
Computer Physics Communications 210 (2017) 60–71
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Dynamic analysis environment for nuclear forensic analyses
C.L. Stork a, C.C. Ummel b,∗, D.S. Stuart a, S. Bodily a, B.L. Goldblum b

a Sandia National Laboratories, P.O. Box 5800, Albuquerque, NM 87185, USA
b University of California, Berkeley, CA 94720, USA

a r t i c l e i n f o

Article history:
Received 1 June 2016
Received in revised form
7 September 2016
Accepted 26 September 2016
Available online 5 October 2016

Keywords:
Nuclear forensics
Principal component analysis
k nearest neighbors algorithm

a b s t r a c t

A Dynamic Analysis Environment (DAE) software package is introduced to facilitate group inclusion/
exclusion method testing, evaluation and comparison for pre-detonation nuclear forensics applications.
Employing DAE, the multivariate signatures of a questioned material can be compared to the signatures
for different, known groups, enabling the linking of the questioned material to its potential process,
location, or fabrication facility. Advantages of using DAE for group inclusion/exclusion include built-
in query tools for retrieving data of interest from a database, the recording and documentation of all
analysis steps, a clear visualization of the analysis steps intelligible to a non-expert, and the ability to
integrate analysis tools developed in different programming languages. Two group inclusion/exclusion
methods are implemented in DAE: principal component analysis, a parametric feature extractionmethod,
and k nearest neighbors, a nonparametric pattern recognition method. Spent Fuel Isotopic Composition
(SFCOMPO), an open source international database of isotopic compositions for spent nuclear fuels (SNF)
from 14 reactors, is used to construct PCA and KNN models for known reactor groups, and 20 simulated
SNF samples are utilized in evaluating the performance of these group inclusion/exclusion models. For
all 20 simulated samples, PCA in conjunction with the Q statistic correctly excludes a large percentage
of reactor groups and correctly includes the true reactor of origination. Employing KNN, 14 of the 20
simulated samples are classified to their true reactor of origination.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

Nuclear forensics is a branch of science in which questioned
nuclear materials are characterized with regard to their isotopic
and elemental composition, age, physical state, history, and prove-
nance [1]. The characterization and interpretation of a questioned
nuclear material may require the integration of information from
a wide array of sources, including visual inspection and laboratory
analyses of the material, computer modeling, and a comparison of
the features or signatures of the questioned nuclear material with
those of known materials [2].

Nuclear forensics data sets or libraries of known nuclear ma-
terials have been developed against which to compare questioned
materials. These libraries, in conjunctionwithmultivariate pattern
recognition algorithms, enable the linking of questioned materials
to their potential processes, location, or fabrication facility [3–12].
This linking procedure is performed by systematically comparing
themultivariate features/signatures (e.g., isotopic or trace element
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measurements) for a questioned nuclearmaterial to the signatures
for materials originating from different, known groups or classes
(e.g., specific nuclear reactors, processes, or locations), enabling
both group exclusion and inclusion. Exclusion refers to the process
of eliminating the possibility that a questionedmaterial originated
from a particular group, based on a rigorous statistical comparison
of the signatures for the questioned material and known materi-
als from that group. In contrast, inclusion refers to the process of
identifying a statistically significant match between the signatures
for the questionedmaterial and the knownmaterials from a group,
indicating that the questioned material may have originated from
this group.

To date, these nuclear forensics data sets and analysis tools have
largely been developed independently, with minimal coordination
and no formal plan for eventual integration. Accordingly, a data
analyst must develop his or her own ad hoc, labor-intensive
approach for tying together the various data sets and analysis
tools to performagroup inclusion/exclusion analysis. The objective
of this work is to integrate the independently developed nuclear
forensics data sets and data analysis tools into a graphical,
user-interactive test bed to facilitate group inclusion/exclusion
method testing, evaluation and comparison using Sandia National
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Laboratories’ Dynamic Analysis Environment (DAE) software
package. DAE, which has been under active development since
2010, provides a highly interactive and configurable computational
environment that facilitates the analysis of very large data sets
through the use of predefined analytical modules. DAE is designed
to allow the incorporation of new algorithms by wrapping them
into modules with simple and standardized interfaces to the
source data and the data exchanged with other modules. DAE
supports modules developed in C/C++, Fortran, Python, MATLAB,
IDL, and PERL, eliminating the need to port algorithms from one
language to another. In DAE, the user can tailor the analysis by
creating analytical flows (networks) using a palette of available
data retrieval, data manipulation, and data visualization modules.
The interface is ‘‘drag and drop’’ and provides immediate feedback
of processing status as well as complete access to all intermediate
and final results. This feedback is available at all times, even during
the assembly of the analysis network itself. Advantages of using
DAE in the development of a test bed for group inclusion/exclusion
include built-in query tools for retrieving data of interest from a
database, the recording and documentation of all analysis steps, a
clear visualization of the analysis steps intelligible to a non-expert,
and the ability to integrate analysis tools developed in different
programming languages.

This manuscript documents the development of a DAE-
based software package for nuclear forensics data visualization
and group inclusion/exclusion analysis. Section 2 provides an
overview of the two group inclusion/exclusion methods, namely
principal component analysis (PCA) and k nearest neighbors
(KNN), that have been integrated into DAE. Section 3 describes
Spent Fuel Isotopic Composition (SFCOMPO), an open source
international database of isotopic compositions for spent nuclear
fuels (SNF) [13], used in constructing PCA and KNN models, and
simulated SNF samples employed in evaluating the performance
of these group inclusion/exclusion models. Section 4 describes the
framework of the DAE software package. Section 5 presents the
group inclusion/exclusion results obtained in applying the DAE
software package to SFCOMPO and the simulated SNF samples.
Section 6 offers some concluding remarks.

2. Methodology

Throughout this section, scalars are represented by italics,
e.g., n. Column vectors are denoted by boldface lowercase letters,
e.g., x. Matrices are represented by boldface uppercase letters,
e.g., X. The transpose of a matrix or vector is symbolized by a
superscripted ‘T’, e.g., XT and xT.

2.1. Principal component analysis

The objective of PCA is to extract a new set of features that op-
timally describe the variation or major trends within a given data
matrixX, composed ofm samples ormaterials and n variables [14].
The matrix X consists of measurements representative of a group
of interest, such as isotopic measurements for SNF materials from
a reactor. Typically, the PCAmodeling procedure begins by prepro-
cessing the matrix X using either mean centering, autoscaling, or
range scaling [15]. For a matrix X of inherent linear dimensional-
ity l, with l ≤ min{m, n}, PCA decomposes X into a set of l rank 1
matrices, arranged in order of decreasing eigenvalue, plus a resid-
ual matrix X, corresponding to noise or information irrelevant to
describing the groups of interest: [16]

X = t1pT
1 + t2pT

2 + · · · + tlpT
l +X

= TlPT
l +TPT

= T̄P̄T (1)
where X = TPT, T̄ = [Tl T], and P̄ = [Pl P]. The score vector,
ti, can be interpreted as the samples’ coordinates for principal
component i as defined by the new basis or loading vector, pi.
The principal component subspace is modeled by the span of Pl,
while the residual subspace is modeled by the span of P. In the
context of modeling isotopic measurements acquired for a set of
SNFmaterials from a nuclear reactor, Pl models correlations in that
reactor among the measured isotopes.

