
Computer Physics Communications 210 (2017) 54–59
Contents lists available at ScienceDirect

Computer Physics Communications

journal homepage: www.elsevier.com/locate/cpc

Adapting the serial Alpgen parton-interaction generator to simulate
LHC collisions on millions of parallel threads
J.T. Childers a,∗, T.D. Uram a, T.J. LeCompte a, M.E. Papka a, D.P. Benjamin b

a Argonne National Laboratory, Lemont, IL, USA
b Duke University, Durham, NC, USA

a r t i c l e i n f o

Article history:
Received 21 November 2015
Received in revised form
14 March 2016
Accepted 22 September 2016
Available online 29 September 2016

Keywords:
Supercomputer
HEP
Simulation
Parallel

a b s t r a c t

As the LHC moves to higher energies and luminosity, the demand for computing resources increases
accordingly andwill soon outpace the growth of theWorldwide LHC Computing Grid. Tomeet this greater
demand, event generation Monte Carlo was targeted for adaptation to run on Mira, the supercomputer
at the Argonne Leadership Computing Facility. Alpgen is a Monte Carlo event generation application that
is used by LHC experiments in the simulation of collisions that take place in the Large Hadron Collider.
This paper details the process by which Alpgen was adapted from a single-processor serial-application to
a large-scale parallel-application and the performance that was achieved.

© 2016 Published by Elsevier B.V.
1. Introduction

The US Department of Energy (DOE) continues to invest in sci-
entific computing, driving supercomputers to reach the exaFLOPS
scale by the early 2020s. High Energy Physics (HEP) experiments
have typically relied on internal resources for computing, with the
largest example of this being the Worldwide LHC Computing Grid
(WLCG or simply Grid) [1]. The Grid currently provides ∼150,000
concurrent computing cores to each of the experiments ATLAS and
CMS, which is equivalent to 1.3 billion core-hours per year. The av-
erage INCITE computing award in 2015 is over 100 million core-
hours per year on the massive parallel supercomputers hosted at
current DOE Leadership Computing Facilities. The largest award is
280 million core-hours. The new machines coming online in 2018
will be a factor of twenty larger. The HEP community is preparing
to use these new machines by demonstrating the ability to run on
current machines.

There are general rules for using supercomputers; avoid filesys-
tem access because it is slow, make use of the high speed cpu-to-
cpu connections because they are fast, and run-time memory is
limited so share it when possible. This article describes the meth-
ods used to follow these rules when running an HEP application
written for serial desktop CPUs and how the answers are not al-
ways obvious.

∗ Corresponding author.
E-mail address: jchilders@anl.gov (J.T. Childers).

http://dx.doi.org/10.1016/j.cpc.2016.09.013
0010-4655/© 2016 Published by Elsevier B.V.
Alpgen [2], a FORTRAN-based leading-order multi-parton gen-
erator for hadronic collisions, is used as an example case. The au-
thors optimize the simulation’s workflow to run on Mira, the fifth
fastest supercomputer in theworld, and describe theirmethods for
reaching scales of one million parallel threads in order to facilitate
future efforts in HEP.
Motivation. HEP experiments have traditionally constructed ded-
icated computing resources needed for simulating and analyzing
data produced at accelerator facilities like Fermilab and CERN.
However, the computing needs of the LHC experiments at CERN are
expected to outpace the resources of the Grid during Run-II. Some
of this growth is driven by computationally intensive calculations
such as rare processes and matrix elements calculated at next-to-
leading order, which are optimal tasks for a supercomputer. Every
computing cycle offloaded to supercomputers frees a Grid cycle for
other work. Supercomputers offer large, experiment-independent
computing resources that should become an integral part of the
HEP computing strategy.

