
Computer Physics Communications 208 (2016) 54–63
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

An efficient Cellular Potts Model algorithm that forbids cell
fragmentation
Marc Durand ∗, Etienne Guesnet
Matière et Systèmes Complexes (MSC), UMR 7057 CNRS & Université Paris Diderot, 10 rue Alice Domon et Léonie Duquet, 75205 Paris Cedex 13, France

a r t i c l e i n f o

Article history:
Received 31 March 2016
Received in revised form
13 July 2016
Accepted 31 July 2016
Available online 8 August 2016

Keywords:
Cellular Potts Model
Monte Carlo
Lattice
Cellular systems

a b s t r a c t

The Cellular Potts Model (CPM) is a lattice based modeling technique which is widely used for simulating
cellular patterns such as foams or biological tissues. Despite its realism and generality, the standardMonte
Carlo algorithm used in the scientific literature to evolve this model preserves connectivity of cells on a
limited range of simulation temperature only. We present a new algorithm in which cell fragmentation is
forbidden for all simulation temperatures. This allows to significantly enhance realism of the simulated
patterns. It also increases the computational efficiency compared with the standard CPM algorithm even
at same simulation temperature, thanks to the time spared in not doing unrealistic moves. Moreover, our
algorithm restores the detailed balance equation, ensuring that the long-term stage is independent of the
chosen acceptance rate and chosen path in the temperature space.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The Cellular Potts Model (CPM) – or Glazier–Graner–Hogeweg
model – developed by Glazier and Graner [1–3] has become a com-
mon technique to simulate cellular patterns either in physics or
biology. Originally, the CPM was proposed to test the differen-
tial adhesion hypothesis suggested by Steinberg [4] to explain the
spontaneous segregation of cells of different type, a phenomenon
known as cell sorting. The CPM approach describes cellular systems
based on the following assumptions: (i) cells are spatially extended
but internally structureless objects; (ii) cells and associated fields
are discretized onto a lattice; (iii) it describes most cell behaviors
and interactions in terms of an effective energy or Hamiltonian
H ; (iv) the classic implementation of the CPM employs a modi-
fiedMetropolisMonte-Carlo algorithmwhich chooses update sites
randomly and accepts them with a Metropolis probability. A sim-
ulation temperature T then determines the probability of a config-
uration. For thermal physical systems, T is the actual temperature
(up to Boltzmann constant kB). For biological cells, actual temper-
ature is too low to induce significant fluctuations, and T simulates
the membrane fluctuations due to cell activity [5].

In its original form [1,2], the CPM Hamiltonian H has only two
contributions: a boundary term and a compressive term, which
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write, for a two-dimensional pattern:

H =
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Here σk and σl are the site values of site k and l, respectively. A
cell i consists of all sites in the lattice with site value i. δ is the
Kronecker delta symbol: δm,n = 1 ifm = n, and 0 otherwise. τ and
τ ′ are abbreviations for τ(σk) and τ(σl), the cell ‘ types which can
be attributed to cells with respective value σk and σl. Jτ ,τ ′


=Jτ ′,τ


is the energy per unit contact length between cell types τ and τ ′.
For a foam, there is a unique cell type and hence J reduces to a
constant proportional to the surface tension. B is the bulk modulus
of the internal fluids, Ai is the area of cell i, and A0 the target area, i.e.
the area that the enclosed fluid would occupy for its pressure to be
equal to the surrounding pressure. The first sum in Eq. (1) is carried
over neighboring sites ⟨k, l⟩ and represents the boundary energy:
each pair of neighbors having unmatching indices determines a
boundary and contributes to the boundary energy. The second sum
in Eq. (1), carried over all the cells that constitute the pattern, is the
compressive energy of the cells. Since then, additional terms have
been added to the Hamiltonian to account for real cell behaviors,
or application of external fields [3,6,7].

Because of its flexibility, extensibility and ease of use, the CPM
has been widely and successfully used in different domains of
physics, biology or medicine [1,2,5–15]. In order to prevent the ap-
parition of heterogeneous sites (spontaneous nucleation), andhence
preserve the connectivity of the cells, the CPM uses a modified

http://dx.doi.org/10.1016/j.cpc.2016.07.030
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.07.030&domain=pdf
mailto:marc.durand@univ-paris-diderot.fr
http://dx.doi.org/10.1016/j.cpc.2016.07.030


M. Durand, E. Guesnet / Computer Physics Communications 208 (2016) 54–63 55
Metropolis algorithm (MMA), in which a lattice site is authorized
to be changed in one of its neighboring values only. Although this
algorithm substantially improves the realism of the simulated pat-
terns, it has yet some flaws. First, it works on a limited range of
temperature: if the temperature is too low, the system is trapped
in one of its many energetic valleys. If the temperature is too high,
connectivity of cells is no more guaranteed: boundaries can be-
come highly contorted, provoking the detachment of small (usu-
ally single lattice site) fragments. This upper limit on the usable
range of temperature inevitably makes simulations very slow if
spatial resolution is not chosenwith care [7]. To overcome this lim-
itation, sophisticated parallelization techniques have been devel-
oped, with varying degrees of success [16–18].

Second, the MMA – unlike the classic Metropolis algorithm –
does not satisfy the detailed balance condition [3,19,20]. Detailed
balance ensures that the long term distribution of configurations
obeys Boltzmann statistics. This is critical when intending to study
the equilibrium configuration of thermal systems (e.g. thermally
shuffled foam).WhenCPM is used as a purely kineticmodel for out-
of-equilibrium systems (e.g. coarsening foams,morphogenesis, cell
sorting), detailed balance condition is irrelevant. However, using
algorithms that satisfy detailed balance can still be of interest for
such systems, as it guarantees that the long-term stage eventually
reached by the simulation depends only on the final simulation
temperature, and not on the chosen path in the temperature
space or the chosen acceptance rate (e.g. Metropolis, heat-bath,
Glauber [21]).

