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a b s t r a c t

In current computer architectures, data movement (from die to network) is by far the most energy
consuming part of an algorithm (≈20 pJ/word on-die to ≈10,000 pJ/word on the network). To increase
memory locality at the hardware level and reduce energy consumption related to data movement,
future exascale computers tend to use many-core processors on each compute nodes that will have
a reduced clock speed to allow for efficient cooling. To compensate for frequency decrease, machine
vendors are making use of long SIMD instruction registers that are able to process multiple data with
one arithmetic operator in one clock cycle. SIMD register length is expected to double every four years. As
a consequence, Particle-In-Cell (PIC) codes will have to achieve good vectorization to fully take advantage
of these upcoming architectures. In this paper, we present a new algorithm that allows for efficient
and portable SIMD vectorization of current/charge deposition routines that are, along with the field
gathering routines, among themost time consuming parts of the PIC algorithm. Our new algorithm uses a
particular data structure that takes into accountmemory alignment constraints and avoids gather/scatter
instructions that can significantly affect vectorization performances on current CPUs. The new algorithm
was successfully implemented in the 3D skeleton PIC code PICSAR and tested on Haswell Xeon processors
(AVX2-256 bits wide data registers). Results show a factor of×2 to×2.5 speed-up in double precision for
particle shape factor of orders 1–3. The newalgorithm can be applied as is on future KNL (Knights Landing)
architectures that will include AVX-512 instruction sets with 512 bits register lengths (8 doubles/16
singles).

Program summary

Program Title: vec_deposition
Program Files doi: http://dx.doi.org/10.17632/nh77fv9k8c.1
Licensing provisions: BSD 3-Clause
Programming language: Fortran 90
External routines/libraries: OpenMP > 4.0
Nature of problem: Exascale architectures will have many-core processors per node with long vector
data registers capable of performing one single instruction on multiple data during one clock cycle. Data
register lengths are expected to double every four years and this pushes for new portable solutions for
efficiently vectorizing Particle-In-Cell codes on these future many-core architectures. One of the main
hotspot routines of the PIC algorithm is the current/charge deposition for which there is no efficient and
portable vector algorithm.
Solution method: Here we provide an efficient and portable vector algorithm of current/charge
deposition routines that uses a new data structure, which significantly reduces gather/scatter operations.
Vectorization is controlled using OpenMP 4.0 compiler directives for vectorization which ensures
portability across different architectures.

✩ This paper and its associated computer program are available via the Computer Physics Communication homepage on ScienceDirect (http://www.sciencedirect.com/
science/journal/00104655).
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Restrictions:Here we do not provide the full PIC algorithmwith an executable but only vector routines for
current/charge deposition. These scalar/vector routines can be used as library routines in your 3D Particle-
In-Cell code. However, to get the best performances out of vector routines you have to satisfy the two
following requirements: (1) Your code should implement particle tiling (as explained in the manuscript)
to allow for maximized cache reuse and reduce memory accesses that can hinder vector performances.
The routines can be used directly on each particle tile. (2) You should compile your code with a Fortran
90 compiler (e.g Intel, gnu or cray) and provide proper alignment flags and compiler alignment directives
(more details in README file).

© 2016 Published by Elsevier B.V.
1. Introduction

1.1. Challenges for porting PIC codes on exascale architectures:
importance of vectorization

Achieving exascale computing facilities in the next decade will
be a great challenge in terms of energy consumption andwill imply
hardware and software developments that directly impact ourway
of implementing PIC codes [1].

Table 1 shows the energy required to perform different
operations ranging from arithmetic operations (fusedmultiply add
or FMADD) to on-die memory/DRAM/Socket/Network memory
accesses. As 1 pJ/flop/s is equivalent to 1MWfor exascalemachines
delivering 1 exaflop (1018 flops/sec), this simple table shows that
as we go off the die, the cost of memory accesses and data
movement becomes prohibitive and much more important than
simple arithmetic operations. In addition to this energy limitation,
the draconian reduction in power/flop and per byte will make data
movement less reliable and more sensitive to noise, which also
push towards an increase in data locality in our applications.

At the hardware level, part of this problem of memory locality
was progressively addressed in the past few years by limiting
costly network communications and grouping more computing
resources that share the same memory (‘‘fat nodes’’). However,
partly due to cooling issues, grouping more and more of these
computing units will imply a reduction of their clock speed. To
compensate for the reduction of computing power due to clock
speed, future CPUs will have much wider data registers that can
process or ‘‘vectorize’’ multiple data in a single clock cycle (Single
Instruction Multiple Data or SIMD).

At the software level, programmers will need to modify
algorithms so that they achieve bothmemory locality and efficient
vectorization to fully exploit the potential of future exascale
computing architectures.

1.2. Need for portable vectorized routines

In a standard PIC code, the most time consuming routines are
current/charge deposition from particles to the grid and field gath-
ering from the grid to particles. These two operations usually
account for more than 80% of the execution time. Several portable
deposition algorithms were developed and successfully imple-
mented on past generations’ vector machines (e.g. CRAY, NEC)
[2–6]. However, these algorithms do not give good performance
on current SIMD architectures, that have new constraints in terms
of memory alignment and data layout in memory.