Similarly, the covariance matrix S can be decomposed using
eigenanalysis:

S =
1

m − 1
XTX

= P̄Λ̄P̄T, (2)
where

Λ̄ =
1

m − 1
T̄TT̄

= diag{λ1, λ2, . . . , λn}. (3)
Here, Λ̄ is the n by n diagonal eigenvalue matrix that contains the
eigenvalues of the covariance matrix S in descending order.

PCA can be used as a form of unsupervised pattern recognition
to recognize intrinsic groups of sampleswithin a given datamatrix,
or as a supervised pattern recognition method where a separate
model is developed for each group. The procedure for using PCA
as a supervised pattern recognition method is now summarized.
Using the PCAmodel developed for thematrix X, various statistics,
such as the Q statistic, Hotelling’s T 2 statistic, and Hawkins’
T 2
H statistic, can be calculated for an appropriately preprocessed

questioned sample vector, x (n by 1), as tests for group inclusion
and exclusion [14].

The Q statistic provides a quantitative measure of how far a
questioned sample vector lies outside the principal component
subspace [16]:

Q = xT(In − PlPT
l )x (4)

where In is an n by n identitymatrix. The questioned sample vector,
x, is considered consistent with the modeled group (e.g., making
a case for group inclusion) if Q ≤ Qα , where Qα corresponds to
the upper control limit for the Q statistic at a significance level
α. Likewise, if Q > Qα , this makes a strong case for excluding
the questioned sample from potential membership in themodeled
group. The upper control limit, Qα can be calculated using the
following expression [14,16]:

Qα = θ1

 cα

2θ2h2

0

θ1
+ 1 +

θ2h0(h0 − 1)
θ2
1

 1
h0 (5)

where

θi =

n
j=l+1

λi
j, i = 1, 2, 3 (6)

h0 = 1 −
2θ1θ3
3θ2

2
(7)

l is the number of principal components retained in the model, n
is the total number of principal components, and cα is the normal
deviate corresponding to the upper (1 − α) percentile. It is noted
that the upper control limit, Qα , is a function of the eigenvalues
of the modeled group data. Eq. (5), expressing the critical value
of Q given α, can be inverted to obtain the normal deviate, c ,
corresponding to the probability associated with a given Q value:

c = θ1


Q
θ1

h0
−

θ2h0(h0−1)
θ21

− 1



2θ2h2

0

. (8)
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In this way, the Q value for a questioned sample can be converted
to the corresponding probability value.

In contrast to the Q statistic, Hotelling’s T 2 statistic provides a
measure of the variation of a questioned sample vector within the
principal component subspace [14]:

T 2
= xTPlΛ

−1
l PT

l x. (9)

Under the condition that the data follow a multivariate normal
distribution, a statistical confidence limit for the T 2 values can be
calculated employing the equation:

T 2
α =

l (m − 1)
m − l

Fl, m−l, α (10)

where m is the number of samples utilized to develop the PCA
model, l is the number of principal components retained in the
model, and Fl,m−l,α is an F distribution with l and m − l degrees
of freedom at significance level α. For a specified significance level
α, the questioned sample vector is considered consistent with the
modeled group if T 2

≤ T 2
α , thereby making a case for group

inclusion. In contrast, if T 2 > T 2
α , this makes a strong case for

group exclusion. The T 2 value for a questioned sample can also be
converted to the corresponding probability value.

Hawkins’ T 2
H statistic is a parallel calculation of Hotelling’s T 2

statistic in the residual subspace: [17]

T 2
H = xTPΛ−1PTx. (11)

One liability of Hawkins’ T 2
H statistic compared to the Q statistic

is that inversion of the residual eigenvalue matrix is required,
which can result in numerical errors when some of the residual
eigenvalues are nearly zero. T 2

H has a T 2 distribution like that
represented in Eq. (10), with the exception that l is replaced by
(n − l) [14].

2.2. k nearest neighbors algorithm

The k nearest neighbors algorithm classifies a questioned
sample according to the majority vote of its k nearest neighbors
in the training set in multidimensional space [15]. In the event of
a tie, the closer neighbors are assigned a larger weight. Nearness is
measured using a distance metric such as the Euclidean distance.
The Euclidean distance, d, between two samples x and y is
calculated in n dimensions as

d =


(x1 − y1)2 + (x2 − y2)2 + · · · + (xn − yn)2. (12)

To classify a questioned sample, the distances are calculated
between the questioned sample and training samples of known
groupmembership. The k closest training samples are employed to
classify the questioned sample. The questioned sample is assigned
to the group having the most members among the k nearest
neighbors.

In the traditional implementation of KNN, each questioned
sample is assigned to one of the known groups represented by
the training set. Thus, the training set is assumed to represent
the full spectrum of groups anticipated in the environment. This
assumption is problematic in that the questioned sample may not
belong to any of the modeled groups [18]. In KNN, a ‘‘goodness
value’’ criterion has been proposed to account for the case where
a questioned sample is not a member of any of the modeled
groups [15]. The goodness value criterion involves validating the
group prediction for the questioned sample by comparing the
distance from the questioned sample to its predicted group relative
to an expected distance for knownmembers of that group. The first
step in implementing the goodness value criterion is to calculate
the distance, dunk, from the questioned sample to its nearest
neighbor in the group predicted by KNN. Next, this calculated
distance, dunk, is compared to the interpoint one nearest neighbor
distances for each of the training samples that are members of the
predicted group, g . The mean, dg , and standard deviation, s(dg), of
these training set nearest neighbor distances are calculated, and a
goodness value, G, is computed as

G =
dunk − dg
s(dg)

. (13)

This goodness value is indicative of the number of standard
deviation units the distance of the questioned sample is from the
mean group distance. Confidence in the group assignment of the
questioned sample increases as the goodness value decreases. In
practice, the questioned sample can be excluded frommembership
in its predicted group if its goodness value exceeds the maximum
goodness value for the training samples that are a member of that
group. It is emphasized that while the goodness value criterion
can be used to allow for group exclusion with KNN, no specific
statements can bemade regarding the statistical confidence of this
group exclusion assessment.

3. SFCOMPO database and simulated samples

SFCOMPO is an open-source international database of isotopic
compositions for SNF obtained through post-irradiation experi-
ments [13]. SFCOMPO consists of SNF isotopic compositions for
14 nuclear reactors in 4 countries, namely Germany, Italy, Japan,
and the United States. The SFCOMPO database was originally com-
piled by the Japan Atomic Energy Research Institute (JAERI), and
in 2002 this database was transferred to the Organization for
Economic Cooperation and Development/Nuclear Energy Agency
(OECD/NEA).

Table 1 provides a summary of the SFCOMPO database.
SFCOMPO compiles measured isotopic compositions from 14
reactors, including 7 pressurized water reactors (PWRs) and 7
boiling water reactors (BWRs). In total, data are available from 246
SNF samples. Measured isotopes contained within the SFCOMPO
database include U, Pu, Am, Cm, and several fission products
(e.g., Nd, Cs, and Sr). As SFCOMPO compiles data from the open
literature originally acquired by laboratories in different countries
employing slightly different protocols, not all of the isotopes are
available for each of the 14 reactors. In fact, only U and Pu isotopic
compositions are available for all 14 reactors.