In this paper, we present a new algorithm in which both frag-
mentation and spontaneous nucleation are forbidden. Normally,
the inspection of cell connectivity is computationally very expen-
sive: at everymodification of a site value, onemust check that there
is always a path connecting any pair of lattice sites that belong to
the same cell. However, we show that a test of local connectivity
in the neighborhood of the modified site is necessary and suffi-
cient for ensuring that cells remain simply connected (i.e. home-
omorphic to a disk): fragmentation or handle formation are then
prohibited. Hence, this new algorithm enhances realism for most
cellular systems, at least in non-pathological situations. At given
simulation temperature, these modifications increase the compu-
tational efficiency, as time used for local connectivity inspection is
largely compensated by the timenotwasted in unrealistic cell frag-
mentationmoves.Moreover, this new algorithm allows to increase
the simulation temperature, thereby speeding up simulation time,
while preserving connectivity of the cells. Finally, our proposed al-
gorithm restores the condition of detailed balance at all tempera-
tures. Our algorithm is much simpler to implement than parallel
algorithms. Nevertheless, both techniques can be combined to-
gether to simulate larger systems.

The structure of the paper is as follows: in Section 2, we detail
the standard algorithm used inmost CPM simulations, and empha-
size that it does not prevent from cell fragmentation or handle for-
mation, and violates detailed balance condition. We also point out
the three distinct notions of neighborhood that are used in CPM.
In Section 3, we detail a new algorithm that resolves these issues.
The notion of local connectivity, on which this algorithm relies, is
properly defined. In Section 4, we show that a careful choice for
the different neighborhoods makes the test of local connectivity
very fast. In Section 5,we present cell sorting simulations on a two-
dimensional square lattice and compare the efficiency of the two
algorithms. The new algorithm performs better for all tested tem-
peratures: the convergence to the long-term, steady stage is com-
putationallymore efficient for a same simulation temperature, and
the long-term stage obtained after smoothing (‘‘annealing’’) proce-
dure is independent of the temperature value. Finally, in Section 6,
we discuss extension of the algorithm to other 2D or 3D lattices.
2. Classical CPM algorithm: Modified metropolis algorithm
(MMA)

2.1. Motivations

Algorithm used in CPM simulations is adapted fromMetropolis
algorithm,which is one of the simplest andmost popular algorithm
used in Monte Carlo simulations. Applied to the Potts model [3,
21], in which each site, or ‘‘spin’’, can have Q different values, the
Metropolis algorithm consists of the following steps:

(1) Randomly select a lattice site i. Call this site the candidate site.
Let σ be its value.

(2) Randomly select a value σ ′ among the Q possible site values.
Call this the target value.

(3) Calculate the change in energy ∆E resulting in changing the
site value from σ to σ ′.

(4) Accept the site value modification with probability A(σ →

σ ′) = min(1, e−∆E/T ).
(5) Increment the number of copy attempts and go back to step

(1).

This algorithm allows spontaneous nucleation, i.e. the appear-
ance of site value different from its neighborhood. This of course
does not realistically simulate cellular systems, in which every
cell must be (simply) connected. Metropolis algorithm must be
adapted in order to eliminate nucleation. The algorithm that has
been used by Graner & Glazier [1,2] (and since then in most of the
scientific literature on CPM) replaces step (2) with:

(2b) Randomly select a site from the candidate site’s neighbor list.
Call this the target site, and let σ ′ be its value.

Note that here a site, and not a site value, is randomly selected.
This algorithm is commonly named Modified Metropolis Algorithm
(MMA). The primary reason to use the Metropolis acceptance
ratio A(σ → σ ′) in step (4) is that the average time evolution
of the configuration then obeys the Aristotelian or overdamped
force–velocity relation [3]: v ∝ ∇H . Nevertheless, the acceptance
ratio of any other single-spin-flip algorithm (e.g. Glauber, Heat
Bath [21]) could be used; in any case, the modification from step
(2) to step (2b) is required to suppress spontaneous nucleations.

2.2. Neighborhoods

It can be noticed that the algorithm introduces two distinct
notions of neighborhood so far: the first one, which we shall call
coupling neighborhood, is the one which is used in the first sum of
the Hamiltonian (1) to calculate the interface energy. We note it
Nc . The second one, that we shall call target neighborhood, is the
one used in step (2b), and represents the setNt of lattice sites from
which the target value is chosen. Actually, a third neighborhood
is used in CPM simulations, when calculating the number of sides
(or more exactly, of neighboring cells) of every cell. We shall call
it adjacency neighborhood Na: for every site of a cell, we list the
site values that are in this neighborhood. The total list of different
values provides the list of neighboring cells.

Distinction between these three neighborhoods is often disre-
garded in literature. Yet, they can be chosen independently; a care-
ful choice can tremendously increase the efficiency of the algo-
rithm, as will be discussed in Section 4.

2.3. Limitations of the MMA

In addition to improving realism, the modification of step (2) to
step (2b) speeds up the computing time by reducing the number
of possible target values. But it has still some limitations. First,
although spontaneous nucleation is forbidden, heterogeneous
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Fig. 1. Cell fragmentation observed with the MMA at high temperature values:
fragments of one or more lattice sites are surrounded by mismatched site values.
Here each cell has a different color to highlight the presence of fragments. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)

sites (i.e. sites with mismatched neighboring sites) still appear,
as illustrated in Fig. 1: they result from the detachment from
the interface of fragments whose size is eventually reduced to
a unique lattice site. The number and size of fragments increase
with simulation temperature T , as interfaces get more and more
crumpled. Simplest scenario of fragmentation is shown in Fig. 2:
a fragment of one lattice site size detaches from the interface
in a three step process. To create such a fragment, the system
must cross the energy barrier ≃ zc J – corresponding to the
transition from configuration 2(a) to configuration 2(c) – where
zc is the number of sites in the coupling neighborhood Nc and J
the energy per unit contact length. It is therefore less than zc Jℓ,
the typical energy barrier which must be crossed to trigger a
neighbor switching between 4 cells with characteristic edge length
ℓ [22]. Hence, fragmentation appears at temperatures below the
temperature required to initiate cell diffusion.