The Grid is composed of Xeon-class servers andwas designed in
the era of single-core CPUs with ever-increasing clock speeds. This
drove the idea of high throughput computing where performance
was measured in the number of serial jobs the system could
execute simultaneously. In five years, third-generation Xeon Phi
chips with core counts near one hundred will likely replace 16-
core Xeon chips as the server-class, commodity CPU. The Grid
and millions of lines of experimental code are slowly transitioning
to this many-core, parallel-processing model of next generation
processors. Existing supercomputers already use this model. Using

http://dx.doi.org/10.1016/j.cpc.2016.09.013
http://www.elsevier.com/locate/cpc
http://www.elsevier.com/locate/cpc
http://crossmark.crossref.org/dialog/?doi=10.1016/j.cpc.2016.09.013&domain=pdf
mailto:jchilders@anl.gov
http://dx.doi.org/10.1016/j.cpc.2016.09.013


J.T. Childers et al. / Computer Physics Communications 210 (2017) 54–59 55
them drives applications toward smaller memory footprints and
efficient parallel algorithms resulting in code that will easily port
to future parallel environments on the Grid.
Argonne Leadership Computing Facility. The Leadership Computing
Facility at Argonne National Laboratory (ALCF) hosts Mira, the fifth
fastest supercomputer in the world. HEP researchers at Argonne
participate in the ATLAS experiment at CERN. This study was
performed to assess the usefulness of supercomputers for LHC
experiments and the challenges in making code that effectively
uses the resources.

Mira is composed of 786,432 1600 MHz PowerPC A2 cores
using the BlueGene/Q architecture, with a peak capability of ten
petaFLOPS. Each computing node has 16-cores and 16 GB of RAM.
Each core has four hardware threads. There are no local disks on
the computing nodes. Dedicated file-I/O nodes mediate access to
the remote GPFS filesystem with one file-I/O node handling file-
I/O requests from 128 computing nodes with a peak bandwidth of
1.25 GB/s. A high-speed 5D Torus network provides 2 GB/s chip-to-
chip communication.

Vesta is a smaller testing and debugging system with 2048
nodes, each with 16 PowerPC A2 cores and 16 GB RAM. In contrast
with Mira’s compute node-I/O ratio of 128, the I/O infrastructure
of Vesta is configured such that 32 computing nodes share a single
I/O node.
Alpgen. Alpgen is a FORTRAN-based simulation of multi-parton
interactions in hadronic collisions. Its operation is summarized
below, but more details can be found in [2]. Alpgen is chosen as it
is used in roughly half of the ATLAS experimental results published
thus far.

The Alpgen code execution is divided into three stages:
initialization, event generation, and finalization. The initialization
stage accepts user input to configure the physics processes being
simulated, determine which simulation step (defined in next
paragraph) is being executed, and other software characteristics,
e.g. input/output file names. If no user input is provided defaults
do exist, but in this work input configurations are always provided.
The event generation is a loop in which each iteration simulates
onemulti-parton interaction (fromhere on referred to as an event).
The number of events generated is defined by the user input.

The simulation is run as three steps: grid generation, weighted
event generation, and unweighting. Each step is an independent
execution of the Alpgen binary where a user input parameter
(imode) defines which step is being run in the current execution.
Each step produces output files,with the following step using those
output files as inputs. Algorithm-wise the grid generation and
the weighted event generation do the same thing, i.e. generating
weighted events within the allowable phase space. During grid
generation, events are generated and their weights are recorded
in a phase space map, or grid. Two files, referred to later as grid
files, are produced in this step that contain the phase space grid.
All Alpgen files are stored as plain text.

