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a b s t r a c t

We present in detail two variants of the lattice Monte Carlo method aimed at tackling systems in external
trapping potentials: a uniform-lattice approach with hard-wall boundary conditions, and a non-uniform
Gauss–Hermite lattice approach. Using those two methods, we compute the ground-state energy and
spatial density profile for systems of N = 4–8 harmonically trapped fermions in one dimension. From
the favorable comparison of both energies and density profiles (particularly in regions of low density),
we conclude that the trapping potential is properly resolved by the hard-wall basis. Our work paves the
way to higher dimensions and finite temperature analyses, as calculationswith the hard-wall basis can be
accelerated via fast Fourier transforms; the cost of unacceleratedmethods is otherwise prohibitive due to
the unfavorable scalingwith system size. To illustrate this point, we showa brief performance comparison
of accelerated versus unaccelerated methods across spatial dimensions.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The quantum Monte Carlo method has been around for nearly
as long as modern computers (see e.g. Refs. [1–3] for reviews).
By far, most calculations that use that method, from condensed-
matter and ultracold-atom systems to quantum chromodynamics,
are performed in uniform lattices with periodic boundary condi-
tions. This approachmakes sense inmost of those cases, as the aim
is to describe nearly uniform systems, which are such that periodic
boundary conditions minimize finite-size effects. However, this is
not always a good approximation in the case of ultracold atoms,
where the optical trapping potential plays a central role in experi-
ments and dictates the many-body properties of the system [4–6].
It is therefore essential to include a harmonic trap in realistic calcu-
lations. As a result of this inclusion, translation invariance is broken
andplanewaves on a uniformperiodic lattice are no longer the nat-
ural basis of the system. Indeed, in the presence of a trap, momen-
tum ceases to be a good quantumnumber.Moreover, the boundary
conditions of the true harmonic oscillator are not at all periodic; in
fact, implementing periodicity would result in undesirable copies
of the harmonic potential across the boundaries (see Fig. 1).

To resolve the above issues, we attempted in Ref. [7] to use the
natural coordinate-space lattice of the harmonic oscillator, namely
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the Gauss–Hermite points and weights of Gaussian quadrature
methods. The dual basis in this case is of course that of harmonic-
oscillator wavefunctions. Although such a non-uniform lattice is
physically and mathematically attractive, it is not efficient from
the computational standpoint: the scaling with the system size
is prohibitive in more than a single spatial dimension, and there
appears to be no simple way to accelerate those calculations as
Fourier transforms do for uniform lattices (there are, however, pos-
sible routes via non-uniform fast Fourier transforms [8]).

In this work, we carry out a test of a methodological com-
promise between the choices mentioned above: we return to the
uniform-lattice basis, but implement it with hard-wall boundary
conditions (i.e. an infinite square-well potential). The latter pre-
vent the appearance of spurious copies of the harmonic potential
across the boundary, while at the same time allow for Fourier ac-
celeration (with a small, sub-leading cost of linearly combining the
results of Fourier transforms). As a proof of principle, we compute
properties of trapped 1D fermions, namely the ground-state en-
ergy and density profiles, and compare with calculations in the
non-uniform basis. Although much is known about fermions in 1D
in uniform space [9], most previousworks have combined the clas-
sic Bethe-ansatz solution with the local-density approximation in
order to treat trapped systems [10–16]. (See however Refs. [17–19]
for exact-diagonalization approaches.) Our goal here, in contrast,
is to design a more general Monte Carlo method to account for the
trapping potential in an ab initio fashion, which we could apply in
higher dimensions. We show that this is possible and that Fourier
acceleration methods make such calculations feasible.
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Fig. 1. Schematic view of a harmonic potential in a one-dimensional box with periodic boundary conditions (dashed lines) as contrasted with the same potential but with
hard-wall boundaries (region 0 < x/L < 1; solid line). The hard-wall potential itself is shown with dashed–dotted lines.
2. General overview of the methods

Our calculations explore the properties of a system of N non-
relativistic, equal-mass, SU(2) fermions in one spatial dimension
under the influence of an external harmonic potential V0(x) =

(1/2)mω2x2 with mass m and trap frequency ω. We take the par-
ticles to have dispersion ε(p) = p2/(2m) and to interact via an
attractive, pair-wise, short-range potential. Specifically, we study
the Hamiltonian Ĥ written

Ĥ = T̂ + V̂0 + V̂ (1)

where T̂ is a one-body kinetic energy operator, V̂0 is coupling to our
static background, and V̂ is the interparticle potential. Throughout,
we work in units where kB = h̄ = m = 1.