To the authors’ knowledge, most of the vector deposition
routines proposed in contemporary PIC codes use compiler based
directives or even C++ Intel intrinsics in the particular case of
the Intel compiler, to increase vectorization efficiency (e.g. [8]).
However, these solutions are not portable and require code re-
writing for each new architecture.
1.3. Paper outline

In this paper, we propose a portable algorithm for the direct
deposition of current or charge from macro particles onto a grid,
which gives good performances on SIMD machines. The paper is
divided into four parts:

(i) in Section 2, we quickly introduce the standalone 3D
skeleton electromagnetic PIC code PICSAR-EM3D in which we
implemented the different vector versions of the deposition
routines presented in this paper,

(ii) in Section 3, we quickly remind the scalar deposition routine
and show why it cannot be vectorized as is by the compiler.
Then, we introduce a vector algorithm that performedwell on
former Cray vector machines but give poor performances on
current SIMDmachines. By carefully analyzing the bottlenecks
of the old vector routine on current SIMD machines, we
will derive a new vector routine that gives much better
performances,

(iii) in Section 4 we present the new vector routines that were
developed, based on the analysis in Section 3,

(iv) in Section 5, the new vector routines are benchmarked on
the new Cori machine at the U.S. National Energy Research
Supercomputer Center (NERSC) [9].

2. The PICSAR-EM3D PIC kernel

PICSAR-EM3D is a standalone ‘‘skeleton’’ PIC kernel written
in Fortran 90 that was built using the main electromagnetic
PIC routines (current deposition, particle pusher, field gathering,
Yee field solver) of the framework WARP [10]. As WARP is a
complex mix of Fortran 90, C and Python, PICSAR-EM3D provides
an essential testbed for exploring PIC codes algorithmswithmulti-
level parallelism for emerging and future exascale architectures.
All the high performance carpentry and data structures in the
code have been redesigned for best performance on emerging
architectures, and tested on NERSC supercomputers (CRAY XC30
Edison and testbed with Intel Knight’s Corner coprocessors
Babbage).

2.1. PIC algorithm

PICSAR-EM3D contains the essential features of the standard
explicit electromagnetic PIC main loop:

(i) Maxwell solver using arbitrary order finite-difference scheme
(staggered or centered),

(ii) Field gathering routines including high-order particle shape
factors (order 1—CIC, order 2—TSC and order 3—QSP),

(iii) Boris particle pusher,
(iv) Most common types of current depositions: Morse–Nielson

deposition [1] (also known as direct ρv current deposition)
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Table 1
Energy consumption of different operations taken from [7]. The die hereby refers to
the integrated circuit board made of semi-conductor materials that usually holds
the functional units and fast memories (first levels of cache). This table shows the
energy required to achieve different operations on current (Year 2015) and future
(Year 2019) computer architectures. DP stands for Double Precision, FMADD for
Fused Multiply ADD and DRAM for Dynamic Random Access Memory.

Operation Energy cost (pJ) Year

DP FMADD flop 11 2019
Cross-die per word access 24 2019
DP DRAM read to register 4800 2015
DP word transmit to neighbor 7500 2015
DP word transmit across system 9000 2015

and Esirkepov [11] (charge conserving) schemes. The current
and charge deposition routines support high-order particle
shape factors (1–3).

2.2. High performance features

Many high performance features have already been included in
PICSAR-EM3D. In the following, we give a quick overview of the
main improvements that brought significant speed-up of the code
and that are of interest for the remainder of this paper. A more
comprehensive description of the code and its performances will
be presented in another paper.

2.2.1. Particle tiling for memory locality
Field gathering (interpolation of field values from the grid to

particle positions) and current/charge deposition (deposition of
particle quantities to adjacent grid nodes) account for more than
80% of the total execution time of the code. In the deposition
routines for instance, the code loops over all particles and deposit
their charges/currents on the grid.

Onemajor bottleneck thatmight arise in these routines and can
significantly affect overall performance is cache reuse.

Indeed, at the beginning of the simulations (cf. Fig. 1(a))
particles are typically ordered along the ‘‘fast’’ axis (‘‘sorted case’’)
that corresponds to parts of the grid that are contiguously located
in memory. As the code loops over particles, it will thus access
contiguous grid portions in memory from one particle to another
and efficiently reuse cache.

However, as time evolves, the particle distribution often
becomes increasingly random, leading to numerous cache misses
in the deposition/gathering routines (cf. Fig. 1(b)). This results in
a considerable decrease in performance. In 2D geometry, one MPI
subdomain usually fits in L2 cache (256–512 kB per core) but for
3D problems with MPI subdomains handling 100 × 100 × 100
grid points, one MPI subdomain does not fit in cache anymore and
random particle distribution of particles can lead to performance
bottlenecks (see Fig. 1(b)).

