
Computer Physics Communications 210 (2017) 163–171
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

BioEM: GPU-accelerated computing of Bayesian inference of electron
microscopy images✩

Pilar Cossio a,1, David Rohr b,1, Fabio Baruffa c,d, Markus Rampp c, Volker Lindenstruth b,
Gerhard Hummer a,∗
a Department of Theoretical Biophysics, Max Planck Institute of Biophysics, Max-von-Laue Str. 3, 60438 Frankfurt am Main, Germany
b Frankfurt Institute for Advanced Studies, Goethe University Frankfurt, Ruth-Moufang-Str. 1, 60438 Frankfurt, Germany
c Max Planck Computing and Data Facility, Giessenbachstr. 2, 85748 Garching, Germany
d Leibniz Supercomputing Centre of the Bavarian Academy of Sciences and Humanities, Boltzmann Str. 1, 85748 Garching, Germany

a r t i c l e i n f o

Article history:
Received 21 June 2016
Received in revised form
16 September 2016
Accepted 19 September 2016
Available online 3 October 2016

Keywords:
Image analysis
Electron microscopy
Bayesian inference
Dynamic
Heterogeneous
Software
MPI
GPU

a b s t r a c t

In cryo-electronmicroscopy (EM), molecular structures are determined from large numbers of projection
images of individual particles. To harness the full power of this single-molecule information, we
use the Bayesian inference of EM (BioEM) formalism. By ranking structural models using posterior
probabilities calculated for individual images, BioEM in principle addresses the challenge of working
with highly dynamic or heterogeneous systems not easily handled in traditional EM reconstruction.
However, the calculation of these posteriors for large numbers of particles andmodels is computationally
demanding. Here we present highly parallelized, GPU-accelerated computer software that performs this
task efficiently. Our flexible formulation employs CUDA, OpenMP, and MPI parallelization combined
with both CPU and GPU computing. The resulting BioEM software scales nearly ideally both on pure
CPU and on CPU+GPU architectures, thus enabling Bayesian analysis of tens of thousands of images in
a reasonable time. The general mathematical framework and robust algorithms are not limited to cryo-
electron microscopy but can be generalized for electron tomography and other imaging experiments.

Program summary

Program Title: BioEM.
Program Files doi: http://dx.doi.org/10.17632/d2jjs2wdhv.1
Licensing provisions: GNU GPL v3.
Programming language: C++, CUDA.
Nature of problem: Analysis of electron microscopy images.
Solution method: GPU-accelerated Bayesian inference with numerical grid sampling.
External routines/libraries: Boost 1.5, FFTW 3, MPI.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Cryo-electron microscopy has revolutionized structural biol-
ogy [1,2], providing structures of chemical-motors, such as ATP

✩ This paper and its associated computer program are available via the Computer
Physics Communication homepage on ScienceDirect (http://www.sciencedirect.
com/science/journal/00104655).
∗ Corresponding author.

E-mail address: Gerhard.Hummer@biophys.mpg.de (G. Hummer).
1 Both authors contributed equally to the work.

http://dx.doi.org/10.1016/j.cpc.2016.09.014
0010-4655/© 2016 Elsevier B.V. All rights reserved.
synthase, ion-channels, and transporters, at atomic-level resolu-
tion [3–9]. Due to its near-native conditions and single-molecule
character, cryo-EM is a powerful technique with great potential.
In fact, the structures of many biomolecules that are difficult to
characterize using X-ray crystallography or nuclear magnetic res-
onance have now been resolved with cryo-EM.

These advances are feasible because of new technologies
with time-resolved direct electron detection cameras [10], the
development of novel image processing methods [11–14], and the
use of accelerated computing capacities of multi-core processors
and hardware accelerators such as GPUs (Graphics Processing

http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.09.014&domain=pdf
http://dx.doi.org/10.17632/d2jjs2wdhv.1
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
http://www.sciencedirect.com/science/journal/00104655
mailto:Gerhard.Hummer@biophys.mpg.de
http://dx.doi.org/10.1016/j.cpc.2016.09.014

164 P. Cossio et al. / Computer Physics Communications 210 (2017) 163–171
Units) [15–18]. Direct electron detection cameras record an
image rapidly as an ensemble of time-dependent frames (or
movies), with an unprecedentedly low electron dose, capturing
the evolution of the individual particles in time [19]. This time-
resolution makes it possible to characterize the effects of beam-
induced motion and radiation damage [20–22]. Novel image
processing algorithms filter the contributions of each individual
frame according to a precalculated energy filter [23] or an in-situ B-
factor assignment [24], and discard (or low-weight) the damaged
frames. However, not only single time-frames are discarded, but
also many complete particle images. Successful 3D classification
algorithms group the images into classes that generate different
3D maps [13,14,25], and the images that determine the map with
the highest resolution correspond, in most cases, to just a small
fraction of the total.

Despite many improvements, there are still several scenar-
ios in which cryo-EM algorithms face challenges to acquire high-
resolution information. Most methods rely on the hypothesis that
all molecular orientations are sampled equally [26]. This is not the
case for some hydrophobic or large systems (of size comparable to
the ice thickness), which acquire preferred orientations due to the
carbon grid [27,28]. For disordered or heterogeneous complexes
(having multiple binding partners and affinities) [29,30], it is dif-
ficult to obtain sufficiently many particles to cover all orientations
for each conformation, and computationally challenging to assign
a single orientation to one of the multiple configurations [31–33].
A major difficulty lies in generating the initial 3D models that the
algorithms use as initial alignment references. Thus, despite the
enormous advances, the effort to extend the reach of cryo-EM is
ongoing.

In this work, we provide a computational tool to harness
the power of cryo-EM as a true single-molecule technique. Our
algorithm performs a Bayesian inference of electron microscopy
(BioEM) [34], accelerated by GPUs, to calculate the posterior
probability of a set of structural models given a set of experimental
images. In contrast to standard reconstruction algorithms, we
perform a forward calculation, building a realistic image from a
model and compare it to an unmodified particle image using a
likelihood function. The BioEM posterior probability calculated in
this way allows us to accurately rank and discriminate sets of
structural models.

The paper is organized as follows: we first describe the mathe-
matical framework to create a calculated image from a model, and
the Bayesian technique to obtain the posterior probability for a set
of particle images. Then, we introduce the BioEM algorithm and
describe its main routines as well as the parallelization scheme.
We demonstrate the performance and scalability of the BioEMpro-
gram on a high-performance computing (HPC) cluster using two
benchmark sets of particle images. Lastly, we discuss the limita-
tions of the method and point out future perspectives.

2. Mathematical formulation

The core of the BioEM method [34] is the calculation of the
posterior probability of an ensemble of structural models, m ∈

M , given a set of experimental images, ω ∈ Ω . The posterior is
defined in the usual manner, as the product of a prior probability
for the various parameters (e. g., orientations), and a likelihood
function L defined as the probability of observing the measured
image given the model and parameters, P(model|data) ∝
dθ p(model, parameters θ)L(data|model, parameters θ), with

parameters integrated out. The only requirement on the models is
that an EMprojection image can be calculated for them.Models can
thus be represented in a variety of ways, from atomic coordinates
to 3D electron density maps to simple geometric shapes. The
key idea is to perform forward calculations of 2D EM projection-
image intensities Ical for given models and then compare them
to the observed image intensities Iobsω . The calculation of the
posterior takes into account the relevant factors in the experiment
(denoted by θ), such as the molecule orientation, interference
effects, uncertainties in the particle center, normalization and
offset in the intensities and noise.

In Fig. 1, we show a schematic representation of how
Ical is constructed. We start from the 3D electron density
ρ(x, y, z|m, ϕ) of model m in a particular orientation ϕ, as given
by three Euler angles or four quaternions. Under the weak-phase
approximation [35], a 2D-projection density is determined by
integration along z,

I(0)(j, k|m, ϕ)

=

∞

−∞

dz
 yk+∆y/2

yk−∆y/2
dy
 xj+∆x/2

xj−∆x/2
dx ρ(x, y, z|m, ϕ) , (1)

where (xj, yk) are the 2D positions corresponding to pixel j, k of
width ∆x and ∆y. The discrete Fourier transform of an image I is
defined as

Î(s) ≡ Î(l, n) ≡ F (I) =

Nx
j=1

Ny
k=1

I(j, k)e2π i(lj+nk) . (2)

Here and in the following, we interchangeably index Fourier
space with reciprocal space vectors s = 2π(l/∆xNx, n/∆yNy)
or the corresponding integer indices l and n, whichever is more
convenient for the operation at hand. Analogously, in real space
we use either physical positions r = (x, y) = (j∆x, k∆y) or the
corresponding indices j, k. Nx and Ny are the numbers of pixels in x
and y directions, respectively.