In both approaches, we place our system on a discrete
space–time of dimensionless size Nx × Nτ . Where we em-
ploy simple harmonic oscillator basis states, the system has no
well-defined physical volume, and as a result, the length and mo-
mentum scales are set by the frequency ω. Further, for these cal-
culations we choose a nonuniform lattice spacing to be described
in detail below. By contrast, studies performed in the square-well
basis are endowed with a natural volume, and in this instance, we
work with a uniform spatial lattice of size L = Nxℓ, taking ℓ = 1
throughout to fix the relevant scales. Although the details of the
spatial discretization differ between the two approaches, the tem-
poral lattice is uniform and of dimensionful extent β = Nτ τ .

We begin, in each method, with a trial state |Ω⟩ and obtain the
many-body, ground-state expectation value of an operator Ô via
large-imaginary-time projection. Specifically, for eigenfunctions
|En⟩ of Ĥ and assuming ⟨E0|Ω⟩ is nonvanishing, it follows from
completeness that

Oβ ≡
⟨Ω(β/2)|Ô|Ω(β/2)⟩
⟨Ω(β/2)|Ω(β/2)⟩

β→∞

−−−→ ⟨E0|Ô|E0⟩, (2)

where

|Ω(τ )⟩ = Û(τ , 0)|Ω⟩, (3)

andwherewe have defined the imaginary-time evolution operator

Û(τb, τa) = e−(τb−τa)Ĥ . (4)

Our representation of each operator comprising Ĥ given in Eq.
(1) is method-specific, and the details of the lattice Monte Carlo
(MC) technique are in each case intuitively tied to our choice
of basis. In both of the methods discussed below, we partition
the Hamiltonian into two noncommuting operators Ĥ = Ĥ0 +

∆Ĥ , approximating the typical MC projectors via a symmetric
Suzuki–Trotter (ST) decomposition in order to isolate a single-
particle piece Ĥ0 whose exponential we can explicitly diagonalize.
In the non-uniform basis method, Ĥ0 = T̂ + V̂0 (diagonal in
harmonic-oscillator space),whereas in the uniformhard-wall basis
we take Ĥ0 = T̂ (diagonal in momentum space). Generically, we
approximate each factor comprising the evolution operator as

exp

τ


Ĥ0 +∆Ĥ


= exp


−
τ

2
Ĥ0


exp


−τ∆Ĥ


× exp


−
τ

2
Ĥ0


+ O(τ 3) (5)

for small τ .
In both cases, the factors involving Ĥ0 are implemented in diag-

onal form, but in order to tackle the central factor, we implement
a Hubbard–Stratonovich (HS) transformation [20,21] to decouple
the central two-body observable. Schematically, we write

exp

−τ∆Ĥ


=


Dσ(x, τi) exp


−∆Ĥσ(i)


(6)

for each point on the imaginary-time lattice where we have intro-
duced a spatially fluctuating HS auxiliary field σ(x, τi) and a col-
lection of one-body operators∆Ĥσ(i). Gathering the path integrals,
wemaywrite the composite evolution operator as an integral over
a (now space–time varying) field as

Û(β, 0) =


Dσ(x, τ ) M̂σ + O(τ 2) (7)

where

M̂σ =

1
i=Nτ

exp

−
τ

2
Ĥ0


exp


−∆Ĥσ(i)


exp


−
τ

2
Ĥ0


. (8)

Application of the matrices M̂σ for a each configuration of the
HS field constitutes a sizable component of the calculation, and
by repeatedly switching between two separate bases, the ac-
tion of each factor is computed using its diagonal represen-
tation. The above sequence of transformations (Trotter–Suzuki,
Hubbard–Stratonovich) leads to the path-integral representation
of Oβ , which we evaluate using Metropolis-based Monte Carlo
methods, in particular hybrid Monte Carlo [22,23]. Further de-
tails are presented below, and for a more complete discussion see
Refs. [1–3].

3. Specific technical aspects of the methods

3.1. Non-uniform lattice method

Through its connection to Gaussian quadrature methods
[24,25], this partition of the Hamiltonian, or equivalently the
choice of which basis functions to use in the above-mentioned
diagonization, provides a natural lattice geometry. Specifically, the
need to resolve the chosen basis states, as well as projections
onto them, with high precision motivates a prudent choice of
not only the orbitals themselves but also of the integration



C.E. Berger et al. / Computer Physics Communications 208 (2016) 103–108 105
method. Expanding a generic trial state demonstrates immediately
that in order to guarantee faithful resolution of this state
in terms of single-particle orbitals, it is sufficient to ensure
that the orthonormality of the basis is preserved. We perform
our calculations in each case on the lattice corresponding to
a quadrature appropriate to the basis at hand. In this way,
we maintain exactly the orthonormality of the single-particle
wavefunctions and the fidelity of our computations expressed
thereby.