To solve this problem and achieve good memory locality, we
implemented particle tiling in PICSAR-EM3D. Particles are placed
in tiles that fit in cache (cf. Fig. 2). In the code, a tile is represented
by a structure of array Type(particle_tile) that contains arrays of
particle quantities (positions, velocity and weight). All the tiles
are represented by a 3D Fortran array array_of_tiles(:,:,:) of type
particle_tile in the code. Our data structure is thus very different
from the one in [12], which uses one large Fortran ppart(1 :

ndims, 1 : nppmax, 1 : ntiles) array for all particles and tiles, where
ndims is the number of particle attributes (e.g positions x, y, z),
nppmax the maximum number of particles in a tile and ntiles the
number of tiles. There are two reasons behind our choice:

(i) if one tile has much more particles than others, we consid-
erably save memory by using our derived type compared to
the array ppart . Indeed, in the latter case, if one tile has much
Table 2
Speed-up of the whole PIC code brought by particle tiling. Tests were performed
using a 100 × 100 × 100 grid with 10 particle per cells. Particles are randomly
distributed on the grid and have a thermal velocity of vth =≈ 0.1c with c being
the speed of light in vacuum. For a time step imposed by the Courant condition
of the Maxwell solver dt = 0.57dx/c (where dx is the mesh size) and np = 10
particle per cells, the total number of particles leaving a cell after one time step is
np × vth × dt/dx ≈ 0.57. After 20 time steps, nearly all particles have left their
original cell. The reference time corresponds to the standard case of 1 × 1 × 1 tile.
The tests were performed on one MPI process and a single socket, on the Edison
cluster at NERSC.

Tile size Speed-up L1 and L2 Cache reuse

1 × 1 × 1 ×1 85%
10 × 10 × 10 ×3 99%

more particles np than others, we would still need to choose
nppmax > np for all the tiles,

(ii) any tile can be resized as needed independently, without the
need for reallocating the entire array of tiles.

Performance improvements of the whole code are reported in
Table 2 for tests performed on Intel Ivy Bridge (Cray XC30 Edison
machine at NERSC). These tests show a speed-up of x3 in case of
a random particle distribution. Cache reuse using tiling reaches
99%. The optimal tile size ranges empirically between 8 × 8 ×

8 cells and 10 × 10 × 10 cells. As will be shown later in the
paper, having good cache reuse is crucial to increasing the flop/byte
ratio of the proposed algorithm and obtaining improvements using
vectorization.

Notice that at each time step, the particles of each tile are
advanced and then exchanged between tiles. As particlesmove less
than one cell at each time step, the amount of particles exchanged
between tiles at each time step is low for typical tiles’ sizes. (The
surface/volume ratio decreases with tile size.) As a consequence,
particle exchanges between tiles account in practice for a very
small percentage of the total PIC loop (a few percents). Our particle
exchange algorithm differs from the one used in [12] in that it
avoids copying data into buffers. In addition, it can be efficiently
parallelized using OpenMP (details are beyond the scope for this
paper and will be presented in an upcoming publication).

2.2.2. Multi-level parallelization
PICSAR-EM3D also includes the following high performance

implementations:

(i) vectorization of deposition and gathering routines,
(ii) OpenMP parallelization for intranode parallelisms. Each

OpenMP thread handles one tile. As there are muchmore tiles
than threads in 3D, load balancing can be easily done using the
SCHEDULE clause in openMP with the guided attribute,

(iii) MPI parallelization for internode parallelism,
(iv) MPI communications are overlapped with computations. For

particles, this is done by treating exchanges of particles with
border tiles while performing computations on particles in
inner tiles,

(v) MPI-IO for fast parallel outputs.

In the remainder of this paper, we will focus on the vec-
torization of direct charge/current deposition routines for their
simplicity and widespread use in electromagnetic PIC codes. The
Esirkepov-like current deposition is not treated in this paper but
the techniques used here are very general and should apply in prin-
ciple to any kind of current deposition.

3. Former CRAY vector algorithms and performance challenges
on new architectures

In the following, we focus on the direct 3D charge deposition
which can be presented in a more concise way than the full 3D
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Fig. 1. Importance of cache reuse in deposition routines. Illustration is given in 2D geometry for clarity, with CIC (linear) particle shapes. Panel (a) shows a typical layout at
initialization (t = 0) where particles are ordered along the ‘‘fast’’ axis of the grid, corresponding to grid cells (blue area) that are contiguous in memory. The loop on particles
is illustrated with arrows and index of the loop with numbers 1–3. Using direct deposition, each particle (red point) deposits (blue arrows) its charge/current to the nearest
vertices (4 in 2D and 8 in 3D for CIC particle shapes). Panel (b) illustrates the random case (at t > 0) where particles are randomly distributed on the grid. As the algorithms
loop over particles, it often requires access to uncached grid data, which then results in a substantial number of cache misses. (For interpretation of the references to color
in this figure legend, the reader is referred to the web version of this article.)
Fig. 2. Particle tiling for efficient cache reuse. Panel (a) shows the usual configuration used in standard codes. There is one big array for particles for each MPI subdomain.
Panel (b) shows the data structure used in PICSAR. Particles are grouped in tiles that fit in cache, allowing for efficient cache reuse during deposition/gathering routines.
current deposition. The full 3D scalar/vector algorithm presented
here for charge/current deposition can be found in the Fortran
source file vec_deposition.F90 of the CPC Program Library archive
associated to this paper. In this file, scalar charge deposition
routines have the following prefix: ‘‘depose_rho_scalar_’’. Order is
specified at the end. For instance order 1 charge scalar deposition
routine is named depose_rho_scalar_1_1_1. For vector deposition
routines, the prefix used is ‘‘depose_rho_vecHVv2_’’. The same
notation is used for current deposition routines but with the
prefixes ‘‘depose_jxjyjz_scalar_’’/ ‘‘depose_jxjyjz_vecHVv2_’’ for
scalar/vector routines.