The inverse Fourier transform is

I(j, k) ≡ F −1(Î) =
1

Npix

Nx
l=1

Ny
n=1

Î(l, n)e−2π i(lj+nk) , (3)

where Npix = NxNy is the total number of pixels.
We account for interference and inelastic scattering effects in

EM imaging through the contrast transfer function (CTF) and the
envelop function (Env), respectively, which are both assumed to be
radially dependent for simplicity. The product of CTF and Env is the
Fourier-space equivalent of the real-space point spread function
(PSF),

CTF(s)Env(s) = F (PSF) , (4)

where s = |s|. As functional forms, we assume CTF(s|a, A) =

−A cos(as2/2) −
√
1 − A2 sin(as2/2) and Env(s|b) = e−bs2/2 with

coefficients a, A, and b [36].
In Fourier space, the interference effects on the ideal image are

then accounted by

Î(1)(s|m, ϕ, a, A, b) = Î(0)(s|m, ϕ)CTF(s|a, A)Env(s|b) , (5)

which corresponds to a convolution with the PSF in real space,

I(1)(r|m, ϕ, a, A, b) =

r ′

I(0)(r ′
|m, ϕ)PSF(|r − r ′

||a, A, b) . (6)

Implicit in this procedure is the assumption that the pixel size is
small compared to significant variations in the PSF.

The calculated image also accounts for uncertainties in the
particle position, and variations in the imaging conditions

Ical(r|m, ϕ, a, A, b, d,N, µ) = NI(1)(r + d|m, ϕ, a, A, b) − µ , (7)

where d = (dx, dy) is a translation vector shifting the image and
thus the particle center pixel by pixel, N scales the intensity, and

P. Cossio et al. / Computer Physics Communications 210 (2017) 163–171 165
Fig. 1. Steps in building a realistic image starting from a 3D model: rotation (ϕ),
projection, point spread function convolution (a, A, b), center displacement (d), and
integrated-out parameters of normalization (N), offset (µ) and standard deviation
of the noise (λ). The likelihood function establishes the similarity between the
calculated image and the observed experimental image.

µ is an intensity offset. The likelihood function L(ω|m, θ) of model
m with image parameters θ = (ϕ, a, A, b, d,N, µ, λ), establishes
a measure of similarity between Ical and Iobsω ,

L(ω|m, θ)

=

exp

−

j,k

Iobsω (j, k) − Ical(j, k|m, ϕ, a, A, b, d,N, µ)

2
/2λ2

2πλ2

Npix/2
. (8)

Here we assumed for simplicity uncorrelated Gaussian noise in
each pixel with zero mean and standard deviation λ.

The likelihood function, L(ω|m, θ), measures the agreement
between individual observed and calculated images for fixed
parameters θ. In contrast to maximum likelihood techniques [37]
that determine a single optimal parameter set, we perform a
Bayesian analysis covering awide range of possible parameter sets.
This range, and theweight of individual sets, is defined by the prior
probability p(θ) (see the Supplementary Information for details
about the priors implemented in the code, Appendix A), which
is combined with the prior of the model, pM(m). The Bayesian
posterior probability of a model, m, given an image, ω, is then a
weighted integral over the product of prior and likelihood,

Pmω ∝

L(ω|m, θ)pM(m)p(θ)dθ . (9)

The posterior probability of an ensemble containing multiple
models (m ∈ M) with relative weights wm (where

m wm = 1),

given a set of images (ω ∈ Ω), is then

P(M|Ω) ∝

Ω
ω=1

M
m=1

wmPmω , (10)

i.e., the product over independent images of weighted sums over
ensembles.

3. Algorithm and optimization

To evaluate the posterior probabilities Pmω in Eq. (10) for every
model m ∈ M and image ω ∈ Ω , we have to compute the
integral in Eq. (9) over the parameters ϕ, a, A, b, d,N, µ, and λ.
As shown in Ref. [34], we can integrate noise λ, normalization
N , and offset µ analytically. The resulting analytical expression
of the posterior probability Pmω(ϕ, a, A, b, d) as a function of the
remaining parameters is shown in Eq. S8 of the Supplementary
Information. Average andmean squared averages of the intensities
of the observed and calculated images (Eqs. S3–S6) can be
precomputed. Additionally, Eq. S8 involves the estimation of the
cross-correlation between the calculated and observed images, Cco
from Eq. S7. The remaining integrals in Eq. (9) over orientations
parametrized by ϕ, the PSF with parameters (a, A, b), and center
displacements d are evaluated numerically. Importantly, for each
parameter combination (with the possible exception of d; see
below), the cross-correlation between the Ical and Iobs has to be
calculated in a computationally demanding step.

The data dependency in the construction of the calculated
image is sketched in Fig. 1. The model must be first rotated, then
projected, then convoluted, and then displaced. The loop over the
experimental images is, in principle, independent but it is best to
nest this loop inside the loop over the model rotations and PSF
convolutions. Then, the same rotation, projection, and convolution
do not have to be computed repeatedly for every observed image.

Listing 1 presents a pseudo-code of the BioEM algorithm. Here,
the subroutine compute_probability computes the posterior
probability from Eq. S8, and norm_images[] is an array with
precomputed Co and Coo (from Eqs. S3 and S5) for all observed
images.✞
for (r = 0;r < num_rot;r++) {

m_rot = do_rotation(r, model);
m_proj = do_projection(m_rot);
for (c = 0;c < num_convolutions;c++) {

m_conv = do_psf_convolution(m_proj, c);
for (d = 0;d < num_displacements;d++) {

m_disp = do_2d_displacement(m_conv, d);
norm_model = compute_norm(m_disp);
for (w = 0;w < num_images;w++) {

cross_corr = compute_cross_corr
(m_disp, image[w]);

image_probability[w] += compute_probability
(norm_images[w], norm_model , cross_corr);

}}}}✝ ✆
Listing 1: Pseudocode of the numerical integration.

In the following, we describe the optimizations applied
during the development, including some technical details. The
measurements presented in this section have been taken on our
development system,which hosts a typical, workstation-class Intel
Core i7-980 3.33 GHz 6-core CPU and an NVIDIA GTX Titan GPU.
This is complemented in Section 4 by a systematic study of the
parallel efficiency and the GPU acceleration, performed on a HPC
cluster with server-class CPUs and GPUs.

3.1. Model rotation

The BioEM algorithm offers two representations of model
orientations in 3D space: with Euler angles or with quaternions.
Whereas the Euler angles are most commonly used in EM image
processing softwares, we have found it more suitable to use
quaternions. The advantage is that with the quaternions uniform
sampling of the group SO(3) of rotations in 3D space ismore readily
implemented [38].

3.2. Imaging effects

After the rotation and projection, we construct the Fourier
transform of the ideal image,F (I(0)), from Eq. (1). Interference and
imaging effects are taken into account by multiplication with CTF
and Env in Fourier space according to Eq. (5), or by convolution
with the PSF in real space (which can be advantageous, e. g., if the
PSF is zero everywhere except near the origin). In the code, the PSFs
to be sampled over, and their Fourier transforms, are precalculated
in the formof radially symmetric 2D images, and stored inmemory.

3.3. Center displacement

To evaluate the integral over the image translation vectors dwe
have implemented two alternative approaches suitable for small

166 P. Cossio et al. / Computer Physics Communications 210 (2017) 163–171
Fig. 2. Processing time of the real-space (dashed) and Fourier-space (solid) variants
to compute the cross-correlation of the calculated image and the observed image,
Cco(d), as a function of the number of center displacements d for both the CPU
(circles) and GPU (squares). The measurement was taken for the 11,000-image set
on the same benchmark system as specified in Table 1.

and large sets of d, respectively. In a real space formulation, the
cross-correlation is simply calculated for different displacements
d. In Fourier space, we use the fact that the cross-correlation of
the calculated and the observed images shifted by d (denoted by
Cco(d)), is given by

Cco(d) = F −1
[F (Iobs) · F (I(1))](d), (11)

where F −1 is the inverse Fourier transformation and the dot
indicates the complex product of Fourier components at equal s
vectors, i. e.,

Cco(dx, dy) =
1

Npix

Nx
l=1

Ny
n=1

Îobs(l, n)Î(1)(l, n)e−2π i(ldx+ndy), (12)

where the overline indicates the complex conjugate. In this way,
we can take advantage of the fact that the convolution with the
PSF carried out in Fourier space produces Î(1), and that Îobs can be
precalculated. Hence, the only computationally intense part is the
Fourier backtransformationF −1 in Eq. (11). If we compare the two
algorithm variants, the real-space one requires the computation of
as many cross-correlations as there are displacements. The Fourier
variant requires one Fourier backtransformation, irrespective of
the number of displacements. Naturally, the first version should
have advantage with few displacements, while variant two will
be superior for many displacements. In fact, Fig. 2 shows that the
Fourier version is superior in most cases, both on the CPU and the
GPU.

