Computer Physics Communications 210 (2017) 72-78

Computer Physics Communications

EéMPUTER PHYSICS
COMMUNICATIONS

Contents lists available at ScienceDirect

journal homepage: www.elsevier.com/locate/cpc

High-performance GPU parallel solver for 3D modeling of electron

@ CrossMark

transfer during ion-surface interaction

I.K. Gainullin

Faculty of Physics, Moscow State University, Leninskie gory 1 # 2, Moscow, 119992, Russia

ARTICLE INFO

Article history:

Received 23 June 2016
Received in revised form

25 September 2016

Accepted 29 September 2016
Available online 8 October 2016

Keywords:

Resonant charge transfer

3D modeling

TDSE

FDM

GPU

High-performance calculations

ABSTRACT

This study presents parallelized time-dependent Schrodinger equation solver (GPU TDSE Solver) for 3D
modeling of resonant electron transfer (RCT) during ion-surface interactions and atomic collisions. The
computer modeling of RCT process is based on the numerical one-electron TDSE solution in relatively
large spatial domain (about 10>-10% nm?). Due to the numerical complexity of direct 3D TDSE solution
in such domains, most of RCT calculations use approximations that reduce problem to 2D calculations
(e.g. cylindrical symmetry). Last years the TDSE Solver was developed for 3D RCT modeling in large-
scale nanosystems (Gainullin and Sonkin, 2015). It was shown to have rather good performance due
to the effective parallel implementation of simple numerical scheme on GPUs (explicit finite-difference
method in Cartesian coordinates). Note, that usage of FDM in Cartesian coordinates requires ~100 times
greater numerical grid, comparing to the finite-element or finite-volume methods. For the majority of
RCT problems the calculations transfer to the cylindrical coordinates decreases the size of numerical grid
by an order of magnitude without loss of the calculations precision. The main problem in the transfer
to the cylindrical coordinates is that explicit numerical schemes for parabolic equations, including TDSE,
are unstable near the axis o = 0. This study presents hybrid numerical scheme, which eliminates this
instability and preserves the effective parallelization on GPUs. The performance of new version of the
GPU TDSE Solver, based on the hybrid numerical scheme, was found to be 6 times greater comparing
to the previous version. Such performance gain is stipulated by less discrete points, required for the FDM
implementation in cylindrical coordinates. Due to reduction of required GPU memory, new version of GPU
TDSE Solver can handle spatial domains about 10 nm? using an ordinary personal computer (equipped
with modern GPU, e.g. Tesla k20 or better) or up to 10> nm? using supercomputers. GPU TDSE Solver was
applied to the calculation of the resonant charge transfer in nanosystems. The calculated neutralization
probability for Li+ ions impinging on the Ag(100) surface shows a good quantitative agreement with the
experimental data.

© 2016 Elsevier B.V. All rights reserved.

1. Introduction

beams, where such properties, like chemical composition, crystal-
lographic structure, adsorbates, etc., are determined by analyzing

The investigation of electron transfer during the interactionbe- ~ SPectra of scattered or sputtered ions. Because the most of experi-

tween atomic particles and solid surfaces is of fundamental and
practical importance in several branches of physics and chem-
istry. For fundamental science the electron transfer is of interest
due to numerous phenomena such as scattering, sputtering, ad-
sorption, and molecular dissociation [1-3]. The practical impor-
tance of the electron transfer is stipulated by such applications
as semiconductor miniaturization via thin-film deposition, reac-
tive ion etching, catalysis, surface analysis tools and modification
[2,4-6]. An important application is solid body diagnostics by ion

E-mail address: Ivan.Gainullin@gmail.com.

http://dx.doi.org/10.1016/j.cpc.2016.09.021
0010-4655/© 2016 Elsevier B.V. All rights reserved.

mental equipment is capable to register charged atoms (ions), the
atomic neutralization or ionization processes will significantly af-
fect the registered spectra. Therefore, the electron exchange calcu-
lations are especially important for the quantitative diagnostics by
ion beams.

Since the electron affinity level of atomic anions and ioniza-
tion level of some alkali ions are significantly higher than the
typical Fermi energy of most metallic surfaces, the transfer of elec-
tron from anion to the surface has single-electron nature [7]. Thus,
the resonant charge transfer (RCT), i.e. energy-conserving one-
electron tunneling through the potential barrier between atomic
particle and surface, can be considered as a basic electron transfer
mechanism for such systems [8].

http://dx.doi.org/10.1016/j.cpc.2016.09.021
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.09.021&domain=pdf
mailto:Ivan.Gainullin@gmail.com
http://dx.doi.org/10.1016/j.cpc.2016.09.021

LK. Gainullin / Computer Physics Communications 210 (2017) 72-78 73

The computer modeling of RCT process between atomic
particle and metallic surface is based on the numerical one-
electron TDSE solution in relatively large spatial domain (about
103-10* nm?). The moving atomic particle and fixed metal-
lic surface are described by independent pseudopotentials. The
effect of image charge is considered. The perturbation effects
are usually neglected, because RCT process is modeled for
the rather large distances (>2 A). Typically theoretical stud-
ies consider atomic particle to be one-active-electron atom/ion
(e.g. H%/H-, Li°/Li*, Na*, K*), that can be modeled by analytical
pseudopotential [9]. By means of density functional theory (DFT)
the pseudopotentials have been calculated for two types of bulk
metal surfaces: free-electron metals (“jellium” model) [10] and
metals with projected band gap [11].