As detailed in Section 5, PCA and KNNmodels were constructed
employing DAE using the SNF isotopic composition data for
individual reactors and combined sets of related reactors. In
certain instances, data for related reactors were combined due
to the limited number of samples available for some reactors,
such as Genkai-1 and H.B. Robinson Unit 2. The set of 5 isotopic
ratios, namely 235U/238U, 236U/238U, 240Pu/239Pu, 241Pu/239Pu, and
242Pu/239Pu, available for all 14 reactors within the SFCOMPO
database were used in developing the PCA and KNN models.

Simulated SNF sample specifications were generated by Ar-
gonne National Laboratory (ANL) and treated as questioned or test
samples. Five sets of simulated sampleswere created,with each set
consisting of four SNF samples originating from one of the 14 reac-
tors represented in the SFCOMPO database. Thereby, in total, there
are 20 simulated SNF samples. Isotopes included in the simulated
sample specifications are 234U, 235U, 236U, 238U, 238Pu, 239Pu, 240Pu,
241Pu, 242Pu, 241Am, 242Am, 237Np, 137Cs, and 99Tc. As detailed in
Section 5, the 20 simulated SNF samples were compared in DAE to
the PCA and KNNmodels constructed for individual or related sets
of reactors, enabling group inclusion/exclusion analysis of these
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Table 1
Summary of SFCOMPO database and true reactor of origin for simulated SNF samples.

Label Reactor Country Reactor Number of Simulated
type SNF samples SNF samples

A Calvert Cliffs No. 1 United States PWR 9
B Cooper United States BWR 6
C Fukushima-Daiichi-3 Japan BWR 36
D Fukushima-Daini-2 Japan BWR 18 Samples 13–20
E Genkai-1 Japan PWR 2
F Gundremmingen Germany BWR 12
G H.B. Robinson Unit 2 United States PWR 6 Samples 1–4
H JDPR Japan BWR 30
I Mihama-3 Japan PWR 9
J Monticello United States BWR 30
K Obrigheim Germany PWR 23
L Takahama-3 Japan PWR 16
M Trino Vercellese Italy PWR 39 Samples 5–12
N Tsuruga-1 Japan BWR 10
Fig. 1. Bivariate isotopic ratio plot for 235U/238U versus 240Pu/239Pu.

questioned samples. The rightmost column of Table 1 lists the true
reactor of origination for each of the 20 simulated SNF samples.

Fig. 1 presents the bivariate isotopic ratio plot for 235U/238U
versus 240Pu/239Pu for the samples originating from the 14 reactors
in the SFCOMPO database and the 20 simulated SNF samples.
Sample set 1 overlaps with samples from the H.B. Robinson
Unit 2, Gundremmingen, and Trino Vercellese reactors. Sample
sets 2 and 3 bear a resemblance to the Trino Vercellese and
Mihama-3 samples in terms of their positions in Fig. 1. Sample
sets 4 and 5 correspond with the positions of the Fukushima-
Daini-2 samples. With regard to outliers, three Fukushima-Daini-
2 samples, localized in the lower left section of Fig. 1, deviate
significantly from the other samples for this reactor.

4. Dynamic analysis environment framework

The Dynamic Analysis Environment (DAE) is an extension
of the Blender open source software package [19]. The native
Blender application is designed for creating animated videos and
does not, in and of itself, include any data analysis capabilities.
Blender does, however, employ a number of features that make
it attractive for extension into the world of data analytics. These
features exist primarily within the node compositor panel in
Blender. Node compositing is used to apply finishing touches on
a frame-by-frame basis as output animation is constructed. The
bulk of the native Blender node compositing features deal with
image processing, and are accessed via a variety of host nodes.
These features include (1) interactive modular network design,
(2) advanced image enhancement algorithms, (3) multi-threaded
processing across parallel network paths, (4) node-to-node
data exchange with unlimited branching, (5) video compilation
capability with frame-variable (parametric) nodal inputs, and
(6) real-time network processing adaptation in response to user
inputs.

The DAE extension adds a number of capabilities required
for a data analysis application. These include (1) an integrated
SQLITE3 database [20] and thread locking to store all source,
intermediate and final data, (2) real-time node progress feedback,
(3) embedded knowledge of data relationships, (4) graph theory
algorithms for tracing all data relationships implied by the user-
defined nodal networks, (5) eight new node types for hosting data
analysis functionality, (6) expanded information channel exchange
between connected source and destination nodes, and (7) new
socket types for exchanging data and date/time information.

Output information from data analysis networks is accom-
plished by utilizing existing Blender nodes for directing output to
the screen, to still frame files (e.g., PNG), or to composite anima-
tions of multiple frames (e.g., AVI). Animations can be made using
parametrically-driven node settings.

Eight new data analysis nodes were added to the Blender
package, including Data Source (Section 4.1), Augment Data
(Section 4.2), Filter Data (Section 4.3), Merge Data (Section 4.4),
Relate Data (Section 4.5), View Data (Section 4.6), Compose
View (Section 4.7), and Date/Time (Section 4.8). In a general
sense, these basic functions form the basis for any data analysis,
and encompass the basic steps of gathering the input data,
extending the input data using mathematical algorithms, relating
sets of initially independent input data to each other, reducing
the volume of data with filtering, and finally, visualization of
the results. Each of these node types is described below along
with the common PCA/KNN modules, PCA-specific modules,
and KNN-specific modules incorporated within each node type.
Additional data analysis or visualization codes written in C/C++,
FORTRAN, MATLAB, IDL, Python, and PERL can be wrapped into a
corresponding node type with simple and standardized interfaces
to the source data and the analyzed data exchanged with other
nodes. Sections 4.9 and 4.10 provide examples of how the nodes
can be linked to perform PCA and KNN group inclusion/exclusion
analysis using training data from the SFCOMPO database and test
data from the simulated samples. The eight new data analysis
nodes are described in detail below.

4.1. Data source node

The Data Source node, shown in Fig. 2, is used to import data
into the internal database and represents the beginning of any
analysis network. Analytic modules are available via dropdown
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Fig. 2. Data Source node. The Model Data Source and Sample Data Source modules
can be chosen via a dropdownmenu. Note the single output socket on the right side
of the node.

Fig. 3. Augment Data nodewith the PCAModel module selected. Themodel can be
computed with linear or logarithmic scaling, selectable via the second dropdown
menu, and with a significance that can also be chosen using a value input control.
Other modules can be selected using the top dropdown menu.

menus to perform the import of source data into one or more
internal database tables. Multiple data source nodes may be used
within a network.

The common PCA/KNN modules are:

• Model Data Source: This module loads the SFCOMPO model-
ing/training data into a series of related tables within the in-
ternal database. Tables include reactors, assemblies, fuel rods,
fuel pins, labs, tests, and results along with the associated set of
relationship tables.