The Fourier variant differs from the real-space version in that
it wraps around the borders of the experimental image instead
of just cropping it. However, comparing the results for certain
larger datasets, we can conclude that this does not pose a problem,
because the particle is generally located in the center of the image
while the region around it (the borders) consists mostly of noise.
Moreover, using the Fourier variant,wehave the advantage thatwe
do not have to convert the calculated image back to real space for
computing the cross-calculation, which saves some of the Fourier
transforms.We still need the constants Co and Coo, but these can be
easily computed in Fourier space using Plancherel’s theorem, e. g.,
Coo ∝

|F (Iobs)|2.

We perform the Fourier-transformation using the Fast Fourier
Transform (FFT) libraries [39] fftw on the CPU and cuFFT on the
GPU. Since all images (calculated and observed) are real, we use
the fast real-Hermitian FFT variant offered by these libraries. The
computing time of the FFT algorithms depends on the image size
(see Supplementary Fig. S1). Image sizes that are powers of 2 per
dimension or follow standard EM/FFT suggestions [40] have the
best performance.
3.4. Numerical precision

We computed the numerical integral in Eq. (9) using single
and double precision with and without the Kahan summation
algorithm [41]. We found that all options lead to the same
numerical result,mainly, because the likelihood function is sharply
peaked around its maxima and few parameter sets contribute to
the summation. Thus,we set as default the fastest setupwhich uses
single precision without the Kahan summation. All benchmarks
shown in this paper are based on this single-precision setting.

3.5. Blocking

A common technique to optimize memory access patterns
of nested loops (for instance for matrix operations) is blocking,
which improves the cache usage. Alternatively, if the memory
access pattern does not depend on one of the loops, one can
place that loop as the innermost loop. We apply this optimization
for the real-space variant. The loop over the displacements shifts
the memory access only by one entry per iteration, so we use
this loop as the innermost loop (i. e., exchange the loops over w
and d in Listing 1). Since, for the Fourier variant, the FFTs
are computationally dominant, we do not need the blocking
optimization in this case.

3.6. Vectorization

For the real-space version, we have written the code to support
compiler auto vectorization. By checking the disassembly of the
object file we verified that the compiler vectorized the code
exactly in the way we intend. Since optimized FFT libraries use
vectorization, we do not have to take action in this respect for the
Fourier variant.

3.7. Parallelization

In order to speed up processing of the very compute-
intense BioEM task, we parallelize the processing on top of the
vectorization. We consider parallelization over the cores inside
one compute node, parallelization over multiple compute nodes,
and usage of parallel accelerator devices like GPUs to speed up
processing.

3.7.1. CPU usage
It is desirable to parallelize the inner loop over the images on

a shared memory architecture. In this way, we need to compute
rotation, projection, and convolution only once, and we can then
reuse the calculated image Ical for comparison with all observed
images Iobs. We employ OpenMP to process the comparison
of Ical to all images in parallel. The outermost loop over the
rotations does not have any dependencies (except for the source
data), hence we have chosen to parallelize it via the Message
Passing Interface (MPI) to support utilization of many compute
nodes in parallel. Fig. 3 shows a schematic representation of
the parallelization approach. Each grid cell represents a single
rotation to a single experimental image, inside which the integrals
over the projection, PSF convolution, and center displacement are
performed (zoomed square Fig. 3). The Fourier algorithmcalculates
the center displacement and cross-correlation to the experimental
image simultaneously. If there are only a few experimental images,
then also the rotation, projection, and Fourier transformation of Ical
take a non negligible time (up to 30% for the small dataset from the
Results section). In order to speed this up, BioEM can use OpenMP
to precalculate all Fourier transformed images Ical in parallel.

P. Cossio et al. / Computer Physics Communications 210 (2017) 163–171 167
Table 1
Performance evolution of BioEM through subsequent optimization phases (from top to bottom, first column) as measured on a
workstation with an Intel Nehalem Core i7-980 6-core CPU (3.33 GHz) and an NVIDIA GTX Titan GPU. To test the flexibility of the
code, we used two different setups (second column): 11,000 images (224 × 224 pixels) of the F420-reducing hydrogenase system
[22,42], and 130 images (170 × 170 pixels) of the chaperonin GroEL [43], both with one PSF, one orientation and one center
displacement. The third column states the absolute runtime and the fourth and fifth column give the relative speedup compared to the
previous, or initial code version, respectively.

Version Number of images Time Speedup (incremental) Speedup (cumulative)

First prototype version 130 ≈2 s – –
11,000 ≈1200 s – –

First BioEM C++ 130 0.533 s 4.00 4
real-space version 11,000 312.4 s 4.00 4

Vectorized C++real-space version, 130 0.083 s 6.39 26
with optimizations from Section 3 11,000 42.62 s 7.33 29

Fourier-space version 130 0.120 s 0.69 17
11,000 8.256 s 5.18 151

Real-Hermitian FFT version 130 0.048 s 2.49 44
11,000 2.809 s 2.94 444

Parallelization with 130 0.011 s 4.46 537
OpenMP (6 cores) 11,000 0.581 s 4.84 2,151

GPU usage with CUDA 130 0.00213 s 5.07 998
(1 NVIDIA Titan GPU) 11,000 0.106 s 5.48 11,790

Combined CPU / GPU 130 0.00208 s 1.02 1,023
usage 11,000 0.091 s 1.16 13,733
Fig. 3. Representation of the double parallelization scheme used in the BioEM
algorithm.MPI is used for parallelization over differentmodel rotationswhile CUDA
and/or OpenMP is used for parallelization over different images. For each pair of
model orientation and particle image (zoomed box), a loop over the PSF convolution
kernels is performed, and the cross-correlation to the observed image is calculated
using a fast-Fourier algorithm.

Fig. 4. Processing time of the real-space and the Fourier variants for the calculation
of the posterior probability, as a function of the number of observed images. Results
are shown for the CPU (circles), and the GPU (squares) for both variants real-space
(dashed) and Fourier-space (solid). The measurements were taken for the 11,000-
image set on the same benchmark system as specified in Table 1.

3.7.2. GPU usage
In recent years, Graphics Processing Units (GPUs) have shown

significant speedup in many applications, among them the FFT,
which is heavily used by BioEM. In order to leverage this potential,
we have adapted BioEM to run on GPUs. BioEM can use CUDA for
the cross-correlation step, which essentially consists of an image
multiplication in Fourier space and a Fourier back-transformation.
We did not consider bringingmore of the steps to the GPU because
the other parts are not time critical and can be processed well by
the CPU. We use a pipeline where the CPU can prepare the next
rotations and convolutions while the GPU runs the comparison of
the last Ical to all observed images. We also arrange the remote
direct memory access (RDMA) transfer of the new data from the
host to the GPU in the pipeline asynchronously via CUDA streams.
In this way, BioEM keeps executing GPU kernels 100% of the time
and there is no GPU idle time. In order to use both CPU and GPU
to the full extent, BioEM splits the work between GPU and CPU
and uses both processor types jointly for the comparison step.
Fig. 4 shows the computational time as a function of the number
of the observed images. Except for very small sets of images,
the processing time depends linearly on the number of observed
images. Here the transition to linear scaling occurs between 128
and 256 images and is, thus, below what one would encounter in
typical applications.

Table 1 summarizes the evolution of the code’s performance
over subsequent development phases, starting out from a first,
serial prototype version executed on a single CPU core (Intel Core
i7, 3GHz) to a full, GPU-accelerated multicore node. We would
like to emphasize that the huge overall speedup (3 or 4 orders
of magnitude for different setups with 130 or 11,000 images,
respectively) is to a large degree due to algorithmic optimizations
pointed out in Sections 3.3 to 3.6 and OpenMP parallelization of
the CPU version. The latter defines the performance baseline for a
fair comparison of the GPU version which delivers a speedup by a
factor of 5 in this case (6-core CPU vs. Titan GPU).

3.8. Extra features

In addition to calculating the posterior probability of a model
given a set of experimental images, the code provides several extra
features:
• Synthetic map: print the synthetic map corresponding to a

specific parameter set, θ.
• Maximizing parameters: report the grid value parameters that

give a maximum of the posterior probability.
• Posterior for orientations: obtain the posterior probability as a

function of the rotational (Euler or quaternion) angles.

Details on using each feature are provided in the user manual.

168 P. Cossio et al. / Computer Physics Communications 210 (2017) 163–171
3.9. Margin for improvements

Using the CUDA profiler, we measured that more than 75% of
the compute time is spent in the cuFFT library for both datasets.
The fraction of CPU time spent in fftw is even larger. Themajority
of the remaining time is used for pixel-wise multiplication of the
images in Fourier space,which is by definitionmemory-bandwidth
limited, in particular on the GPU. It is a small inefficiency in
this respect that the images are stored to memory after the
multiplication and then read again for the FFT, but this can hardly
be avoided due to the use of the FFT libraries. The FFT libraries
themselves are already well optimized, thus the margin for an
additional speedup is limited.