The weighted event generation loads the phase space map into
memory, generates weighted events, updates the grids with the
new event’s weight, and records the event in an output file. The
grid is used toweight the selection of phase spacewhile generating
events. This reduces the number of events generated in regions
more likely to be discarded in the unweighting step. To save disk
space, the weighted event is recorded as the two random number
seeds needed to regenerate the parton momentum four-vectors
and the event’s weight. This is 57 bytes per event compared to the
551 bytes per event needed to store the full event details in the case
ofW + 5jets. A parameter file is also produced which summarizes
the cross-section of the process simulated with uncertainty, the
number of weighted events generated, a copy of the phase space
grid, and a copy of the input configuration. The parameter file
ranges in size from 2 KB to 20 KB for W + 0jets to W + 5jets,
respectively. In practice, the grid and weighted event generation
steps can be performed in a single execution of Alpgen, but for the
purposes of running on a supercomputer they were kept separate.

The unweighting step loops over the event weights (weights
can be 0 ≤ w ≤ 1) and regenerates the momentum four-vectors
for events satisfying the condition w ≥ r · Wmax (Wmax is the max
weight in the sample, r is a random number where 0 ≤ r ≤ 1).
Unweighted events have a weight of one by definition. The un-
weighted events are stored as a list of partons using the parti-
cle identification numbers specified in [3] and their momentum
four-vectors. Each event starts with a header followed by the two
colliding partons and then the produced partons. In processes with
vector bosons in the final state, their decay products can be speci-
fied in the input configuration and the momentum four-vectors of
the products are included in the unweighted output. Events sizes
range from 231 bytes to 551 bytes for W + 0jets to W + 5jets,
respectively. There is also a parameter file written containing a
summary of the configuration used for the production, the cross-
section, luminosity, and the number of events produced. This file
is typically 2 KB.

LHC experiments run Alpgen simulations on the Grid by
consecutively running the three steps. Each step represents a single
execution of the Alpgen code.

2. Adapting Alpgen for a supercomputer

The focus of this article is simulatingW±/Z vector-bosons in as-
sociation with 4 or more partons (or jets) because these processes
are more computationally demanding. For instance at W + 5jets,
the number of weighted events generated to unweighted events
recorded is of the order 10,000 : 1, compared to 10 : 1 atW+0jets.
Thus, there ismore computation per unweighted event recorded to
disk making it better for supercomputers, which are optimized for
computation not file operation.

The weighted event generation is the first target for paralleliza-
tion in Alpgen-v1. Next, Alpgen-v2 uses a script to run as a single job
the weighted event generation, unweighting step, and adds an ag-
gregation step. Finally, Alpgen-v3 moves all the intermediate files
from the filesystem to the compute-node memory. These devel-
opments attempt to minimize the job run-time and improve per-
formance at large scale, while not making changes to the physics
algorithms. Therefore, changes focus on the workflow details and
filesystem usage. The ideal outcome for optimization is a code in
which run-time is independent of the number of parallel threads;
achieving this in light of particular application behaviors and in-
frastructure is challenging.

In all three versions, the grid generation is run serially on a
local cluster before the weighted event generation to ensure each
parallel Alpgen begins with the same input. The local copy of the
input grid is updated with each newly generated weighted event
so each parallel Alpgen will slowly diverge from their common
starting point. To mitigate this divergence, the initial input grids
are produced with a cross-sectional uncertainty of <1%.

Preprocessor directives are used to optionally include the
changes described below during compilation of Alpgen.
Alpgen-v1. The first parallel version of Alpgen, referred to asAlpgen-
v1, runs only the weighted event generation step in parallel. The
Mira queue system requires a minimum job size of 512 compute
nodes and charges for all 16 cores per node. This sets the goal
of Alpgen-v1 to be simply running Alpgen on 512 nodes with 16
threads per node (written as 512 × 16 henceforth) on Mira with
each thread generating different events. The three primary changes
to Alpgen are summarized below that achieve this goal. First,
an API is introduced to run parallel instances of Alpgen. Second,
the random number seeds of each parallel instance are updated
to generate different events. Third, each parallel instance makes



56 J.T. Childers et al. / Computer Physics Communications 210 (2017) 54–59
(a) Alpgen-v1. (b) Alpgen-v2. (c) Alpgen-v3.

Fig. 1. Weak scaling of Alpgen versions for the weighted event generation, unweighting, and aggregation phases. These tests were run with 32 ranks per node to simplify
the comparison across versions.
a change working directory call to move to different directories
avoiding each instance from overwriting files with the same name.