The existing theory in many cases gives quantitative agreement
with experimental data [3,6,7,12-21]. Due to the numerical com-
plexity of direct 3D TDSE solution in large spatial domains, the
most of the described researches were performed for the 2D sys-
tems (3D with cylindrical or spherical symmetry). The first time
the 3D RCT calculations were mentioned in 2000 [22], but the re-
ported system size (107 points) was too small to solve real 3D RCT
problems. In addition, 3D RCT calculations were reported in 2009,
but their details and complexity are omitted [18]. To model 3D ex-
periments by means of 2D calculation method, the electron trans-
fer probability in many studies is calculated by means of the rate
equation which can be applied under the adiabatic conditions (adi-
abatic approximation) [8,12,14,16,23]. The rate equation assumes
that electron transition rate at each moment of time is proportional
to the atomic particle level width I", which depends on the distance
to the surface, but not on the projectile’s velocity. In case of graz-
ing scattering trajectories the electron translation factor is usually
accounted [3,24]. It should be mentioned that last time the alterna-
tive approach has been developed: (i) the electron transition rate is
calculated as function of ion-surface distance by means of 3D DFT
computations; (ii) electron transition probability is calculated by
integrating the transition rate along the ions trajectory [24-26].

Note, that rate equation approximation is not valid for low
energy ions, especially when the surface contains nanosystems
(e.g. thin films) [27]. Moreover, some experiments, e.g. azimuthal
dependence of RCT probability, requires direct 3D RCT modeling
and 2D methods fail to describe them [3,8,17]. These facts stipulate
the actuality of TDSE Solver for the 3D RCT modeling.

Last years the TDSE Solver was developed for 3D RCT modeling
in large-scale nanosystems [28]. It was shown to have rather
good performance due to the effective parallel implementation
of simple numerical scheme on GPUs (explicit finite-difference
method in Cartesian coordinates). The serious weakness of GPU
TDSE Solver is the usage of regular numerical grid in Cartesian
coordinates. This demands ~100 times greater numerical grid
comparing to the FVM/FEM. Such dramatic difference occurs
because regular Cartesian numerical grid approximates the central
region of calculation domain and the periphery (halo) with
the same precision. While in typical FVM/FEM calculations
the numerical grid is adapted to the physical problem under
study, and the volume of element in central region is an order
of magnitude smaller, in comparison to the periphery. For
the majority of RCT problems the calculations transfer to the
cylindrical coordinates decrease the size of numerical grid (and
hence increase performance) by an order of magnitude without
loss of the calculations precision. Note, that cylindrical as well as
Cartesian are full 3D coordinates. The main problem in the transfer
to the cylindrical coordinates is that explicit numerical schemes
for parabolic equations, including TDSE, are unstable near the axe
p=0.

This paper presents hybrid numerical scheme, which eliminates
TDSE'’s instability in cylindrical coordinates and preserves the

effective parallelization on GPUs (Section 2). In Section 3 the
parallel performance and scalability of new version of GPU TDSE
Solver are discussed; its performance is compared to other known
TDSE solvers. Section 4 shows the application of the GPU TDSE
Solver to the calculation of the RCT in nanosystems; the numerical
results are compared to the experimental data.

2. Numerical method
2.1. Hybrid numerical scheme for TDSE in cylindrical coordinates

The explicit propagation scheme for solving TDSE, its precision
and stability are described in detail in Ref. [28]. The novelty of
present study is the hybrid numerical scheme, which is used to
solve TDSE in cylindrical coordinates explicitly. The derivation
of the hybrid numerical scheme is given in Egs. (3)-(10) and
calculation algorithm is described at the end of this section.

At a glance, we consider TDSE in form:

dy (.6
Tar

where U(F, t) = Vion(F,)+ Ve_guys (F) is time-dependent potential.
Then we use following time-evolution scheme with absorbing
image potential V (7, t):

o™ = —2ir [(—? +U(7, r)) ¢"] + !

A - .
(—5+U(r,t)) Y(r,), (1)

_Zire*i‘L’V [(_2 + U(F, t)) ¢1‘li| 4 672i1V¢n7]. (2)

An important feature of GPU TDSE Solver implementation in
cylindrical coordinates is the choice of boundary conditions for p
and 6 coordinates. To describe the boundary conditions we will use
the following discretization notation ¢y ;m = ¢(x = xx; p = pi;
0 = 6p).

Of course, the periodical boundary conditions should be chosen
for 6 coordinate: ¢y 10 = Pr1m; Prim+1 = Pri,1, Where M = Ny
is the number of discrete points along 8 coordinate.

A tricky problem is definition of boundary conditions for p —
0. To solve it we use numerical grid starting from value p; =
0.5-dp. This allows us to write the boundary conditions for p — 0
as ¢rom = ¢r.1.m*, where the point k, 1, m* is a point of space
symmetrical to the point k, 1, m relatively the axe p = 0. Note
that due to such scheme the number of discrete points along 6
coordinate should be even.

Due to the features of the GPU TDSE Solver architecture
(MPI decomposition along x-coordinate) the usage of cylindrical
coordinates x, p, 6 is convenient, that can be transformed to
Cartesian coordinatesasy = p - cos(0); z = p - sin(0).