4. Performance

This section presents a performance evaluation of the BioEM
software, focusing on parallel efficiency and GPU performance
obtainable on a typical high-performance compute cluster that
is employed for production runs with BioEM. The tests were
performed on the high-performance system Hydra of the Max-
Planck-Society, operated by the Max-Planck Computing and Data
Facility in Garching, Germany. It consists of dual-socket nodes
equipped with Intel Xeon E5-2680 v2 Ivy Bridge CPUs (20 physical
cores per node with 2 hyperthreads per core) and interconnected
with a high-performance network (FDR InfiniBand). A subset of the
nodes is equipped with two NVIDIA K20X ‘‘Kepler’’ GPUs each. For
the benchmarks on theHydra system, Intel compiler suite XE 2014,
CUDA 5.5 and FFTW 3.3.3 were used on top of the Linux operating
system SLES11.

We selected a benchmark setwith 100 (denoted by ‘‘small’’) and
2000 (denoted by ‘‘large’’) experimental particle images of the 1.2
MDa F420-reducing hydrogenase (Frh) system [22,42]. Each particle
image had 224 × 224 pixels with 1.32 Å of pixel size. An all-atom
structure (∼82000 atoms) built from the 3D density map [22] was
used as the reference model. The numerical integrals in Eq. (9)
were performed over grids with 13500 orientations, 64 PSFs, and
400 center displacements. This parameter setup is consistent with
a case without prior knowledge of the symmetry of the system
or the orientations of the particle images. Thus, we did not take
advantage of the 12-fold symmetry of the Frh complex to reduce
the orientational search. However, in practical applications this can
be easily implemented, by searching over a restricted set of Euler
angles or corresponding quaternions.

Fig. 5 shows that we can achieve almost perfect linear scaling
with the number of physical cores in a node for both datasets.
BioEM allows us to parallelize over the cores inside a node in
several ways: over the observed images via OpenMP, or over
the orientations via MPI, or with a combination of MPI and
OpenMP in a hybrid setup. The figure compares OpenMP to MPI
scalability. There are two effects that limit pure OpenMP scaling.
First, there are unavoidable non-uniform memory access (NUMA)
effects because common global data (e.g., the calculated images)
are stored only once and thus are scattered over NUMA domains.
This becomes apparent in Fig. 5, which shows that both the large
(blue, solid line) and the small setup (red, solid line) exhibit very
good scalability up to themaximumof 10 cores of a NUMAdomain.
Second, in particular for the small dataset, synchronization after
the computation of the likelihood limits the performance. In
contrast, these aspects do not affect the pure MPI setup with each
process mapped to an individual core. The MPI configurations
(dashed lines) exhibit nearly perfect scaling up to the maximum
of 20 physical cores in the node because both datasets have
sufficiently many orientations for MPI parallelization. Thus, we
note as a side result thatmemory bandwidth is not a limiting factor
Fig. 5. BioEM speedup compared to a single thread as a function of the number
of employed CPU cores using the OpenMP (solid lines), over the observed images,
or MPI (dashed lines), over the orientations, parallelization for both the small and
large datasets. The shaded region indicates the use of Hyper-Threading.

in this context. Since BioEM is compute bound by the FFTs, Hyper-
Threading yields a small but non-negligible improvement.

An important advantage of the OpenMP parallelization is its
smaller memory footprint. While in the OpenMP case the threads
share a copy of the observed images, each process in the MPI
case has its own copy. The large dataset, for example, requires
35 GB (1.75 GB per MPI-process), which can already be prohibitive
on some of today’s HPC clusters and the memory requirement
increases further with larger datasets. Moreover, with a plain MPI
parallelization the total number of orientations poses a strict upper
limit on the number of MPI tasks. This would ultimately limit
the strong scalability of BioEM, in particular for smaller problems
with only very few orientations. The steadily increasing number
of cores per CPU and the stagnating (or even decreasing) per-
core performances will further exacerbate these constraints in the
future.

Figs. 6 and 7 provide an overview of the performance,
defined as the inverse runtime, obtained by employing different
parallelization and GPU-acceleration options implemented by
BioEM for the small and large datasets respectively on multiple
nodes of the Hydra cluster. Both figures show multiple curves
for different execution configurations. The curves distinguish
between CPU-only configurations, GPU-only configurations, and a
combined configuration that uses both GPUs and all CPU cores of
each node. In the GPU-only case, two curves for one and for two
GPUs per node are shown.We present three curves in the CPU-only
case that differ in the parallelization approach. We show curves
with pure OpenMP parallelization inside the nodes (1 process,
40 threads), pureMPI parallelization (40 single-threaded processes
per node), and a hybrid MPI-OpenMP configuration of two
MPI processes with 20 OpenMP threads each per node. All
configurations obtain a close-to-perfect linear scaling with the
number of nodes due to the absence of both communication and
load-imbalances in the implementation.

The hybrid MPI-OpenMP parallelization adds flexibility for the
parallelization and helps to contain the memory footprint. It can
reduce the number of MPI processes per node to only a few and
multiple cores per MPI process can be used efficiently by the
OpenMP parallelization. For instance, assigning twoMPI processes
per two-socket node (i. e. one per NUMA domain) avoids all NUMA
limitations and reduces the memory footprint enormously (e. g.,
from 35 GB to around 2 GB per node for the large dataset). On
top of that, this shifts the strong scaling limit from the number
of orientations to the number of orientations multiplied by the
number of cores per socket. Thus, the hybrid approach can speed
up computations employing larger computational resources when

P. Cossio et al. / Computer Physics Communications 210 (2017) 163–171 169
Fig. 6. BioEM wall-clock performance (inverse runtime) as a function of the
number of compute nodes for the small dataset, with 100 observed images,
employing different parallelization and GPU-acceleration options. Solid lines
are CPU-only configurations, and squares with dashed lines are GPU-only
configurations. The combined workload configuration (open circles and dashed
lines) had 60% of the observed images on 2 GPU devices, and the remaining 40%
on the CPU with 20 OpenMP threads per node.

Fig. 7. BioEM wall-clock performance (inverse runtime) as a function of the
number of compute nodes for the large dataset, with 2000 observed images,
employing different parallelization and GPU-acceleration options. Solid lines
are CPU-only configurations, and squares with dashed lines are GPU-only
configurations. The combined workload configuration (open circles and dashed
lines) had 60% of the observed images on 2 GPU devices, and the remaining 40%
on the CPU with 20 OpenMP threads per node.

the number of orientations limits the MPI scaling. In that respect,
the new Intel Xeon Phi many-core CPU (codename: ‘‘Knights
Landing’’) with about 240 threads and a scarce resource of 16
GB of high-bandwidth memory, presumably to be separated into
four NUMA domains, might be a powerful and energy-efficient
architecture for operating the BioEM software in the hybrid MPI-
OpenMP setup.

The large dataset comprising more images allows the GPU
a better exploitation of its parallel architecture. For the small
benchmark task, one GPU is as fast as one of the two 10-core Ivy-
Bridge processors. Processing the large dataset, the GPU runs twice
as efficiently, achieving the performance of a full Ivy-Bridge node
with two processors. (Consider that the small set with only 100
images represents more or less a lower bound, so GPU-processing
works for all real cases.) In both cases, two GPUs reach twice the
performance of a single GPU.

The GPU achieves a smaller portion of its theoretical peak
performance compared to the processor, because reading the
images from global memory saturates the memory bandwidth.
Here, the processor can play the strength of its larger caches.
We note that whereas CPUs can easily hold tens of thousands
of images, GPUs are slightly limited in memory (∼6 GB for a
K20x). However, the limited memory size is no real restriction
because processing the images takes place independently. The GPU
can process subsets of the images step-by-step, and the host can
combine the results later on. Since processing of such a subset of
up to 6GB of images takes on the order ofminutes, the overhead for
additional transfers and repeated projections, etc., of the model is
negligible.

BioEM also allows us to split the workload among CPU and
GPU, i. e., the observed images are split into two sets: one goes
to the GPU, and the other is analyzed on the CPU using OpenMP.
We find that this workload-sharing improves the performance
significantly. The full capacity of the node is utilized, profiting
from the 2 GPU devices and all the cores in the node. The optimal
splitting ratio depends on the specific problem and hardware. For
these setups, the fastest setting was 60% GPU for the small, and
65% GPU for the large datasets. Due to synchronization issues,
the combined configuration does not achieve the sum of the
individual CPU andGPUperformances. (For instance, the combined
configuration on32nodes achieves 84%of the sumof the individual
performances of the large dataset.)

Our performance assessment shows that the optimal execution
setup depends on the problem. By trend, the MPI parallelization
works better with many orientations, while OpenMP needs many
observed images. A hybrid setup is often the best compromise and
scales almost perfectly with the number of cores. For most cases,
we recommend employing one MPI process per NUMA domain.