Like spontaneous nucleation, fragmentation is undesirable be-
cause it does not mimic realistically cellular systems, at least in
normal (non pathological) situations. Moreover, it causes an over-
estimation of the number of sides of the cells and complicates the
calculation of interfacial energy. Fragmentation is also undesirable
in measuring cell mean square displacement because it may cause
the center of mass of a domain to jump a large distance after a sin-
gle spin flip. Therefore, CPM simulations must be limited to tem-
perature values low enough for the fragments to disappear with
a rate at least equal to the rate at which they appear. This low
temperature range is quite restrictive, as the systems which are
simulated with CPM usually have a rough energy landscape: they
are trapped in successive local minima and thus evolve slowly. To
reduce the visual presence of such fragments, ‘‘annealing’’ steps
at vanishing temperature are often performed before measure-
ments [1–3]. However, fragmentation still occurs between anneal-
ing steps, and has a strong effect on the kinetics of the system. In
fact, even the long term stage of the simulation can be affected
by the fragmentation, despite the annealing procedure, as will be
shown in Section 5.

Another peculiarity of the MMA is that by changing step (2) to
step (2b), detailed balance condition is not satisfied anymore. In its
canonical formulation, the detailed balance equation reads:

g(xi : σ → σ ′)A(xi : σ → σ ′)

g(xi : σ ′ → σ)A(xi : σ ′ → σ)
= e−∆E/T , (2)
Fig. 2. Simplest scenario of one-pixel-size fragmentation resulting in an isolated
pixel.

where g(xi : σ → σ ′) is the selection probability, which is the
probability, given an initial state of the system, that our algorithm
will generate a new target state that differs from the initial state by
changing the value of one single site i fromσ toσ ′. Detailed balance
criterion, or microreversibility, guarantees that the long term
distribution of configurations follows the Boltzmann statistics [21].
Hence, detailed balance conditionmust be respected to adequately
simulate systems at thermodynamic equilibrium. Detailed balance
condition is irrelevant when simulating out-of-thermodynamic-
equilibrium systems such as biological systems or coarsening
foams; the primary requested feature of the algorithm is that it
mimics realistically the time evolution of the system [3]. However,
various different algorithms usually do satisfy this request. Since
the CPM approach follows classic Monte Carlo schemes, the use of
an algorithm that also satisfies detailed balance criterion ensures
that a steady state exists (e.g. long term stage of cell sorting),
and is the same for any specific acceptance rate that satisfies
detailed balance condition.Moreover,microreversibility solves the
degenerate long-term behavior associated with the MMA [20].

Violation of detailed balance is noticeable in particular in the
case of spontaneous nucleation: although spontaneous nucleation
is forbidden (thanks to themodification of step (2) to step (2b)), its
reverse process – that is, the disappearance of a heterogeneous site
– is allowed, and evenwanted to avoid their proliferation, resulting
from cell fragmentation. We could (naively) think of restoring de-
tailed balance by forbidding the disappearance of heterogeneous
sites. However, this approach generates a proliferation of nucle-
ated sites as temperature increases, the only way for an isolated
site to disappear is by reaching the cell it belongs to. This would
certainly not improve the realism of the simulations. Moreover,
that would not restore microreversibility in all situations: detailed
balance condition also requires a modification of step (2b), as this
will appear below (see also Appendix).

3. Connectivity Algorithm (CA)

It is clear from the discussion above that an algorithm that
would forbid cell fragmentation, in addition to spontaneous nucle-
ation, would preserve the connectivity of the cells, and then would
solve the limitations inherent to the MMA. Two cells are possibly
affected by the modification of a site value: the candidate cell and
the target cell, defined as the cells whose the candidate and the tar-
get lattice site belong to, respectively. Prior to the modification of
the candidate site value, one must check that these two cells will
both remain connected. In fact, by choosing Nt ⊆ Na, we are en-
sured that the target cell stays connected, by construction. Still, the
inspection of the connectivity of the candidate cell is very costly in
computing time: for every couple of lattice sites that belong to the
cell, one must inspect that there is a path that links them, where a
path is defined as a list of lattice sites with same value, and each
of which belongs to the adjacency neighborhood of the preceding
one.1

1 For convenience, a path – andhence the connectivity property – is definedbased
on the adjacency neighborhood Na , but this notion actually introduces a fourth
notion of neighborhood that could have been chosen independently of the three
neighborhoods already defined in Section 2.2.
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Fig. 3. Illustration of the notion of local connectivity: suppose Dc(i) is composed
of the eight sites that surround site i and Na is composed of the four side-adjacent
sites. Then, the blue cell is locally connected at site i, while the orange and gray cells
are not. (For interpretation of the references to color in this figure legend, the reader
is referred to the web version of this article.)

Instead, we propose to test the local connectivity of the cell.
To define this property, we need to introduce first the local
connectivity domain Dc(i), as being any set of lattice sites that
contains the adjacency neighborhood of site i, but not site i itself.
The local connectivity property is then defined as follows:

Definition. A cell C is locally connected at site i, within the local
connectivity domain Dc(i), if and only if the sites of C that are in
the adjacency neighborhood of i are connected through paths that
are included in Dc(i).

Hence, if C is locally connected at position i, within the local
connectivity domain Dc(i), we are ensured that there are paths
connecting the sites of C ∩ Nt and which do not contain site i.

