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a b s t r a c t

In Monte Carlo integration an accurate and reliable determination of the numerical integration error is
essential. We point out the need for an independent estimate of the error on this error, for which we
present an unbiased estimator. In contrast to the usual (first-order) error estimator, this second-order
estimator can be shown to be not necessarily positive in an actual Monte Carlo computation. We propose
an alternative and indicate how this can be computed in linear time without risk of large rounding errors.
In addition, we comment on the relatively very slow convergence of the second-order error estimate.

© 2016 Elsevier B.V. All rights reserved.
1. Monte Carlo integration and its errors

It does not need to be stressed that in numerical integration,
including Monte Carlo (MC) integration [1], determination or
estimate of the integration error made is essential. The Central
Limit Theorem (CLT) practically ensures that if the numberN ofMC
points is sufficiently large the numerical value of the MC integral
– itself a stochastic variable – will have a Gaussian distribution
around the true integral value, with a standard deviation that can
itself also be estimated: this is the first-order error. The results of
MC integrations are therefore usually reported as

‘‘result’’ ± ‘‘error’’

with the understanding that the ‘‘error’’ value quoted is the
Gaussian’s standard deviation. In this way one can, for instance,
assign confidence levels when comparing the integration result
with a measurement. However, since the Gaussian distribution is
quite steep, a modest change in the value of the error can change
the confidence levels considerably. It is therefore preferable to also
have a second-order error that estimates how well the first-order
error was computed. The better way to report the result of a MC
integration is then

‘‘result’’ ± (‘‘first-order error’’ ± ‘‘second-order error’’) .

A first attempt to implement such a method was presented in [2].
However, in that paper no explicit form of the second-order
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error estimator was presented, nor were its numerical stability
properties and its convergence behaviour discussed: also it was
(wrongly) stated that the second-order error was the square root
of the estimator, while it ought to be the fourth root. The present
paper addresses and corrects these issues. In what followswe shall
arrive at an estimator for the second-order error that, like the first-
order one, can be evaluated in linear time i.e. at essentially no extra
CPU cost.We shall also discuss several of its numerical aspects, and
suggest an improvement.

2. Error estimators

Wewill start by defining somemathematical tools.We consider
an integral over an integration region Γ of an integrand f (x), with
x ∈ Γ . We have at our disposal a set of MC integration points
xj , j = 1, 2, . . . ,N , assumed to be iid (Independent, Identically
Distributed) with a probability distribution P(x) in Γ . We define

Jp =


Γ

dx P(x) w(x)p, w(x) =
f (x)
P(x)

, (1)

so that J1 =

dx f (x), the integral we want to compute. The

numbers wj ≡ w(xj) are called the weights of the points. We see
that Jp is nothing but the expectation value of w(x)p:
wp

= Jp. (2)

Furthermore, we define the following multiple sums:

Sp1,p2,...,pk =

N
j1,2,...,k=1

wj1
p1 wj2

p2 · · · wjk
pk (3)
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with the condition that the indices j1,2,...,k are all different. As an
example, the sum S1,1 does not contain N2 but N2

= N2
−N terms.

The falling powers are defined by

Np
= N!/(N − p)! = N(N − 1)(N − 2) · · · (N − p + 1). (4)

The simple sums Sp can be evaluated in linear time (that is, using
N additions), but a multiple sum Sp1,...,pk needs time of the order
Nk. In calculating estimators we therefore want to use only simple
sums. On the other hand, only the multiple sums have a simple
expectation value:
Sp1,p2,...,pk


= Nk Jp1 Jp2 · · · Jpk . (5)

We can relate simple and multiple sums to one another by the
following obvious rule:

Sp1,p2,...,pkSq = Sp1+q,p2,...,pk + Sp1,p2+q,...,pk + · · ·

+ Sp1,p2,...,pk+q + Sp1,p2,...,pk,q. (6)

We are now ready to construct the various estimators, starting
with the well-known MC formulæ for clarity. For the integral we
have

E1 =
1
N
S1, (7)

since ⟨E1⟩ = J1; moreover we see that this estimator is unbiased.
For the variance of E1 we have
E12

− ⟨E1⟩2 =

1
N2


S2 + S1,1


− J12

=
1
N


J2 − J12


=

1
N2

⟨S2⟩ −
1

N2N


S1,1


(8)

so that the appropriate estimator is

E2 =
S2
N2

−
S1,1
N2N

=
1

N2N
Σ2, Σ2 = N S2 − S12. (9)

The latter form is more suited to computation since it can be
evaluated in linear time. From Eq. (8) we see that the first-order
error, defined as E21/2 decreases as N−1/2, as is of course very well
known. Moreover, the expected error is defined for all functions
that are quadratically integrable, as is equally well known.