The Message Passing Interface (MPI) [4] is used to run codes
in parallel. MPI handles the creation of parallel processes and
provides an API for implementing inter-process communication
within an application. MPI applications are run by prefacing the
binary on the command line with mpirun -n <N> where N
is the number of parallel instances to run. In fact, non-MPI ap-
plications can be run using mpirun and N instances will be run
concurrently. MPI implementations can be as simple as multiple
concurrent, independent processes or more complex with highly
interdependent concurrent processes, inter-process communica-
tion, and shared memory structures. Alpgen-v1 is of the simple va-
riety.

To avoid all Alpgen instances generating identical events, the
random number seeds that are read in from the user input file
must be different. MPI assigns each parallel process a rank num-
ber, nrank, where 0 ≤ nrank < Nranks with Nranks being the total
number of ranks. This rank number is retrieved at run-time and
used to change the random number seeds of each rank. To do this,
three MPI functions calls were added to the initialization stage of
Alpgen. MPI must be initialized by calling MPI_INIT in order to
use any other MPI functions. Then, the rank number is retrieved
with MPI_COMM_RANK. No additionalMPI functionality is required
in Alpgen-v1 so MPI_FINALIZE is immediately called (again re-
quired by all MPI applications). No more MPI functions can be
called after finalization or an error will occur and execution will
cease. Twonumbers,iseed1 andiseed2, are provided in the user
input file to seed the random number generator at the start of the
weighted event generation. The rank number is used to increment
iseed2.

Prior to running Alpgen a directory structure is created such
that each parallel instance has a unique directory in which to write
output files. The directory names range from0 toNrank−1with five
characters each (padded with zeros, so rank 0 writes to ‘00000’).
The Alpgen processes start in the same working directory and
change to these rank-wise working directories at run-time.

To summarize, this is an example of running Alpgen-v1 end-to-
end.

1. The serial grid generation is run on a standard cluster.
2. The two grid files and the user input files are copied to the

supercomputer.
3. Nranks directories are created into which the grid files and a PDF

file are copied.
4. Alpgen-v1 is submitted to the supercomputer where it gener-

ates different events in each directory.
5. Upon completion, the weighted event files and output parame-

ter files are aggregated into a single file.
6. These two files are copied back to a standard cluster where the

unweighting is run.
This MPI implementation and workflow enables Alpgen-v1 to run
at the smallest job size allowed on Mira, 512 nodes.

Weak scaling runs ofAlpgen-v1were conducted from32 to 1024
nodes on Vesta (a small test system for Mira), with 32 ranks per
node. Alpgen was configured to generate 100,000 weighted events
per rank. It is not surprising that Alpgen-v1 scales poorly, as seen
in Fig. 1(a). This first naive attempt to run on a supercomputer
included minimal code changes and did not address the common
guidelines for using these machines, i.e. file I/O is slow so avoid it
and reduce memory usage to increase parallel process count.

As described in the Introduction, Mira file-I/O nodes have a
bandwidth of 1.25 GB/s per 128 compute-nodes. At the start of
weighted event generation, each rank of Alpgen-v1 reads one input
configuration file, one Parton Distribution Functions (PDF) file, and
two grid generation files, which is about 15MBper rank. At the end
of generation, each rank writes an updated grid file, a parameter
file, and an event file,which are of the order 10GBper file-I/O node.
This is 12 GB total per file-I/O node, which is well within the file I/O
node’s capabilities. Based on this, one might naively think the file
I/O is not a problem, whichwould be correct if one rank per file-I/O
node was writing this data into single files. However, in this case,
every rank is reading 4 files and writing 3 files. Like other parallel
filesystems, Mira’s GPFS filesystem scales poorly in the face of file-
per-rank I/O.

