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a b s t r a c t

We present a parallel Cartesian-grid-based time-dependent Schrödinger equation (TDSE) solver for
modeling laser–atom interactions. It can simulate the single-electron dynamics of atoms in arbitrary
time-dependent vector potentials.We use a split-operatormethod combinedwith fast Fourier transforms
(FFT), on a three-dimensional (3D) Cartesian grid. Parallelization is realized using a 2D decomposition
strategy based on the Message Passing Interface (MPI) library, which results in a good parallel scaling
on modern supercomputers. We give simple applications for the hydrogen atom using the benchmark
problems coming from the references and obtain repeatable results. The extensions to other laser–atom
systems are straightforward with minimal modifications of the source code.
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Restrictions:
The code is restricted to problems where the atoms are in the single-active-electron approximation and
the lasers are in the dipole approximation. It is also limited by the CPU time and memory that one can
afford.
Unusual features:
We adopt the parallel strategy where the Cartesian grid is distributed among processors using a 2D
decomposition, which has no limitation for large-scale simulations.
Running time:
The running time depends on the size of the grid, the number of time step, the number of processors, and
the choice of the processor grid, ranging from a few hours to several days.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The interactions between atoms and laser fields are of fun-
damental interest in atomic physics [1] since the first realiza-
tion of the laser in 1960. The present laser technologies can
easily provide the electric field amplitudes of the same order as the
Coulomb field in atoms, which brings the electron dynamics into
the non-perturbative regime and promotes the experimental stud-
ies on various strong-field processes including Above-threshold
ionization (ATI) [2], high harmonic generation (HHG) [3], Terahertz
(THZ) radiation [4]. In the theoretical aspect, the time-dependent
Schrödinger equation (TDSE) governs the behavior of electrons in
the complex fields of atom and laser. The quantum-mechanical
wave function contains all the information of the systems, com-
pared with other approximately analytic models [5].

The numerical solutions of the TDSE give ab initio simula-
tions of the electron dynamics, and have been extensively car-
ried out for single- [6], two- [7], and many-electron atoms [8],
for long-wavelength optical lasers [9] and short-wavelength X-ray
lasers [10]. Different levels of approximates have been made for
the mentioned situations. The single-electron (hydrogen) atom al-
lows an exact numerical solution of the three-dimensional (3D)
TDSE. There also exists the recently developed six-dimensional
two-electron TDSE program for the He atom [11]. For many-
electron atoms, in addition to the time-dependent Hartree–Fock
(TDHF) method [12], time-dependent density functional theory
(TDDFT) [13], the single-active-electron (SAE) approximation [14]
is widely used when multiple electron excitations are not impor-
tant. When describing the effect of the tightly bounded inner elec-
trons on the valence electron as a model potential, the problem
can reduce to the single-electron situation. In the aspect of interac-
tion with lasers, the dipole approximate is always valid for optical
lasers which are treated as homogeneous time-dependent electric
fields. The corrections by non-dipole terms [15] should be consid-
ered when X-ray sources are used.

In spite of the increase of computing power, it is difficult to nu-
merically solve the 3D TDSE in a large scale, even for the single-
electron situation, hampered by the high demands on resources.
Parallel calculations are necessary. Numerical approaches like the
finite-difference method [16], finite-element method [17], matrix
iteration method [18], split-operator method [19] have been used
in many attempts to solve the equation. Not only spherical coordi-
nates but also Cartesian coordinates appear in the respective im-
plementations. It is accepted that Cartesian coordinates are more
convenient for parallelization using the domain decomposition
strategies [20].

In this work, we present a parallel Cartesian-grid-based TDSE
solver for modeling laser–atom interactions. We restrict the atom
in the SAE approximation interacting with the laser in the dipole
approximate. We make use of the split-operator (SO) method
assisted by Fast Fourier Transforms (FFT), which was firstly
introduced by Feit et al. [21]. Similar method was just adopted by
Mocken andKeitel [22] to solve the time-dependentDirac equation
in 2 + 1 dimensions and by Dion et al. [23] to simulate the wave-
packet dynamics according to the TDSE. Different from the work
of Dion et al., the Cartesian grid here is distributed among cores
using a 2D decomposition which has no limitation for large-scale
simulations.

The remaining part of this paper is arranged as follows. In Sec-
tion 2, we introduce the split-operator method in Cartesian co-
ordinates, which lays the theoretical foundation of our numerical
solution of the TDSE. In Section 3, the parallel strategy in the imple-
mentation is exhibited. The calculation details are present in Sec-
tion 4. In Section 5, we give a brief introduction on the external
library which our code strongly relies on. Following that, an elabo-
rate description of the code package is presented in Section 6. The
parallel scaling is tested in Section 7. Four examples illustrating the
applications of the code are given in Section 8. We draw the con-
clusions in the last section. Atomic units are used throughout the
paper.

2. Split-operator method in the Cartesian grid

2.1. Split-operator method

In quantummechanics, the time-dependent Schrödinger equa-
tion (TDSE)

i
∂

∂t
Ψ (r, t) = Ĥ(t)Ψ (r, t) (1)

gives a description of the system evolving with time. Here Ψ (r, t)
is the spatial wave function with r and t being the space–time
coordinates, and Ĥ(t) is the Hamiltonian operator.

Considering the interaction of an atomic electron with the clas-
sical electromagnetic radiation in the Coulomb gauge, the Hamil-
tonian in general reads

Ĥ(t) =
1
2


p̂ +

1
c
A(r, t)

2
+ V (r), (2)

where A(r, t) are the electromagnetic vector scalar potential, p̂ =

−i∇ is the canonical momentum operator, c is the speed of light in
vacuum, and V (r) is the atomic potential.