The second-order error should have as its expectation value the
variance of E2, which by the same methods as above can be shown
to be
E22

− ⟨E2⟩2 =

1
N3


J4 − 4J3J1 + 3J22 − 4


J2 − J12

2
+

2
N2N2


J2 − J12

2
. (10)

We see that the second-order error, defined as E41/4 decreases,
for large N , as N−3/4. Moreover we see that the second-order
error is only meaningful for integrands that are at least quartically
integrable. The appropriate unbiased estimator with the correct
expectation value is

E4 =
1

N4N3


N2Σ4 − 4Σ2

2
+

2
N4N2N2

Σ2
2,

Σ4 = N S4 − 4 S3 S1 + 3 S22. (11)
An important observation here concerns the asymptotic behaviour
of the relative errors. Whereas the relative first-order error, i.e. the
ratio E21/2/E1, goes as N−1/2 according to the ‘standard’ behaviour
in MC, the relative second-order error E41/4/E21/2 only decreases
as fast as N−1/4. It will therefore take much longer for the error to
be well-determined than for the integral itself.1

1 Note that the relative errors as defined here are the dimensionless ratios, the
only meaningful measures of performance of the computation.
A final point is in order. By theCLTweknow that thedistribution
of E1 in an ensemble of MC computations is normally distributed,
which tells us themeaning of E2, as discussed above. Since E2 is not
computed as a simple average, its distribution is not governed by
the sameCLT.Nevertheless, as is shown in theAppendix a good case
can be made for it being also approximately normally distributed,
so that the relation between E4 and the confidence levels of E2 can
be treated in the usual manner. Below, we shall illustrate this with
several examples.

3. Positivity and numerical stability

In principle, Eqs. (7), (9) and (11) are what is necessary to
obtain the integral and its first- and second-order errors. However,
a number of considerations must modify this picture. In the first
place, the issue of positivity. Writing w(x) = J1 + u(x) so that
dx P(x) u(x) = 0, we have

J2 − J12 =


dx P(x) u(x)2,

J4 − 4J3J1 + 3J22 =


dx P(x) u(x)4 + 3


dx P(x) u(x)2

2

,

J4 − 4J3J1 + 3J22 − 4

J2 − J12

2
=

1
2


dx dy P(x) P(y) (u(x)2 − u(y)2)2, (12)

so that the expectation values of E2,4 are positive, as they should.
In addition, since with the notation Wj = E1 + uj the Σ2 can be
written as

Σ2 =
1
2


j,k


uj − uk

2
, (13)

also E2 itself is strictly nonnegative in any actual MC calculation.
For E4 this does not hold, however. A counterexample can be
constructed as follows. Let us assume that the MC weights wj take
on only the values 0 and 1, and that E1 = Nb, b ∈ [0, 1]. We then
have

Σ2 = Σ4 = N2a, a = b − b2 ∈ [0, 1/4]. (14)

The value of E4 now comes out as

E4 =
1
N4


N2

N
a −

4N3
− 6N2

N2
a2


, (15)

which is actually negative for

a >
(N − 1)2

N(4N − 6)
=

1
4

−
N − 2

2N(4N − 6)
. (16)

Although by small margin (surprisingly, in this counterexample,
for b ≈ 1/2), the positivity of E4 cannot be guaranteed, so that
E41/4 may be undefined. As an improvement on this situation we
propose to abandon the estimator E4 in favour of

Ê4 =
1

N4N3


N2Σ4 − 4Σ2

2 . (17)

This estimator has a slight (order 1/N) bias, which ought to be
acceptable since we are dealing with only the second-order error
here; its advantage is that, since

N2Σ4 − 4Σ2
2

=
N2

2


j,k


uj

2
− uk

22 , (18)

it always evaluates to a nonnegative number.
The second issue is that of numerical stability. It is well known

that already the evaluation of Σ2 involves large cancellations
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which may destroy the numerical stability of the calculation and
can actually lead to negative values for E2: this is the reason why
the straightforward computation of E2 usually cannot be reliably
performed with single-precision arithmetic.2 This problem has
been widely discussed, for instance in [3,4]. The situation of E4,
which involves even larger cancellations, is certainly worse. To
tackle these problems, we adopt the CGV algorithm first described
in [4]. The strategy of this algorithm can best be summarized as
follows. In the first place, one concentrates on objects that are
supposed to go to a finite asymptotic value. E1 is such an object,
but Σ2,4 are not. In the second place, the algorithm focuses on the
update of these numbers as N is increased by 1. So let us define