• Sample Data Source: This module loads the questioned sample
data into a series of related tables within the internal database.
Tables include samples, labs, tests and results along the
associated set of relationship tables.

4.2. Augment data node

The Augment Data node, shown in Fig. 3, is used to extend
the source data by invoking analytic processes via dropdown
selections. During augmenter processing, one or more additional
tables are created within the database to store the processing
results. Relationships between new table information and the
table information used by the augmenter are established and
maintained within the database. The Augment Data nodes have
a single input socket and a single output socket. Input sockets
Fig. 4. Filter Data node with the Reactor module selected. The desired reactor can
be chosen via the bottom dropdown menu. Note the two output sockets.

provide the table names of all locally relevant database tables for
use in the augmenter processing. Output sockets contain the same
information, plus the names of any additional tables created during
the associated node processing. All table names are prepended by
the name of the augmenter instance that created them. As a result,
there can be any number of instances of any one node type and its
associated table(s). This allows parallel execution paths involving
the same type of augmenter (or any other node type), without the
chance of commingling the data.

Specific modules for group inclusion/exclusion include:

• PCA Model: This module uses modeling/training data to com-
pute the PCA model parameters and stores the results in tables
including PCA Model Overview, PCA Component Information,
PCA Statistics, PCA Eigenvectors, and PCA Covariance. Also in-
cluded is a table listing the modeling results used as input for
each PCA model. The PCA model is calculated using MATLAB
code that has been integrated into the Augment Data node.

• Assign KNN Class: This module creates a table containing
unique class identifiers and a table of fuel pins assigned to each
class.

• KNN Training: This module uses class fuel pin test results
to create a series of KNN Training results tables, including
KNN Training Statistics, KNN Included Classes, KNN Neighbor
Information, KNN Success Information, KNN Training Class
Statistics, KNNGoodness Values andKNNGoodness Thresholds.
KNN training is performed using MATLAB code that has been
integrated into the Augment Data node.

4.3. Filter data node

Data filters are placed within the network to split data into two
separate flow paths based on the selection of filtering criteria. As
such, a filter node, shown in Fig. 4, has one input socket and two
output sockets. Filtering is accomplished with the creation of two
filter tables. The first lists the database records that pass the criteria
and the second lists those that do not. Although the result of the
filter operations is two additional tables in the internal database,
only one of the two is referenced on each of the outgoing sockets.
DAE maintains the relational information necessary to apply the
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Fig. 5. Merge Data Node. Database references on each of the twelve input sockets
are made available on the output socket.

correct filter information (passed or not passed) downstreamof the
filter node.

The common PCA/KNN Filter modules are:

• Reactor: This module creates filter tables based on the selected
reactor.

• Test: Thismodule creates filter tables based on the selected test
or measurement.

• Fuel Pin: Thismodule creates filter tables based on selected fuel
pin test result criteria.

The PCA-specific module is:

• PCA Retained Factors: This module filters the PCA Model
results based on the number of retained factors.

The KNN-specific module is:

• k Nearest Neighbors: This module filters the KNN Training
results based on the number of nearest neighbors.

4.4. Merge data node

Merging of data streams within the network is accomplished
via a Merge Data node, shown in Fig. 5. No node selections are
present (or necessary) on this node type. It has twelve input sockets
and one output socket. Functionally, the node acts to make all
Fig. 6. Relate Data node with the PCA Sample to Model module selected in the
dropdown menu. Note the two output sockets.

input database references on the input sockets known on the
output socket. By merging data in this way, a logical operation of
combining the results of parallel filter paths is possible. In addition,
this node can be used to merge two initially independent data
source streams into one for downstream processing of both sets
of data. In particular, this merging allows access to multiple input
sets for creating relationships between them.

4.5. Relate data node

Data relater nodes, as shown in Fig. 6, are used to create
relationships between initially independent sets of source data
(or their derived augmentation data). These nodes have a single
input socket and two output sockets. Prior to processing, an
upstream merge node is required to direct the independent
data sets to a single input socket. One output socket provides
information on the relationships formed by the node. The other
socket provides information regarding the unrelated input data
sets. For the socket outputting relation information, a new table
is created with database columns relating information from both
sets.When information froman input set is not included in the new
relationship table, corresponding entries are made in new ‘‘filter-
like’’ tables listing the non-related source records. Two such filter-
like tables are created and are used to filter the input sets to only
those not included on the relation output socket.

Each output socket contains only the references to the newly
created tables that are relevant to each output. The ‘‘related’’ socket
will contain a reference to the new relation table while the ‘‘not
related’’ socket will reference the two newly created filter tables.
This allows the user to easily work with the new relationships
or identify information from the initial data sets from which no
relationship was established.

The PCA-specific module is:

• PCA Sample to Model: This module computes a series of
metrics that represent the likelihood that each questioned/test
sample is represented by each PCA model. These results
are included in a relationship table. These calculations are
performedusingMATLAB code that has been integrated into the
Relate Data node.

The KNN-specific module is:

• KNN Sample to Training: This module computes a series of
metrics that represent the likelihood that each questioned/test
sample is represented by each KNN Class. These results
are included in a relationship table. These calculations are
performedusingMATLAB code that has been integrated into the
Relate Data node.
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Fig. 7. View Data Node (fully expanded). Note that the image height andwidth can
be defined using two input sockets.

4.6. View data node

The View Data node (shown fully expanded in Fig. 7) is used
to host algorithms designed to create visual representations of
the network data. It has a single input socket and a single output
socket. This node architecture is unique, however, in that the
output socket type is an image. Images are one of the three basic
Blender outputs (i.e., value, vector, and image). Once an image is
created and output by a View Data node, the image can be directed
to any of the existing Blender nodes that accept incoming images.
This allows for post-processing of the created images (such as
overlapping or differencing).

The common PCA/KNN modules are:

• Data: This module creates tabular information from internal
database tables for inspection.

• Fuel Pin Test: This module creates an x–y plot of one variable
versus another variable for a designated set of training data.
The training data are labeled according to class. This plot is
generated using IDL code that has been integrated in the View
Data node.

The PCA-specific modules are:

• PCA Sample to Model: This module creates a tabular represen-
tation of comparison results of questioned/test samples to PCA
models.

• PCA CorrelationMetrics: This module creates a plot of the PCA
correlation metrics.

• PCA Eigenvalues: This module creates a plot of the PCA
eigenvalues. This plot is generated using IDL code that has been
integrated into the View Data node.

• PCA Loadings: This module creates a plot of the PCA loadings.
This plot is generated using IDL code that has been integrated
into the View Data node.

The KNN-specific modules are:

• KNN Sample to Training: This module creates a tabular
representation of the comparison results of questioned/test
samples to KNN training classes.

• KNN Success: This module creates a plot of KNN success,
defined as the percentage of training samples that are correctly
classified as a function of the number of nearest neighbors. This
plot is generated using IDL code that has been integrated into
the View Data node.

4.7. Compose view node

The Compose View Node is used to create a mosaic image
composed of multiple incoming images. The node provides for
horizontal or vertical stacking of images. Nesting of this node type
can be used to create complex layouts frommany images. Compose
Viewnodes have up to six input sockets and one output. All sockets
are of image type.