A formal solution to Eq. (1) is expressed by the time-evolution
operator

Û(t, t0) = T̂ exp


−i
 t

t0
Ĥ(t ′)dt ′


, (3)
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which connects the wave function at any time t to the one at the
initial time t0 by an unitary transformation as

Ψ (r, t) = Û(t, t0)Ψ (r, t0). (4)

T̂ denotes the time ordering operator.
Due to the generally spatial dependence of the vector potential,

there is no way to make a division between the spatial-dependent
dependent part and the momentum-dependent part of the
Hamiltonian. Things change when we consider now the so-called
dipole approximation A(r, t) ≈ A(t), i.e., a purely time-dependent
vector potential. A split of the Hamiltonian is thus possible

Ĥ(t) = Ĥ1(t) + Ĥ2, (5)

where

Ĥ1(t) =
1
2
p̂2

+
1
c
p̂ · A(t) +

1
2c2

A2(t) (6)

and

Ĥ2 = V (r) (7)

have the respective momentum and spatial dependence merely.
The task of the split-operator method is to factorize the time-

evolution operator of Eq. (3) at an enough short time interval into
products of a series of operators. With the split scheme in Eq. (5),
the time-evolution operator for a small time step ∆t is factorized
as

U(t + ∆t) = exp(−iĤ2∆t/2) exp


−i
 t+∆t

t
Ĥ1(t ′)dt ′


× exp(−iĤ2∆t/2) + O


(∆t)3


, (8)

which allows the propagation of a wave function accurate to
second-order

Ψ (r, t + ∆t) ≈ exp(−iĤ2∆t/2) exp

−i∆tĤ1(t + ∆t/2)


× exp(−iĤ2∆t/2)Ψ (r, t). (9)

Note that we have replaced the integral term in Eq. (8) by the
midpoint formula. The resulting exponential operators become
simple multiplication factors in the position or momentum space,
rending the operations trivial in their respective spaces. By virtue
of this, Eq. (9) can be rewritten as

Ψ (r, t + ∆t) ≈ exp(−iĤ2∆t/2)F −1

× exp

−i∆tĤ1(t + ∆t/2)


F exp(−iĤ2∆t/2)Ψ (r, t) (10)

where F and its inverse F −1 are the Fourier transforms from the
position into momentum space and vice versa.

Eq. (5) and (10) together make up the main aspect of the SO
method. In a numerical implementation, the initial wave function
is discretized on a Cartesian grid. Its time propagation is calculated
by applying Eq. (10) successively until the final time is reached. The
Fourier transforms are accomplished by Fast-Fourier-transform
(FFT) algorithms.

2.2. Cartesian grid setup

We solve the TDSE on the Cartesian grid. Both the spatial and
momentum grids are involved in the implementation of the SO
method. Suppose that the simulation is restricted in a finite box
[xmin, xmax] × [ymin, ymax] × [zmin, zmax] in the position space, the
spatial wave functions, being 3D complex arrays, are defined on
the grid points

xi = xmin + (i − 1)∆x, i = 1, . . . , nx
yj = ymin + (j − 1)∆y, j = 1, . . . , ny
zk = zmin + (k − 1)∆z, k = 1, . . . , nz

(11)
where nx, ny, nz are the numbers of the grid points, and

∆x = (xmax − xmin)/(nx − 1)
∆y = (ymax − ymin)/(ny − 1)
∆z = (zmax − zmin)/(nz − 1)

(12)

are the grid steps.
The momentum wave functions are connected with the spatial

ones by the complex discrete Fourier transforms (DFTs). For human
viewing of a spectrum, it is often convenient to put the zero-
momentum component at the center of the output array and
choose the corresponding momentum grid

px,i = 2π i/(nx∆x), i = −nx/2 + 1, . . . , nx/2
py,j = 2π j/(ny∆y), j = −ny/2 + 1, . . . , ny/2
pz,k = 2πk/(nz∆z), k = −nz/2 + 1, . . . , nz/2.

(13)

However, this arrangement does not obey the storage order of
the arrays expected by the FFT routines that the zero-frequency
component is in the first element. As a result, we need to deal with
another momentum grid as

px,i′ = 2π i′/(nx∆x), i′ = 0, . . . , nx/2, −nx/2 + 1, . . . ,−1
py,j′ = 2π j′/(ny∆y), j′ = 0, . . . , ny/2, −ny/2 + 1, . . . ,−1
pz,k′ = 2πk′/(nz∆z), k′

= 0, . . . , nz/2, −nz/2 + 1, . . . ,−1.
(14)

Note that Eq. (14) can build bridge to Eq. (13) by reordering the
indices of the momentum coordinates along each dimension. To
match the latter momentum grid, a half-space swapped array is
used at all the intermediate time during the propagation except
that it is time for visualization.

3. Parallel strategy

In this section,wepresent the schemeof our parallel implemen-
tation of the SOmethod onmulti-core computer systems that sup-
port the Message Passing Interface (MPI) library [24]. The crucial
points are the distribution of the discrete wave functions among
the cores and FFTs of the distributed data.

3.1. Domain decomposition strategies

The domain decomposition strategies are suitable to divide the
three-dimensional Cartesian grid where the wave functions live.
The quite simple one is a one-dimensional (1D) decomposition,
also called a slab decomposition. Here the 3D domain is split
along only one direction (such as the x direction), making the
whole y–z plane localized on every core, as shown in Fig. 1.
The main drawback comes from the maximum number of cores
limited by the grid size in the decomposed direction. For example,
the limitation is N for a given cubic grid with N3 points. The
supercomputers nowadays always have more than ten thousands
of cores. 1D decompositions not only confine the scale of
parallelization, but also induces too much workload per core.