M(N) = S1(N)/N,

P(N) = S2(N)/N − S1(N)2/N2,

Q (N) = S3(N)/N − 3S2(N)S1(N)/N2
+ 2S1(N)3/N3,

R(N) = S4(N)/N − 4S3(N)S1(N)/N2

+ 3S2(N)2/N2
− 4P(N)2. (19)

Herewe have explicitly indicated theN dependence of the running
sums S1,2,3,4. We also define

m = M(N − 1), p = P(N − 1), q = Q (N − 1),

2 As anyone who has ever taught courses on Monte Carlo integration can testify.
u = wN − m. (20)

The authors of [4] have already established the update rules

M(N) = m +
1
N
u,

P(N) =
N − 1
N


p +

1
N
u2


. (21)

We see that in particular the computation of P(N) is free of large
cancellations. Some algebra leads us to supplement these update
rules by

Q (N) =
N − 1
N


q +

N − 2
N2

u3
−

3p
N

u


,

R(N) =
N − 1
N


R(N − 1) +

1
N


p −

N − 2
N

u2
2

− 4
 q
N
u −

p
N2

u2


. (22)

Using these results, for any given N we then have

E2 =
N
N2

P(N), Ê4 =
N
N4

R(N). (23)
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4. A case study

To illustrate all the above, we can perform a simple but enlight-
ening study. Let us consider the following class of integrands:

fα(x) = (1 + α) xα, x ∈ (0, 1], −1 < α ≤ 0, (24)

whichwe shall integrate by employingN pseudorandomnumbers,
iid uniformly in (0, 1]. These functions are all integrable (with J1 =

1), but divergent as x → 0. Forα ≤ −0.5 they are not quadratically
integrable, and for α ≤ −0.25 they are quadratically integrable
but not quartically integrable. Consequently, for α ≤ −0.25 the
expectation value


Ê4

is not defined, and for α ≤ −0.5 not even

⟨E2⟩ is defined. Nevertheless, in any actual MC calculation of this
integral, Σ2,4 and E2, Ê4 will have definite, well-defined numerical
values. So how, then, are these to be interpreted?

Fig. 1 gives the results for E21/2 and Ê1/4
4 in a MC run where

N ≤ 104, monitoring their behaviour while N increases. This we
do for values of α running from −0.1 down to −0.9.

The upper line is the evolution of E21/2, and the lower line
displays Ê1/4

4 . For the smoothest case,α = −0.1, theN−1 behaviour
for E2 and the N−3 behaviour for Ê4 are evident,3 marred by
smallish jumps whenever an x value close to the singularity at
x = 0 is encountered. As α decreases to −0.3 quartic integrability
is lost, which can be seen from the fact that the jumps in Ê4 are
now much larger while those in E2 remain modest. Note that
in all cases exactly the same set of pseudorandom numbers was
used. Therefore in the various plots the jumps are in the same
place, they simply become larger and larger. For α = −0.6

3 Note that in the plots the values given are those of E1/2
2 and Ê1/4

4 .
where the integrand is also no longer quadratically integrable even
the N−1 behaviour of E2 becomes quite distorted by the growing
jumps. Finally, at α = −0.9 where the function itself is barely
integrable, the jumps have become so large that the short-term
N−1 andN−3 behaviour inbetween the jumps can no longer ensure
this behaviour over longer N ranges. It is this kind of behaviour
– short-range smooth decrease interspersed with (for increasing
singularness of the integrand) increasingly large local jumps –
that ruins the usefulness of Ê4, then E2, and, for non-integrable
functions, finally even E1.

From this exercise we conclude that it should always be a
good idea, in any MC calculation, to monitor the behaviour of
E2 and Ê4 as N increases; and that this may tell us whether the
second-order error, or indeed even the first-order error itself, can
be assigned any useful meaning. It should be pointed out that,
in our case study, the jumps in Ê4 are typically larger that those
in E2 and that Ê4 is therefore a more sensitive probe of possible
convergence problems; and, independently of that, an estimate of
how accurately the integration error itself is estimated is in our
opinion always adviseable.