Written entirely in position space, we have the kinetic energy
operator

T̂ =


s=↑,↓


dx ψ̂Ď

s (x) ε

1
i
∂

∂x


ψ̂s(x) (9)

expressed via field operators ψ̂s(x) and ψ̂
Ď
s (x) for a state specified

by position and spin quantum numbers (x, s), as well as the two-
body contact interaction

V̂ = −g


dx n̂
↑
(x)n̂

↓
(x) (10)

given in terms of the density operators n̂s = ψ̂
Ď
s ψ̂s with

nonnegative bare coupling g and the static background potential

V̂0 =


s=↑,↓


dx V0(x) n̂s(x). (11)

As described in Ref. [7], a convenient basis is the set of single
particle orbitals αk(x) satisfying

−
∂2

∂ξ 2
+ ξ 2


αk = (2k + 1)αk (12)

for dimensionless variable ξ =
√
ωx and nonnegative integer k,

corresponding to the harmonic oscillator (HO). Expanding the field
operators in terms of creation and annihilation operators bĎk,s and
bk,s corresponding to HO quantum numbers (k, s) as

ψ̂ (Ď)
s (x) =

∞
k=0

αk(x)b̂
(Ď)
k,s , (13)

we diagonalize the first two summands comprising Ĥ as

T̂ + V̂0 =


s=↑,↓

∞
k=0

ω


k +

1
2


b̂Ďk,sb̂k,s. (14)

Using this diagonal form, we perform the calculations using the
nonlinear lattice (described below) by implementing the operator
given in Eq. (14), in HO space, the remaining contact interaction
V̂ in position space, and switching between throughout the
application of Eqs. (7), (8). In order to efficiently represent the
HO single-particle orbitals αk(x) in coordinate space, we place
the system on a lattice corresponding to Nx Gauss–Hermite (GH)
integration points xi (with associated weights wi > 0) in lieu
of the more conventional uniform discretization associated with
calculations performed using a basis of momentum eigenstates.

Indeed, a real-valued function f (x) sampled on an n-site GH
lattice may be numerically integrated (see Refs. [25,24]), often to
exceptional accuracy, via

∞

−∞

dx f (x)e−x2
=

n
i=1

wif (xi)+
n!

√
π

2n (2n)!
f (2n)(ζ ) (15)

with weights

wi =
2n−1n!

√
π

n2 [Hn−1(xi)]2
, (16)
for real ζ , and where the values xi are determined by the roots
of the nth order Hermite polynomial Hn(x). These conditions are
derived by requiring the sum in Eq. (15) to exactly reproduce the
desired integral when the function f is taken to be a polynomial
of degree deg f < 2n. By choosing to represent our system in
coordinate space on a Nx-site spatial lattice, we maintain exactly
that the first Nx HO orbitals form an orthonormal set.

3.2. Uniform lattice with hard-wall boundary method

Although the previous approach is attractive in its elegant
preservation of system’s underlying structure even after dis-
cretization, its scaling, particularly in comparison to conventional
Fourier-accelerated MC approaches (see Refs. [26,27]), places dis-
couraging limits on this method’s applicability vis-à-vis higher di-
mensional systems. In any dimension, the scaling is determined
by the computational cost of matrix–vector operations, which
naively scales quadratically in the lattice volume, that is O(V 2) for
V = Nd

x . Accelerated calculations using a uniform lattice, how-
ever, achieve scaling as benign as O(V ln V ) [7]. Additionally, the
Fourier-transform basis is naturally orthonormal on a uniform lat-
tice making it all the more appealing.

Computational cleverness and simplicity aside, the basis
functions associatedwith conventional uniform-lattice techniques
exhibit boundary conditions that differ dramatically from those
characterizing eigenstates of the system at hand. For any
finite system size, decomposition in periodic functions fails to
capture the required asymptotic behavior, specifically that the
density must be localized in space and must eventually vanish
monotonically as the distance from the trap’s center grows.
Although they do not exhibit the same type of decay and despite
being compactly defined, the eigenfunctions corresponding to
the infinite square well (SW), that is a system confined by a
hard-wall (HW) trapping potential, do vanish at the system’s
boundaries. Further, even though the GH lattice is defined to
represent functions defined on the entire real line, for any finite
lattice size, it inevitably fails to capture effects coming from
the long-distance tails where the discrete representation of the
function is no longer supported. Judicious use of this technique
circumvents the problem almost entirely, as these omissions are
minimal when the function of interest is localized near the origin.