4.8. Date/time node

The Date/Time node is used in conjunction with source nodes
to import specific ranges of time-stamped data. This data type
requires a new type of socket information to transfer date and time
information from node to node. This DAE node type was not used
in the analysis of SFCOMPO.

4.9. Example DAE PCA analysis

Fig. 8 depicts an example PCA analysis of the SFCOMPO and
simulated SNF data performed using DAE. On the far left, theModel
Data Source module is used to load the SFCOMPO model data, and
the Sample Data Source module is used to load the simulated SNF
questioned/test data. A Merge Data node is then used to merge
these two data streams. Five Filter Data nodes are next employed
to limit the set of analyzed variables to the five isotopic ratios:
235U/238U, 236U/238U, 240Pu/239Pu, 241Pu/239Pu, and 242Pu/239Pu. As
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Fig. 8. Example PCA analysis of SFCOMPO and simulated SNF data performed using DAE.
Fig. 9. Example KNN analysis of SFCOMPO and simulated SNF data performed using DAE.
a fourth step in the analysis chain, a Merge Data node is used to
merge these five isotopic ratios. Fifth, three Filter Data/Reactor
modules are used to limit the data to the selected H.B. Robinson
Unit 2, Trino Vercellese, and Fukushima-Daini-2 reactors. Sixth,
three Augment Data/PCA Model modules are utilized to construct
PCAmodels for the selected H.B. Robinson Unit 2, Trino Vercellese,
and Fukushima-Daini-2 reactors. Seventh, three Relate Data/PCA
Sample to Model modules are used to compare the simulated SNF
test data to the three constructed PCA models. Eighth, a Merge
Data node is employed to merge these PCA model results for the
SNF test data. Ninth, a Filter Data/PCA Retained Factors module is
utilized to filter the PCA model results to one retained PC. Tenth, a
View Data/PCA Sample toModel module is used to create a tabular
representation of the comparison results of the simulated SNF test
samples to the three PCAmodels. On the far right, a Compose View
node is used to generate a mosaic image of the results.
4.10. Example DAE KNN analysis

Fig. 9 depicts an example KNN analysis of the SFCOMPO and
simulated SNF data performed using DAE. The first five steps in
the analysis chain match those employed in PCA. In the sixth step,
three Augment Data/Assign KNN Class modules are used to assign
unique identifiers to the three reactor classes. Seventh, a Merge
Data node is employed to merge the data from the three reactor
classes. Eighth, an Augment Data/KNN Training module is used
to create a series of KNN Training results tables employing the
SFCOMPOmodel data. Ninth, a RelateData/KNNSample to Training
module is utilized to compute a series of metrics representing
the likelihood that each simulated SNF questioned/test sample
is a member of each of the three KNN reactor classes. Tenth,
a Filter Data/k Nearest Neighbors module is used to filter the
KNN training results to three nearest neighbors. Eleventh, a View
Data/KNN Sample to Training module is employed to create a
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Table 2
Q statistic-based probabilities calculated for simulated samples 1–20 for each of the 14 autoscaled PCA models. Entries greater than or equal to the exclusion threshold of
0.01 are underlined.

Sample/RF A A & G B C D E & I F G H J K L M N

2 2 1 1 1 1 1 1 1 2 1 2 1 3

1 0.10 0.58 0.00 0.00 0.64 0.00 0.00 0.43 0.00 0.00 0.00 0.00 0.01 0.00

2 0.08 0.31 0.00 0.00 0.40 0.00 0.00 0.61 0.00 0.00 0.01 0.00 0.00 0.00

3 0.15 0.45 0.00 0.00 0.20 0.00 0.00 0.19 0.00 0.00 0.00 0.00 0.00 0.00

4 0.05 0.42 0.00 0.00 0.55 0.00 0.00 0.45 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.00 0.00 0.00 0.57 0.01 0.00 0.00 0.00 0.00 0.03 0.02 0.43 0.00

6 0.00 0.00 0.00 0.00 0.10 0.51 0.00 0.00 0.00 0.00 0.02 0.03 0.75 0.00

7 0.00 0.00 0.00 0.00 0.44 0.01 0.00 0.00 0.00 0.00 0.10 0.04 0.30 0.00

8 0.00 0.00 0.00 0.00 0.25 0.09 0.00 0.00 0.00 0.00 0.10 0.06 0.46 0.00

9 0.00 0.00 0.00 0.00 0.04 0.28 0.00 0.00 0.00 0.00 0.00 0.03 0.64 0.00

10 0.00 0.00 0.00 0.00 0.03 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.25 0.00

11 0.00 0.00 0.00 0.00 0.20 0.11 0.00 0.00 0.00 0.00 0.07 0.07 0.31 0.00

12 0.00 0.00 0.00 0.00 0.29 0.03 0.00 0.00 0.00 0.00 0.08 0.06 0.16 0.00

13 0.00 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 0.00 0.00 0.84 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.13 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

16 0.00 0.00 0.00 0.00 0.61 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

17 0.00 0.00 0.00 0.00 0.17 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.02 0.00

18 0.00 0.00 0.00 0.00 0.76 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

19 0.00 0.00 0.00 0.00 0.24 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.01 0.00

20 0.00 0.00 0.00 0.00 0.66 0.01 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
tabular representation of the comparison results of the simulated
SNF questioned/test samples to the three KNN training classes. On
the far right, a Compose View node is used to generate a mosaic
image of the results.

5. Results and discussion

5.1. PCA results

Tables 2–4 present the Q statistic, Hotelling’s T 2 statistic, and
Hawkins’ T 2

H statistic-based probability values, respectively, for
simulated questioned/test samples 1 through 20 calculated in
DAE for each of the 14 autoscaled PCA models. Autoscaling refers
to the process in which a data matrix is transformed through
centering, where the mean of each variable is subtracted from all
of its elements, followed by variance scaling, achieved by dividing
each element by the standard deviation of that variable. In the
tables, a probability value greater than or equal to the exclusion
threshold of 0.01 indicates that the simulated sample is considered
to be consistent with the modeled group, making a case for group
inclusion. These tables are representative of outputs provided by
DAE through the View Data/PCA Sample to Model module.

With regard to the Q statistic-based probabilities (Table 2), the
following group inclusion/exclusion results are achieved:
• Simulated samples 1 through 4 exceed the exclusion threshold

of 0.01 for (1) the Calvert Cliffs No. 1 model, (2) the combined
Calvert Cliffs No. 1/H.B. Robinson Unit 2 model, (3) Fukushima-
Daini-2 model, and (4) H.B. Robinson Unit 2 model. The true
reactor of origination for simulated samples 1 through 4 is H.B.
Robinson Unit 2.

• All or a subset of simulated samples 5 through 12 exceed
the exclusion threshold for (1) the Fukushima-Daini-2 model,
(2) the Genkai-1/Mihama-3 model (6 of 8 samples), (3) the
Obrigheim model (6 of 8 samples), (4) the Takahama-3 model
(7 of 8 samples), and (5) the Trino Vercellese model. The true
reactor of origination for simulated samples 5 through 12 is
Trino Vercellese.
• All or a subset of simulated samples 13 through 20 exceed
the exclusion threshold for (1) the Fukushima-Daini-2 model,
(2) the Takahama-3 model (1 of 8 samples), and (3) the
Trino Vercellese model (3 of 8 samples). The true reactor of
origination for simulated samples 13 through 20 is Fukushima-
Daini-2.