For instance, a complete analysis of 10,000 images with 13,500
orientations and 64 PSFs takes approximately 140 min on 16
Ivy-Bridge nodes. The same analysis can be performed within
55 min if the nodes are accelerated by two K20x GPUs. This
demonstrates that our new software can efficiently handle the
analysis of the large amounts of experimental particles used in
electron microscopy. We estimate that per grid point (one PSF
and one orientation), using the Fourier-algorithm, the code takes
approximately 0.1ms per image of ∼50,000 pixels, with the exact
runtime depending on the specific setup: number of pixels, model
size, parameter ranges, grid points, etc. In the Supplementary
Information (see Appendix A), we present somemore estimates on
the BioEM software runtime.

5. Discussion

The BioEM method provides an alternative approach to
structurally characterize biomolecules using electron microscopy
images. By calculating the posterior probability of a model with
respect to each individual image, it avoids information loss in
averaging or classification, and allows us to compare structural
models according to their posterior probability. Bayesian analysis
methods, such as Relion [13,14], have been enormously successful
in EM, contributing much to the resolution revolution [1].
However, themain use of Relion is to reconstruct 3D densities from
projection images, and not to rank or compare existing structural
models. It also differs from BioEM in the integration scheme and
optimization algorithms (for a comparison see Supplementary
Table S1). BioEM requires relatively few images to discriminate the
correct model within a pool of plausible structures (e. g., <1500
particles for GroEL [34]), whereas, for full 3D reconstructions,
Relion typically requires tens to hundreds of thousands of particles
and costly computational resources to implement the multiple
methods that select, classify, and polish the particles as well
as refine the 3D maps. Beyond applications in studies of highly
dynamic systems [34], we envision that BioEM can complement
traditional 3D reconstruction techniques in the first steps of
classification by assigning accurate orientations and single-particle
PSF estimations, and in the last steps of refinement by validating

170 P. Cossio et al. / Computer Physics Communications 210 (2017) 163–171
the final 3D models. In addition, the BioEMmethod can be applied
to problemswhere reconstruction techniques fail, e. g., when there
are fewparticle images that acquire preferred orientations orwhen
the system is flexible.

The mathematical framework can also be extended to analyze
individual time-dependent frames from direct electron-detection
cameras or electron tomography tilt-series (see the Supplementary
Information). We foresee that the BioEM method can be general-
ized to other types of imaging experiments, such as atomic force
or light microscopy after appropriate modifications of the forward
calculation of Ical.

A possible limitation of the method is that structural models
are required. However, the models can be constructed using low-
resolution data and hybrid modeling, e. g., by combining coarse-
grained maps with components from homologous PDB domains
[44] and models from simulations. We note that because the
set of models is incomplete (the normalization in Eq. (9) is
missing), BioEMcannot give an absolute estimation of the posterior
probability but rather a relative value. Thus, model comparison is
essential in the BioEM framework.

The BioEM software scales almost ideally with the number of
CPU cores and has excellent performance on both CPU and GPU
architectures. The code has been optimized for a fast, and accurate
analysis of tens of thousands of images, as is required in electron
microscopy, and is sufficiently flexible to adjust to diverse research
necessities.

In order to cope with the growing heterogeneity of GPU-
accelerated systems (in terms of number of CPUs and GPUs
within a node and their relative performance) we plan in the
future to add an autotuning feature to BioEM which dynamically
chooses the optimal distribution of the workload between the
CPUs and the GPUs of a node. The distribution can be continuously
adjusted based onmeasurement of the current CPU andGPU image
processing rate. Moreover, the autotuning could suggest a good
setting for the number of MPI processes per node for the hybrid
MPI-OpenMP mode.

The performance of BioEM is dominated to a great extent
by the FFT libraries [39] (fftw on the CPU and cuFFT on
the GPU, respectively), which are well optimized, leaving little
margin for performance improvements. Specifically, we run
three consecutive steps for computing the cross-correlation and
posterior probability: multiplication in Fourier space, fast Fourier
backtransformation, and evaluation of the analytic formula. The
multiplication of the images in Fourier space can saturate the
memory bandwidth of the GPU. Since we use the cuFFT library
which performs the FFT as a black box, the intermediate data must
be stored before and after the FFT. We only need certain Fourier
coefficients but cuFFT computes all of them. It could be possible
to modify the cuFFT to extract only the relevant coefficients.
However, we have not pursued this yet considering the challenges
required to modify and maintain such code.

A different optimization is more promising. It is possible to
parallelize over the projections via OpenMP instead of MPI using
mutexes to control the probability updates of the observed images.
Such an implementation should achieve the same performance
as the MPI version but keep the small memory footprint of the
OpenMP version. This would be optimal to analyze images where
the molecular orientations are not distributed randomly but are
correlated. For example, in electron tomography correlations arise
in different tilt images of the same particle.

Acknowledgments

The authors acknowledge Prof. Dr. Kühlbrandt, Dr. Vonck and
Dr. Allegretti for the availability of the Frh micrographs, and feed-
back on the experimental techniques. P.C., F.B., M.R., and G.H. were
supported by the Max Planck Society. The BioEM software can be
downloaded on thewebpage: https://gitlab.mpcdf.mpg.de/MPIBP-
Hummer/BioEM, jointly with a manual and tutorial.
Appendix A. Supplementary data

Supplementary material that contains analytic expressions for
the BioEM posterior and prior probabilities, the compute time
dependencies, and a comparison of BioEM to the 3D reconstruction
software Relion, can be found online at http://dx.doi.org/10.1016/
j.cpc.2016.09.014.

References

[1] W. Kühlbrandt, Science 343 (6178) (2014) 1443–1444. http://dx.doi.org/10.
1126/science.1251652.

[2] X.-C. Bai, G. McMullan, S.H.W. Scheres, Trends Biochem. Sci. 40 (1) (2015)
49–57. http://dx.doi.org/10.1016/j.tibs.2014.10.005.

[3] M. Allegretti, N. Klusch, D.J.Mills, J. Vonck,W.Kuehlbrandt, K.M.Davies, Nature
521 (7551) (2015) 237–240. http://dx.doi.org/10.1038/nature14185.

[4] J. Wu, Z. Yan, Z. Li, C. Yan, S. Lu, M. Dong, N. Yan, Science 350 (6267) (2015)
aad2395. http://dx.doi.org/10.1126/science.aad2395.

[5] M. Liao, E. Cao, D. Julius, Y. Cheng, Nature 504 (7478) (2013) 107–112. http://
dx.doi.org/10.1038/nature12822.

[6] Z. Yan, X.-C. Bai, C. Yan, J. Wu, Z. Li, T. Xie, W. Peng, C.-c. Yin, X. Li, S.H.W.
Scheres, Y. Shi, N. Yan, Nature 517 (7532) (2015) 50–55. http://dx.doi.org/10.
1038/nature14063.

[7] A. Brown, A. Amunts, X.-C. Bai, Y. Sugimoto, P.C. Edwards, G. Murshudov,
S.H.W. Scheres, V. Ramakrishnan, Science 346 (6210) (2014) 718–722. http://
dx.doi.org/10.1126/science.1258026.

[8] P. Lu, X.-C. Bai, D. Ma, T. Xie, C. Yan, L. Sun, G. Yang, Y. Zhao, R. Zhou, S.H.W.
Scheres, Y. Shi, Nature 512 (7513) (2014) 166–170. http://dx.doi.org/10.1038/
nature13567.

[9] Y. He, C. Yan, J. Fang, C. Inouye, R. Tjian, I. Ivanov, E. Nogales, Nature 533 (7603)
(2016) 359–365. http://dx.doi.org/10.1038/nature17970.

[10] A.R. Faruqi, R. Henderson, Curr. Opin. Struct. Biol. 17 (5) (2007) 549–555.
http://dx.doi.org/10.1016/j.sbi.2007.08.014.

[11] J.M. de la Rosa-Trevin, J. Oton, R. Marabini, A. Zaldivar, J. Vargas, J.M. Carazo,
C.O.S. Sorzano, J. Struct. Biol. 184 (2) (2013) 321–328. http://dx.doi.org/10.
1016/j.jsb.2013.09.015.

[12] G. Tang, L. Peng, P.R. Baldwin, D.S. Mann, W. Jiang, I. Rees, S.J. Ludtke, J. Struct.
Biol. 157 (1) (2007) 38–46. http://dx.doi.org/10.1016/j.jsb.2006.05.009.

[13] S.H.W. Scheres, J. Struct. Biol. 180 (2012) 519–530. http://dx.doi.org/10.1016/
j.jsb.2012.09.006.

[14] S.H.W. Scheres, J. Mol. Biol. 415 (2012) 406–418. http://dx.doi.org/10.1016/j.
jmb.2011.11.010.

[15] X. Li, N. Grigorieff, Y. Cheng, J. Struct. Biol. 172 (2010) 407–412. http://dx.doi.
org/10.1016/j.jsb.2010.06.010.

[16] T.V. Hoang, X. Cavin, P. Schultz, D.W. Ritchie, BMC Struct. Biol. 13 (2013) 25.
http://dx.doi.org/10.1186/1472-6807-13-25.