Let us illustrate this notion of local connectivity with the
example given in Fig. 3: let Dc(i) be composed of the eight sites
that surround site i (Moore neighborhood), and the connectivity
neighborhood Nt be composed of the four side-adjacent sites (Von
Neumann neighborhood). Then, the blue cell is locally connected
at site i, while the orange and gray cells are not. This example
emphasizes that a cell C can be locally connected at site i even if i
is not in C, and not locally connected at site i even if i is in C.

The proposed test then consists, in a first step, to check the local
connectivity of the candidate cell at the randomly selected site i
(candidate site), before eventually accepting the modification of
its value. This simplification substitutes a global test with a local
one, resulting in a huge saving of computing time. However, is this
local test a necessary and sufficient condition to guarantee the non-
fragmentation of the cells?

A connected cell is not necessarily locally connected every-
where: for instance, a flat cell with 1 lattice site thickness is not
locally connected, excepted at its ends (see Fig. 4(a)). This is also
the case of the orange cell in Fig. 3. Conversely, a cell that is locally
connected on everyone of its sites is not necessarily connected, as
this is illustrated in Fig. 4(b), where a cell is divided into two frag-
mentswhich are both locally connected. Nevertheless, if we ensure
that, at the initial time (cellular pattern formation), cells are con-
nected, then the local connectivity testwill prevent cell fragmenta-
tion at any subsequent time. Local connectivity test at site i is then
a sufficient condition for the candidate cell to remain connected.2

It is also a necessary condition as long as the cell remains
simply connected, that is, homeomorphic to a disk. When the
candidate cell is non-simply (aka multiply) connected, our test
is too restrictive, meaning that it is sufficient, but not necessary,

2 A common way to generate the cellular pattern is from the growing of cell
‘‘seeds’’ in a medium, which is treated as a special cell without area constraint.
One then must be careful to momentarily allow the fragmentation of the medium,
until cells touch each others, so that the removing of medium between the cells is
achieved in a small amount of time.
Fig. 4. Illustration of the non-equivalence between connectivity and local
connectivity: (a) a flat cell which is one-site thick is connected, yet it is not locally
connected everywhere. Red stars indicate the lattice sites inside and outside the cell
over which the cell is locally connected, with same Dc and Na as in Fig. 3. (b) A cell
composed of two disjoint fragments is locally connected, yet not connected.

Fig. 5. In a non-simply connected cell, the local connectivity of the candidate cell
is not a necessary condition for the cell to stay connected after modification of site i
value: assuming that adjacency neighborhood Na coincides with Von Neumann or
Moore neighborhood, the blue cell is not locally connected at site i in configuration
(a) (nor in configuration (b)). Yet, the cell stays connected when the site value
is modified from configuration (a) to configuration (b). (For interpretation of the
references to color in this figure legend, the reader is referred to the web version of
this article.)

to prevent fragmentation: the candidate cell can be non locally
connected at a given site, although it remains connected after
modification of this site value, as this is illustrated in Fig. 5: the
change of site i from configuration (a) to configuration (b) is not
allowed by our test, because the blue cell is not locally connected at
site i. Yet, this modification would not fragment the cell. Note also
that in this situation, the detailed balance criterion is not satisfied
anymore: in the example of Fig. 5, the reciprocal change from
configuration (b) to configuration (a) is still allowed.

Since cell fragmentation is now forbidden by the local connec-
tivity test, a cell must surround one (or more) other cell(s) to be-
come multiply connected. When simulating foams, such an event
is unlikely: the boundary energy per unit contact length Jτ ,τ ′ is uni-
form, and it would require a very high temperature and very high
size ratio in order for a larger bubble to surround a smaller one.
In practice such a size ratio is hardly achievable, because we are
limited by the finite size of the lattice. When simulating biological
cells on the other hand, such situation may occur when adhesion
energies have high contrast.

Multiple connected cells (and bubbles) are rather unrealistic.
Fortunately, for a little extra computational cost, we can ensure
that cells remain simply connected at all times. Remember that
with our definition of local connectivity, a cell C can be locally
connected at site i even if i is not in C. If the target cell – which
is connected by construction (by choosing Nt ⊆ Na) – is locally
connected at site i, the modification of its value results in the
formation of a ‘‘handle’’, and the target cell becomes multiply
connected. Thus, to ensure that cells remain simply connected,
we just have to additionally check that the target cell is locally
connected at site i before accepting the modification of the
site value. In the example of Fig. 5, the change of site i from
configuration (a) to configuration (b) and the reciprocal change are
now both forbidden.

In summary, the full CA consists of the following steps:
(1c) Randomly select a lattice site i. Call this site the candidate site.

Let σ be its value.
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a b c d

Fig. 6. Different choices for the neighborhood (in orange) of the central site (in
blue), in the square lattice: (a) order I (or Von Neumann) neighborhood; (b) order
II (or Moore) neighborhood; (c) order III neighborhood; (d) order IV neighborhood.
For adjacency and target neighborhoods, Na and Nt respectively, we choose order
I neighborhood. For the local connectivity domain Dc , we choose the order II
neighborhood. For the coupling neighborhood Nc , we use either order II or order
IV neighborhood.

(2c) Randomly select a value σ ′ from those present in the target
neighborhood Nt . Call this the target value.

(3c) Check the local connectivity of the candidate cell at site i,
within the domain Dc . If it is locally connected, proceed to
next step. Otherwise, go to step (7c).

(4c) Check the local connectivity of the target cell at site i, within
the domain Dc . If it is locally connected, proceed to next step.
Otherwise, go to step (7c).

(5c) Calculate the change in energy ∆E resulting in changing the
lattice site value from σ to σ ′.

(6c) Accept the site value modification with probability A(σ →

σ ′) = min(1, e−∆E/T ) (or any other acceptance probability
that satisfies detailed balance equation).

(7c) Increment the number of copy attempts and go back to step
(1c).