3.1. Scalar algorithm

The scalar algorithm for order 1 charge deposition is detailed in
listing 1. For each particle index ip, this algorithm (see line 5):

(i) finds the indices (j, k, l) of the cell containing the particle
(lines 11–13),

(ii) computes the weights of the particle at the 8 nearest vertices
w1 to w8 (line 15—not shown here),

(iii) adds charge contribution to the eight nearest vertices
{(j, k, l), (j+1, k, l), (j, k+1, l), (j+1, k+1, l), (j, k, l+1), (j+
1, k, l+ 1), (j, k+ 1, l+ 1), (j+ 1, k+ 1, l+ 1)} of the current
cell (j, k, l) (see lines 18–25).
As two different particles ip1 and ip2 can contribute to the
charge at the same grid nodes, the loop over particles (line 5)
presents a dependency and is thus not vectorizable as is.

3.2. Former vector algorithms and new architecture constraints

Several vector algorithms have already been derived and
tuned on former Cray vector machines [2–6,13]. However, these
techniques are not adapted anymore to current architectures and
yield very poor results on SIMD machines that necessitate to
comply with the three following constraints in order to enable
vector performances:

(i) Good cache reuse. The flop/byte ratio (i.e. cache reuse) in
the main loops of the PIC algorithm must be high in order
to observe a speed-up with vectorization. Otherwise, if data
has to be moved from memory to caches frequently, the
performance gain with vectorization can become obscured
by the cost of data movement. As we showed earlier, this is
ensured by particle tiling in our code.

(ii) Memory alignment. Data structures in the code need to
be aligned and accessed in a contiguous fashion in order
to maximize performances. Modern computers read from
or write to a memory address in word-sized chunks of 8
bytes (for 64 bit systems). Data alignment consists in putting
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Listing 1: Scalar charge deposition routine for CIC particle shape factors
1 SUBROUTINE depose_rho_scalar_1_1_1(...)
2 ! Declaration and init
3 ! ...........7
4 ! Loop on particles
5 DO ip=1,np
6 ! --- computes current position in grid units
7 x = (xp(ip)-xmin)*dxi
8 y = (yp(ip)-ymin)*dyi
9 z = (zp(ip)-zmin)*dzi

10 ! --- finds node of cell containing particle
11 j=floor(x)
12 k=floor(y)
13 l=floor(z)
14 ! --- computes weigths w1..w8
15 ........
16 ! --- add charge density contributions
17 ! --- to the 8 vertices of current cell
18 rho(j,k,l) =rho(j,k,l) + w1
19 rho(j+1,k,l) =rho(j+1,k,l) + w2
20 rho(j,k+1,l) =rho(j,k+1,l) + w3
21 rho(j+1,k+1,l) =rho(j+1,k+1,l) + w4
22 rho(j,k,l+1) =rho(j,k,l+1) + w5
23 rho(j+1,k,l+1) =rho(j+1,k,l+1) + w6
24 rho(j,k+1,l+1) =rho(j,k+1,l+1) + w7
25 rho(j+1,k+1,l+1) =rho(j+1,k+1,l+1)+ w8
26 END DO
27 END SUBROUTINE depose_rho_scalar_1_1_1
the data at a memory address equal to some multiple of
the word size, which increases the system’s performance
due to the way the CPU handles memory. SSE2, AVX and
AVX-512 on x86 CPUs do require the data to be 128-bits,
256-bits and 512-bits aligned respectively, and there can
be substantial performance advantages from using aligned
data on these architectures.Moreover, compilers can generate
more optimal vector codewhen data is known to be aligned in
memory. In practice, the compiler can enforce data alignment
at given memory boundaries (128, 256 or 512 bits) using
compiler flags/directives.

(iii) Unit-stride read/write. If data are accessed contiguously in a
do loop (unit-stride), the compiler will generate vector sin-
gle load/store instructions for the data to be processed. Oth-
erwise, if data are accessed randomly or via indirect indexing,
the compiler might generate gather/scatter instructions that
almost yield sequential performance or worse. Indeed, in case
of a gather/scatter, the processor might have to make several
different loads/stores from/to memory instead of one load/
store, eventually leading to poor vector performances.

In the following, we investigate performance of one of the
former vector algorithms for CRAY machines [4] and analyze its
bottlenecks on SIMD architectures. This analysis will show a way
to improve the vector algorithm and derive a new one that yields
significant speed-up over the scalar version.

3.3. Example: the Schwarzmeier and Hewitt scheme (SH)

3.3.1. SH vector deposition routine
Listing 2 details the Schwarzmeier and Hewitt (SH) deposition

scheme [4] that was implemented in PICSAR-EM3D and tested on
Cori supercomputer at NERSC. In this scheme, the initial loop on
particles is done by blocks of lengths nblk (cf. line 5) and split into
two consecutive nested loops:
• A first nested loop (line 7) that computes, for each particle nn of

the current block:
(i) its cell position ind0 on the mesh (line 13),
(ii) its contribution ww(1, nn), . . . , ww(8, nn) to the charge

at the 8 vertices of the cell and
(iii) the indices ll(1, nn), . . . , ll(8, nn) of the 8 nearest vertices
in the 1D density array rho (cf. lines 14–19).