Thus, for all 20 simulated samples theQ statistic correctly excludes
a large percentage of reactor groups and correctly includes the true
reactor of origination.

With regard to the Hotelling’s T 2 statistic-based probabilities
(Table 3), the following group inclusion/exclusion results are
achieved:

• All or a subset of simulated samples 1 through 4 exceed the
exclusion threshold for 12 of the 14 PCA reactor models.

• All or a subset of simulated samples 5 through 12 exceed the
exclusion threshold for 13 of the 14 PCA reactor models.

• All or a subset of simulated samples 13 through 20 exceed the
exclusion threshold for 13 of the 14 PCA reactor models.

Accordingly, the group inclusion/exclusion results achieved by
Hotelling’s T 2 statistic are much more ambiguous. For all 20
simulated samples, Hotelling’s T 2 statistic correctly includes the
true reactor of origination, but excludes very few of the other
reactor groups.

Finally, employing the Hawkins’ T 2
H statistic-based probabilities

(Table 4), the following group inclusion/exclusion results are
achieved:

• Simulated samples 1 through 4 exceed the exclusion threshold
for (1) the Calvert Cliffs No. 1/H.B. Robinson Unit 2 model, and
(2) the Fukushima-Daini-2 model.

• All or a subset of simulated samples 5 through 12 exceed the
exclusion threshold for (1) the Calvert Cliffs No. 1/H.B. Robinson
Unit 2model (1 of 8 samples), (2) the Fukushima-Daini-2model
(6 of 8 samples), (3) the Genkai-1/Mihama-3 model (5 of 8
samples), (4) the Takahama-3 model (6 of 8 samples), and (5)
the Trino Vercellese model (1 of 8 samples).
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Table 3
Hotelling’s T 2 statistic-based probabilities calculated for simulated samples 1–20 for each of the 14 autoscaled PCA models. Entries greater than or equal to the exclusion
threshold of 0.01 are underlined.

Sample/RF A A & G B C D E & I F G H J K L M N

2 2 1 1 1 1 1 1 1 2 1 2 1 3

1 0.09 0.14 0.25 0.02 0.24 0.58 0.14 0.18 0.00 0.00 0.08 0.25 0.85 0.09

2 0.71 0.91 1.00 0.09 0.88 0.66 0.37 0.85 0.00 0.00 0.92 0.20 0.03 0.00

3 0.88 0.90 0.60 0.22 0.70 0.37 0.07 0.38 0.00 0.00 0.53 0.10 0.00 0.00

4 0.35 0.55 0.60 0.05 0.54 0.99 0.88 0.60 0.00 0.00 0.42 0.24 0.20 0.05

5 0.23 0.07 0.86 0.03 0.66 0.87 0.68 0.86 0.00 0.00 0.66 0.85 0.14 0.00

6 0.05 0.05 0.10 0.01 0.10 0.28 0.01 0.05 0.00 0.00 0.01 0.31 0.40 0.00

7 0.29 0.15 0.49 0.02 0.42 0.81 0.54 0.38 0.00 0.00 0.25 0.74 0.46 0.51

8 0.13 0.13 0.21 0.01 0.20 0.47 0.07 0.12 0.00 0.00 0.05 0.49 0.88 0.00

9 0.01 0.01 0.05 0.00 0.06 0.17 0.00 0.03 0.12 0.00 0.00 0.19 0.17 0.00

10 0.01 0.00 0.04 0.00 0.04 0.12 0.00 0.02 0.87 0.00 0.00 0.12 0.09 0.00

11 0.09 0.10 0.16 0.01 0.16 0.39 0.04 0.09 0.00 0.00 0.03 0.42 0.68 0.00

12 0.13 0.15 0.20 0.01 0.20 0.47 0.07 0.12 0.00 0.00 0.05 0.45 0.85 0.00

13 0.01 0.00 0.12 0.30 0.17 0.09 0.00 0.05 0.00 0.12 0.03 0.16 0.00 0.00

14 0.02 0.00 0.25 0.13 0.38 0.19 0.01 0.11 0.00 0.01 0.12 0.39 0.00 0.00

15 0.13 0.05 0.28 0.01 0.28 0.59 0.16 0.19 0.00 0.00 0.10 0.67 0.82 0.00

16 0.08 0.02 0.79 0.04 0.94 0.56 0.19 0.60 0.00 0.00 0.81 0.89 0.02 0.01

17 0.14 0.06 0.33 0.01 0.33 0.66 0.24 0.24 0.00 0.00 0.13 0.74 0.68 0.01

18 0.01 0.00 0.29 0.08 0.50 0.25 0.01 0.15 0.00 0.01 0.19 0.57 0.00 0.00

19 0.03 0.00 0.82 0.01 0.66 0.91 0.73 0.85 0.00 0.00 0.63 0.88 0.16 0.04

20 0.09 0.02 0.73 0.05 0.88 0.52 0.15 0.53 0.00 0.00 0.72 0.84 0.01 0.00
Table 4
Hawkins’ T 2

H statistic-based probabilities calculated for simulated samples 1–20 for each of the 14 autoscaled PCA models. Entries greater than or equal to the exclusion
threshold of 0.01 are underlined.

Sample/RF A A & G B C D E & I F G H J K L M N

2 2 1 1 1 1 1 1 1 2 1 2 1 3

1 0.00 0.67 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

2 0.00 0.18 0.00 0.00 0.11 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

3 0.00 0.61 0.00 0.00 0.03 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

4 0.00 0.60 0.00 0.00 0.06 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

5 0.00 0.01 0.00 0.00 0.22 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00 0.00

6 0.00 0.00 0.00 0.00 0.02 0.02 0.00 0.00 0.00 0.00 0.00 0.03 0.17 0.00

7 0.00 0.00 0.00 0.00 0.20 0.00 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00
8 0.00 0.00 0.00 0.00 0.09 0.05 0.00 0.00 0.00 0.00 0.00 0.07 0.00 0.00
9 0.00 0.00 0.00 0.00 0.00 0.12 0.00 0.00 0.00 0.00 0.00 0.02 0.01 0.00

10 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01 0.00
11 0.00 0.00 0.00 0.00 0.12 0.07 0.00 0.00 0.00 0.00 0.00 0.08 0.00 0.00

12 0.00 0.00 0.00 0.00 0.17 0.02 0.00 0.00 0.00 0.00 0.00 0.10 0.00 0.00

13 0.00 0.00 0.00 0.00 0.70 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

14 0.00 0.00 0.00 0.00 0.54 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

15 0.00 0.00 0.00 0.00 0.26 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

16 0.00 0.00 0.00 0.01 0.29 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.01

17 0.00 0.00 0.00 0.00 0.27 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

18 0.00 0.00 0.00 0.00 0.68 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

19 0.00 0.00 0.00 0.00 0.65 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00

20 0.00 0.00 0.00 0.00 0.33 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00 0.00
• All or a subset of simulated samples 13 through 20 exceed the
exclusion threshold for (1) the Fukushima-Daiichi-3 model (1
of 8 samples), and (2) the Fukushima-Daini-2 model.