Incidentally, target value draw has been slightly modified: its
value is chosen arbitrarily in the set of different values present in
the target neighborhood Nt (step (2c)), without weighting by the
number of neighboring sites that have this particular value, as it
is in step (2b) (see Appendix for more details). This modification,
together with the two local connectivity tests that keep cells
simply connected, restores detailed balance condition.

The two flaws of the MMA are now solved: cell fragmentation
is prohibited, and detailed balance condition is satisfied at all
temperatures.

Variants of this algorithm consist of swapping of steps (2c) to
(6c). Relative efficiency of these variants depends on the simulation
temperature T and typical cell size A0. To optimize the algorithm,
local connectivity test with higher rejection rate should be tested
first. The probability that the candidate cell is locally connected at
a given site decreases as T increases. The probability that the target
cell is not locally connected decreases as T increases. The target cell
becomes not locally connected at site i when two cell protrusions
come sufficiently close, which is unlikely at moderate simulation
temperature. That is why we test it in last in our algorithm, but it
could be more efficient to test it first at high temperature.

Note that the number of copy attempts is incremented
regardless of the results of the two connectivity tests (3c), (4c),
in order to keep accurate correspondence between number of
copy attempts and real time. Such correspondence is required for
instance to satisfy equivalence of time and ensemble averages for
systems at thermal equilibrium.

4. Choices for neighborhoods and local connectivity domain

Coupling neighborhood Nc is used in the calculation of the
boundary energy, but does not play any role in the local con-
nectivity test. Taking a large domain for Nc reduces the lattice
anisotropy, but increases the number and range of interactions,
thereby slightly increasing simulation time. The range of interac-
tions must also remain small compared with the typical cell size.
Neighborhoods made of the 8 first neighboring sites (order II, or
Moore neighborhood, Fig. 6(b)) and 20 first neighboring sites (or-
der IV neighborhood, Fig. 6(d)) are commonly used.

Choices for the lattice sites that define the neighborhoods Na
and Nt and local connectivity domain Dc strongly affect the effi-
ciency of the local connectivity test, and must be chosen carefully.
Adjacency neighborhoodNa is rarely defined in the literature, sug-
gesting that it is often equatedwith the coupling neighborhoodNc .
Yet, it would be better to choose it as small as possible to avoid
overestimating the number of sides of cells. We then choose it
equal to the order I – or Von Neumann – neighborhood, which is
made of the 4 lattice sites adjacent by side Fig. 6(a). This choice
also avoids the unrealistic chessboard interlacing of cells that is
observed at high temperature when choosing a larger adjacency
neighborhood.More generally, two paths belonging to two distinct
cells cannot cross each other. Hence, the definition of simple con-
nectivity introduced in Section 3 is a direct transposition to lattices
of the definition that is used for continuous topological spaces.3

The target neighborhood used in CPM simulations often corre-
sponds with order II (or Moore) neighborhood. A more judicious
choice is to take it identical to the adjacency neighborhood: as
emphasized in Section 3, taking the target neighborhood smaller
or equal to the adjacency neighborhood ensures that the target
cell preserves its connectivity after each modification of site value.
Thus, we recommend to take both equal to the order I (Von Neu-
mann) neighborhood (Fig. 6(a)).

For the local connectivity domainDc(i), we choose the smallest
domain as possible that contains the lattice sites in the adjacency
neighborhood, plus the shortest paths that may connect them.
With Na defined over the Von Neumann neighborhood, Dc(i) then
corresponds to the Moore neighborhood.

With this choice for Na, Nt and Dc , only a few patterns within
the order II neighborhood need to be tested to check the local
connectivity of a cell C. Let z be the number of lattice sites in
the adjacency neighborhood of i that belong to C. Cases z = 0,
z = 1, and z = 4 are trivial: in the first case, C is never locally
connected at site i. In the second case,C is always locally connected
at site i. In the third case, value of site i cannot be modified. When
z = 2, there are two possible situations: either the two neighbors
face each other, or are corner-adjacent. Only the second situation
can eventually lead to a locally connected cell, if their common
side-adjacent site belongs to C too (see Fig. 7(a)). When z = 3,
the two common side-adjacent sites must belong to C too for the
cell to be locally connected (see Fig. 7(b)). Accounting for the π/2
rotations of these admissible patterns, only four different patterns
correspond to a locally connected cell for z = 2, and similarly for
z = 3.

In practice, the implementation of the local connectivity test is
as follows: we first detect, within the adjacency neighborhood of
site i, the number (z) and positions (North, South, East, West) of
the lattice sites that belong to cell C (either the candidate or target
cell). If z = 2 or z = 3, we further check whether or not their
positions and the values of their side-adjacent lattice sites match
the patterns shown in Fig. 7(a) and (b) (modulo π/2 rotations),
respectively.

5. Benchmark

To test the efficiency of the CA, we perform cell sorting
simulations similar to those presented in the seminal work of
Glazier and Graner [1,2], and compare the results obtained with
both CA and MMA. For simplicity, Hamiltonian (1) has been used

3 Another definition for the simple connectivity of a domain E , valid for any
adjacency neighborhood, but restricted to 2D lattices, is as follows: E is simply
connected iff it is connected and the complement of E is connected too.
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Fig. 7. Non-trivial patterns forwhich the blue cell is locally connected at site i, using
an order I adjacency and target neighborhoods, and an order II local connectivity
domain. (a) Configurationswith z = 2 blue sites in the adjacency neighborhood of i:
the two sites (here N(orth) andW(est)) must be corner-adjacent, and their common
side-adjacent site (NW) must be blue too for the blue cell to be locally connected
at i. (b) Configurations with z = 3 blue sites in the adjacency neighborhood of i:
their two common side-adjacent sitesmust be blue too for the blue cell to be locally
connected at i. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

in the simulations presented here. To make a fair comparison, we
used the same target, adjacency, and coupling neighborhoods and
same connectivity domain for both algorithms. For the MMA, step
(2b) was replaced with step (2c). The two algorithms then only
differ by the test of local connectivity for the candidate and target
cells in the CA. On a lattice with N sites, we define one Monte
Carlo Step (MCS) to be N copy attempts. Simulations have been
performed with and without 100 annealing MCS. This unusually
long annealing procedure allows us to compare the two algorithms
on a large temperature range (for practical purpose, the program
exits whenever the number of neighbors of a cell exceeds 20). We
duplicated the simulated pattern before annealing it to not alter
the kinetics of cell sorting.