Considering TDSE (1) Eq. (2) without absorbing potential can be
rewritten in the form:

Pt =" 20t [?qﬁ” - Uqb”} : (3)
where Laplacian in cylindrical coordinates x, p, 6 is equal to:
a1 (p L) B L2 “
pdp \'" dp oxz p2 062
The term piz;e—zz leads to the numerical instability of explicit

leap-frog scheme near the axe p = 0. Let us rewrite Laplacian as
the sum of 2 terms:

A—A+A'A—1a 0 +82'A—132 (5)
= 4o 15 O_pap 'Oap FYR 1—p2892-

74 LK. Gainullin / Computer Physics Communications 210 (2017) 72-78

The wave function ¢™! at the “next step” (6) can be treated as

sum of main term ¢§ ' and correction ¢}

A A
d)n+1:¢n—1_|_2ir |:70¢n+7]¢n_u¢ni| _ 8+1+¢?+1’

(6)

where

A
g+1 — ¢n—l + it |:20¢n _ U¢n:| :

W =2it—¢"= — —¢". (7)
The main term ¢g+1 at each step can be calculated easily
using explicit leap-frog scheme; its does not exhibit numerical
instability. The correction qﬂ“ is non-zero only near the axe p =
0, but the explicit scheme cannot be applied to its calculation.
Therefore, using Eqgs. (6) and (7) the following semi-implicit
scheme for the correction calculation can be derived:

: 2
1 gntl q1_ it 0
P ="~y = 7 967 !
it 1 9°
= Garpae 0 AL ®
When ¢ = 1and 8 = 0 the above scheme is completely

implicit; when ¢ = 0 and 8 = 1 it is completely explicit (and
hence unstable).
Of note, Eq. (9) does not contain the correction ¢>?+l and the

main term ¢g+1 is already known from Eq. (7). Therefore, for each

fixed value of z and p we get 1D differential equation on ¢"*.
Now let us redefine some variables: h = ¢"*'; f = 0" g =
¢". Of note, f and g are known functions. Then Eq. (11) can be

rewritten as:
i(pdo)?

(a@+ B) (fk —) = a (hegq + he—q — 2hy)

+ B (8kt1 + 8k—1 — 28k), (9)

where df is a discretization step along 6-coordinate, and
the subscript denotes discretization along 6-coordinate with
periodical boundary conditions (for k = 1 hy_; = hy and for
k=M hgy1 = hy). _

Also the absorbing image potential V (r) should be taken into
account:
i(pdo)? _.
%eﬂrv (@ +B) (fe — h) = a (hppq + by — 2hy)

+ B (k1 + &—1 — 28, (10)

where the transformation from Egs. (9) to (10) could be easily
done by insertion of absorbing term from Eq. (2) into Eq. (3) and
appropriate modification of Egs. (6)-(8).

Eq. (10) is tridiagonal system with periodic boundary condi-
tions. It could be solved by means of Thomas algorithm in com-
bination with Sherman-Morrison formula [29].

Let us describe the algorithm in detail. Eq. (10) can be expressed

in the matrix form as [A] x [h] = [d]:
bi ¢ aq hy d,
a by o h, d;
as b3 . X |. =1. s (11)
Cp+ . .
Cn a, by hy d,

; 2 .
where a, = ¢, = &, by = %e*”v (@ + B) — 2a,

i(p do)
=" "¢
T

di TV + B fie — B (81 + &1 — 280)-

Eq. (11) can be rewritten as:
[B4+uxv'] x[h] =[d], (12)
where u' = [-=b;00...¢,); v = [100...0 — a;/b;], and

Bl=[A—uxT]
Then unknown vector [h] is computed as:

(UT X y)
h=y—-—q——"—, 13
V=4 " <) (13)
where y and q are solutions of tridiagonal systems [B] x [y] = [d]
and [B] x [q] = [u] respectively.
The solution of the above tridiagonal system
b] C1 0 X1 d]
a; b2 C X2 d2
as b3 . X |. = 1. s (14)
. . G . .
0 a, by Xn dn

can be obtained by means of Thomas algorithm, consisting of
forward elimination and backward substitution phases.

During forward elimination phase, the original coefficients are
replaced as:

b =h %
k = Dk — Ck—lr
’;;k‘ k=2,...,M. (15)
dy = dp — die1——
bk—1

During backward substitution phase we iteratively calculate the
unknown vector values:

by — dy — cih ’
bk

where hy = d,,/by.

It should be noted, that for the problem under the study (TDSE
for RCT between ion and surface) the matrix [B] is diagonally dom-
inant, i.e. |by| > |ax| + |ck|. Hence, Thomas algorithm is suitable.

Finally, the hybrid numerical scheme for TDSE solution in cylin-
drical coordinates can be formulated as following algorithm for
¢"*1 calculation:

k=M-—1,...,1, (16)

1. For p > p0 we use the ordinary explicit leap-frog numerical
scheme, described in Eq. (6).

2. If p < p0, then ™! is calculated in two steps:

2.1 Initially we calculate the “main term” ¢g+1 by means of
explicit leap-frog numerical scheme from Eq. (7).

2.2 Then we find ¢™*! from Eq. (10) using algorithm described
in Egs. (11)-(16).

It should be stressed that numerical complexity of the “implicit”
part of the hybrid numerical scheme is small comparing to its
“explicit” part and the “implicit” part can be easily parallelized.
Therefore, the performance degradation of hybrid numerical
scheme in comparison to explicit leap-frog scheme should not be
large.

Note, that despite the proposed hybrid numerical scheme was
developed for the GPU TDSE Solver, it could be also applied to other
parabolic PDEs in cylindrical coordinates regardless of the used
calculation equipment (CPU or GPU).