Another standard rule in using supercomputers is to limit
standard output (STDOUT). Each rank in Alpgen-v1 writes data to
STDOUT, which is collected byMPI and aggregated at the headnode
for the job. This flood of small, per-rank output messages stresses
the communication infrastructure andprolongs the execution time
while messages are collected and flushed to the filesystem.

The creation and removal of per-rank directories, which is
needed to avoid file-I/O collisions between ranks in Alpgen-v1,
contributes significantly to the overall end-to-end run-time of
the weighted event generation step. Relying on the filesystem to
isolate threads causes the job run-time to doublewhen the number
of threads is doubled, thereby limiting job sizes.

Finally, Alpgen-v1 is constrained by itsmemory footprint to use
only 32 of the possible 64 compute threads per node on Mira. 64
instances of Alpgen-v1, with a memory footprint of ≈200 MB each
would overwhelm the 16GB ofmemory available on each compute
node (the operating system consumes 2 GB). A small reduction
in the memory footprint, therefore, would allow a doubling the
number of parallel processes.
Alpgen-v2. Alpgen-v2 improves the file access strategy using MPI,
silences the per-rank STDOUT, combines the weighted event
generation and unweighting – and a new file aggregation phase
– into a single Mira job script, and reduces the executable memory
footprint to support 64 Alpgen ranks per Mira node.

Filesystem access is reduced by restricting the reading of
common files (user input, grid inputs) to one rank. This leverages
the 2 GB/s node-to-node network over to the 1.25 GB/s file-I/O



J.T. Childers et al. / Computer Physics Communications 210 (2017) 54–59 57
nodes shared by 128 compute nodes. Unnecessary output files are
disabled that relate to data analysis and run-time status. Output
file names are updated to contain the rank number making unique
run-time directories no longer necessary eliminating the per-rank
overhead in pre-processing and greatly reducing the overhead in
post-processing.

The Mira system supports running jobs using scripts that run
sub-jobs. The weighted event generation and unweighting phases
are combined using such a script to reduce the output data size
which in turn reduces the post-processing time by at least a
factor of two and grows non-linearly as the number of parallel
instances increases. A single thread of Alpgen-v2 writes two files
to the filesystem, a weighted event file and a parameter file during
weighted event generation. The unweighting step reads these files
from the filesystem, and the unweighted events are written to the
filesystem. Coupling these steps reduces the output data size: in
the case of W + 5jets, though the unweighted events are larger
than weighted events by a factor of 10, the unweighting reduces
the number of events by a factor of 10,000 leading to a reduction
in data size by a factor of 1000.

After unweighting is completed, Alpgen stores details of the
cross-section and total events produced in a parameter file. Alpgen-
v2 aggregates this information using MPI reduction operations,
such as MPI_SUM, to make a single global output parameter file
avoiding another per-rank file output.

An aggregation step is included in the combined script. This
runs a C-based MPI application to read the rank-wise unweighted
event files and aggregate the data into a single output file using
collective MPI I/O functions such as MPI_WRITE_AT_ALL. This is
done in post-processing for Alpgen-v1. Aggregating files with MPI
tools reduces the time needed for this step by a factor of 10 for a
512×32 size job. Aggregating the output also reduces the transfer
time from Mira to the Argo cluster when the job has finished,
because data transfer protocols, such as GridFTP in this use case,
are slower when handling many small files.

STDOUT is limited to the nrank == 0 rank to diminish the
overhead of collecting many small messages over MPI, while
retaining some output for debugging and logging purposes. Since
the output is largely ignored with increasing scale, it can be
disabled without impacting application diagnostics.