Because of the two local connectivity tests within the CA, the
correspondence between CPU time andMCS is different for the two
algorithms: 1 MCS with CA takes a little bit more of CPU time than
with theMMA.We checked that this difference is totally negligible:
the increase of CPU time for similar runs (6×106 MCS) ranges from
0.235% for low temperature (T = 35) to 4.97% for high temperature
(T = 85).

We start from an equilibrated rounded cluster of 150 B(lue) and
150 Y(ellow) cells, randomly positioned. The cluster is surrounded
with theM(edium), and the total number of sites isN = 300×300.
Values of the different parameters used in the Hamiltonian (1) are:
JBM = 16, JYM = 16, JBB = 8, JYY = 14, JYB = 12,A0 = 150, B = 200.
Thanks to our discrimination of the different neighborhoods, the
size of coupling neighborhood has a very limited effect on the
computing time. We choose an order IV coupling neighborhood,
which is sufficiently large to reduce the lattice anisotropy, whilst
remaining small compared with the typical cell size. The other
neighborhoods and local connectivity domain are chosen as
recommended in Section 4. Typical evolution of the annealed
patterns are shown in Figs. 8 and 9. We also show in Fig. 10 typical
unannealed patterns observed after 6 × 106 MCS.

We first compare the mean number of sides per cell ⟨n⟩
obtainedwith the two algorithms. According to Euler theorem [23],
⟨n⟩ is equal to 6 in a pattern containing only 3-fold vertices, if
the surrounding medium is counted as an extra cell. Discrepancy
with this theoretical value can have several origins: (i) due to the
discretization of the pattern on the lattice, two 3-fold vertices can
be mingled with one 4-fold vertex. This artifact can only decrease
the measured value of ⟨n⟩, and is reduced when the target area A0
(and so the typical edge length) is increased. (ii) The algorithms
actually evaluate the number of different neighboring cells – rather
than the number of sides – of each cell. These two numbers
differ when two neighboring cells have two sides in common
(thereby encircling a third cell). This would underestimate ⟨n⟩. In
practice, configurations where two cells share more than one side
are unlikely after 100 annealing steps, and the two numbers are
equal. (iii) when a cell is fragmented, its number of neighboring
cells increases or stays constant. Thus, ⟨n⟩ cannot decrease under
fragmentation.

In Table 1 are reported the average and standard deviation
values of the number of neighboring cells, with and without 100
annealing steps. The annealing temperature is Tanneal = 3. Data
are averaged over 20 runs. In presence of annealing steps, values
obtained with both algorithms are close to the theoretical value 6.
Notice that at high temperature (T = 85) though, the averaged
value is slightly above 6. Indeed, Fig. 11 reveals the presence of
large fragments, despite the unusually long annealing procedure
(only a few annealing steps are usually performed in literature).
Without annealing, values obtainedwith theMMAare above 6, and
increase with T , due to cell fragmentation. Values obtained with
the CA are equal to, or slightly below 6, and slightly decrease as T
increases, due to the presence occasionally of 4-fold vertices. Note
that for the CA, the values reported with and without annealing
steps, and for any temperature, are very close, which confirms that
no fragmentation occurs.

Then, we compare the evolution of the boundary length, defined
as the number of edges that are shared by blue and yellow cells
[1,2,24]. Values shown in Fig. 12 are those obtained after 100
annealing steps. The boundary length at initial time is close to
the theoretical value 450 for randomly positioned blue and yellow
cells, then it decreases – with a temperature-dependent rate –
down to a plateau referred to as long-term stage.
Fig. 8. Cell sorting simulations at low temperature (T = 35). Patterns are displayed after 100 MCS of T = 3 annealing steps. Top row: MMA. (a) 0 MCS. (b) 104 MCS. (c) 105 .
(d) 106 MCS. (e) 6 × 106 MCS. Bottom row: CA at same simulation times.
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Fig. 9. Same as in Fig. 8, at high temperature (T = 85). Red box indicates the area shown in Fig. 11(b). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
Fig. 10. Cell sorting patterns without annealing steps observed after 6 × 106 MCS. Top row: MMA. (a) T = 35. (b) T = 40. (c) T = 60. (d) T = 85. Red box indicates the
area shown in Fig. 11(a). Bottom row: CA at same temperatures.
Table 1
Mean and standard deviation values of the number of neighbors of a cell obtained with the standard CPM algorithm
(MMA) and the new proposed algorithm (CA), with and without 100 annealing steps.

MMA without
annealing

MMA after 100 annealing
steps

CA without
annealing

CA after 100 annealing
steps

T = 35 6.001 ± 0.005 6.000 ± 0.001 5.995 ± 0.005 5.999 ± 0.002
T = 40 6.004 ± 0.008 5.999 ± 0.002 5.992 ± 0.007 5.999 ± 0.003
T = 60 6.049 ± 0.020 5.999 ± 0.003 5.982 ± 0.011 5.999 ± 0.003
T = 85 6.276 ± 0.047 6.001 ± 0.007 5.980 ± 0.011 5.995 ± 0.005
At low temperature (T = 35), the CA converges to the long-
term stagemuchmore rapidly than theMMA. This difference high-
lights that the few fragmentation which occurs with the MMA be-
tween annealing steps has a dramatic effect on the dynamics of
cell sorting. It is not clear if complete cell sorting will eventually be
reached with the MMA: as noticed before [2], a minimal tempera-
ture seems required to achieve complete cell sorting, at least with
theMMA. Actually, wewere not able to find a set of parameter val-
ues for which complete sorting is achieved with identical kinetics
for both algorithms, which suggests that the temperature range in
which fragmentation has a negligible effect in the cell sorting ki-
netics is above the critical temperature required to achieve com-
plete sorting.