Notice that 1D indexing is now used for rho to avoid storing
three different indices for each one of the 8 vertices. The Fortran
integer array moff (1:8) gives the indices of the 8 vertices with
respect to the cell index ind0 in the 1D array rho. The loop at
line 7 has no dependencies and is vectorized using the portable
$OMP SIMD directive.

• A secondnested loop (line 23) that adds the contribution of each
one of the nblk particles to the 8 nearest vertices of their cell
(line 26). As one particle adds its contribution to eight different
vertices, the loop on the vertices at line 25 has no dependency
and can also be vectorized using the $OMP SIMD directive.

Usually, nblk is chosen as a multiple of the vector length. Notice
that using a moderate size nblk, for the blocks of particles, ensures
that the temporary arrays ww and ll fit in cache.

The SH algorithm presented in listing 2 is fully vectorizable
and gave very good performances on former Cray machines [4,6].
However as we show in the following section, it yields very poor
performances on SIMD architectures.

3.3.2. Tests of the Schwarzmeier and Hewitt algorithm on Cori
The SH algorithm was tested on one socket of the Cori cluster

at NERSC. This socket had one Haswell Xeon processor with the
following characteristics:

(i) 16-core CPU at 2.3 GHz,
(ii) 256-bit wide vector unit registers (4 doubles, 8 singles) with

AVX2 support,
(iii) 256 kB L2 cache/core, 40 MB shared L3 cache.

The Intel compilerwas used to compile the codewith option ‘‘-O3’’.
The simulation was run using 1 MPI process and 1 OpenMP thread
per MPI process, with the following numerical parameters:

(i) 100 × 100 × 100 grid points with 10 × 10 × 10 = 1000 tiles
i.e 10 tiles in each direction,

(ii) Two particle species (proton and electron) with 10 particle
per cells. The particles are randomly distributed across the
simulation domain. Plasma electrons have an initial thermal
velocity of ≈0.1c .
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Table 3
Performance comparisons of scalar and SH vector routines.

Routine depose_rho_scalar_1_1_1 depose_rho_vecSH_1_1_1

Compiler option -no-vec -xCORE-AVX2 -no-vec -xCORE-AVX2
Time/it/part 14.6 ns 14.6 ns 21 ns 15.9 ns
Listing 2: Vector version of the charge deposition routine developed by SH for CIC particle shape factors
1 SUBROUTINE depose_rho_vecSH_1_1_1(...)
2 ! Declaration and init
3 .....
4 ! Loop on particles
5 DO ip=1,np,nblk
6 !$OMP SIMD
7 DO n=ip,MIN(ip+nblk-1,np) !!!! VECTOR
8 nn=n-ip+1
9 !- Computations relative to particle ip (cell position etc.)

10 ...
11 ! --- computes weight for each of the 8-vertices of the current cell
12 ! --- computes indices of 8-vertices in the array rho
13 ind0 = (j+nxguard+1) + (k+nyguard+1)*nnx + (l+nzguard+1)*nnxy
14 ww(1,nn) = sx0*sy0*sz0*wq
15 ll(1,nn) = ind0+moff(1)
16 ...
17 ...
18 ww(8,nn) = sx1*sy1*sz1*wq
19 ll(8,nn) = ind0+moff(8)
20 END DO
21 !$OMP END SIMD
22 ! --- add charge density contributions
23 DO m= 1,MIN(nblk,np-ip+1)
24 !$OMP SIMD
25 DO l=1,8 !!!! VECTOR
26 rho(ll(l,m)) = rho(ll(l,m))+ww(l,m)
27 END DO
28 !$OMP END SIMD
29 END DO
30 END DO
31 ...
32 END SUBROUTINE depose_rho_vecSH_1_1_1
The results are displayed in Table 3 for order 1 scalar and SH
routines, using two different compiler options in each case:

(i) -xCORE-AVX2 to enable vectorization,
(ii) -no-vec to disable auto-vectorization of the compiler. In this

case,we alsomanually remove !$OMPSIMDdirectives to avoid
SIMD vectorization of loops.

The scalar routine takes the same time for -xCORE-AVX2 and -
no-vec options because the routine is not auto-vectorizable by the
compiler.

For the vector routine, we see an improvement of 30% between
-xCORE-AVX2 and -no-vec options, showing that vectorization is
enabled and working in the -xCORE-AVX2 case. Nevertheless, the
overall performance is poor, and the vector routine compiled with
-xCORE-AVX2 is even 10% slower than the scalar routine.

By looking at the code on listing 2 and using compiler report/
assembly code generated by the Intel compiler, we found twomain
reasons for this poor performance:

1. The first one comes from the strided access of the arrays ww
and ll in the loop at line 7. Assuming cache line sizes of 64
bytes (8 doubles) and 256-bits wide registers, the four different
elements ww(1, nn1) to ww(1, nn1 + 3) are thus on four
different cache lines (ww is of size (8, nblk)) and this strided
access necessitates 4 stores in memory at different cache lines
(‘‘scatter’’) instead of a single store if the accesses were aligned
and contiguous. A solution would be to switch dimensions of
ww but this might not bring any improvement at all because
the loop on vertices (line 25) would then have strided access for
ww (‘‘gather’’). Some PIC implementations choose contiguous
access forww/ll in the first loop and then use an efficient vector
transpose ofww/ll before the second loop on vertices. However,
this solution requires the use of ‘‘shuffle’’ Intel vector intrinsics
to efficiently implement the transpose, which is not portable
because this transpose will have to be re-written for a different
processor. In addition, this transpose is done 8 × np with np
the number of particles and might thus add a non-negligible
overhead if not done properly.