A 2D decomposition, also known as a pencil decomposition,
is thought as superior to 1D decompositions. It decomposes a 3D
domain by the process grid

Nproc = Prow × Pcol, (15)

where Nproc is the total number of cores (processes) separated into
two groups, see Fig. 2 for example. Different from that in Fig. 1,
the 3D Cartesian grid is decomposed in both the x and y directions.
The resulting state is called a z-pencil where the grid points along
the z direction are local for every core. x- and y-pencils can be
obtained in the similar manner. Given a cubic grid of size N3, the
maximum number of cores grows up to N2. There is opportunity
for our program which uses a 2D decomposition to make use of
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decomposition

Fig. 1. A sketch of the 1D decomposition in the x direction using 3 cores: The cuboid on the left representing a 3D Cartesian grid that will be decomposed at the dashed
lines; the resulting three parts on the right are distributed on the three cores.
x
z

y

2D

decomposition

Fig. 2. A sketch of the 2D decomposition in the x and y directions using a 3×4 process grid: The cuboid on the left representing a 3D Cartesian grid that will be decomposed
at the dashed lines; the resulting twelve parts on the right are distributed on the process grid.
as many cores as possible which are available from the modern
supercomputers.

In practice, the numerical implementations of 2D decomposi-
tions can be realized using the MPI Cartesian Topology. 1D de-
compositions can be categorized as the special cases into the same
framework.

3.2. Parallel FFT

All FFT algorithms compute the DFT of a 3D complex array as

X̃u,v,w =


N−1
n=0


M−1
m=0


L−1
l=0

Xl,m,ne−2π iul/L


(1)

× e−2π ivm/M


(2)

e−2π iwn/N


(3)

, (16)

and need the data on the global grid across all the cores.
The parallelization of FFT on the distributed data is motivated

by the usual calculation of Eq. (16) in sequential three stages (as
shown by the parentheses with the markers):

(1) 1D Fourier transform along the x direction;
(2) 1D Fourier transform along the y direction;
(3) 1D Fourier transform along the z direction.

For the 3D Cartesian grid using a 2D decomposition, each stage
allows the application of serial algorithms on local memories,
assisted by dynamically transposing data among cores from x- to
y-pencil and from y- to z-pencil afterwards.

Highly optimized serial FFT algorithms have been implemented
bymanymajor hardware vendors, including Intel’sMKL [25], IBM’s
ESSL [26], AMD’s ACML [27], etc. There is also the most popular
open-source FFTW library [28]. The transpositions are realized by
the MPI_ALLTOALLV routine of the MPI library.

4. Calculation details

4.1. Ground state preparation

The ground state always serves as an initial condition of the
time evolution of an atomic system according the TDSE, i.e., Eq. (1).
It is the lowest eigenstate of the unperturbed Hamiltonian

Ĥ0 =
p̂
2

2

+ V (r), (17)

and is exactly known only for the hydrogenic potential V (r) =

−Znuc/r where Znuc is the atomic number. Numerical approaches
are needed to find the ground states of arbitrary potentials. There
are many ways to calculate the ground state for a given scalar
potential. The simple one is the imaginary-time-propagation (ITP)
methodwhich allows aminimumof additional routineswithin our
code. The scheme is to replace the real-time step ∆t in Eq. (10)
by an imaginary-time step ∆t → −i∆τ , and implement a
propagation in the imaginary time τ from a test wave function
Ψ (r, 0).

The principle of the ITP method is easy to understand. Assume
that we have Ĥ0φn(r) = enφn(r) with en and φn the eigenvalues
and eigenstates. The wave function at any imaginary time τ can be
expanded as

Ψ (r, τ ) = e−Ĥ0τΨ (r, 0) =


n

cne−enτφn(r), (18)

where cn is the expansion coefficients. We note that the wave
function is a summation of the complete eigenstates weighted by
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the factor e−enτ . At large τ , the terms with en > 0 die out, while
that with en < 0 diverge. The fastest divergent one corresponds
to the minimum en. Thus the normalized Ψ (r, τ ) converges to the
ground state, i.e., eigenstate with the minimal total energy.

4.2. High harmonic generation

The HHG spectrum of an atom along the direction of the unit
vector e can be described in three alternative forms associated
with the Fourier transforms of the time-dependent expectation
values of the dipole moment r, the dipole velocity ṙ, and the dipole
acceleration r̈ (let ζ = {r, ṙ, r̈}):

Seζ (ω) =

 1T1
 T1

0
e · ⟨ζ (t)⟩ e−iωtdt

2 , (19)

where

⟨r(t)⟩ = ⟨Ψ (r, t)|r|Ψ (r, t)⟩ , (20)

⟨ṙ(t)⟩ =


Ψ (r, t)|p̂ +

1
c
A(t)|Ψ (r, t)


=


Ψ (r, t)|F −1


p +

1
c
A(t)


F |Ψ (r, t)


, (21)

⟨r̈(t)⟩ = ⟨Ψ (r, t)| − ∇V (r) − E(t)|Ψ (r, t)⟩ . (22)

The last equation is obtained from the Ehrenfest theorem [29].

4.3. Absorbing boundary

When numerically solving the TDSE in a fixed-size box, an
absorbing function is need to avoid the unphysical reflection of the
wave function at the boundary. The widely used form is [30]

M(r) =


1, r ≤ r0

cos1/8


π(r − r0)
2(rmax − r0)


, r0 < r < rmax

0, otherwise

(23)

which forces the damping of the wave function in the range of
r0 to rmax. The damped zone has to be far enough away from the
nucleus so that the physical system is undisturbed by the absorbing
boundary.