Alpgen-v2 reduces the memory footprint to achieve greater
node-level parallelism. The original version of Alpgen has a run-
time memory occupancy of 203 MB. Alpgen allocates memory in
the data section of the executable for the eight possible PDFs,
whereas only one is used during execution. Alpgen-v2 is altered to
include only the single PDF specified by the input configuration,
reducing the memory footprint to 10 MB and allowing for a higher
thread count per node. In this configuration, Alpgen is able to run
with 64 MPI ranks per node, whereas previously it was memory-
constrained to running with only 32 ranks per node.

Weighted event generation in Alpgen-v2 exhibits much better
scaling, as shown in Fig. 1(b). The figure shows the unweighting
and aggregation steps perform well up to 512 nodes, with an
increase in execution time at 1024 nodes. The limiting factor in
weighted event generation is the writing of one file per rank to the
filesystem, which is addressed in Alpgen-v3.
Alpgen-v3. Alpgen-v3 improves file access by writing intermediate
files to the compute-node persistent memory [5] (i.e. RAM-disk)
on Blue Gene Q systems. The intermediate files, i.e. weighted event
data and parameter files and rank-wise unweighted data files, are
stored in the RAM of each compute node. The aggregation step
is then used to read the rank-wise unweighted data files from
the RAM-disk, and output a single data file to the filesystem. This
strategy leverages the many-fold faster compute node memory in
place of the filesystem, eliminating round-trip write/read cycles
to the filesystem and avoiding the problem of many small file
Fig. 2. Run-times for each Alpgen version for different node and thread per node
configurations of Mira jobs. Presubmit run-time includes any file placement or
directory creation needed prior to running the Mira job. Postsubmit run-time
includes any file aggregation and file or directory cleanup after running the Mira
job. The unweighting run-time represents the time taken to run the unweighting
task on the weighted events, on the post-processing cluster.

accesses. In the cases of W + 5jets, W + 4jets, and W + 3jets, the
average rank produces 188 KB, 1.2 MB, and 3.0 MB of temporary
data, respectively, when producing one million weighted events.

Weighted event generation, unweighting, and aggregation all
benefit from storing intermediate data files in persistent memory
as opposed to the filesystem. Fig. 1(c) shows that the execution
time for all three phases is nearly flat up to 1024 nodes.
End-to-end workflow run-time analysis. The three versions of
Alpgen described above were tested with varying numbers of
nodes and threads per node to measure the impact on run-time.
The combinations 512×16, 512×32, 512×64, 1024×16, 1024×32,
and 1024 × 64 are shown in Fig. 2, where the different Alpgen
versions are represented as v1, v2, and v3.Alpgen-v1was not able to
runwith 64 ranks per node because itsmemory footprint exceeded
the available systemmemory at this size. These Alpgen tasks were
Z+2jetswith each thread producing 350,000weighted events. The
task run-time is divided into these steps:

• The Mira run-time represents the actual job run-time on Mira
and is the only step running parallel processes.

• The presubmit run-time represents the time needed to prepare
to run on Mira. This only exists for Alpgen-v1 as it required
building the per-rank directory structure described above.

• The postsubmit run-time represents the time needed to clean
up after a run. This only exists for Alpgen-v1 and Alpgen-v2.
In the former case, this accounts for aggregating the weighted
event generation files and removing the directory structure.
In the later case, this accounts for the removal of all the
intermediate files which do not need to be kept and are stored
in the RAM-disk in Alpgen-v3.

• The unweighting run-time accounts for the time to unweight
the weighted events produced in the Mira job for Alpgen-v1
only. Alpgen-v2 and Alpgen-v3 include the unweighting step in
the Mira job.

The run-time of Alpgen-v1 grows linearly with job size, as can
be seen by comparing runs with increasing number of ranks; for
example, 512 × 32 vs 1024 × 32. The primary reason for this poor
weak scaling behavior lies in the time for the serial execution of
presubmit, postsubmit, and unweighting steps to be performed on
the Mira login nodes or the local cluster.