2. The second bottleneck comes from the indirect indexing for rho
at line 26. The problem with the current data structure of rho
is that the 8 vertices of one cell are not contiguous in memory,
resulting in a rather inefficient gather/scatter instruction.

In the next section, we propose a portable solution for orders
1, 2 and 3 charge deposition that solves these two problems and
yields a speed-up factor of up to ×2.5 in double precision over the
scalar routine.

4. New and portable SIMD algorithms

In this section, we present vector algorithms that perform
efficiently on SIMD architectures.

4.1. CIC (order 1) particle shape

4.1.1. Algorithm
The new vector algorithm is detailed in listing 3. Similarly to

the SH routine, the main particle loop is done by blocks of nblk
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Fig. 3. Data structure used for the array rhocells for different particle shape factors. In each plot, the particle that deposits charge to its nearest vertices (red/blue
points) is located in the cell at position (0, 0, 0). (a) CIC (order 1) particle shape factor. The particle deposits its charge to the eight nearest vertices (red points). For each cell
icell = (j, k, l), rhocells store the 8 nearest vertices (j, k, l), (j+1, k, l), (j, k+1, l), (j+1, k+1, l), (j, k, l+1), (j+1, k, l+1), (j, k+1, l+1) and (j+1, k+1, l+1) contiguously.
(b) TSC (order 2) particle shape factor. The particle deposits its charge to the 27 neighboring vertices (red and blue points). For a given cell icell = (j, k, l)rhocells store
contiguously the 8 vertices (red points) (j, k− 1, l− 1), (j, k, l− 1), (j, k+ 1, l− 1), (j, k− 1, l), (j, k+ 1, l), (j, k− 1, l+ 1), (j, k, l+ 1) and (j, k+ 1, l+ 1). The blue points
are not stored in rhocells and are treated scalarly in the algorithm. (c) QSP (order 3) particle shape factor. The particle deposits its charge to the 64 neighboring vertices
(red points). For a given cell icell = (j, k, l), rhocells store contiguously the 8 vertices (delimited by red areas) (j, k − 1, l − 1), (j, k, l − 1), (j, k + 1, l − 1), (j, k + 1, l − 1),
(j, k − 1, l), (j, k, l), (j, k + 1, l), (j, k + 1, l). (For interpretation of the references to color in this figure legend, the reader is referred to the web version of this article.)
particles and divided into two consecutive nested loops: (i) a first
nested loop that computes particle weights and (ii) a second one
that adds the particle weights to its 8 nearest vertices.

4.1.2. Improvements brought by the new algorithm
The new algorithm addresses the two main bottlenecks of the

SH algorithm with the two following new features:

1. a new data structure for rho is introduced, named rhocells,
which enables memory alignment and unit-stride access when
depositing charge on the 8 vertices. In rhocells, the 8-nearest
vertices are stored contiguously for each cell. The array
rhocells are thus of size (8,NCELLS) with NCELLS the total
number of cells. The element rhocells(1, icell) is therefore 64
bytes-memory aligned for a given cell icell and the elements
rhocells(1 : 8, icell) entirely fit in one cache line allowing for
efficient vector load/stores. The array rhocells is reduced to rho
once, after the deposition is done for all particles (cf. line 49).
This step is easily vectorizable (see line 51) butmight not lead to
optimal performances due to the non-contiguous access in rho
that leads to gather–scatter instructions. Notice however that
this time, this operation is proportional to the number of cells
NCELLS andnot to thenumber of particlesnp as itwas in the case
of the SH algorithm. The overhead is thus proportionally lower
when there are more particles than cells, which is the case in
many PIC simulations of interest,

2. for each particle, the 8 different weightsww are now computed
using a generic formula (see lines 41 − 42) that suppresses
gather instructions formerly needed in the SH algorithm. This
also avoids implementing non-portable efficient transpose
between the first and second loop, rendering this newalgorithm
fully portable.

4.2. Higher particle shape factors

Similar algorithms were derived for order 2 (TSC) and order
3 particle shape factors, and are detailed in the source file
vec_deposition.F90 in the Program library. Corresponding current
deposition algorithms can also be found in this file for orders 1,
2 and 3 depositions. In these algorithms, we use three structures
jxcells, jycells and jzcells (analogous to rhocells for the deposition of
rho) for the current components jx, jy, jz along directions x, y and z.