LK. Gainullin / Computer Physics Communications 210 (2017) 72-78 75

2.2. Parallel GPU implementation

The GPU version of the program is written in C program-
ming language with CUDA extension. Message Passing Interface
(MPI) [30] technology is used [31] for multi-GPU parallel imple-
mentation.

The MPI implementation is the same as in “Cartesian” version
of GPU TDSE Solver [28]. Briefly, each parallel process calculates its
own part of a calculation domain (block). After each time-step the
synchronization with other processes occurs.

Two main points of GPU realization are: (i) memory access
optimization (effective usage of shared memory and coalesced
global memory access); (ii) asynchronous data transfer and
computation. The GPU realization for 1 MPI process is described
below in detail.

Concerning the memory access optimization we follow close
to the FMD realization described in [31]. The core idea is to use
GPUs shared memory in order to reduce the memory accesses.
According to FDM time evolution scheme (Eq. (2)) to compute
the wave function value at the next time moment qb,:“f;? we have
to know current wave function value ¢, . and wave function
values at the neighbor discrete points ¢}, ;4 ,.q- Therefore,
for the effective usage of shared memory the block of threads
should handle the compact subdomain of the calculation domain.
The subdomain volume (number of discrete FDM points in the
domain) corresponds to the single-read wave functions values, the
subdomain surface corresponds to the additional memory read
from GPU global memory. Therefore, the volume/surface ratio
should be maximized for the memory access optimization. But,
due to the memory limitations (16-64 kB of shared memory per
multiprocessor), we cannot store large 3D subdomains in the
shared memory. Instead of this, we store in shared memory only
2D subdomain (slice in p-6 space) and iterate over x-coordinate to
handle 3D subdomain.

The calculation domain for 1 MPI process is divided into 3D
spatial-blocks over p-0 coordinates (Fig. 1). Each spatial-block
is handled by single block of CUDA threads (CUDA-block). This
means that we use 2D CUDA grid. Inside the selected block, each
CUDA thread handles its own line, iterating along x-coordinate.
During the each iteration, the block of CUDA threads reads 2D
p-0 slice of wave function values into the shared memory (Fig. 2).
So the shared memory is used to access the neighbor values
along p-6 coordinates (excluding the spatial-block surface). The
peripheral values of each spatial-block are accessed twice (by
threads of own spatial-block and by threads of neighbor spatial-
blocks). To optimize the neighbor values access along x coordinate,
during each iteration of “for” cycle we read “next” value of wave
function and translate it as “current” and “previous” values for
the subsequent iterations. Using the described method, the wave
function values inside 3D spatial-block are accessed only once. The
once read wave function values are stored in shared memory and
are reused for the calculations of other points. This minimizes the
number of global memory accesses and significantly increases the
performance.

The optimal size of spatial-block has been defined from the
performance measurements as (Ny — 2) - (1 + 2) - (128 + 2),
that correspond to the 2D shared memory array size (1 + 2) -
(128 +2); 3 for p and 130 for 6. Of note, in most of our calculations
we use Ny = 128, but extra two points in 2D shared memory
array are necessary to store boundary conditions. Theoretically,
the allocation of greater shared memory should increase the
performance. However, in practice we should take into account the
hardware restrictions—amount of shared memory available per
block of processes. The above-given optimal 2D shared memory
array size was experimentally defined for Tesla k20 and Tesla
M2090 GPUS, it could be larger for some more modern GPUs. To

Q‘
X

Fig. 1. [llustration of decomposition of calculation domain into 3D blocks.

@ shared memory (single access)

register memory (single access)

pom—

N

shared memory (double access)

pm—— Fm—— rm——

h

Fig. 2. Illustration of shared-memory usage.

calculate the next values of the wave function we also should use
halo, so the number of memory accesses is not less than Ny - (1 +
2) - (128 + 2). On each step of “for” a cycle block of threads reads
3 - 130 current wave function values in order to calculate 1 - 128
next wave-function values.

The 3D matrices for wave function and potentials are stored
in a 1D array (in GPU global memory). According to the “CUDA
C Best Practices Guide” the coalescing significantly increases the
speed of global memory access [32]. A coalesced memory access
is realized when consecutive threads access consecutive memory
addresses. To provide the coalesced memory access we have to use
the following index mapping rule

index,p = indexy - N, - Ng + index,, - Ng + indexy. a7

The given mapping rule and above described CUDA grid fulfill
the coalesced memory access conditions, i.e. the neighbor CUDA
threads read the neighbor global memory addresses. It should be
stressed that the combination of the 3D-> 1D mapping and CUDA
grid described above corresponds to the optimal memory access,
which is critical for the performance, e.g. if one changes the 3D-
> 1D mapping to index,p = indexy - N, - Ny + index,, - Ny + indexy
the performance will reduce by an order of magnitude.

Another major feature of GPU TDSE Solver implementation is
parallel asynchronous transfer of the halo data and calculations
in the main region. Each calculation step consists of two stages.
Initially wave function ¢™*! is calculated in the halo, this requires
the calculation of 2 - N,, - Ny points for each MPI-process. Then in
parallel starts the asynchronous MPI data transfer (2-N, - Ny points)
and ¢! calculation in the main region (Ny -N, - Ny points for each
MPI-process).