[17] H.D. Tagare, A. Barthel, F.J. Sigworth, J. Struct. Biol. 171 (3) (2010) 256–265.
http://dx.doi.org/10.1016/j.jsb.2010.06.004.

[18] J.E. Stone, R. McGreevy, B. Isralewitz, K. Schulten, Farad. Discuss. 169 (2014)
265–283. http://dx.doi.org/10.1039/c4fd00005f.

[19] X. Li, S.Q. Zheng, K. Egami, D.A. Agard, Y. Cheng, J. Struct. Biol. 184 (2013)
251–260. http://dx.doi.org/10.1016/j.jsb.2013.08.005.

[20] S.H.W. Scheres, Elife 3 (2014) e03665. http://dx.doi.org/10.7554/eLife.03665.
[21] X. Li, P. Mooney, S. Zheng, C.R. Booth, M.B. Braunfeld, S. Gubbens, D.A. Agard,

Y. Cheng, Nat. Methods 10 (6) (2013) 584–590. http://dx.doi.org/10.1038/
nmeth.2472.

[22] M. Allegretti, D.J. Mills, G. McMullan, W. Kuehlbrandt, J. Vonck, Elife 3 (2014)
e01963. http://dx.doi.org/10.7554/eLife.01963.

[23] Z. Wang, C.F. Hryc, B. Bammes, P.V. Afonine, J. Jakana, D.-H. Chen, X. Liu,
M.L. Baker, C. Kao, S.J. Ludtke, M.F. Schmid, P.D. Adams, W. Chiu, Nature
Commun. 5 (2014) 5808. http://dx.doi.org/10.1038/ncomms5808.

[24] X.-C. Bai, I.S. Fernandez, G. McMullan, S.H.W. Scheres, Elife 2 (2013) e00461.
http://dx.doi.org/10.7554/eLife.00461.

[25] F.J. Sigworth, Microscopy 65 (1) (2016) 57–67. http://dx.doi.org/10.1093/
jmicro/dfv370.

[26] P. Rosenthal, R. Henderson, J. Mol. Biol. 333 (2003) 721–745. http://dx.doi.org/
10.1016/j.jmb.2003.07.013.

[27] R. van Antwerpen, Arch. Biochem. Biophys. 432 (1) (2004) 122–127. http://dx.
doi.org/10.1016/j.abb.2004.08.031.

[28] J. Zhang, M.L. Baker, G.F. Schroeder, N.R. Douglas, S. Reissmann, J. Jakana,
M. Dougherty, C.J. Fu, M. Levitt, S.J. Ludtke, J. Frydman, W. Chiu, Nature 463
(7279) (2010) 379–383. http://dx.doi.org/10.1038/nature08701.