The group inclusion/exclusion results obtained by Hawkins’ T 2
H

statistic are inferior to those achieved by the Q statistic. Hawkins’
T 2
H statistic includes the true reactor of origination for only 13 of
the 20 simulated samples, but does successfully exclude a large
percentage of the reactor groups.

One of the challenges encountered in constructing the PCA
models was the limited number of samples available for some of
the reactors. As a case in point, only 6 samples are available for the
Cooper reactor, resulting in a relatively high level of uncertainty
in the calculated Cooper PCA model and associated control limits
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for the Q , Hotelling’s T 2, and Hawkins’ T 2
H statistics. Additionally,

fewer than 10 samples are available for the Calvert Cliffs No. 1, H.B.
Robinson Unit 2, Genkai-1, andMihama-3 reactors. In constructing
the PCA models, samples from related sets of reactors, such as
Genkai-1 and Mihama-3, were combined in an attempt to reduce
model uncertainty. However, superior group inclusion/exclusion
results would likely have been achieved if additional samples were
available to model the reactors.

A notable trend observed in the inspection of Tables 2–4 is
the consistent inclusion of the majority or all of the 20 simulated
samples in the Fukushima-Daini-2model. This trend is attributable
to the presence of three outliers among the set of Fukushima-
Daini-2 samples used for modeling (see Fig. 1). These outliers
effectively expand the Fukushima-Daini-2 PCA model, resulting
in the inclusion of many or all of the simulated samples in the
Fukushima-Daini-2 group. In order to avoid such issues, the ability
to remove outliers from a training set prior to model construction
is planned for an updated version of the DAE package.

In practice, it would be preferable to utilize a single index
in performing PCA group inclusion/exclusion for a questioned
sample as opposed to monitoring multiple indices such as the
Q statistic, Hotelling’s T 2 statistic, and Hawkins’ T 2

H statistic. In
the context of fault detection in the monitoring of industrial
processes, Yue and Qin proposed a combined index that integrates
information contained in both the Q statistic and Hotelling’s T 2

statistic [21]. Their motivation for combining the Q statistic and
Hotelling’s T 2 statistic into a single index is that these two indices
provide complementary information—for a questioned sample, the
Q statistic detects unusual variability outside the PCAmodel space,
while Hotelling’s T 2 statistic detects unusual variability within the
PCA model space. A combined index that integrates the Q statistic
and Hotelling’s T 2 statistic is planned for an updated version of the
DAE package.

5.2. KNN results

In performing KNN, the training set was constructed from
samples from the following individual or combined sets of
related reactors: (1) Calvert Cliffs No. 1/H.B. Robinson Unit 2,
(2) Cooper, (3) Fukushima-Daiichi-3, (4) Fukushima-Daini-2, (5)
Genkai-1/Mihama-3, (6) Gundremmingen, (7) JPDR, (8)Monticello,
(9) Obrigheim, (10) Takahama-3, (11) Trino Vercellese, and (12)
Tsuruga-1. These 12 individual or related sets of reactors formed
the groups used for KNN classification. The set of 5 isotopic
ratios used in KNN classification, namely 235U/238U, 236U/238U,
240Pu/239Pu, 241Pu/239Pu, and 242Pu/239Pu, was autoscaled. The k
value of 1 employed in the KNN classification of the 20 simulated
samples was selected by leave-one-out cross validation of the
training set, where it was found that a value of k = 1 maximized
the classification accuracy for the training set [15]. KNN group
inclusion/exclusion of the 20 simulated samples was performed
utilizing the goodness value criterion. Specifically, a simulated
sample was excluded from membership in its predicted group if
its goodness value exceeded the maximum goodness value for the
training samples that are members of that group.

Fig. 10 summarizes the group inclusion/exclusion results
obtained by KNN for the 20 simulated samples. In Fig. 10, a
goodness value is listed for a given simulated sample and reactor
group in the event that the simulated sample was classified by
KNN as a member of that group, and the goodness value for
the simulated sample was less than or equal to the maximum
goodness value for training samples that are members of that
group. An empty cell for a given simulated sample and reactor
group indicates that either the simulated samplewas not classified
by KNN as a member of that group, or the simulated sample was
excluded from membership in its predicted group as its goodness
value exceeded themaximum goodness value for training samples
that are members of that group. An inspection of Fig. 10 reveals
the following KNN group inclusion/exclusion results for the 20
simulated samples:
• Simulated samples 1 through 4 are classified as members of

the Calvert Cliffs No. 1/H.B. Robinson Unit 2 group. These
classifications are consistentwith the true reactor of origination
for simulated samples 1 through 4 of H.B. Robinson Unit 2.

• Simulated samples 5 through9 and12 are classified asmembers
of the Trino Vercellese group, while simulated samples 10 and
11 are classified as members of the Genkai-1/Mihama-3 group.
The true reactor of origination for simulated samples 5 through
12 is Trino Vercellese.

• Simulated samples 13, 14, 18, and 19 are classified as members
of the Fukushima-Daini-2 group, while simulated samples 15
through 17 and 20 are excluded from all of the known groups
based on the goodness value criterion. The true reactor of
origination for simulated samples 13 through 20 is Fukushima-
Daini-2.

In summary, 14 of the 20 simulated samples are correctly classified
by KNN to their true reactor of origination, 2 of the 20 simulated
samples are incorrectly classified to a reactor group, and 4 of
the 20 simulated samples are excluded from all of the known
reactor groups. The KNN group inclusion/exclusion results for
the simulated samples are impressive considering the overlap
between reactors in the variable space (see Fig. 1), the limited
number of training samples available for some reactors, and the
presence of outliers in the training set.

6. Conclusions and future work

The DAE software package is a powerful tool for systematic
nuclear forensic analyses. The capability for interfacing via a
variety of programming languages and the modular work flow
provides a platform for future development of advanced group
inclusion/exclusion methods.

The design of DAE yields an extensible software framework
that allows for the straightforward integration of new scientific
modules. The integration of these new modules involves a basic
four-step process that includes: (1) the schema design of the
database tables required to store all output information, (2) the
specification of existing database information required as input
to the new modules, (3) the design of the visual module layout
that presents the control parameters to the user for manipulation,
and (4) the incorporation of new mathematical routines required
for the transformation of input data into output data. The new
output data is stored within the internal database for use by other
downstream DAE network modules.

DAE modules do not interact directly with each other; rather
they interact indirectly via access to the common database of
stored information. This architectural feature allows for parallel
module development efforts by various contributors without
the need for constant coordination. The database schema itself
provides all necessary interface information. New modules can
selectively use only the existing database information required for
operation, and each developer can independently design the table
schemas for output from their new module. Once the new table
schemata are finalized and shared, other developers can design
modules to utilize the newly created data.