Conclusions

We have argued that the current practice of MC integration,
resulting in a report on the integral estimate and its error estimate,
should always be accompanied by a second-order error estimate,
if only to validate the assignment of confidence levels to the result
(which can be, for instance, crucial in comparing the results of
different MC calculations, which is good and common practice).
We have presented the relevant estimators. A closer look at E4
shows potential positivity problems and we have emended this by
defining an improved estimator Ê4. We also point out that, on the
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one hand, the convergence of the second-order error, Ê1/4
4 /E21/2 ∼

N−1/4, rather than the ‘well-known’ E21/2/E1 ∼ N−1/2 convergence
of the error itself, and that on the other hand E2 satisfies its own
version of the central-limit theorem. In addition,we have extended
themethods of the Chan–Golub–Leveque algorithm [4] to allow for
a numerically stable computation of not only E2 but Ê4 as well.

Appendix

In this Appendix we will argue that the values of Σ2 obey their
own version of CLT. This is not automatically obvious, since we can
write

Σ2 = N
N
j=1


wj − M(N)

2 (25)

and therefore the summed quantities are not independent of one
another. Let us therefore consider a number of MC weights wj,
j = 1, 2, . . . ,N , that are identically distributed with probability
density P(w) but under the constraint that

N
j=1

wj = 0. (26)

We define

X =
1
N

N
j=1

wj
2, (27)

and estimate the distribution of X for large N as follows. The
moment-generating function of X reads
eizX

∝


du dw1 · · · dwN P(w1) · · · P(wN)
× exp

iu


wj + i
z
N


wj

2


=


du


dw P(w) exp

iuw + i

z
N

w2
N

, (28)

where the integrals run from −∞ to +∞. Introducing

Φk(u) =


dw P(w) eiuw wk (29)

we can estimate
dw P(w) exp


iuw + i

z
N

w2
N

= exp

N log


Φ0(u) + i

z
N

Φ2(u)

−
z2

2N2
Φ4(u) + O


1
N3


≈ Φ0(u)N exp


izλ(u) −

z2

2N
τ(u)


, (30)

λ(u) = Φ2(u)/Φ0(u), τ (u) = Φ4(u)/Φ0(u). (31)

Now, since Φ0(0) = 1 is the absolute maximum of Φ0(u), and

Φ0(u) = 1 + iu ⟨w⟩ −
u2

2


w2

+ O(u3), (32)

we can estimate

|Φ0(u)|2 = 1 − u2σ 2
+ O(u4), σ 2

=

w2

− ⟨w⟩
2 , (33)

so that we may approximate

|Φ0(u)|N ≈ exp


−
u2N
2

σ 2


(34)
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and the u integral is dominated by the values of u around zero;
consequently,
eizX

≈ exp


izλ(0) −

z2

2N
τ(0)


(35)

and the probability density for X to take on the value x is

Pr(X = x) ∝ exp


−
N

2τ(0)
(x − λ(0))2


,

λ(0) =

w2 , τ (0) =


w4

−

w22 . (36)

We see that in this sense a CLT holds for the distribution of


wj
2.

As an illustration, we generate a large number (106) of samples
of N (pseudo-)random numbers uniformly in the interval [0, 1],
and compute for these E1,2,4. Fig. 2 gives the actual distribution of
the E1 values togetherwith the CLT Gaussian approximationwith a
width given by E21/2. Similarly, we also give the actual distribution
of the E2 values with their CLT Gaussian approximationwith width
Ê1/2
4 . We do this both for N = 10 and for N = 1000.
Unsurprisingly, for N = 1000 the CLT approximation is

excellent, but for N = 10 it is evident that the approximation is
much worse for E2 than for E1.

We repeat the same exercise for numbers that are exponentially
distributed, that is, with probability density P(x) = exp(−x),
x ∈ [0, ∞) (see Fig. 3).
Because of the long high-x tail of this P(x), the CLT approxima-
tion is appreciably worse for N = 10 although still very good for
N = 1000.

Finally, we consider numbers distributed according to the
exponential integral [5]:

P(x) = E1(x) ≡


∞

x
dt

e−t

t
, x ∈ (0, ∞), (37)

which looks like e−x for large x, and like − log(x) for x close to
zero. Such a distribution, with both many low-x values and a high-
x tail, is typical for how weights arising from MC event generators
in particle physics are distributed (see Fig. 4).

The CLT approximation is, unsurprisingly, very poor forN = 10.
However, for large N values it is still seen to be quite good, where
we must recall that N = 1000 is actually quite a small number for
any serious calculation.
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