https://gitlab.mpcdf.mpg.de/MPIBP-Hummer/BioEM
https://gitlab.mpcdf.mpg.de/MPIBP-Hummer/BioEM
https://gitlab.mpcdf.mpg.de/MPIBP-Hummer/BioEM
http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://dx.doi.org/10.1016/j.cpc.2016.09.014
http://dx.doi.org/10.1126/science.1251652
http://dx.doi.org/10.1126/science.1251652
http://dx.doi.org/10.1126/science.1251652
http://dx.doi.org/10.1126/science.1251652
http://dx.doi.org/10.1126/science.1251652
http://dx.doi.org/10.1126/science.1251652
http://dx.doi.org/10.1126/science.1251652
http://dx.doi.org/10.1126/science.1251652
http://dx.doi.org/10.1016/j.tibs.2014.10.005
http://dx.doi.org/10.1016/j.tibs.2014.10.005
http://dx.doi.org/10.1016/j.tibs.2014.10.005
http://dx.doi.org/10.1016/j.tibs.2014.10.005
http://dx.doi.org/10.1016/j.tibs.2014.10.005
http://dx.doi.org/10.1016/j.tibs.2014.10.005
http://dx.doi.org/10.1016/j.tibs.2014.10.005
http://dx.doi.org/10.1016/j.tibs.2014.10.005
http://dx.doi.org/10.1016/j.tibs.2014.10.005
http://dx.doi.org/10.1016/j.tibs.2014.10.005
http://dx.doi.org/10.1016/j.tibs.2014.10.005
http://dx.doi.org/10.1038/nature14185
http://dx.doi.org/10.1038/nature14185
http://dx.doi.org/10.1038/nature14185
http://dx.doi.org/10.1038/nature14185
http://dx.doi.org/10.1038/nature14185
http://dx.doi.org/10.1038/nature14185
http://dx.doi.org/10.1038/nature14185
http://dx.doi.org/10.1126/science.aad2395
http://dx.doi.org/10.1126/science.aad2395
http://dx.doi.org/10.1126/science.aad2395
http://dx.doi.org/10.1126/science.aad2395
http://dx.doi.org/10.1126/science.aad2395
http://dx.doi.org/10.1126/science.aad2395
http://dx.doi.org/10.1126/science.aad2395
http://dx.doi.org/10.1126/science.aad2395
http://dx.doi.org/10.1038/nature12822
http://dx.doi.org/10.1038/nature12822
http://dx.doi.org/10.1038/nature12822
http://dx.doi.org/10.1038/nature12822
http://dx.doi.org/10.1038/nature12822
http://dx.doi.org/10.1038/nature12822
http://dx.doi.org/10.1038/nature12822
http://dx.doi.org/10.1038/nature14063
http://dx.doi.org/10.1038/nature14063
http://dx.doi.org/10.1038/nature14063
http://dx.doi.org/10.1038/nature14063
http://dx.doi.org/10.1038/nature14063
http://dx.doi.org/10.1038/nature14063
http://dx.doi.org/10.1038/nature14063
http://dx.doi.org/10.1126/science.1258026
http://dx.doi.org/10.1126/science.1258026
http://dx.doi.org/10.1126/science.1258026
http://dx.doi.org/10.1126/science.1258026
http://dx.doi.org/10.1126/science.1258026
http://dx.doi.org/10.1126/science.1258026
http://dx.doi.org/10.1126/science.1258026
http://dx.doi.org/10.1126/science.1258026
http://dx.doi.org/10.1038/nature13567
http://dx.doi.org/10.1038/nature13567
http://dx.doi.org/10.1038/nature13567
http://dx.doi.org/10.1038/nature13567
http://dx.doi.org/10.1038/nature13567
http://dx.doi.org/10.1038/nature13567
http://dx.doi.org/10.1038/nature13567
http://dx.doi.org/10.1038/nature17970
http://dx.doi.org/10.1038/nature17970
http://dx.doi.org/10.1038/nature17970
http://dx.doi.org/10.1038/nature17970
http://dx.doi.org/10.1038/nature17970
http://dx.doi.org/10.1038/nature17970
http://dx.doi.org/10.1038/nature17970
http://dx.doi.org/10.1016/j.sbi.2007.08.014
http://dx.doi.org/10.1016/j.sbi.2007.08.014
http://dx.doi.org/10.1016/j.sbi.2007.08.014
http://dx.doi.org/10.1016/j.sbi.2007.08.014
http://dx.doi.org/10.1016/j.sbi.2007.08.014
http://dx.doi.org/10.1016/j.sbi.2007.08.014
http://dx.doi.org/10.1016/j.sbi.2007.08.014
http://dx.doi.org/10.1016/j.sbi.2007.08.014
http://dx.doi.org/10.1016/j.sbi.2007.08.014
http://dx.doi.org/10.1016/j.sbi.2007.08.014
http://dx.doi.org/10.1016/j.sbi.2007.08.014
http://dx.doi.org/10.1016/j.jsb.2013.09.015
http://dx.doi.org/10.1016/j.jsb.2013.09.015
http://dx.doi.org/10.1016/j.jsb.2013.09.015
http://dx.doi.org/10.1016/j.jsb.2013.09.015
http://dx.doi.org/10.1016/j.jsb.2013.09.015
http://dx.doi.org/10.1016/j.jsb.2013.09.015
http://dx.doi.org/10.1016/j.jsb.2013.09.015
http://dx.doi.org/10.1016/j.jsb.2013.09.015
http://dx.doi.org/10.1016/j.jsb.2013.09.015
http://dx.doi.org/10.1016/j.jsb.2013.09.015
http://dx.doi.org/10.1016/j.jsb.2013.09.015
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2012.09.006
http://dx.doi.org/10.1016/j.jsb.2012.09.006
http://dx.doi.org/10.1016/j.jsb.2012.09.006
http://dx.doi.org/10.1016/j.jsb.2012.09.006
http://dx.doi.org/10.1016/j.jsb.2012.09.006
http://dx.doi.org/10.1016/j.jsb.2012.09.006
http://dx.doi.org/10.1016/j.jsb.2012.09.006
http://dx.doi.org/10.1016/j.jsb.2012.09.006
http://dx.doi.org/10.1016/j.jsb.2012.09.006
http://dx.doi.org/10.1016/j.jsb.2012.09.006
http://dx.doi.org/10.1016/j.jsb.2012.09.006
http://dx.doi.org/10.1016/j.jmb.2011.11.010
http://dx.doi.org/10.1016/j.jmb.2011.11.010
http://dx.doi.org/10.1016/j.jmb.2011.11.010
http://dx.doi.org/10.1016/j.jmb.2011.11.010
http://dx.doi.org/10.1016/j.jmb.2011.11.010
http://dx.doi.org/10.1016/j.jmb.2011.11.010
http://dx.doi.org/10.1016/j.jmb.2011.11.010
http://dx.doi.org/10.1016/j.jmb.2011.11.010
http://dx.doi.org/10.1016/j.jmb.2011.11.010
http://dx.doi.org/10.1016/j.jmb.2011.11.010
http://dx.doi.org/10.1016/j.jmb.2011.11.010
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://dx.doi.org/10.1016/j.jsb.2010.06.010
http://dx.doi.org/10.1186/1472-6807-13-25
http://dx.doi.org/10.1186/1472-6807-13-25
http://dx.doi.org/10.1186/1472-6807-13-25
http://dx.doi.org/10.1186/1472-6807-13-25
http://dx.doi.org/10.1186/1472-6807-13-25
http://dx.doi.org/10.1186/1472-6807-13-25
http://dx.doi.org/10.1186/1472-6807-13-25
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://dx.doi.org/10.1016/j.jsb.2010.06.004
http://dx.doi.org/10.1039/c4fd00005f
http://dx.doi.org/10.1039/c4fd00005f
http://dx.doi.org/10.1039/c4fd00005f
http://dx.doi.org/10.1039/c4fd00005f
http://dx.doi.org/10.1039/c4fd00005f
http://dx.doi.org/10.1039/c4fd00005f
http://dx.doi.org/10.1039/c4fd00005f
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.1016/j.jsb.2013.08.005
http://dx.doi.org/10.7554/eLife.03665
http://dx.doi.org/10.7554/eLife.03665
http://dx.doi.org/10.7554/eLife.03665
http://dx.doi.org/10.7554/eLife.03665
http://dx.doi.org/10.7554/eLife.03665
http://dx.doi.org/10.7554/eLife.03665
http://dx.doi.org/10.7554/eLife.03665
http://dx.doi.org/10.7554/eLife.03665
http://dx.doi.org/10.1038/nmeth.2472
http://dx.doi.org/10.1038/nmeth.2472
http://dx.doi.org/10.1038/nmeth.2472
http://dx.doi.org/10.1038/nmeth.2472
http://dx.doi.org/10.1038/nmeth.2472
http://dx.doi.org/10.1038/nmeth.2472
http://dx.doi.org/10.1038/nmeth.2472
http://dx.doi.org/10.1038/nmeth.2472
http://dx.doi.org/10.7554/eLife.01963
http://dx.doi.org/10.7554/eLife.01963
http://dx.doi.org/10.7554/eLife.01963
http://dx.doi.org/10.7554/eLife.01963
http://dx.doi.org/10.7554/eLife.01963
http://dx.doi.org/10.7554/eLife.01963
http://dx.doi.org/10.7554/eLife.01963
http://dx.doi.org/10.7554/eLife.01963
http://dx.doi.org/10.1038/ncomms5808
http://dx.doi.org/10.1038/ncomms5808
http://dx.doi.org/10.1038/ncomms5808
http://dx.doi.org/10.1038/ncomms5808
http://dx.doi.org/10.1038/ncomms5808
http://dx.doi.org/10.1038/ncomms5808
http://dx.doi.org/10.1038/ncomms5808
http://dx.doi.org/10.7554/eLife.00461
http://dx.doi.org/10.7554/eLife.00461
http://dx.doi.org/10.7554/eLife.00461
http://dx.doi.org/10.7554/eLife.00461
http://dx.doi.org/10.7554/eLife.00461
http://dx.doi.org/10.7554/eLife.00461
http://dx.doi.org/10.7554/eLife.00461
http://dx.doi.org/10.7554/eLife.00461
http://dx.doi.org/10.1093/jmicro/dfv370
http://dx.doi.org/10.1093/jmicro/dfv370
http://dx.doi.org/10.1093/jmicro/dfv370
http://dx.doi.org/10.1093/jmicro/dfv370
http://dx.doi.org/10.1093/jmicro/dfv370
http://dx.doi.org/10.1093/jmicro/dfv370
http://dx.doi.org/10.1093/jmicro/dfv370
http://dx.doi.org/10.1093/jmicro/dfv370
http://dx.doi.org/10.1016/j.jmb.2003.07.013
http://dx.doi.org/10.1016/j.jmb.2003.07.013
http://dx.doi.org/10.1016/j.jmb.2003.07.013
http://dx.doi.org/10.1016/j.jmb.2003.07.013
http://dx.doi.org/10.1016/j.jmb.2003.07.013
http://dx.doi.org/10.1016/j.jmb.2003.07.013
http://dx.doi.org/10.1016/j.jmb.2003.07.013
http://dx.doi.org/10.1016/j.jmb.2003.07.013
http://dx.doi.org/10.1016/j.jmb.2003.07.013
http://dx.doi.org/10.1016/j.jmb.2003.07.013
http://dx.doi.org/10.1016/j.jmb.2003.07.013
http://dx.doi.org/10.1016/j.abb.2004.08.031
http://dx.doi.org/10.1016/j.abb.2004.08.031
http://dx.doi.org/10.1016/j.abb.2004.08.031
http://dx.doi.org/10.1016/j.abb.2004.08.031
http://dx.doi.org/10.1016/j.abb.2004.08.031
http://dx.doi.org/10.1016/j.abb.2004.08.031
http://dx.doi.org/10.1016/j.abb.2004.08.031
http://dx.doi.org/10.1016/j.abb.2004.08.031
http://dx.doi.org/10.1016/j.abb.2004.08.031
http://dx.doi.org/10.1016/j.abb.2004.08.031
http://dx.doi.org/10.1016/j.abb.2004.08.031
http://dx.doi.org/10.1038/nature08701
http://dx.doi.org/10.1038/nature08701
http://dx.doi.org/10.1038/nature08701
http://dx.doi.org/10.1038/nature08701
http://dx.doi.org/10.1038/nature08701
http://dx.doi.org/10.1038/nature08701
http://dx.doi.org/10.1038/nature08701

P. Cossio et al. / Computer Physics Communications 210 (2017) 163–171 171
[29] R.M.B. Hoffman, T.M.A. Blumenschein, B.D. Sykes, J. Mol. Biol. 361 (4) (2006)
625–633. http://dx.doi.org/10.1016/j.jmb.2006.06.031.

[30] J. Peschek, N. Braun, J. Rohrberg, K.C. Back, T. Kriehuber, A. Kastenmueller,
S. Weinkauf, J. Buchner, Proc. Natl. Acad. Sci. USA 110 (40) (2013)
E3780–E3789. http://dx.doi.org/10.1073/pnas.1308898110.

[31] N. Elad, D.K. Clare, H.R. Saibil, E.V. Orlova, J. Struct. Biol. 162 (2008) 108–120.
http://dx.doi.org/10.1016/j.jsb.2007.11.007.

[32] D. Elmlund, H. Elmlund, J. Struct. Biol. 167 (2009) 83–94. http://dx.doi.org/10.
1016/j.jsb.2009.04.009.

[33] D. Elmlund, H. Elmlund, Annu. Rev. Biochem. 84 (2015) 499–517. http://dx.
doi.org/10.1146/annurev-biochem-060614-034226.

[34] P. Cossio, G. Hummer, J. Struct. Biol. 184 (3) (2013) 427–437. http://dx.doi.org/
10.1016/j.jsb.2013.10.006.

[35] R. Wade, Ultramicroscopy 46 (1992) 145–156. http://dx.doi.org/10.1016/
0304-3991(92)90011-8.

[36] P.A. Penczek, Methods Enzymol. 482 (2010) 35–72. http://dx.doi.org/10.1016/
S0076-6879(10)82002-6.
[37] F.J. Sigworth, P.C. Doerschuk, J.-M. Carazo, S.H.W. Scheres, Methods En-
zymol., Vol. 482, Elsevier, 2010, pp. 263–294. http://dx.doi.org/10.1016/
S0076-6879(10)82011-7.

[38] A. Yershova, S. Jain, S.M. LaValle, J.C. Mitchell, Int. J. Robot. Res. 29 (7) (2010)
801–812. http://dx.doi.org/10.1177/0278364909352700.

[39] M. Frigo, S.G. Johnson, Proc. IEEE 93 (2) (2005) 216–231. http://dx.doi.org/10.
1109/JPROC.2004.840301.

