nishimura is used [36]. A seed
of PRNG can be defined manually by in group $MAIN through
keyword seed is equal to any integer value. If seed is equal to
−1 then seed is calculated in two steps. First step, PRNG from
the library <cstdlib> is initialized by using the current time.
Second step, seeds of Mersenne Twister is initialized by formula
(id+1) · rand(), where id is the identifier of the processes.

5. Comparison with an analytical solution and the gridmethod

To show the correctness of the algorithms used and their
realization in the code the population dynamics obtained with
stochastic simulations are compared with an exact analytical
result. For a two-level system in a solvent with single relaxation
mode and the relaxation time τ that described by the equations

∂ρr

∂t
= L̂rρr −

2πV 2
n

h̄


ρr − ρ(n)

p


δ(Ur − U (n)

p ), (23)
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∂t
= L̂pρp +

2πV 2
n

h̄


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p


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p ) −
ρ

(n)
p

τ
(n)
v

, (24)

V 2
n = V 2

el
Sne−S

n!
, (25)

ρr(t = 0,Q ) = Aexp

−

(Q −
√
2Erm)2

2kBT


, (26)

the non-thermal transition probability,WNT, after the wave packet
passing through the term intersection has been analytically
calculated [37].

Eq. (27) is an exact analytical solution for the two-state model
described by Eqs. (23)–(26) provided the wave packet has totally
passed the sink and the thermal transitions do not occur. These
conditions determine the choice t = 5τ . This guarantees that the
tail of the wave packet above the sink is negligible and the role
of the thermal transitions is minor. A variation of t around the
selected value 5τ has a minor effect on the results.

WNT =
2πV 2

n

Ar (1 + g)
(27)

where

g = 2πV 2
n


1
Ar

+
1

|Ap|fv


, fv =


1 +

8ErmkBT

ττ
(n)
v A2

p

1/2

,

Ar = (∆G + nh̄Ω + Erm)/τ , Ap = (∆G + nh̄Ω − Erm)/τ .

With the initial conditions Eq. (26), the wave packet practically
totally passes the term intersection within time 5τ therefore the
reactant population, Pr(t = 5τ), is compared with the quantity
1−WNT as a function of the electronic coupling for fewvalues of the
vibrational relaxation time, τv. Calculation are performed with the
following parameters: Erm = 1.0 eV, ∆G = 0.0 eV, Erv = 0.3 eV,
h̄Ω = 0.1 eV, τ = 1 ps, n = 2. Results of the calculations are
presented in Fig. 2 that demonstrates a good correlation with the
analytical result equation (27).
Fig. 2. Plot of survival probability of reagent, 1 − WNT , as a function of the
electronic coupling for several values of the vibrational relaxation time, considering
the second vibrational sublevel of the product. The stochastic simulation is pictured
with signs +, the exact analytical result is presented by the solid lines. The
parameters are: Erm = 1.0 eV,∆G = 0.0 eV, Erv = 0.3 eV, h̄Ω = 0.1 eV, τ = 1.0 ps;
(1) τv = 0.05 ps, (2) τv = 0.15 ps, (3) τv = 0.5 ps, (4) τv = 1000.0 ps.

Fig. 3. The time dependence of the product populations for several vibrational
sublevels: 0, 1, 2, 3, 4, 5. The stochastic simulation is pictured with signs +, the
grid method is presented by the solid lines. The parameters are Vel = 0.01 eV,
Erm = 1.0 eV, ∆G = −0.5 eV, Erv = 0.3 eV, h̄Ω = 0.1 eV, τ = 1.0 ps, τv = 5.0 ps.

The described comparison is only relevant to the population
kinetics of the reactant. To check the correctness of the product
kinetics calculation the set of Eqs. (23), (24) has been solved by
using the explicit grid method. Finite difference scheme for these
equations can be written as follows
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B (Q ∉ [0, ∆Q )) = 0, (32)
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Table A.1

key Type Valid value Default value Description

$MAIN

numParticles integer [10, 2 · 109] The number of particles in a simulation.
particleWeights real, array >0.0 [1.0/N ,

1.0/N, . . . , 1.0/N]
The weights of particles for simulation processes. Array size is N , where N is
the number of program processes.

timeStart real ≥0.0 Initial time of a simulation.
timeEnd real >timeStart Final time of a simulation.
numTimeLayers integer ≥10 The number of time layers for a simulation.
numModes_c integer ≥1 The number of classical relaxation modes.
numModes_v integer ≥1 The number of quantum vibrational modes.
numTerms integer ≥2 The number of parabolic terms.
numPairs integer ≥1 The number of pairs of coupling terms, between which electronic transitions

are possible.
hbar real >0.0 6.58211928 · 10−4 ,

eV ps
Plank’s constant.

kb real >0.0 8.6173303 · 10−5 ,
eV · K−1

Boltzmann constant.

T real >0.0 300.0 Temperature.
isNewCalculation integer 0 or 1 1 Specifies a mode of calculation, if value = 1 then initial distribution of

particles is generated again, if value = 0 then initial distribution of particles
is initialized by the previous calculation.

recordVersion integer ≥0 0 A number that will be appended to the file name, if value = 0 then
*_rv0000.txt, if value = 3 then *_rv0003.txt.

seed integer ≥ − 1 −1 Seed for initialization of PRNG. If value = −1 then initialization depends on
system time.

$MODE_C

x real [0.0, 1.0] Weight of the solvent mode.
tau real >0.0 Relaxation time.

$MODE_V

x real [0.0, 1.0] Weight of the vibrational mode.
tau real ≥0.0 Relaxation time.
omega real >0.0 The frequency in the energy units.
numQuantaMax integer [0, 20] The maximum number of quanta of the vibrational mode.