76 LK. Gainullin / Computer Physics Communications 210 (2017) 72-78

Table 1
Performance comparison of different versions of GPU TDSE Solver.
TDSE Solver Calculations facilities, used Problem size, 10° Time for 1 Performance Normalized Normalized
number of processing units points step (s) (Gpnts/(s)) calculation calculation time
and its price time (s) without price (s)
TDSE GPU Solver GSRV MSU, 1T k20m * 2700 0.0108 0.0073 1.48 0.26 0.70
(“cylindrical” version) USD [33]
TDSE GPU Solver GSRV MSU, 1 GeForce Titan * 0.0108 0.0120 0.90 0.16 0.16
(“cylindrical” version) 1000 USD [34]
TDSE GPU Solver Lomonosov MSU, 1T M2090 * 0.0108 0.0136 0.80 0.29 0.46
(“cylindrical” version) 1600 USD [35]
TDSE GPU Solver GSRV MSU, 1T k20m * 2700 0.016 0.0087 1.84 1.47 3.96
(“Cartesian” version [28]) USD [33]

2.3. GPU TDSE Solver verification, optimal parameters and precision

For the convenience the atomic system of units (withm, = e =
h = 1; 1a.u. of distance is equal to 0.53 A, 1 a.u. of time is equal to
2.419 - 1077 s, and 1 a.u. of velocity is equal to 2.188 - 10% cm/s)
is used in this paper.

Like the previous version, the new version of GPU TDSE Solver
was verified in several stages, including: (i) finding the optimal
parameters; (ii) TDSE solution comparison with known solutions;
(iii) calculation of energy eigenstates of the hydrogen atom and
affinity level of H™ ion (for details see Ref. [28]). These entire tests
have been successfully passed by new version of GPU TDSE Solver,
the GPU TDSE Solver calculation results in Cartesian and cylindrical
coordinates were identical.

For the problem of RCT between atomic particle and nanosys-
tems it was found that for parameters dx = dp = 0.2 a.u., d6 =
27 /128;dt = 0.005 a.u.; pg = lau; o = 1; B = 0, the
numerical scheme converges to the TDSE solution. The decrease
of the parameters does not change the solution, but doubling the
dx, dp, d6 parameters leads to a wrong TDSE solution and the dou-
bling of 7 leads to numerical instability. Notably, that the above
parameters guarantee that the space discretization in region p <
20 a.u. is more precise comparing to discretization of Cartesian co-
ordinates with the same step dx = dy = dz = 0.2 a.u.

As used propagation scheme is only the SOD scheme, the
important question is its accuracy. The numerical error was
estimated as 1078 per time-step. Thus for the time propagation of
106 steps the numerical error does not succeed 1%. Such precision
is acceptable for the RCT problems.

3. GPU TDSE Solver performance

The useful measure for FDM performance is a number of
spatial points processed per second within one step of time
evolution [31]. So, we will use “Gpnts/s” to measure GPU TDSE
Solver absolute performance and scalability. However, the above-
defined “Gpnts/s” is not useful for relative performance measure,
e.g. GPU TDSE Solver performance comparison with other solvers,
because many of them are based on FVM/FEM and use CPU
calculations. In Ref. [28] the measure of relative performance -
“normalized calculation time” (NCT) - was introduced NCT =
t - oo This measure accounts the number of
points/elements necessary for the space discretization (so-called
“grid factor”) and the price of computational resources (useful for
the CPU vs. GPU comparison). The typical values of “Grid factor” are
not more than 200 for finite volumes/elements method and about
10 for FDM in cylindrical coordinates (see [28] for details). Note,
that when two programs are compared on the same equipment,
their NCTs ratio does not depend on the used equipment price.
For this reason, we also use metric “normalized calculation time
without price” in Table 1.

The absolute performance of “cylindrical” version GPU TDSE
Solver measured on the single Tesla k20m GPU is about 1.48 Gp-
nts/s, that is about 25% less than for “Cartesian” version (1.83 Gp-
nts/s). This occurs because the FDM calculations in the cylindrical
coordinates themselves and instability elimination in the hybrid
numerical scheme are more expensive. For the Tesla M2090 GPU
the GPU TDSE Solver’s performance is 0.80 Gpnts/s for “cylindri-
cal” version and 1.06 Gpnts/s for “Cartesian”. The surprising fact
is that calculations performance on graphical card GeForce Titan
(not Titan X or Titan Z) is 0.90 Gpnts/s, that is comparable with the
performance of more expensive GPU Tesla M2090.

The major characteristic of the parallel code is its scalability. The
scaling of GPU TDSE Solver in cylindrical coordinates is very similar
to its Cartesian version [28]. GPU TDSE Solver shows linear weak
scaling up to the 32 GPUs. The strong scaling is limited to ~4 GPU
for the typical problem.

An important consequence of the FDM calculation’s transfer to
the cylindrical coordinates is that the required computational grid
(the number of discrete points) is ~10 times less comparing to the
Cartesian coordinates. This leads to the ~10 times reduction of the
minimal-required computational resources, especially the amount
of GPU memory. As a result, the numerical simulation of the one-
electron processes in large-scale nanosystems (up to 10> nm?)
can be performed on ordinary personal computer, equipped
with modern GPU (Tesla k20 or higher). For the supercomputer
calculations, the significant advantage is much better scalability:
the GPU TDSE Solver shows linear scalability up to the 32 GPUs,
that corresponds to the calculation domain about 3 x 10* nm?
(compare to 3 x 10° nm? for the “Cartesian” version).