In the following, we detail the data structures used for rhocells
for orders 2 and 3 particle shapes (cf. Fig. 3):
(i) TSC (order 2) particle shape. (cf. panel(b) of Fig. 3 and subrou-
tine depose_rho_vecHVv2_2_2_2 in source file vec_deposition.
F90 in Program Library). In this case, the particles deposit their
charge to the 27 neighboring vertices. However, storing 27
contiguous vertices per cell in rhocells would not be efficient
as the reduction of rhocells to rho would be much more ex-
pensive with potential cache-reuse inefficiency. Instead, while
the same size for rhocells(1 : 8, 1 : NCELLS) is used, the ver-
tices are now grouped in a different way. The new structure
for rhocells(1 : 8, 1 : NCELLS) groups 8 points in a (y, z) plane
for each cell icell (see red points in red areas). For each cell,
each particle adds its charge contribution to 24 points in the
three planes at icell − 1, icell and icell + 1. The three remain-
ing central points (blue points) can be either treated scalarly
for 512-bits wide vector registers or vectorized for 256-bits
by artificially adding a virtual point that does not contribute
to any charge. Notice that we did not find a generic formula-
tion for the weights ww and we are therefore still perform-
ing a ‘‘gather’’ instruction for ww in the loop on the vertices
(line 2089 in vec_deposition.F90). However, this gather is per-
formed in the y and z directions for the first plane of 8 points
(plane ic = −1 on panel (b)) and is subsequently reused on
the two other planes ic = 0 and ic = 1 (see lines 2091–2095
in vec_deposition.F90). Gather is thus performed only 8 times
out of 24 points and thus has a limited impact on performance,
as shown below in the reported test results.

(ii) QSP (order 3) particle shape. (cf. panel (c) of Fig. 3
and subroutine depose_rho_vecHVv2_3_3_3 in source file
vec_deposition.F90 in Program Library). In this case, particles
deposit their charge to the 64 neighboring vertices. rhocells(1 :

8, 1 : NCELLS) also group 8 points in a (y, z) plane but
differently from the TSC case (see red areas in panel (c)). For
each cell, each particle adds its charge contribution to 64 points
in the 8 different (y, z) planes at icell − ncx − 1, icell − ncx,
icell−ncx+1, icell−ncx+2, icell+ncx−1, icell+ncx, icell+
ncx + 1 and icell + ncx + 2 where ncx is the number of cells
in the x direction (see lines 2434–2450 in vec_deposition.F90).
This might reduce the flop/byte ratio of the second loop when
nnx is large enough so that elements rhocells(1 : 8, icell) and
rhocells(1 : 8, icell + nnx − 1) are not in L1 cache. The vertices
could have been grouped in (y, z) planes of 16 points instead
of 8 points but this would imply a bigger reduction loop of
rhocells in rho and worst performances for a low number of
particles. Notice that here again, we did not find an efficient
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Listing 3: New vector version of charge deposition routine for CIC (order 1) particle shape factor
1 SUBROUTINE depose_rho_vecHVv2_1_1_1(...)
2 ! Declaration and init
3 ...
4 nnx = ngridx; nnxy = nnx*ngridy
5 moff = (/0,1,nnx,nnx+1,nnxy,nnxy+1,nnxy+nnx,nnxy+nnx+1/)
6 mx=(/1_num,0_num,1_num,0_num,1_num,0_num,1_num,0_num/)
7 my=(/1_num,1_num,0_num,0_num,1_num,1_num,0_num,0_num/)
8 mz=(/1_num,1_num,1_num,1_num,0_num,0_num,0_num,0_num/)
9 sgn=(/-1_num,1_num,1_num,-1_num,1_num,-1_num,-1_num,1_num/)