Quite often, we are only interested in the part of the wave
function in the vicinity of the nucleus anddiscard the part absorbed
by the boundary. The decrease of the norm of the wave function
within the box can be interpreted as ionization. Suppose that we
have propagated the wave function up to the final time tf , the
ionization probability is calculated as

P = 1 −

Ψ (r, tf )|Ψ (r, tf )


. (24)

We turn to the trick for the calculation of the photoelectron
spectra in the same framework. Oppositely, it is now we care only
for the part of the wave function absorbed by the boundary. The
information about the photoelectron spectrum at the final time
tf is obtained from gathering the contributions from the absorbed
electron flux

Ψflux(r, tc) = (1 − M(r))Ψ (r, tc) (25)

at each intermediate time tc . The photoelectron momentum
distribution is expressed explicitly as [31]

f (p, tf ) =
Ψtotal(p, tf )

2
=

tc e−i
 tf
tc

[p+A(t)/c]
2

2
dtF Ψflux(r, tc)


2

. (26)
Here the exponential part represents the Volkov evolution
operator which propagates thewave function absorbed at the time
tc to tf , F is the Fourier transform. Note that we have ignored the
influence of the ion core on the ionized part.

For the calculations, the final time tf has to be large enough
to ensure that the ionized part and the bound part of the wave
function are well separated.

5. Introduction to the 2DECOMP&FFT library

The 2DECOMP&FFT library, published by Li and Laizet [32], is
designed for large-scale applications using 3D Cartesian meshes
and spatially implicit numerical algorithms. It is written in Fortran
and implements a general-purpose 2D decomposition along with
3D parallel FFTs depending on a choice of the external FFT libraries
as mentioned in Section 3.2. It defines a set of global variables
that can be used directly in applications and provides many
user-friendly interfaces to developers by hiding communication
details relying on MPI. Benefiting from the merits, the library is
easily applied to our program making the code well scalable to
hundreds of thousands of cores on recent supercomputers. In order
to facilitate the use of our code, it is worthwhile to give a brief
introduction on the main aspects of the library.

Following is the list of the global variables that are used in our
code.

• mytype: integer variable to define the KIND of floating-point
data. Double precision is turned on by using the pre-precessing
flag -DDOUBLE_PREC at compile time.

• real_type, complex_type: MPI datatypes for real and complex
numbers respectively.

• nproc: number of MPI processes.
• nrank: rank of the current MPI process.
• xsize(i), ysize(i), zsize(i), i=1,2,3: 1D arrays to store the sizes of

the sub-domains held by the current process. The first letter
refers to the pencil orientation and the three elements contain
the sizes in the x, y and z directions, respectively.

• xstart(i), ystart(i), zstart(i), xend(i), yend(i), zend(i), i=1,2,3: the
starting and ending indices for each sub-domains, as in the
global coordinate system. The first letter refers to the pencil
orientation.

The key subroutines that serve as the basic interfaces for 2D
decomposition, 3D FFT and parallel I/O are also available.

– decomp_2d_init(nx, ny, nz, p_row, p_col)

initializes the global variables of the library. nx, ny, nz are the
size of 3D data on the Cartesian grid to be distributed over a
2D process grid nproc = p_row*p_col. The library can handle
non-evenly distributed data with the only constraints as p_row
6 min(nx, ny) and p_col 6 min(ny, nz).

– decomp_2d_finalize

cleans up the memory.
– transpose_x_to_y(in, out)

performs the data transposition from x- to y-pencil. The
input 3D array in and output array out can be either
real or complex in ordinary ijk-order. Similar subroutines
such as transpose_y_to_z(in, out), transpose_z_to_y(in, out),
transpose_y_to_x(in, out) are also in the library.

– decomp_2d_fft_init

prepares plans for the underlying FFT engines and defines
temporary work spaces.

– decomp_2d_fft_finalize

releases the memory used by the FFT interface.
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– decomp_2d_fft_3d(in, out, direction)

performs a 3D complex-to-complex FFT. direction can be
either DECOMP_2D_FFT_FORWARD for forward transforms, or
DECOMP_2D_FFT_BACKWARD for backward transforms. The
input array in and output array out are both complex and
have to be either a x- and z-pencil combination or vice versa,
correspondingly.

– decomp_2d_write_one(ipencil, var, filename)

writes a single 3D array to a unformatted file. ipencil describes
the state of distributed (valid value are: 1 for x-pencil; 2 for
y-pencil and 3 for z-pencil). var is the data array which can be
either real or complex. filename is the name of the file to be
written.

– decomp_2d_write_plane(ipencil, var, iplane, n, filename)

writes a 2D slice of data from a 3D array to a unformatted file.
iplane defines the direction of the desired 2D slice (valid value
are: 1 for y–z plane; 2 for z–x plane and 3 for x–y plane). n
specifies the n-th plane in global coordinate system. The other
arguments have the same meanings as before.

In the library, all related variables and procedures are
grouped in the three modules: decomp_2d, decomp_2d_fft, and
decomp_2d_io which should be used by applications.

6. Description of the package

The whole package is written in Fortran, being consistent with
the 2DECOMP&FFT library and utilizing the object-oriented design.

6.1. Modules

6.1.1. The params module
The params module contains all the basic constants that are

used throughout the package.

6.1.2. The laser module
The laser module defines the laser vector potential and electric

field. It will be used by the schrodingermodule and must be coded
depending on the practical problem considered.

The contained variables are:

• f0: electric field amplitude of the laser, in atomic units.
• omega: angular frequency of the laser, in atomic units.
• ipulse: integer to specify the pulse envelopes. Currently, this

module implements three kinds of envelopes corresponding to
the examples in Section 8. If ipulse=1, the laser vector potential
has a 3-cycle sin2 envelope. If ipulse=2, the laser vector potential
has a cos4 envelope. If ipulse=3, the laser vector potential has a
10-cycle sin2 envelope.

The contained subroutines

– electric_field(t, f1, f2, f3)

gives the electric field components f1, f2 and f3 at the time t.
– vector_potential(t, v1, v2, v3)

gives the vector potential components v1, v2 and v3 at the time
t.