The essential point for the new TDSE Solver is the comparison
of its performance with state-of-the-art technology. In Ref. [28]
the performance of “Cartesian” version of GPU TDSE Solver was
compared to other TDSE Solver’s performance using NCT. The main
conclusion is that “Cartesian” version of GPU TDSE Solver is 3 times
faster. Also good GPU/CPU acceleration was shown comparing
to other TDSE solvers. In this article, we will emphasize on the
performance comparison between “Cartesian” and “cylindrical”
versions of GPU TDSE Solver. The results of the comparison are
shown in Table 1.

The NCT depends on the absolute performance (“Gpnts/s”) as
well as on the “Grid factor”. According to Ref. [28] the lower
estimation of “Grid factor” in cylindrical coordinates is 7. We can
see that the performance of the GPU TDSE Solver in cylindrical
coordinates (NCT = 0.26 s for Tesla k20m) is ~6 times better
than performance of its “Cartesian” version (NCT = 1.5 s for Tesla
k20m). Additionally it is ~20 times better than the performance of
the best CPU TDSE Solver (NCT = 4.5 s, see Ref. [28]). This means
that despite non-optimal FDM computational grid (GridFactor =
200 for FVM/FEM vs. GridFactor = 7 for cylindrical FDM), the
efficient GPU parallelization of the FDM-based numerical scheme
provides great benefit in performance.

The NCT of GPU TDSE Solver was also measured for different
graphical devices. The NCT for GPUs Tesla k20m and Tesla M2090

LK. Gainullin / Computer Physics Communications 210 (2017) 72-78 77

15 15

Fig. 3. Isosurface of electron density for the moment of time 50 a.u.

are found to be very similar, whereas calculations on graphics
card GeForce Titan are ~1.75 times more profitable comparing
to GPU calculations. Note, that these measurements were done
for the “oldest” GeForce Titan card (GTX TITAN 6 GB GDDR5
384 bit), double precision calculations on other cards (Titan X or
Titan Z) could be restricted. In addition, it should be noted, that
code scalability and parallel performance were not measured for
multiple GeForce Titan cards.

4. GPU TDSE Solver application for the RCT calculations

The GPU TDSE Solver was applied to the computer modeling of
real experimental data. In Ref. [16] Li™ neutralization probability
during interaction with Ag(100) surface was measured as function
of ion’s energy. In experiment the ion beam is oriented at 45° to the
surface normal and the scattered Li atoms / Li* ions are detected
along the normal to the surface. The ion beam energy varies from
0.2 to 2 keV.

To simulate the above experiment we have used several
assumptions. First, we considered RCT only on outgoing part of
ionic trajectory. Such approximation is valid because the influence
of the initial charge state of the particle was studied in several
experiments and for typical atom/ion-surface combinations no
memory effect of the initial charge state was found [12,13,36]. Also
we used the time reversal symmetry to investigate the problem of
electron loss by neutral atom Li on the ongoing trajectory, instead
of problem of electron capture by positive Li* ion on the outgoing
trajectory [16].

The one-active-electron pseudo-potential for Li ion/atom is
described in Ref. [9]. Because Ag(100) is a surface with projected
band gap, the pseudo-potential from Ref. [11] was chosen. Fig. 3
illustrates the RCT between Li and Ag(100) surface. We see that
electron density distribution inside the metal exhibits maxima
along z-coordinate. This happens due to the presence of the
projected band gap. Contrary to the case of “jellium” metal, when
electron freely propagates deep into the bulk, in the case of
projected band gap electron motion is confined along the normal
to the surface and electron is forced to propagate parallel to
the surface. The calculated neutralization probability for Li* ions
impinging on the Ag(100) surface shows a good quantitative
agreement with the experimental data (Fig. 4).

0.9F
0.8
0.7F
=
0.6
0.5}

0.4

0.3 . | . . | . | .
0 0.2 0.4 0.6 0.8 1 1.2 1.4 1.6

E (keV)

Fig.4. Li* neutralization probability as function of ion energy. Solid line represent
the numerical modeling results and open dots—experimental data [36].

Note, that due to the cylindrical symmetry, the above experi-
mental data do not contain “3D effects” and can be modeled by
means of 2D calculation method [16]. Of course, numerous RCT
experiments exhibit 3D effects, e.g. azimuthal (orientation) de-
pendence of RCT probability during H™ ion grazing scattering on
Cu(110) surface [3,8]. For computer modeling of these experiments
we have to use 3D calculations as well as 3D pseudo-potentials.
However, for the current moment only 1D pseudopotentials (that
depend on z-coordinate) for the surface description are well de-
veloped [10,11]. Thus, the further development of the GPU TDSE
Solver will be the construction of the 3D pseudopotentials in order
to describe such 3D effects like RCT orientation dependence.

5. Conclusion

The new version of GPU TDSE Solver for 3D modeling of
resonant electron transfer (RCT) during ion-surface interactions
and atomic collisions is presented in this study. Note, that the key
requirement to the TDSE Solver’s for 3D RCT modeling is capability
to handle large spatial domains (about 10°-10* nm?). Contrary
to the previous version, the new version of GPU TDSE Solver
performs the FMD explicit scheme in cylindrical coordinates,
instead of Cartesian. The calculations transfer to the cylindrical
coordinates significantly decreases the size of numerical grid. The
main problem in the transfer to the cylindrical coordinates is
that explicit numerical schemes for parabolic equations, including
TDSE, are unstable near the axe p = 0. In the present study, the
hybrid numerical scheme for parabolic PDEs (including TDSE) in
cylindrical coordinates was proposed, which eliminates instability
near axe p = 0 and preserves effective parallelization of the
explicit leap-frog numerical scheme.