10
11 ! FIRST LOOP: computes cell index of particle and their weight on vertices
12 DO ip=1,np,LVEC
13 !$OMP SIMD
14 DO n=1,MIN(LVEC,np-ip+1)
15 nn=ip+n-1
16 ! Calculation relative to particle n
17 ! --- computes current position in grid units
18 x = (xp(nn)-xmin)*dxi
19 y = (yp(nn)-ymin)*dyi
20 z = (zp(nn)-zmin)*dzi
21 ! --- finds cell containing particles for current positions
22 j=floor(x)
23 k=floor(y)
24 l=floor(z)
25 ICELL(n)=1+j+nxguard+(k+nyguard+1)*(nx+2*nxguard) &
26 +(l+nzguard+1)*(ny+2*nyguard)
27 ! --- computes distance between particle and node for current positions
28 sx(n) = x-j
29 sy(n) = y-k
30 sz(n) = z-l
31 ! --- computes particles weights
32 wq(n)=q*w(nn)*invvol
33 END DO
34 !$OMP END SIMD
35 ! Charge deposition on vertices
36 DO n=1,MIN(LVEC,np-ip+1)
37 ! --- add charge density contributions to vertices of the current cell
38 ic=ICELL(n)
39 !$OMP SIMD
40 DO nv=1,8 !!! - VECTOR
41 ww=(-mx(nv)+sx(n))*(-my(nv)+sy(n))* &
42 (-mz(nv)+sz(n))*wq(n)*sgn(nv)
43 rhocells(nv,ic)=rhocells(nv,ic)+ww
44 END DO
45 !$OMP END SIMD
46 END DO
47 END DO
48 ! - reduction of rhocells in rho
49 DO iz=1, ncz
50 DO iy=1,ncy
51 !$OMP SIMD
52 DO ix=1,ncx !! VECTOR (take ncx multiple of vector length)
53 ic=ix+(iy-1)*ncx+(iz-1)*ncxy
54 igrid=ic+(iy-1)*ngx+(iz-1)*ngxy
55 rho(orig+igrid+moff(1))=rho(orig+igrid+moff(1))+rhocells(1,ic)
56 rho(orig+igrid+moff(2))=rho(orig+igrid+moff(2))+rhocells(2,ic)
57 rho(orig+igrid+moff(3))=rho(orig+igrid+moff(3))+rhocells(3,ic)
58 rho(orig+igrid+moff(4))=rho(orig+igrid+moff(4))+rhocells(4,ic)
59 rho(orig+igrid+moff(5))=rho(orig+igrid+moff(5))+rhocells(5,ic)
60 rho(orig+igrid+moff(6))=rho(orig+igrid+moff(6))+rhocells(6,ic)
61 rho(orig+igrid+moff(7))=rho(orig+igrid+moff(7))+rhocells(7,ic)
62 rho(orig+igrid+moff(8))=rho(orig+igrid+moff(8))+rhocells(8,ic)
63 END DO
64 !$OMP END SIMD
65 END DO
66 END DO
67
68 ...
69 END SUBROUTINE depose_rho_vecHVv2_1_1_1
generic formulation for the weights ww and we are therefore
still performing a ‘‘gather’’ instruction (see lines 2432 and 2442
in vec_deposition.F90). However, this gather is performed in
the y and z directions and gathered values are subsequently
reused for computing the weights at different positions in x
(see lines 2434–2440 and 2444–2450 in vec_deposition.F90).
Gather is thus performed only 16 times out of 64 points and
thus has a limited impact on performance, as shown below in
the reported test results.
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Fig. 4. Speed-up brought by vectorization with the new charge deposition algorithm on Cori. (a) Each bar plot shows the time/it/part in ps for different particle shape
orders 1–3. Benchmarkswere donewith 64 timesmore particles than cells. (b) Evolutionwith the number of particles per cell of the speed-up gain brought by vector routines
compared to scalar routines. Red/Green/Blue curves are evolution of the speed-up gain for orders 1/2/3 charge deposition respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
Fig. 5. Speed-up brought by vectorization with the new current deposition algorithm on Cori. (a) Each bar plot shows the time/it/part in ps for different particle shape
orders 1–3. Benchmarkswere donewith 64 timesmore particles than cells. (b) Evolutionwith the number of particles per cell of the speed-up gain brought by vector routines
compared to scalar routines. Red/Green/Blue curves are evolution of the speed-up gain for orders 1/2/3 current deposition respectively. (For interpretation of the references
to color in this figure legend, the reader is referred to the web version of this article.)
5. Speed-up brought by the new vector algorithm on Cori

The new vector algorithms were benchmarked on one node
(two sockets) of the Corimachine in the samenumerical conditions
than the ones used in Section 3.3.2 but with 2 MPI processes (one
per socket) and 16 OpenMP threads per MPI process. For charge
deposition, we use 10×10×10 tiles in each direction. For current
deposition, we use a larger number of tiles (12 × 12 × 12 tiles
in each direction) so that the three structures jxcells, jycells and
jzcells (equivalent of rhocells for current deposition) fit in cache.
Results are shown in Fig. 4 for charge deposition and in Fig. 5 for
current deposition. Panels (a) show the time/iteration/particle (in
ps for Fig. 4 and ns for Fig. 5) for scalar and vector algorithms with
different particle shape factors and when there are 64 times more
particles than cells. Panels (b) show the evolution of the speed-
up brought by the vector algorithm over the scalar one when the
number of particles per cell is varied.

Even for a low number of particles per cell (see panels (b) of
Figs. 4 and 5), the algorithm performs well, with speed-ups of up
to ×1.8. When the number of particles increases performances
are even better because the reduction operation of rhocells/jcells
structure in regular arrays rho/j becomesmore andmore negligible
relatively to particle loops. For 64 times more particles than cells,
performances for charge deposition now reach×2.7 with an order
1 particle shape factor. Order 3 charge/current deposition performs
less efficiently than orders 1 and 2, because as we described in the
previous section, the structurewe chose for rhocells/jcellsdecreases
the flop/byte ratio of the loop on vertices compared to orders 1
and 2. In the case of simulations using a lot of particles, for which
the reduction of rhocells in rho is negligible, one might consider
grouping vertices in rhocells by groups of 16 instead of 8 for order
3 deposition in order to increase the flop/byte ratio in loop on
vertices. Notice finally that as we vectorize on vertices, there is
no performance bottleneck related to a possibly inhomogeneous
distribution of particles on the simulation domain.

If speed-ups from particle tiling (3×) and from vectorization
(up to 2.7× for charge deposition at order 1) are combined, we can
gain a cumulated speed-up of up to 8× for deposition routines.

6. Conclusion and prospects

A new method is presented that allows for efficient vectoriza-
tion of the standard charge/current deposition routines on current
SIMD architectures, leading to efficient deposition algorithms for
shape factors of orders 1, 2 and 3. This method uses a new data
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structure for grid arrays (charge/currents) ensuring data align-
ment and contiguity in memory which are essential to avoid many
gather/scatter operations that can significantly hinder vector per-
formances on modern architectures. The algorithms can be used
on current multi-core architectures (with up to AVX2 support) as
well as on future many-core Intel KNL processors that will support
AVX−512. Further tests on KNLwill be performed as the processor
becomes available.

This work presents deposition routines that are fully portable
and only use the $OMP SIMD directives that are provided by
OpenMP 4.0. Efficient vectorization of the charge conserving
current deposition from Esirkepov is being investigated, and will
be detailed in future work.
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