6.1.3. The atom module
The atom module provides the atom potential and its partial

derivatives. It must be coded according the atomic system in study.
The two functions

– atom_potential(x, y, z)

returns the atom potential at the Cartesian coordinates.
Currently, the pure Coulomb potential is adopted for modeling
the hydrogen atom.
– diff_pot(dir, x, y, z)

returns the partial derivatives of the atom potential at the
Cartesian coordinates. dir=1, 2 or 3 specifies the partial
derivative in the x, y or z direction, respectively.

6.1.4. The grid module
Thegridmodule defines the spatial andmomentumgridswhere

the wave functions live. In the parallel implementation, they are
distributed among cores by the 2D process grid. Considering the
outputs from the FFT routines, a second momentum grid with the
coordinates in a reversed order is also defined.

All the related variables are:

• p_row, p_col: 2D process grid.
• nx, ny, nz: number of grid points in each dimension.
• min_x, max_x, min_y, max_y, min_z, max_z: bounds of the

simulation box [xmin, xmax] × [ymin, ymax] × [zmin, zmax].
• dx, dy, dz: grid steps ∆x, ∆y, and ∆z in the position space, see

Eq. (12).
• dk1, dk2, dk3: grid steps 2π/(nx∆x), 2π/(ny∆y), and2π/(nz∆z)

in the momentum space.
• r1, r2, r3: 1D Arrays containing the spatial coordinates xi, yj, and

zk, see Eq. (11).
• k1, k2, k3: 1D Arrays containing the momentum coordinates of

in-order px,i, py,j, and pz,k, see Eq. (13).
• k1_tmp, k2_tmp, k3_tmp: 1D Arrays containing the momentum

coordinates of reversed order px,i′ , py,j′ , and pz,k′ , see Eq. (14).

The main subroutines

– grid_int

initializes the spatial and momentum grids.
– grid_finalize

destroys the spatial and momentum grids.
– visualize_one(filename1, filename2, fid1, fid2, cplx, flag)

visualizes the 3D array that was written to disk by the interface
decomp_2d_write_one (see Section 5). filename1 is the name
of the existent unformatted file. filename2 is the name of the
objective ASCII file. fid1 and fid2 are the unit identifiers of the
two files. cplx is the integer to specify a complex (cplx=1) or
real (cplx=0) array. flag is the integer to decide the array in the
position (flag=0) or momentum (flag=1) space.

– visualize_plane(filename1, filename2, fid1, fid2, iplane, cplx,
flag)

visualizes the 2D slice of a 3D array that was written to disk by
the interface decomp_2d_write_plane (see Section 5). The same
parameters are used except that iplane defines the direction of
the desired 2D slice (1, 2 or 3 for the y–z, z–x or x–y plane).

6.1.5. The schrodinger module
The schrodinger module includes the main aspects of the

split-operator method in solving the TDSE numerically.
Following is the list of the variables in the module. Considering

that the parallel FFT interface involves the input and output arrays
with different pencil orientations, as described in Section 5, both
the x-pencil and z-pencil arrays are defined properly.

• psi_r: 3D array in x-pencil to store the spatial wave function.
• psi_k: 3D array in x-pencil to store the momentum wave

function, with the zero-momentum component at the center.
• psi_tmp: 3D array in z-pencil to store the momentum wave

function, with the zero-momentum component in the first
element.

• imtime: logical variable to distinguish a real- or imaginary-time
propagation. ITP is implemented by setting the value true.

• dt: time step ∆t of the time evolution.
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• t_init, t_final: initial and final times.
• width: width of the absorbing boundary in each dimension. It is

defined as dimensionless fraction on each side.
• photoelectron: logical variable to decide whether the ionized

part is accumulated.
• psi_flux: 3D array in x-pencil to store the absorbed part

Ψflux(r, tc), see Eq. (25). It is only allocated when photoelectron
is set true.

• psi_flux_total: 3D array in z-pencil to store the total of the
absorbed partsΨtotal(p, tf ), see Eq. (26). It is only allocatedwhen
photoelectron is set true.

The contained subroutines and functions

– schrodinger_init

initializes the schrodinger propagation.
– schrodinger_finalize

terminates the schrodinger propagation.
– propagator(t)

propagates the wave function in one time step from t to t + dt .
– k_operator(t)

applies the momentum-dependent operator exp

−i∆tĤ1


.

– r_operator

applies the position-dependent operator exp

−i∆tĤ2/2


.

– damping_operator

applies the absorbing boundary.
– sum_flux(t)

gathers the absorbing part at the intermediate time t . It is called
only when photoelectron is set true.

– get_psi_k(visu)

generates themomentumwave function. if visu=0, onlypsi_tmp
is generated for intermediate calculations. if visu=1, the data
is saved in the new order to psi_k, which allows an easy
visualization.

– swap

rearranges the 3D array psi_tmp to psi_k.
– integrate(psi1, psi2, flag)

being a function returns the inner product ⟨Ψ1|Ψ2⟩. flag=0 or 1
stands for the calculation in the position (psi1 and psi2 are in
x-pencil) or momentum space (psi1 and psi2 are in z-pencil).

– norm(flag)

being a function returns the norm of the wave function√
⟨Ψ |Ψ ⟩. flag has the same meaning as before.

– renormalize(flag) renormalizes the wave function. flag has the
same meaning as before.

– avg_r(x, y, z)

calculates the expectation value of the position operator, given
the spatial wave function psi_r. the three components are
returned in x, y, and z.

– avg_p(t, px, py, pz)

calculates the expectation value of the momentum operator,
given the momentum wave function psi_tmp, the three
components are returned in px, py, and pz.

– avg_a(t, ax, ay, az)

calculates the expectation value of the acceleration operator,
given the spatial wave function psi_r. the three components are
returned in ax, ay, and az.