The performance of new version of the GPU TDSE Solver, based
on the hybrid numerical scheme, was found to be 6 times greater
comparing to the previous version and 20 times greater comparing
to other known TDSE solvers. Such performance gain is obtained
because in cylindrical coordinates the required computational grid
(the number of discrete points) is ~10 times less comparing to
the Cartesian coordinates. The less computational grid also leads
to the 10 times reduction of the minimal required computational
resources, especially the amount of GPU memory. As a result,
the numerical simulation of the one-electron processes in large-
scale nanosystems (up to 10°> nm?) can be performed on ordinary
personal computer, equipped with modern GPU (Tesla k20
or higher). For the supercomputer calculations, the significant
advantage is much better scalability: the GPU TDSE Solver shows
linear scalability up to the 32 GPUs, that corresponds to the
calculation domain about 3 x 10* nm? (compare to the 3 x 10° nm?
for the previous version).

The GPU TDSE Solver was applied to the calculation of the reso-
nant charge transfer (RCT) in nanosystems. The calculated neutral-
ization probability for Lit ions impinging on the Ag(100) surface

78 LK. Gainullin / Computer Physics Communications 210 (2017) 72-78

shows a good quantitative agreement with the experimental data.
The further development of the GPU TDSE Solver consists in the
construction of the 3D pseudopotentials in order to describe such
3D effects as RCT orientation dependence. After that, we are going
to implement the new module for the calculation of the short laser
pulses interaction with atomic/molecular electronic system.

Acknowledgment

This work was partially financed by the Russian Foundation of
Basic Research (16-02-00478).

References

[1] R. Brako, D.M. Newns, Rep. Progr. Phys. 52 (1989) 655.

[2] H. Shao, D.C. Langreth, P. Nordlander, in: J.W. Rabalais (Ed.), Low Energy lon-
Surface Interactions, Wiley, New York, 1994.

[3] T. Hecht, H. Winter, A.G. Borisov,].P. Gauyacq, A.K. Kazansky, Phys. Rev. Lett.
84(2000) 2517.

[4] J.P. Gauyacq, A.G. Borisov, D. Teillet-Billy, in: V.A. Esaulov (Ed.), Forma-
tion/Destruction of Negative lons in Heavy Particle-Surface Collisions, Cam-
bridge University Press, Cambridge, England, 1996.

[5] JJ.C. Geerlings,]. Los, Phys. Rep. 190 (1990) 133.

[6] H. Chakraborty, T. Niederhausen, U. Thumm, Phys. Rev. A 70 (2004) 052903.

[7] H. Chakraborty, T. Niederhausen, U. Thumm, Phys. Rev. A 69 (2004) 052901.

[8] T.Hetch, H. Winter, A.G. Borisov, J.P. Gauyacq, A.K. Kazansky, Faraday Discuss.
117 (2000) 27.

[9] J.N. Bardsley, Case Stud. At. Phys. 4 (1974) 299.

[10] PJ.Jennings, R.O. Jones, M. Weinert, Phys. Rev. B 37 (1988) 6113.

[11] E.V. Chulkov, V.M. Silkin, P.M. Echenique, Surf. Sci. 437 (1999) 330.

[12] M. Maazouz, A.G. Borisov, V.A. Esaulov,].P. Gauyacq, L. Guillemot, S. Lacombe,
D. Teillet-Billy, Phys. Rev. B 55 (1997) 13 869.

[13] L. Guillemot, V.A. Esaulov, Phys. Rev. Lett. 82 (1999) 4552.

[14]]. Sjakste, A.G. Borisov, J.P. Gauyacq, Nucl. Instrum. Methods B 203 (2003) 49.

[15] K. Niedfeldt, E.A. Carter, P. Nordlander,]. Chem. Phys. 121 (2004) 375.

[16] A.R. Canario, A.G. Borisov,].P. Gauyacq, V.A. Esaulov, Phys. Rev. B 71 (2005)
121401(R).

[17] B.Bahrim, B. Makarenko,].W. Rabalais, Surf. Sci. 594 (2005) 62.

[18] B.Bahrim, S. Yu, B. Makarenko,].W. Rabalais, Surf. Sci. 603 (2009) 703.

[19] R.A. Vidal, F. Bonetto,]. Ferron, M.A. Romero, E.A. Garsia, E.C. Goldberg, Surf.
Sci. 605 (2011) 18.

[20] H.Zhou, L. Chen, D. Feng, Y. Guo, M. Ji, G. Wang, W. Zhou, Y. Li, L. Zhao, X. Chen,
Phys. Rev. A 85 (2012) 014901.

[21] L. Chen, B. Ding, Y. Li, S. Qiu, F. Xiong, H. Zhou, Y. Guo, X. Chen, Phys. Rev. A 88
(2013) 044901.

[22] U. Thumm,
pdf[26.03.2015].

[23] LK. Gainullin, LF. Urazgildin, Izv. RAN, Ser. Fiz. 70 (2006) 897 (in Russian).
Bulletin of the Russian Academy of Sciences, Physics 70 (2006) 1024.

[24] B. Obreshkov, U. Thumm, Phys. Rev. A 74 (2006) 012901.

[25] B. Obreshkov, U. Thumm, Phys. Rev. A 83 (2011) 062902.

[26] B. Obreshkov, U. Thumm, Phys. Rev. A 87 (2013) 022903.

[27] LK. Gainullin, M.A. Sonkin, Phys. Rev. A 92 (2015) 022710.