As temperature is slightly increased (T = 40), both algorithms
converge to the same stage: a complete cell sorting with round
cluster of blue cells surrounded by yellow cells. But the conver-
gence is still much faster with the CA. The long-term value (≃90)
is consistent with a rough estimation in which the blue cells are
assumed to form a circular cluster of radius R =

√
NBd/2, where

NB = 150 is the number of blue cells in the cluster, and d = 2
√
A0/π is the diameter of the cells: since all junctions are triva-

lent, the number of edges that belong to the boundary is equal to
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Fig. 11. Details of the patterns obtained with the MMA at T = 85, after 6 × 106

MCS. (a) Without annealing (close-up of Fig. 10(d)): the pattern exhibits numerous
fragments. (b) After 100 annealing steps (close-up of Fig. 9(e)): the pattern still
exhibits large fragments, indicated by arrows.

N−
+ N+, where N−

≃ 2πR/d and N+
≃ 2π(R + d)/d are the

number of cells in the inner and outer shell of cells at the bound-
ary. Hence,N−

+N+
≃ 2π(

√
NB+1) ≃ 83. This constitutes a lower

bound, as non-circular clusters have a larger boundary length.
Atmoderate temperature (T = 60), the CA is stillmore efficient,

although the difference in time evolution is less pronounced: the
increase of fragment sizes in MMA favorizes large (but unrealistic)
displacements of the cell centroids.

At high temperature (T = 85), the behavior of both algorithms
differs clearly: for the CA, the long time stage is the same as at
low andmoderate temperatures—a complete cell sortingwith blue
cells surrounded by the yellow cells. Thanks to detailed balance
criterion, once the thermal equilibrium is reached, the long-term
stage is the same whatever the path we choose in the simulation
temperature space: it depends only on the final temperature,
which is here the annealing temperature. For theMMAon the other
hand, evolution of the boundary length is noisier and the plateau
at long times is noticeably higher. Fig. 9(e) reveals that the blue
cell cluster is highly contorted. Moreover, complete cell sorting
is never attained: some yellow cells are constantly entering and
leaving out the blue cell cluster, and some blue cells are ejected
from it, which opposes to sorting process. This phenomenon,
inherent to fragmentation (and violation of detailed balance), is
never observed with the CA.

Note that for both algorithms the time evolution of the bound-
ary length is approximately the same than at moderate tempera-
ture. The gain in cell sorting process becomes marginal, as spatial
spread and entanglement of the cells restrain their mobility.

Log–log plots (Fig. 12(b)) show that cell sorting kinetics ob-
tained at long times with both algorithms is compatible with a
power law dependence, although our sample is too small to dis-
criminate between logarithmic or power-law decay [24].

We performed simulations at higher temperatures, up to T =

150 (not shown).With the CA, the kinetics of cell sorting is approx-
imately the same, and ⟨n⟩ remains close to 6, with or without an-
nealing steps. With theMMA, the number of cells entering or leav-
ing the blue cell cluster increases, and the value of the long-term
plateau gets higher as the temperature increases. ⟨n⟩ also signif-
icantly increases, up to 6.46, in spite of 100 annealing steps. ⟨n⟩
cannot be evaluated without annealing, as the number of neigh-
bors of a cell often exceeds the limit value 20 set in the program,
due to the high fragmentation rate.

6. Conclusion and outlook

To summarize,weprovide a newalgorithm for CPMsimulations
that forbids cell fragmentation (in addition to spontaneous
nucleation) by testing the local connectivity of the candidate and
target cells before every modification of a site value. It is shown
that these two local connectivity tests are rigorously equivalent to
testing the simple connectivity of the cells. This algorithmpresents
numerous advantages (and no drawbacks have been identified):

• It improves the realism of the simulations of cellular systems
(except perhaps for systems in pathological situations): no
fragmentation or nucleation occurs, and cells stay simply
connected.

• For a same simulation temperature, it is faster than the standard
algorithm used in CPM simulations: the time spent to test the
local connectivity of the cells is largely offset by the time spared
by not doing moves that induce fragmentation.

• It restores detailed balance. As a consequence, the long-term
stage and the statistics of configurations do not depend on
the specific chosen acceptance rate, nor on the chosen path in
the simulation temperature space: it depends only on the final
temperature once the thermal equilibrium is reached.

• It works for all simulation temperatures. Hence, when inter-
ested in the long-term stage of the simulations, we can (tem-
porarily) increase the simulation temperature to convergemore
rapidly.

• Its implementation is much easier than those of parallel
algorithms.