Considering overall runtime, Alpgen-v2 exhibits more than
>6× speedup over Alpgen-v1, primarily due to the unweighting



58 J.T. Childers et al. / Computer Physics Communications 210 (2017) 54–59
Fig. 3. (left) Normalized performance of Alpgen-v3 as a function of the number of ranks running on each compute node. The curve is shown for jobs with a varying total
number of compute nodes. (right) Normalized performance of Alpgen-v3 jobs as a function of the total number of compute nodes. The curves correspond to different number
of Alpgen ranks running on each compute node. All jobs areW + 5jets running 450,000 weighted events per rank.
step being run in parallel after being combined with the weighted
event generation step onMira, in which case the unweighting time
has shrunk to be no longer evident on the chart. The presubmit
time has similarly vanished from the graph. Postsubmit time
remains and increases correspondingly with the number of ranks.

The run-time of Alpgen-v3 consists entirely of the time for the
weighted event generation, unweighting, and aggregation to run
on Mira, for an overall speedup of more than 20× than Alpgen-v1.

3. Parallel scaling performance

The performance of Alpgen onMira can be characterized by the
run-time of identically configured jobs with differing parallel size.
Computing time on Mira is charged per core-hour; therefore, the
performance metric will be defined as the number of unweighted
events, Nevt , per Mira core-hour, C:

P =
Nevt

C
=

Nevt

tNnodeNcore
. (1)

t is the job run-time in hours, Nnode is the number of nodes in the
job, and Ncore is the number of cores per node which is always 16
for Mira. Increasing P indicates better efficiency.

The performance is driven by both the total number of nodes
and the number of threads per node. Using the total number of
threads (Ncore ×Nnode) is ambiguous because, for example, a 512×

32 job and a 1024 × 16 job contain the same total number of
threads. However, the performance of these two configurations
may vary. The thread count per CPU-core is higher in the 512× 32
job resulting in a higher CPU-load that can increase run-time. If
the job is file-I/O intensive, recalling that 128 worker nodes share
a single file-I/O node, the 512×32 job will generate more network
traffic through the file-I/Onode,which can alsomake job run-times
longer.

Fig. 3 shows the performance of Alpgen-v3 as a function of
threads per node and number of compute nodes. These jobs
represent the performance for generatingW+5jetswith each rank
generating 450,000 weighted events. The 512 × 16 configuration
is used as a reference; therefore, all points are normalized to the
performance of this configuration, P/P512×16.

Having made no algorithmic changes to Alpgen, the perfor-
mance achieved at large parallel scales is impressive. The data
shows the best performance at 512 × 64 which is 2.2× more ef-
ficient than the baseline, with slowly decreasing performance as
the number of nodes increases. The largest job, 16,384 × 64 or 1
million threads, gives 2.0× better performance than the baseline,
down 11% from the best. If core-hour cost is the driving factor this
data motivates the use of jobs with fewer nodes. However, for LHC
event generation, throughput ismore important and current queu-
ing policies on Mira give larger jobs higher priority. Therefore, the
Fig. 4. The fraction of the total run-time taken by the weighted event generation,
unweighting, and aggregation steps at 64 threads per Mira node of Alpgen-v3 for
different numbers of nodes. All jobs areW+5jets running 450,000weighted events
per rank.

authors typically run in 16,384 × 64 configurations to achieve a
higher throughput at the expense of a small decline in efficiency.
The job run-time is another consideration for generating large sets
of data; for instance, a 1 fb−1 W + 5jets sample runs for 30 min
at 16,384 × 64 as compared to more than 13 h at 512 × 64. The
maximum job duration on Mira is longer for larger jobs: 12 h for
512-node jobs, but up to 24 h for jobs with 8192 nodes or more.
Jobs with 16,383 nodes constitute, therefore, a fair compromise
that maximizes time-to-solution at the expense of an acceptable
loss of efficiency.