[28] LK. Gainullin, M.A. Sonkin, Comput. Phys. Comm. 188 (2015) 68-75.

[29] L.H.Thomas, Elliptic Problems in Linear Differential Equations over a Network,
Watson Sci. Comput. Lab Report Columbia University, New York, 1949;

S.D. Conte, C. deBoor, Elementary Numerical Analysis, McGraw-Hill, New York,
1972;

http://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-
TDMA(Thomas_algorithm).

[30] L Foster, Designing and Building Parallel Programs, Chapter 8 Message Passing
Interface, Addison-Wesley, 1995.

[31] P. Micikevicius, Proceedings of 2nd Workshop on General Purpose Processing
on Graphics Processing Units, ACM, New York, NY, USA, 2009.

[32] http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/;
https://devblogs.nvidia.com/parallelforall/how-access-global-memory-
efficiently-cuda-c-kernels/.

[33] http://www.amazon.com/NVIDIA-Tesla-K20-Accelerator-900-22081-2220-
000/dp/BO0AA2C1DC/ref=pd_sim_sbs_pc_1?ie=UTF8&refRID=1HGHVMNG6
D1685ZB6YWE (10.09.2014).

[34] http://www.pcmag.com/article2/0,2817,2415630,00.asp (23.06.2016).

[35] http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/
dp/BO07ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=
THGHVMNG66D1685ZB6YWE (10.09.2014).

[36] A.G.Borisov, D. Teillet-Billy,].P. Gauyacq, Phys. Rev. Lett. 68 (1992) 2842.

https://jrm.phys.ksu.edu/Research/Meetings/DOE- AMOP/ut.

http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref1
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref2
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref3
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref4
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref5
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref6
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref7
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref8
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref9
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref10
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref11
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref12
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref13
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref14
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref15
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref16
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref17
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref18
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref19
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref20
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref21
https://jrm.phys.ksu.edu/Research/Meetings/DOE-AMOP/ut.pdf
https://jrm.phys.ksu.edu/Research/Meetings/DOE-AMOP/ut.pdf
https://jrm.phys.ksu.edu/Research/Meetings/DOE-AMOP/ut.pdf
https://jrm.phys.ksu.edu/Research/Meetings/DOE-AMOP/ut.pdf
https://jrm.phys.ksu.edu/Research/Meetings/DOE-AMOP/ut.pdf
https://jrm.phys.ksu.edu/Research/Meetings/DOE-AMOP/ut.pdf
https://jrm.phys.ksu.edu/Research/Meetings/DOE-AMOP/ut.pdf
https://jrm.phys.ksu.edu/Research/Meetings/DOE-AMOP/ut.pdf
https://jrm.phys.ksu.edu/Research/Meetings/DOE-AMOP/ut.pdf
https://jrm.phys.ksu.edu/Research/Meetings/DOE-AMOP/ut.pdf
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref23
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref24
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref25
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref26
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref27
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref28
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref29a
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref29b
http://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm)
http://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm)
http://www.cfd-online.com/Wiki/Tridiagonal_matrix_algorithm_-_TDMA_(Thomas_algorithm)
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref30
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref31
http://docs.nvidia.com/cuda/cuda-c-best-practices-guide/
https://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
https://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
https://devblogs.nvidia.com/parallelforall/how-access-global-memory-efficiently-cuda-c-kernels/
http://www.amazon.com/NVIDIA-Tesla-K20-Accelerator-900-22081-2220-000/dp/B00AA2C1DC/ref=pd_sim_sbs_pc_1?ie=UTF8%2526refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/NVIDIA-Tesla-K20-Accelerator-900-22081-2220-000/dp/B00AA2C1DC/ref=pd_sim_sbs_pc_1?ie=UTF8%2526refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/NVIDIA-Tesla-K20-Accelerator-900-22081-2220-000/dp/B00AA2C1DC/ref=pd_sim_sbs_pc_1?ie=UTF8%2526refRID=1HGHVMN66D1685ZB6YWE
http://www.pcmag.com/article2/0,2817,2415630,00.asp
http://www.pcmag.com/article2/0,2817,2415630,00.asp
http://www.pcmag.com/article2/0,2817,2415630,00.asp
http://www.pcmag.com/article2/0,2817,2415630,00.asp
http://www.pcmag.com/article2/0,2817,2415630,00.asp
http://www.pcmag.com/article2/0,2817,2415630,00.asp
http://www.pcmag.com/article2/0,2817,2415630,00.asp
http://www.pcmag.com/article2/0,2817,2415630,00.asp
http://www.pcmag.com/article2/0,2817,2415630,00.asp
http://www.pcmag.com/article2/0,2817,2415630,00.asp
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://www.amazon.com/nVidia-M2090-Processing-Computing-Module/dp/B007ED62NU/ref=pd_sim_sbs_pc_4?ie=UTF8&refRID=1HGHVMN66D1685ZB6YWE
http://refhub.elsevier.com/S0010-4655(16)30305-8/sbref36

	High-performance GPU parallel solver for 3D modeling of electron transfer during ion--surface interaction
	Introduction
	Numerical method
	Hybrid numerical scheme for TDSE in cylindrical coordinates
	Parallel GPU implementation
	GPU TDSE Solver verification, optimal parameters and precision

	GPU TDSE Solver performance
	GPU TDSE Solver application for the RCT calculations
	Conclusion
	Acknowledgment
	References