In light of the above, we propose studying a harmonically
trapped gas using a large uniform lattice, in the sense that L

√
ω

≫ 1, but rather than making use of the conventional plane-wave
decomposition, we work in a basis of SW wave functions φn(x) for
positive integers n, supported for 0 < x < L, and defined by

φn(x) =


2
L
sin

nπx
L


. (17)

Expanding the field operators in terms of Fock-space operators
which destroy (respectively, create) a SW state with quantum
numbers (n, s), denoted a(Ď)n,s , as

ψ̂ (Ď)
s (x) =

∞
n=1

φn(x)â
(Ď)
n,s, (18)

we may diagonalize the kinetic energy operator alone to find

T̂ =


s=↑,↓

∞
n=1

p2n
2m

âĎn,sân,s (19)

where we have written the SW momenta as pn = πn/L. As
is conventionally done, we apply the remaining operators, those
derived from the interparticle interaction and from the presence
of the background potential, in position space where they are
diagonal after the HS transformation.
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Fig. 2. Comparison of the accelerated and unaccelerated algorithms as a function of lattice size Nx . The time reflects a hybrid Monte Carlo update for N = 10 particles in a
lattice of Nτ = 300 sites in the imaginary-time direction. The unaccelerated performance is given by a smooth curve in all cases, while the behavior accelerated algorithm
is less predictable due to the adaptive nature of the FFTW algorithm [28].
Since φn(x) is a linear combination of (conventional, complex-
exponential) plane waves, it is possible to take advantage
of fast Fourier transform algorithms to accelerate these HW
calculations. Indeed, that linear combination relating φn to
complex exponentials involves only 2d terms, i.e. it is a sparse
operation whose scaling is only linear with the lattice volume V =

Nd
x . For instance, in one spatial dimension, we simply have

φn(x) =


2
L
sin

nπx
L


=

1

i
√
2L

ei
nπx
L −

1

i
√
2L

e−i nπxL . (20)

The projection of an arbitrary real wavefunction ψ(x) onto φn(x)
therefore takes the form

(ψ, φn) =
1

i
√
2L


ψ, ei

nπx
L


−

1

i
√
2L


ψ, e−i nπxL


, (21)

which can be accelerated in the following way. First, perform a
Fourier transform in a double-size space (i.e. L → 2L), such that
the frequencies involved are of the form ωk =

2πk
2L =

πk
L ;

these are precisely the frequencies common to periodic and hard-
wall boundary conditions. Next, select the projections onto the
positive and negative frequencies, and combine according to Eq.
(21), adjusting the normalization as needed. As noted above, in d
dimensions the wavefunctions take the form

φn(x) =


2
L

d/2 d
i=1

sin
niπxi

L


, (22)

such that the analogue of Eq. (21) involves 2d terms.
The above operations scale more favorably than a general

change of basis, the cost of which is O(V 2). In the next section, we
showhow implementing such a Fourier acceleration algorithm can
lead to important gains for d > 1.

4. Performance comparison: accelerated versus unaccelerated

Here we compare the performance of the accelerated and
unaccelerated versions of the hard-wall algorithm mentioned in
the previous section. Fourier-based acceleration improves the
scaling by effectively replacing one of the V factors by ln V .
Therefore, there is little doubt that such methods are convenient.
However, in practice it is important to consider the effect of the
prefactors in the scaling laws, as they determine the precise values
of Nx where one method should be chosen over the other. The
purpose of this section is to address that question.

The results presented below were performed for the hard-wall
system. At fixedNx, in any dimension, the computational cost of the
unaccelerated version is identical to that of the harmonic-oscillator
basis case, by construction.

In Fig. 2, we show the computation time for a single hybrid
Monte Carlo sweep on a lattice of spatial volume V = Nd

x and
temporal extent Nτ = 300. The particle number was fixed to
N = 10 in all cases. As seen in the figure, the Fourier acceleration
results form a jagged curve, which should be contrasted with the
smooth data for the unaccelerated case. These differences in the
shape of the dataset are due to the adaptive nature of the Fourier
transform library FFTW [28], which selects different algorithms
based on the lattice size. As a consequence, the prefactor in the
scaling law for the accelerated case varies with Nx. Besides those
features, Fourier acceleration appears to yield no gains for d = 1.
However, acceleration does make a difference for d ≥ 2: for
d = 2 Fourier methods should be used if Nx > 18, and for
d = 3 if Nx > 9. Beyond those crossover points, the cost of using
unaccelerated algorithms quickly becomes prohibitive: note that
we used a logarithmic y axis in the figure.