– get_energy()

being a function returns the expectation value of the unper-
turbed Hamiltonian of Eq. (17). It is called when to prepare the
ground state.
Fig. 3. Flow chart of the code. See text for details.

6.2. The main program

Four alternative main programs driver_itp, driver_hhg,
driver_emd and driver_ees are present in the package. The pro-
gramdriver_itp gives a test on the imaginary-timepropagation. The
other three main programs are designed to model laser–atom in-
teractions. The program driver_hhg calculates the high harmonic
generation (HHG) of the hydrogen atom under a linearly polarized
laser field. The program driver_emd simulates the strong-field ion-
ization of the hydrogen atom by an circularly polarized laser in the
attoclock configuration [7] and extracts the electron momentum
distribution (EMD). The program driver_ees produces the electron
energy spectrum (EES) from the ionization of atomic hydrogen in
a strong infrared laser pulse. Fig. 3 shows a flow chart of the code.

6.3. The input data

Input data to the program take the form of namelist data. The
following three namelists with the variables introduced in the
previous subsection are read from standard input.

• namelist /grid_info/ p_row, p_col, nx, ny, nz, min_x, max_x,
min_y, max_y, min_z, max_z
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Fig. 4. (Color online) Top: Machine time per step in second as a function of the
number of cores for all the options of process grid. Bottom: The magnifying part at
144 cores as a function of the process grid (only Prow is shown). The benchmark was
performed on the Tianhe II supercomputer system at NUDT using the grid size 5123 .

• namelist /laser_info/ f0, omega, ipulse
• namelist /prop_info/ t_init, t_final, dt, width

6.4. Installation and user guide

PCTDSE is distributed as a source code and designed to run on
most Unix-like systems. The distributed archive contains the src
directory of the source files, the bin directory for the executable
programs, the test directory, the main Makefile and a README file.
The 2DECOMP&FFT source files (the usage of the library can be
found in [32]) are also providedwith the permission of the authors
in the subdirectory 2decomp_fft in src. FFTs are realized by the
FFTW engines.

Compiling for the target environment is needed before the
implementation. Suppose the package is extracted to the ./PCTDSE
directory. There is no need to change anything in themainMakefile.
Instead, users should modify the platform-dependent Makefile in
the ./PCTDSE/src directory, including the compiler name (F90), flags
(F90FLAGS) and FFTW library locations (INC and LIB). A fortran
2003 compiler is necessary to use the allocatable enhancement
features. Once all set-up is done, type

make

from the main directory which will build the following four
executable programs in the ./PCTDSE/bin directory: driver_itp,
driver_hhg, driver_emd and driver_ees.

Each input file Input.in of the examples is located in a
separate subdirectory under the ./PCTDSE/test directory. To run the
programs, simply use the MPI rule

mpirun -np N program

where N is the number of cores.

7. Parallel scaling

The parallel performance of PCTDSE has been studied on the
Tianhe II supercomputer system at National University of Defense
Technology (NUDT), with each computer node comprising two
12-core Intel Xeon E5-2692 of 2.2 GHz. In addition to the number
of cores, users also have the freedom to choose the 2D process grid
Prow × Pcol. Depending on the hardware architecture, some options
take on much better performance than others.

The benchmarks are performed using a typical grid size 5123.
We examine the machine time spent to implement the real-time
Fig. 5. (Color online) Parallel scaling of PCTDSE. The benchmark was performed on
the Tianhe II supercomputer system at NUDT using the grid size 5123 .

propagation of one time step. The test programs run in fully-
populated mode (full 24 cores per node) using from 1 to 6 nodes
respectively, the corresponding number of cores being 24 to 144.
For each number of cores, all the options of process grid are
enumerated. The results are collected in the bar graph in Fig. 4.
It can be seen that there is the best process grid at runtime. So
application users are responsible for selecting the best options.

The minimum of the time among all process-grid options at
each number of cores is selected and shown in Fig. 5. Good scaling
can be achieved on up to 144 cores.

8. Examples

In this section, four examples corresponding to the four alter-
native main programs are shown to facilitate the applications of
the code. All calculations are performed on the Tianhe II supercom-
puter system at NUDT.

8.1. Ground state via imaginary-time propagation

In this example, we calculate the non-relativistic ground state
of the hydrogen atom by means of imaginary-time propagation,
as explained in Section 4.1. Despite the fact that the solution is
analytically known, we do this to validate the usefulness of this
method.

We start the imaginary-timepropagation froma testwave func-
tion that was initialized by random numbers. During the prop-
agation, the expectation value of the unperturbed Hamiltonian,
i.e., Eq. (17), is examined at each time step. The propagation stops
when convergence to the lowest energy is satisfied.

The input file Input.in is prepared in the./PCTDSE/examples/itp
subdirectory. To run this example, the user can enter this directory
and type

mpirun -np N../../bin/driver_itp Input.in & > itp.log

which writes the calculation details to the file itp.log.
The typical calculation is made using a 3D grid of size 5123

decomposed on a 4 × 4 process grid, covering ±10 a.u. in each
dimension. The time step is set 0.001 a.u. Below is part of the output
file which shows the details of the imaginary-time propagation.

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

Step Current energy Current error

1 10.3113432435 0.7951196426E+003
2 1.7523638063 0.8558979437E+001
3 0.5618636882 0.1190500118E+001
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Fig. 6. (Color online) Logarithm of the absolute error of the ground-state energy as
a function of grid and time steps.