$TERM

DeltaG real ≤0.0 The change in free energy of an electronic term with respect to the reference
term. If value = 0 then this term is reference one.

Erm real ≥0.0 The total reorganization energy of an electronic term with respect to the
reference term. If value = 0 then this term is reference one.

$PAIR

termsNo integer,
array

[0, numTerms-1] The indexes of an electronic terms which form a pair. Array size is equal to
two.

Vel real ≥0.0 The electronic coupling between the terms.
Erv real ≥0.0 The total reorganization energy of high-frequency vibrational modes.
tau real ≥0.0 0.0 Internal conversion time.
irTermNo integer [-1, numTerms-1] −1 The index of the term with irreversible reaction. If the value = −1 then the

reaction is reversible one.

$SUBTERMS

mfcLimiter real ≥0.0 10−9 Subterm associated with the quantum modes is excluded from the manifold,
if the product of the Franck–Condon factors of these modes is less than
mfcLimiter.

rangeSubterms integer,
array

≥ − 1 [−1, −1] Range of subterms. For example, if the range is [0, 3] then the term includes
only 4 subterms from 0 to 3, if the range is [−1, −1] then number of
subterms is defined by mfcLimiter.

rangeTransits integer,
array

≥ − 1 [−1, −1] Range of the subterms whose the Franck–Condon factors in the transition
point are calculated. The subterms out of the range have the Franck–Condon
factors which are equal to 0. For example, if the range is [−1, −1] then all
subterms are active. If range is [1, 1] then from all subterms only subterm 1 is
active in point-transitions.

$INITDISTR_THERMAL

termNo integer [0, numTerms-1] Index of an electronic term with the initial thermal distribution.
Erm real ≥0.0 The mean value of the initial Gauss distribution is specified by the shifts√

2xiErm, the thermal distribution is shifted from its equilibrium position.

$INITDISTR_PUMP

pairNo integer [0, numPairs-1] The index of a pair of the terms involved in the excitation by a pump pulse.
termNo integer [0, numTerms-1] The index of the high

term from a pair
with index pairNo.

The index of the term in the pair where the initial distribution is formed.

tau real >0.0 Duration of the pump pulse.
(continued on next page)
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Table A.1 (continued)

key Type Valid value Default value Description

omega real >0.0 The carrier frequency of the pump pulse in the energy units.
x_c real, array [0.0, 1.0] Values are specified

by $MODE_Ci.
Weights of component of the reorganization energy of solvent. The array size
is equal to numModes_c.

x_v real, array [0.0, 1.0] Values are specified
by $MODE_Vi.

Weights of high-frequency vibrational mode in the total reorganization
energy. The array size is equal to numModes_v.

$KINETICS

numSTimeLayers integer [1, numTimeLayers] The number of time layers to save the populations of the terms and subterms.
numPrintSubterms integer,

array
[1, 100] [5, 5, . . . , 5] Array size is equal to numTerms. The array elements are the numbers of the

subterms whose population is written to the file. The array index is
associated with the index of the electronic term and is included in the file
name.
where the Dirac delta function is approximated by B(Q ). Boundary
conditions are ρk

0 = ρk
1 , ρ

k
N = ρk

N−1, where N is the number of
spatial steps.

Calculation are performed with the following parameters: the
spatial range of integration is equal to Erm = 1.0 eV, ∆G =

−0.5 eV, Vel = 0.01 eV, Erv = 0.3 eV, h̄Ω = 0.1 eV, τ = 1 ps,
τv = 5 ps. The population kinetics of the product are showed in
Fig. 3 for several vibrational sublevels by solid lines. The results of
stochastic simulation presented also in Fig. 3 by signs demonstrate
excellent coincidence with the grid method.

So, all keys processes implemented in the code have been
checked that strongly evidences the code correctness.

6. Concluding remarks

In this work we have presented the bsmKinetic code, that
implements the stochasticmultichannel point-transition approach
to simulate charge transfer kinetics in solutions. A detailed de-
scription of the use of the code has been provided considering the
example of intramolecular photoinduced electron transfer from
the second electronic excited state of Zn–porphyrin to imide. The
bsmKinetic is applicable to the description of the thermal and
photoinduced charge transfer kinetics in systems with the reorga-
nization of many intramolecular high-frequency vibrational mode
in solvents with several relaxation timescales. It provides simula-
tion of the kinetics in the molecular systems with many electronic
states involved in photochemical transformations. Software allows
simulating the electron transfer occurring in both equilibrium and
nonequilibrium regimes. The nuclear nonequilibrium can be cre-
ated by both pumping pulse and reaction itself.

The model used has some limitations. The first is connected
with the classical description of the solvent fluctuations so that
their frequency have to be rather low that requires the inequality
h̄/τi ≪ kBT to be fulfilled for each solvent relaxation mode. The
second limitation of the model is caused by description of the
vibronic states in terms of populations. This description ignores the
quantum coherence and, hence, is applicable if only the electronic
coherence lifetime, τc, is much shorter than the reaction time
constant, 1/ket. This results in the inequality h̄/

√
2ErmkBT ≪ 1/ket

[27]. The inequality is met if the electron-solvent interaction is
strong and the temperature is high. For Erm = 1 eV and the
room temperature this leads to the inequality ket ≪ 1014 s−1. The
third limitation is connected with the usage of the diabatic basis. It
requires the electronic couplings to be small. Roughly this results
in the condition Vel < kBT [38].

In the current implementation the parabolic approximation of
the electronic terms are used. This limitation will be eliminated
in future releases. The bsmKinetic is hosted in Volgograd State
University home page and hence is accessible to all who are
willing to get preliminary estimations of the results of planned
experiments.
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