Note that if this algorithm is intended to be used for prohibiting
cell fragmentation, and not so for preserving the simple connectiv-
ity of the cells or the detailed balance criterion, the local connec-
tivity test on the target cell (step (4c)) can be skipped.
Fig. 12. (a) Boundary length (number of edges that are shared by blue and yellow cells) as a function of time, for four different simulation temperatures: T = 35, T = 40,
T = 60, and T = 85. Shaded areas mark standard errors of the mean. Values are measured after 100 MCS of T = 3 annealing steps, and averaged over 20 runs; (b) same
data in log–log scale. (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)



62 M. Durand, E. Guesnet / Computer Physics Communications 208 (2016) 54–63
Fig. 13. Best choices for the adjacency neighborhood, target neighborhood, and
local connectivity domain in (a) hexagonal lattice; (b) triangular lattice; (c) cubic
lattice. Adjacency and target neighborhoods are equal and shown in orange. The
local connectivity domain is delimited by bold edges (and shadowed surface for the
3D lattice). (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Although we focused primarily on the 2D square lattice, the
algorithm can be adapted without difficulty to other 2D or 3D
lattices. At 2D, alternatives are the hexagonal and triangular
lattices (see Fig. 13(a) and (b)). Best choices for the values of Na
(=Nt ) and Dc are generalized as follows: adjacency neighborhood
is defined as the set of lattice sites that are side-adjacent to the
central site (hence composed of 6 sites for the hexagonal lattice,
and 3 sites for the triangular lattice). Indeed, this is the minimal
number of lattice sites required to respect the lattice symmetry.
Local connectivity domain Dc is defined as the set of lattice
sites that are side- or corner-adjacent to the central site (hence
composed of the same 6 sites than Na for the hexagonal lattice,
and 12 sites for the triangular lattice). For the extension to the 3D
cubic lattice, Na and Nt are composed of the 6 face-adjacent sites,
and Dc of the 12 face- or edge-adjacent sites (see Fig. 13(c)).

The modifications brought by our algorithm also allow to
use other families of Monte-Carlo algorithms. In particular, one
can think of single-spin-exchange algorithms, like the Kawasaki
algorithm, as opposed to the Metropolis or Heat bath algorithms
which are single-spin-flip algorithms. In the Kawasaki algorithm,
two lattice sites exchange their values, conserving the number
of sites (i.e. area) of every cell, which makes the compressive
energy term in the Potts Hamiltonian (1) unnecessary. Kawasaki
algorithm is commonly used in interface problems [21]. As with
Metropolis, the algorithmmust be adapted to prevent spontaneous
nucleation: only exchange of neighboring sites’ values (local value-
exchange) must be allowed. With the MMA, a series of local value-
exchangeswould still result in a lone heterogeneous site in a region
of differing site values. Because cell areas are conserved, the lone
heterogeneous site would persist for much longer time than it
would with Metropolis. Presumably this is the reason why the
Kawasaki algorithm has never been used in CPM simulations, to
our knowledge. Kawasaki algorithm can be safely used with the
CA, thanks to the cell connectivity test.

It can also be noticed that the significant difference in kinetics
of cell sorting produced by the two algorithms may reduce the
discrepancy observed so far between experimental and CPM
Fig. 14. Close-up of the cellular pattern obtained with the CA at T = 130: cells
have contorted structures. Each cell is coded with a different color to facilitate their
visualization. (For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)

Fig. 15. Examples of target neighborhoods for which detailed balance condition is
not satisfiedwith the target value selection usedwithin theMMA (step (2b)): either
with a target neighborhood equal to the Von Neumann orMoore neighborhood, the
site value r has more chance to be selected than site values b or y.

sorting processes [24,25]. Further investigation are currently
conducted in order to confirm (or infirm) this hypothesis.

Finally, it is worth mentioning that our algorithm may open up
new fields of application for CPM simulations: at higher simulation
temperature, prohibition of fragmentation leads to the formation
of dendritic cells, as shown in Fig. 14. Combined with anisotropic
neighborhoods, prohibition of fragmentation may also facilitate
simulating of elongated cells.
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Appendix

The Modified Metropolis Algorithm (MMA) commonly used in
CPM simulation differs from the standard Metropolis algorithm in
the selection of target values (step (2b) vs step (2)): in standard
Metropolis, the target value is randomly chosen from any of the Q
possible values, without bias, whereQ denotes the number of cells.
In the MMA, the target value is chosen from the list of neighboring
sites,without bias. As a consequence, the selection probability does
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not satisfy g(xi : σ → σ ′) = g(xi : σ ′
→ σ) anymore, and

the condition of detailed balance [Eq. (2)] is not satisfied. This is
exemplified with the neighborhood shown in Fig. 15: if we choose
for the target neighborhood Nt (see Section 2) the 4 side-adjacent
lattice sites (Von Neumann neighborhood), we have: g(xi : r →

b) = 1/(4N), while g(xi : b → r) = 3/(4N). If Nt is composed of
the 8 side- or corner-adjacent sites (Moore neighborhood): g(xi :

r → b) = 3/(8N), while g(xi : b → r) = 4/(8N). One way
to restore detailed balance would be to weight acceptance ratios
to recover condition of detailed balance: the original acceptance
ratio A(xi : σ → σ ′) is replaced with A(xi : σ → σ ′)/z(σ ′),
where z(σ ′) is the number of sites, within the target neighborhood,
which have the specific value σ ′ [19]. However, this is not the
best way to restore detailed balance, as we should keep acceptance
ratios as large as possible to have an efficient algorithm. Instead,we
choose to modify the selection probability by replacing step (2b)
(Section 2) with:

(2c) Randomly select a value from those present in the target
neighborhoodNt . Call this the target value. Let σ ′ be its value.

This restores the equality g(xi : σ → σ ′) = g(xi : σ ′
→ σ).

In the example of Fig. 15, the number of possible target values
is 2 for a Von Neumann target neighborhood, and 3 for a Moore
neighborhood. Thus, g(xi : r → b) = g(xi : b → r) = 1/(2N) in
the first case, and =1/(3N) in the second case.

In comparison with step (2b), step (2c) is somehow a more
straightforward adaptation of step (2): in step (2c) the target value
is drawn from among the set of values within Nt , while in step
(2) the target value is drawn from among the Q values within the
whole pattern. However, compared to step (2b), step (2c) would
enhance persistence of fragments, if usedwithout themodification
brought by our algorithm to prevent bubble fragmentation. We
presume that is the reason why target value selection (2b) prevails
in most CPM simulations.
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