4 0.2131478709 0.3487158173E+000
5 0.0713470329 0.1418008380E+000
6 0.0017957928 0.6955124014E−001
7 −0.0367483846 0.3854417733E−001
8 −0.0600296786 0.2328129402E−001
9 −0.0750227976 0.1499311898E−001

10 −0.0851696466 0.1014684905E−001
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
. . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . . .
24536 −0.4996209148 0.1008941819E−009
24537 −0.4996209149 0.1009186623E−009
24538 −0.4996209150 0.1006702499E−009
24539 −0.4996209151 0.1004742400E−009
24540 −0.4996209152 0.1008646500E−009
24541 −0.4996209153 0.1005221462E−009
24542 −0.4996209154 0.1003587768E−009
24543 −0.4996209155 0.1001606575E−009
24544 −0.4996209156 0.1004450412E−009
24545 −0.4996209157 0.9990558381E−010

−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−−

We can see that the energy converges with a precision of 10−10

after 24545 steps of imaginary time. The machine time spent is
about 24 h.

Because of the present implementation based on the Cartesian
grid, we inevitably face the singularity of the Coulomb potential.
The grid should avoid the singular point, but at the same time
approach it as closely as possible. In this work, we have carefully
tested the dependence of the results on the grid size and time steps.
The tests were performed by varying both the grid size from 1283

to 10243 (different grid steps) and the time steps from 0.0001 to
0.01 a.u. Given that the exact value of the ground-state energy of
the hydrogen atom is −0.5 a.u., Fig. 6 shows a pseudocolor plot of
the logarithm of the absolute error as a function of grid and time
steps.We can see that more accurate results emergewhen the grid
and time steps are both small. It requires a greater reduction in the
time step to get a converged result when reducing the grid step.

In the sample calculation above, we have used a symmetry
grid where nx, ny, nz are even and identical. The criterion always
involves a big grid size and a huge number of time steps, which
decreases the utilities in a realistic problem. Fortunately, things
changewhenwe turn to an asymmetry grid where nx, ny, nz are an
odd–odd–even combination. (Three odd numbers are not allowed
because otherwise the grid will touch the singular point.) We keep
nx ≈ ny ≈ nz in order to insure an approximately unbiased
spatial resolution (∆x ≈ ∆y ≈ ∆z). For example, we can use
the grid size (n − 1) × (n − 1) × n (n = 128, 256, . . . , 1024).
The absolute error as a function of grid step (at the converged time
steps accordingly) is plotted in Fig. 7 with a comparison with the
Fig. 7. (Color online) A comparison of the absolute error of the ground-state energy
as a function of grid step (at the converged time steps accordingly) using the
symmetric grid n3 (red diamond) and the asymmetric grid (n − 1) × (n − 1) × n
(black square), where n = 128, 256, . . . , 1024.

symmetric situation. As is shown, the accuracy of the ground-state
energy can be improved by a factor of ten.

8.2. High harmonic generation

We turn to the second example where the hydrogen atom
interacts with a linearly polarized laser pulse. The laser vector
potential is chosen to have a sine-square envelope

A(t) =

c
E0
ω

sin2


π t
T1


sin(ωt)ez, 0 ≤ t ≤ T1

0, otherwise
(27)

where E0 is the electric field amplitude,ω is the angular frequency,
T1 = 3T is the total pulse duration (T = 2π/ω is an optical
period, corresponding to 110.32 a.u. for the laserwavelength of 800
nm). The same system was used by Y.C. Han and L.B. Madsen [9]
in their calculations of high harmonic generation where the TDSE
was solved in spherical coordinates.We present the high harmonic
spectra at an intensity of 0.3 × 1014 W/cm2 (E0 = 0.0292 a.u.),
based on three different forms, the dipole, dipole velocity and
acceleration forms, which are comparable to the reference.

The ionization dynamics are simulated by real-time propaga-
tions. During the propagation, the time-dependent expectation
values of the dipole moment, dipole velocity, and dipole accelera-
tion are calculated and saved at each time step. The high harmonic
spectra are obtained from Fourier transforms of the former at the
end of the propagation.

The input file Input.in is prepared in the ./PCTDSE/test/hhg
subdirectory. To run this example, the user can enter the directory
and type

mpirun -np N../../bin/driver_hhg Input.in & > hhg.log

The program writes the calculation details to the file hhg.log. It
also writes the time-dependent expectation values of the dipole
moment, dipole velocity, and dipole acceleration to the files
Avg_r.txt, Avg_p.txt and Avg_a.txt respectively. The high harmonic
spectra based on the three forms are saved into the files SptrM.txt,
SptrV.txt and SptrA.txt.

The typical calculation is made using a symmetric grid of size
1536×1536×1536decomposed on a 12×12process grid, covering
±125 a.u. in each dimension. The time step is set 0.02 a.u. resulting
in 17500 time steps that spends a machine time of 74.5 h. The
results are shown in Fig. 8. The time-dependent expectation values
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Fig. 8. (Color online) Expectation values of dipole moment (a), dipole velocity (b), and dipole acceleration (c) as a function of time, along with the respective harmonic
spectra (d), (e), and (f) versus harmonic order, for a laser of wavelength λ = 800 nm and an intensity of 0.3 × 1014 W/cm2 . The solid black and dashed red curves refer to
the results from our calculation and from Ref. [9].
of the dipole moment, dipole velocity and dipole acceleration are
shown in the left panels (a)–(c), and the corresponding harmonic
spectra are shown to the right, (d)–(f).We can see that our code can
deliver repeatable results to some extent. The biggest difference
appears in the curves of the dipole acceleration. This is because the
acceleration operator z̈ = −z/r3 − E(t) has a strong singularity
which is very difficult to capture using the uniform grid.

8.3. Electron momentum distribution

For a long time, the timing of the tunneling process has been a
controversy. Recent works [33–35] have been dedicated to extract
the tunneling time from the angular offset of the maximum in the
2Dphotoelectronmomentumdistribution,measured by ionization
in strong, nearly circularly polarized fields. In the theoretical
aspect, the offset angle can be read from the 2D photoelectron
momentum distribution which can be obtained from directly
solving the 3D TDSE. Different from the standard method where
one need to project the wave function at the end of the laser pulse
on the ingoing scattering states [7], we use the trick described in
the Section 4.3 to calculate the electron momentum distribution.
We have proved the applicability of our code in this aspect.