Several enhancements are planned for the DAE software
package, including:
• The incorporation of additional data preprocessing methods

such as range scaling [22]. Data preprocessing is employed
to transform the raw data (e.g., trace elements and isotopics)
to new units or scales to improve group inclusion/exclusion
performance.
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Fig. 10. Group inclusion/exclusion results obtained by KNN with goodness value criterion for 20 simulated samples.
• The integration of additional data visualization capabilities.
Data visualization involves plotting the raw or preprocessed
data to identify differences between groups of nuclearmaterials
and the similarity of questioned materials to known groups.

• The ability to remove outlier samples from a training set prior
to group inclusion/exclusion model construction.

• The incorporation of a combined index that integrates the
Q statistic and Hotelling’s T 2 statistic for PCA-based group
inclusion/exclusion.

• The incorporation of additional group inclusion/exclusion
methods such as one-class support vectormachines (SVM) [23].
In selecting new group inclusion/exclusion methods for incor-
poration in the DAE software package, emphasis will be placed
on methods that provide an estimate on the degree of certainty
of classification for a questioned material.

• The incorporation of group inclusion/exclusion performance
evaluation metrics, such as accuracy and precision, which will
enable the quantitative comparison of methods.

Acknowledgments

The authors acknowledge the late RichardMcKnight at Argonne
National Laboratory for generating the simulated samples used in
evaluating the group inclusion/exclusion methods.

The authors thank the U.S. Department of Homeland Secu-
rity/National Technical Nuclear Forensics Center for funding and
supporting this work.

This material is based upon work supported by the U.S.
Department of Homeland Security under Grant Award Number
2012-DN-130-NF0001-02. The views and conclusions contained
in this document are those of the authors and should not be
interpreted as representing the official policies, either expressed
or implied, of the U.S. Department of Homeland Security.

This material is based upon work supported in part by the
Department of Energy National Nuclear Security Administration
through theNuclear Science and Security Consortiumunder Award
Number DE-NA0000979.
Sandia National Laboratories is a multi-program laboratory
managed and operated by Sandia Corporation, a wholly owned
subsidiary of Lockheed Martin Corporation, for the U.S. Depart-
ment of Energy’s National Nuclear Security Administration under
contract DE-AC04-94AL85000.

References

[1] K. Moody, P. Grant, I. Hutcheon, Nuclear Forensic Analysis, CRC Press, 2005.
URL https://books.google.com/books?id=Q9mgDnWoPLYC.

[2] K. Mayer, M. Wallenius, I. Ray, Analyst 130 (2005) 433–441. http://dx.doi.org/
10.1039/B412922A.

[3] J. Borgardt, F. Wong, J. Nucl. Mater. Manage. XLII (2014) 4–11.
[4] G. Griffiths, E. Loi, D. Boardman, D. Hill, K.L. Smith, J. Nucl. Mater. Manage. XLII

(4) (2014) 12–23.
[5] J.E.S. Sarkis, I.C.A.C. Bordon, R.C.B. Pestana, R.C. Marin, J. Nucl. Mater. Manage.

XLII (4) (2014) 24–30.
[6] A. El-Jaby, R. Kosierb, F. Doucet, I. Dimayuga, G. Edwards, D. Barber, S. Corbett,

D. Wojtaszek, J. Nucl. Mater. Manage. XLII (4) (2014) 31–39.
[7] Y. Kimura, N. Shinohara, Y. Funatake, J. Nucl. Mater. Manage. XLII (4) (2014)

40–45.
[8] A.N. Nelwamondo, A.M. Bopape, J.H. Bohlolo, K.K. Nkuna, J. Nucl. Mater.

Manage. XLII (4) (2014) 46–54.
[9] A.J. Heydon, C.A. Cooper, P. Thompson, P.G. Turner, R. Gregg, K.W. Hesketh, A.E.

Jones, J.Y. Goulermas, J. Nucl. Mater. Manage. XLII (4) (2014) 55–64.
[10] É. Kovács-Széles, S. Szabó, T.C. Nguyen, J. Nucl. Mater. Manage. XLII (4) (2014)

65–69.
[11] A. Axelsson, H. Ramebäck, B. Sandström, J. Nucl. Mater. Manage. XLII (4) (2014)

70–75.
[12] M.Wallenius, Z. Varga, K. Mayer, J. Nucl. Mater. Manage. XLII (4) (2014) 76–82.
[13] SFCOMPO - Spent fuel isotopic composition database, 2015. URL http://www.

oecd-nea.org/sfcompo/.
[14] J.E. Jackson, A User’s Guide to Principal Components, Wiley-Interscience, New

York, NY, 2003.
[15] K.R. Beebe, R.J. Pell, M.B. Seasholtz, Chemometrics: A Practical Guide, John

Wiley & Sons, 1998.
[16] S.J. Qin, J. Chemometr. 17 (2003) 480–502.
[17] D.M. Hawkins, J. Amer. Statist. Assoc. 69 (346) (1974) 340–344.
[18] B.V. Dasarathy, IEEE Trans. Pattern Anal. Mach. Intell. 2 (1980) 67–71.
[19] Blender Online Community, Blender - a 3D modeling and rendering

package, Blender Foundation, Blender Institute, Amsterdam, 2015. URL
http://www.blender.org.

[20] Python Software Foundation, Wilmington, DE, sqlite3 — DB-API 2.0 interface
for SQLite databases, 2016. URL https://docs.python.org/2/library/sqlite3.
html.

[21] H.H. Yue, S.J. Qin, Ind. Eng. Chem. Res. 17 (8–9) (2003) 480–502.
[22] M.A. Sharaf, D.L. Illman, B.R. Kowalski, Chemometrics, Wiley-Interscience,

1986.
[23] S.S. Khan, M.G. Madden, Knowl. Eng. Rev. 29 (3) (2014) 345–374.

https://books.google.com/books?id=Q9mgDnWoPLYC
http://dx.doi.org/10.1039/B412922A
http://dx.doi.org/10.1039/B412922A
http://dx.doi.org/10.1039/B412922A
http://dx.doi.org/10.1039/B412922A
http://dx.doi.org/10.1039/B412922A
http://dx.doi.org/10.1039/B412922A
http://dx.doi.org/10.1039/B412922A
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref3
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref4
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref5
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref6
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref7
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref8
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref9
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref10
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref11
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref12
http://www.oecd-nea.org/sfcompo/
http://www.oecd-nea.org/sfcompo/
http://www.oecd-nea.org/sfcompo/
http://www.oecd-nea.org/sfcompo/
http://www.oecd-nea.org/sfcompo/
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref14
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref15
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref16
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref17
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref18
http://www.blender.org
https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/sqlite3.html
https://docs.python.org/2/library/sqlite3.html
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref21
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref22
http://refhub.elsevier.com/S0010-4655(16)30290-9/sbref23

	Dynamic analysis environment for nuclear forensic analyses
	Introduction
	Methodology
	Principal component analysis
	 k  nearest neighbors algorithm

	SFCOMPO database and simulated samples
	Dynamic analysis environment framework
	Data source node
	Augment data node
	Filter data node
	Merge data node
	Relate data node
	View data node
	Compose view node
	Date/time node
	Example DAE PCA analysis
	Example DAE KNN analysis

	Results and discussion
	PCA results
	KNN results

	Conclusions and future work
	Acknowledgments
	References