[40] G. Tang, L. Peng, P.R. Baldwin, D.S. Mann, W. Jiang, I. Rees, S.J. Ludtke, J. Struct.
Biol. 157 (1) (2007) 38–46. http://dx.doi.org/10.1016/j.jsb.2006.05.009.

[41] W. Kahan, Commun. ACM 8 (1) (1965) 40–48. http://dx.doi.org/10.1145/
363707.363723.

[42] D.J. Mills, S. Vitt, M. Strauss, S. Shima, J. Vonck, Elife 2 (2013) e00218. http://
dx.doi.org/10.7554/eLife.00218.

[43] S.J. Ludtke, M.L. Baker, D.-H. Chen, J.-L. Song, D.T. Chuang, W. Chiu, Structure
16 (2008) 441–448. http://dx.doi.org/10.1016/j.str.2008.02.007.

[44] W. Wriggers, Acta Crystallogr. D 68 (4) (2012) 344–351. http://dx.doi.org/10.
1107/S0907444911049791.

http://dx.doi.org/10.1016/j.jmb.2006.06.031
http://dx.doi.org/10.1016/j.jmb.2006.06.031
http://dx.doi.org/10.1016/j.jmb.2006.06.031
http://dx.doi.org/10.1016/j.jmb.2006.06.031
http://dx.doi.org/10.1016/j.jmb.2006.06.031
http://dx.doi.org/10.1016/j.jmb.2006.06.031
http://dx.doi.org/10.1016/j.jmb.2006.06.031
http://dx.doi.org/10.1016/j.jmb.2006.06.031
http://dx.doi.org/10.1016/j.jmb.2006.06.031
http://dx.doi.org/10.1016/j.jmb.2006.06.031
http://dx.doi.org/10.1016/j.jmb.2006.06.031
http://dx.doi.org/10.1073/pnas.1308898110
http://dx.doi.org/10.1073/pnas.1308898110
http://dx.doi.org/10.1073/pnas.1308898110
http://dx.doi.org/10.1073/pnas.1308898110
http://dx.doi.org/10.1073/pnas.1308898110
http://dx.doi.org/10.1073/pnas.1308898110
http://dx.doi.org/10.1073/pnas.1308898110
http://dx.doi.org/10.1073/pnas.1308898110
http://dx.doi.org/10.1016/j.jsb.2007.11.007
http://dx.doi.org/10.1016/j.jsb.2007.11.007
http://dx.doi.org/10.1016/j.jsb.2007.11.007
http://dx.doi.org/10.1016/j.jsb.2007.11.007
http://dx.doi.org/10.1016/j.jsb.2007.11.007
http://dx.doi.org/10.1016/j.jsb.2007.11.007
http://dx.doi.org/10.1016/j.jsb.2007.11.007
http://dx.doi.org/10.1016/j.jsb.2007.11.007
http://dx.doi.org/10.1016/j.jsb.2007.11.007
http://dx.doi.org/10.1016/j.jsb.2007.11.007
http://dx.doi.org/10.1016/j.jsb.2007.11.007
http://dx.doi.org/10.1016/j.jsb.2009.04.009
http://dx.doi.org/10.1016/j.jsb.2009.04.009
http://dx.doi.org/10.1016/j.jsb.2009.04.009
http://dx.doi.org/10.1016/j.jsb.2009.04.009
http://dx.doi.org/10.1016/j.jsb.2009.04.009
http://dx.doi.org/10.1016/j.jsb.2009.04.009
http://dx.doi.org/10.1016/j.jsb.2009.04.009
http://dx.doi.org/10.1016/j.jsb.2009.04.009
http://dx.doi.org/10.1016/j.jsb.2009.04.009
http://dx.doi.org/10.1016/j.jsb.2009.04.009
http://dx.doi.org/10.1016/j.jsb.2009.04.009
http://dx.doi.org/10.1146/annurev-biochem-060614-034226
http://dx.doi.org/10.1146/annurev-biochem-060614-034226
http://dx.doi.org/10.1146/annurev-biochem-060614-034226
http://dx.doi.org/10.1146/annurev-biochem-060614-034226
http://dx.doi.org/10.1146/annurev-biochem-060614-034226
http://dx.doi.org/10.1146/annurev-biochem-060614-034226
http://dx.doi.org/10.1146/annurev-biochem-060614-034226
http://dx.doi.org/10.1016/j.jsb.2013.10.006
http://dx.doi.org/10.1016/j.jsb.2013.10.006
http://dx.doi.org/10.1016/j.jsb.2013.10.006
http://dx.doi.org/10.1016/j.jsb.2013.10.006
http://dx.doi.org/10.1016/j.jsb.2013.10.006
http://dx.doi.org/10.1016/j.jsb.2013.10.006
http://dx.doi.org/10.1016/j.jsb.2013.10.006
http://dx.doi.org/10.1016/j.jsb.2013.10.006
http://dx.doi.org/10.1016/j.jsb.2013.10.006
http://dx.doi.org/10.1016/j.jsb.2013.10.006
http://dx.doi.org/10.1016/j.jsb.2013.10.006
http://dx.doi.org/10.1016/0304-3991(92)90011-8
http://dx.doi.org/10.1016/0304-3991(92)90011-8
http://dx.doi.org/10.1016/0304-3991(92)90011-8
http://dx.doi.org/10.1016/0304-3991(92)90011-8
http://dx.doi.org/10.1016/0304-3991(92)90011-8
http://dx.doi.org/10.1016/0304-3991(92)90011-8
http://dx.doi.org/10.1016/0304-3991(92)90011-8
http://dx.doi.org/10.1016/S0076-6879(10)82002-6
http://dx.doi.org/10.1016/S0076-6879(10)82002-6
http://dx.doi.org/10.1016/S0076-6879(10)82002-6
http://dx.doi.org/10.1016/S0076-6879(10)82002-6
http://dx.doi.org/10.1016/S0076-6879(10)82002-6
http://dx.doi.org/10.1016/S0076-6879(10)82002-6
http://dx.doi.org/10.1016/S0076-6879(10)82002-6
http://dx.doi.org/10.1016/S0076-6879(10)82011-7
http://dx.doi.org/10.1016/S0076-6879(10)82011-7
http://dx.doi.org/10.1016/S0076-6879(10)82011-7
http://dx.doi.org/10.1016/S0076-6879(10)82011-7
http://dx.doi.org/10.1016/S0076-6879(10)82011-7
http://dx.doi.org/10.1016/S0076-6879(10)82011-7
http://dx.doi.org/10.1016/S0076-6879(10)82011-7
http://dx.doi.org/10.1177/0278364909352700
http://dx.doi.org/10.1177/0278364909352700
http://dx.doi.org/10.1177/0278364909352700
http://dx.doi.org/10.1177/0278364909352700
http://dx.doi.org/10.1177/0278364909352700
http://dx.doi.org/10.1177/0278364909352700
http://dx.doi.org/10.1177/0278364909352700
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1109/JPROC.2004.840301
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1016/j.jsb.2006.05.009
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.1145/363707.363723
http://dx.doi.org/10.7554/eLife.00218
http://dx.doi.org/10.7554/eLife.00218
http://dx.doi.org/10.7554/eLife.00218
http://dx.doi.org/10.7554/eLife.00218
http://dx.doi.org/10.7554/eLife.00218
http://dx.doi.org/10.7554/eLife.00218
http://dx.doi.org/10.7554/eLife.00218
http://dx.doi.org/10.7554/eLife.00218
http://dx.doi.org/10.1016/j.str.2008.02.007
http://dx.doi.org/10.1016/j.str.2008.02.007
http://dx.doi.org/10.1016/j.str.2008.02.007
http://dx.doi.org/10.1016/j.str.2008.02.007
http://dx.doi.org/10.1016/j.str.2008.02.007
http://dx.doi.org/10.1016/j.str.2008.02.007
http://dx.doi.org/10.1016/j.str.2008.02.007
http://dx.doi.org/10.1016/j.str.2008.02.007
http://dx.doi.org/10.1016/j.str.2008.02.007
http://dx.doi.org/10.1016/j.str.2008.02.007
http://dx.doi.org/10.1016/j.str.2008.02.007
http://dx.doi.org/10.1107/S0907444911049791
http://dx.doi.org/10.1107/S0907444911049791
http://dx.doi.org/10.1107/S0907444911049791
http://dx.doi.org/10.1107/S0907444911049791
http://dx.doi.org/10.1107/S0907444911049791
http://dx.doi.org/10.1107/S0907444911049791
http://dx.doi.org/10.1107/S0907444911049791

	BioEM: GPU-accelerated computing of Bayesian inference of electron microscopy images
	Introduction
	Mathematical formulation
	Algorithm and optimization
	Model rotation
	Imaging effects
	Center displacement
	Numerical precision
	Blocking
	Vectorization
	Parallelization
	CPU usage
	GPU usage

	Extra features
	Margin for improvements

	Performance
	Discussion
	Acknowledgments
	Supplementary data
	References