The performance begins to decline beyond 8192 nodes. Fig. 4
shows how the fraction of run-time changes with increasing
job size at 64 threads per node. The aggregation is the limiting
factor because Alpgen-v3 combines all unweighted event files to
a single file. To do this, MPI communicates the per-rank data to
a single rank to be written to the filesystem, limiting throughput.
This could be optimized by aggregating to some subset of files,
e.g. writing one file per some number of ranks; in the case of
Mira, this approach would ideally target the ratio of compute
nodes to I/O nodes of 128:1. The increase in the aggregation run-
time as the job size increases is responsible for the performance
difference between the 512×64 and 16,384×64 configurations in
Fig. 3.

4. Conclusion

Event generation is essential for LHC experimental studies.
With Run II currently underway, and the high-luminosity upgrade
planned for Run III, an order of magnitude increase in the required
computing resources is expected, outpacing the expected growth
in Grid capacity. Meanwhile, the trend in leadership computing
is toward orders of magnitude larger systems in the coming



J.T. Childers et al. / Computer Physics Communications 210 (2017) 54–59 59
decade. It is strategic to adapt codes to run on these systems to
deliver increased capacity today and to prepare for future systems.
This work describes adapting the serial application Alpgen to
run as a large-scale parallel application on Mira. By introducing
MPI to improve data movement, combining multiple phases of
application execution in a single batch job, and utilizing compute-
node RAM disks to store temporary data, Alpgen scaled to over a
million threads.

Acknowledgments

This work is supported by the U.S. Department of Energy,
Office of Science, Basic Energy Sciences, under contract DE-
AC02-06CH11357. This research used resources of the Argonne
Leadership Computing Facility, which is a DOE Office of Science
User Facility supported under Contract DE-AC02-06CH11357.
An award of computer time was provided by the DOE Office
of Advanced Scientific Computing Research (ASCR) Leadership
Computing Challenge (ALCC) program.

References

[1] C. Eck, J. Knobloch, L. Robertson, I. Bird, K. Bos, N. Brook, D. Düllmann, I. Fisk,
D. Foster, B. Gibbard, C. Grandi, F. Grey, J. Harvey, A. Heiss, F. Hemmer, S. Jarp,
R. Jones, D. Kelsey, M. Lamanna, H. Marten, P. Mato-Vila, F. Ould-Saada, B.
Panzer-Steindel, L. Perini, Y. Schutz, U. Schwickerath, J. Shiers, T. Wenaus, LHC
computing Grid: Technical Design Report. Version 1.06 (20 Jun 2005), Technical
Design Report LCG, CERN, Geneva, 2005.
URL https://cds.cern.ch/record/840543.

[2] M.L. Mangano, F. Piccinini, A.D. Polosa, M.Moretti, R. Pittau, J. High Energy Phys.
2003 (07) (2003) 001. URL http://stacks.iop.org/1126-6708/2003/i=07/a=001.

[3] K. Olive, P.D. Group, Chin. Phys. C 38 (9) (2014) 090001.
URL http://stacks.iop.org/1674-1137/38/i=9/a=090001.

[4] MPI: A Message-Passing Interface Standard: Version 3.0. URL http://www.mpi-
forum.org/docs/mpi-3.0/mpi30-report.pdf.

[5] IBM System Blue Gene Solution Blue Gene/Q Application Development.
URL http://www.redbooks.ibm.com/redbooks/pdfs/sg247948.pdf.

https://cds.cern.ch/record/840543
http://stacks.iop.org/1126-6708/2003/i=07/a=001
http://stacks.iop.org/1674-1137/38/i=9/a=090001
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.mpi-forum.org/docs/mpi-3.0/mpi30-report.pdf
http://www.redbooks.ibm.com/redbooks/pdfs/sg247948.pdf

	Adapting the serial Alpgen parton-interaction generator to simulate LHC collisions on millions of parallel threads
	Introduction
	Adapting Alpgen for a supercomputer
	Parallel scaling performance
	Conclusion
	Acknowledgments
	References