In this example, a numerical attoclock experiment is carried out
using a circularly polarized laser pulse with central wavelength
800 nm. The vector potential being the same as the choice of
L. Torlina et al. [36] reads

A(t) =

−A0 cos4 (ωt/4)
× (cos(ωt)ex + sin(ωt)ey), −T ≤ t ≤ T

0, otherwise
(28)
where A0 = cE0/ω is the amplitude of the vector potential. The
offset angles are calculated at a serial of laser intensities and a
comparison with the results from the reference is presented.

During the real-time propagation, the wave function absorbed
by the boundary is accumulated and evolutes under the laser field
only. Approximately, it contain all the ionization information at
the final time. The photoelectron momentum distribution in the
polarization plane can then be obtained by integrating Eq. (26)
over the pz coordinate, i.e., f (px, py) =


f (p, tf )dpz . The offset

angle can be calculated from the average electron momentum p̄ =

(p̄x, p̄y, p̄z) =

f (p, tf )pdp by θ = tan−1(p̄y/p̄x).

The input file Input.in is prepared in the ./PCTDSE/test/emd
subdirectory which gives a sample calculation at the intensity of
0.8 × 1014 W/cm2 (circular field E0 = 0.0338 a.u.). To run this
example, the user can enter this directory and type

mpirun -np N../../bin/driver_emd Input.in & > emd.log

The program writes the calculation details to the file emd.log. The
average electronmomentum of the absorbed part at all immediate
times and the final electronmomentum distribution are saved into
the files Avg_p.txt and Emd.txt, respectively.

The typical calculation is made using an asymmetric grid of size
511 × 511 × 512 decomposed on a 8 × 8 process grid, covering
±100 a.u. in each dimension. The time step is set 0.02 a.u., resulting
in 18000 time steps that spends a machine time of 17.5 h. The 2D
electronmomentumdistribution is shown in Fig. 9.We can see that
there is an angular offset of the maximum in the distribution, as
expected.

At last, we give the offset angle as a function of laser intensity in
Fig. 10. The results for other intensities are obtained by modifying
the input file properly and implementing the calculations repeat-
edly. A bigger time step of 0.05 a.u. is enough at large intensities.
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Fig. 9. (Color online) Photoelectron momentum distribution in the polarization
(x–y) plane at the laser intensity of 0.8 × 1014 W/cm2 . θ is the offset angle relative
to the horizontal px direction.
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Fig. 10. (Color online) A comparison of the offset angles as a function of laser
intensity, obtained from the present code (black square) and Ref. [36] (red circle).

However, It must reduce to 0.01 a.u. for convergence at the lowest
intensity. We can see that the two curves agree within 0.5◦.

8.4. Electron energy spectrum

Wenowmove on to the last example showing the capabilities of
the present code in calculating the photoelectron energy spectrum.
The electron energy spectrum is an angle-integrated probability
density which can build a bridge with the electron momentum
distribution according to the energy–momentum relationship
e = p2/2. We have proved the calculations of the electron
momentum distribution in the above subsection, using the trick
in the Section 4.3.

We consider the ionization of atomic hydrogen in a 10-cycle
laser pulse with a sin2 envelope for the vector potential

A(t) =

c
E0
ω

sin2


ωt
20


sin(ωt)ez, 0 ≤ t ≤ 20π/ω

0, otherwise.
(29)

Three peak intensities 4 × 1014 W/cm2, 6 × 1014 W/cm2 and
1× 1015 W/cm2 at the wavelength of 780 nm (ω = 0.057 a.u.) are
selected in order to compare directly with the results presented by
A. N. Grum-Grzhimailo et al. [18].
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Fig. 11. (Color online) Photoelectron energy spectrumof atomic hydrogen in a laser
pulse as Eq. (29) at the three peak intensities of 4×1014 W/cm2 (a), 6×1014 W/cm2

(b) and 1× 1015 W/cm2 (c), at the wavelength of 780 nm. There is good agreement
between the spectra by A. N. Grum-Grzhimailo et al. [18] (red) and ours (black).

The input file Input.in is prepared in the ./PCTDSE/test/ees
subdirectory which gives a sample calculation at the intensity of
1 × 1015 W/cm2 (E0 = 0.1688 a.u.). To run this example, the user
can enter this directory and type

mpirun -np N../../bin/driver_ees Input.in & > ees.log

The program writes the calculation details to the file ees.log. The
average electronmomentum of the absorbed part at all immediate
times and the final electron energy spectrum are saved into the
files Avg_p.txt and EES.txt, respectively.

The typical calculation is made using an asymmetric grid of size
675 × 675 × 676 decomposed on a 8 × 8 process grid, covering
±160 a.u. in each dimension. The time step is set 0.02 a.u., resulting
in 75000 time steps that spends amachine time of five days. Fig. 11
shows our results for the three peak intensities, each ofwhich gives
a comparison with the result from the Ref. [18]. Qualitatively we
obtain very good agreement with their predictions. The biggest
difference appears in the low-energy regime, especially at the
highest intensity of 1×1015 W/cm2. This is because the simulation
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box in our calculations is relatively small, as compared with the
reference.

9. Conclusions

In this paper we have presented the PCTDSE package for
modeling laser–atom interactions. It solves the time-dependent
Schrödinger equation on a 3D Cartesian using the split-operator
method and a 2D domain decomposition strategy. It is devised
relying on the 2DECOMP&FFT library which supports large-
scale simulations making use of thousands of cores on major
supercomputers. A detailed description of the package is included.
Four examples using the hydrogen atom are given to illustrate the
applications of the package. With a modification of the atom and
laser modules, the package is easily extended to other systems.
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