The above comparison has obvious limitations. For instance,
it does not account for the fact that non-uniform lattices are
intrinsically better at resolving the harmonic oscillator trap; i.e., a
uniform lattice will typically require more points to achieve
the same resolution as its non-uniform counterpart. Similarly,
the convergence properties in extrapolations to large Nτ can be
expected to be at least somewhat different for each method,
especially as the particle number is varied. In spite of those
shortcomings, our analysis indicates that accelerated methods are
effective enough to leave plenty of room for the above adjustments
and still be convenient in practical calculations.

5. Results and discussion

To tune the bare coupling in our lattice calculations, we first
computed the ground-state energy of the two-body problem.
Doing so allowed us to read off the value of the continuumphysical
coupling (as given by the inverse scattering length 1/a0), as the
exact solution of the two-body system in a harmonic trap can
be obtained exactly and is well-known [29]. Having fixed the
target physics in that fashion, for both methods, we were able to
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Fig. 3. Energy per particle in units of the energy of the non-interacting case (left panel) and in units of the harmonic-oscillator energy h̄ω (right panel), for N = 2, 4, 6, 8
particles (bottom to top), as obtained with the harmonic-oscillator basis (SHO) and uniform hard-wall basis (HW).
Fig. 4. Density profiles for noninteracting systems (top) and interacting (bottom). The left panels display the data in linear y scale, while the right panels show a y-log scale.
In all cases we show results for N = 4 and 8 particles, and for the harmonic-oscillator basis (SHO) and uniform hard-wall basis (HW).
meaningfully compare the results obtained with each of them for
higher particle number. In Fig. 3, for instance, we show our results
for the coupling tuning procedure (N = 2), which are exact by
definition, along with results obtained for higher particle numbers
(N = 4, 6, 8) for those couplings.

Fig. 4 shows density profiles for noninteracting systems of
N = 4 and 8 particles, along with their counterparts for an
interacting case at 2aHO/a0 ≃ 1.7. The left panels in that figure
show the profiles in a linear scale, whereas the right panels
show them in a y-log scale. In all cases we see that, whenever
the x axis values coincide (or do so approximately) the results
for density have the expected values, i.e. the two approaches
agree quantitatively. The logarithmic plots also show excellent
agreement; more precisely, we see that the long-distance tails (in
each direction) decay in a parabolic form, which indicates that
the dependence in the linear scale is Gaussian, as expected. Note,
however, that at large enough distances that parabolic form is lost
for the hard-wall data, which is not surprising given the presence
of the walls.

6. Summary and conclusions

In this paper, we have presented two methods to address the
problem of interacting fermions in harmonic traps: a uniform-
lattice method with hard-wall boundary conditions, and a non-
uniform Gauss–Hermite lattice method (which we had used in
previous work). While the latter has many attractive features (it
diagonalizes the noninteracting Hamiltonian exactly), it is not
amenable to Fourier acceleration (or at least not easily), which
makes it practically unfeasible for higher dimensions (especially
away from zero temperature). The hard-wall method, on the
other hand, shares some of the positive features and can be
Fourier accelerated. We showed the benefits of acceleration by
comparing the performance across dimensions, and conclude that
it is essential for d ≥ 2.

To test the methods against each other, we compared here
calculations for 1D attractively interacting fermions in a harmonic
trap. Specifically, we computed the ground-state energy and
density profiles of unpolarized systems of N = 4 and 8 particles.
Our results show that for both the ground-state energy and the
density profiles, the methods agree satisfactorily. For the density
profiles, in particular, we note that the expected Gaussian decay
is reproduced with the hard-wall basis over multiple orders of
magnitude before breaking down at large distances due to the
presence of the wall. From our calculations we conclude that it is
possible to obtain high-quality results using uniform bases with
hard-wall boundaries.

Besides the above benefits, the hard-wall method has the
advantage that it does not depend on the precise form of the
external potential. Indeed, it is easy to imagine that it would be a
useful method for other trapping potentials that are unbounded at
infinity (e.g. linear or other). Moreover, the hard-wall potential is
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interesting per se, as experiments with ultracold atoms can now
mimic that kind of configuration as well (albeit with somewhat
rounded corners at the bottom of the trap, which could be
introduced quite easily in our framework).
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