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a b s t r a c t

Due to the Lagrangian nature of SPH, treating inlet/outlet boundaries (that are intrinsically Eulerian)
is a challenging issue. An extension to the Unified Semi-Analytical boundary conditions is presented
to deal with unsteady open boundaries in confined and free-surface flows. The presented method uses
Riemann invariants to calculate flow properties near the open boundaries, thus allowing the possibility
to treat complex shapes. Furthermore, details are presented for a parallel implementation of this method,
including particle creation and deletion, updating properties of vertices and segments, and additional
constraints on the time step. Simple validation cases are then displayed to illustrate the performance of
the proposed method as well as the ability to deal with complex problems such as generation of water
waves and free outlets.

© 2016 Elsevier B.V. All rights reserved.
1. Introduction

The intrinsic computational cost of the meshless numerical
method Smoothed Particle Hydrodynamics (SPH) makes simula-
tions where only part of a larger problem domain is treated a natu-
ral extension of the technique. More generally, open boundaries
are required in many fluid mechanics simulations. For this kind
of simulations, inlet/outlet conditions need to be developed. Effi-
cient inlet/outlet boundary treatment is also required when solv-
ing coupled problems, especially when strong coupling algorithms
are used, since the fields near the open boundaries are shared by
the coupled models, and perturbations near the shared boundary
can lead to instabilities [1].

The simplest way to treat inlet/outlet in SPH is to use a buffer
layer, where the values of the fields at the boundary are imposed
on several layers of particles (‘‘buffer particles’’) that complete the
kernel support of free particles close to the open boundary [2–4].
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In the inlet case, when entering the fluid domain a buffer
particle is marked as fluid particle and is then free to move. This
sudden modification can generate spurious shocks. Similarly, a
fluid particle leaving the fluid domain through an outlet is first
marked as a buffer particle, and some of its physical quantities
are suddenly prescribed, generating shocks. In the framework of
Weakly Compressible SPH (WCSPH), using Riemann solvers can
partially solve this issue [5,6], but modelling a complex boundary
where the flow can enter and/or leave the domain remains a
difficult issue.

A slightly more complicated approach would be to use mirror
particles at open boundaries. This work is just starting and has
been successfully applied to Dirichlet pressure boundaries by Kunz
et al. [7].

The Unified Semi-Analytical strategy proposed by Ferrand
et al. [8] has shown promising results to treat both Dirichlet and
Neumann conditions for wall boundary treatment in SPH (see also
Leroy et al. [9]). In this approach, the boundaries are discretized
using boundary elements hereafter referred to as ‘segments’,
as well as ‘vertex’ particles at their intersections (see Fig. 1).
This treatment of the boundaries will be extended here to open
boundaries. For this purpose, themain novelties are the following:
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Fig. 1. Space discretization. Vertex particles are shown in green and segments in
orange. (For interpretation of the references to colour in this figure legend, the
reader is referred to the web version of this article.)

• Two additional terms in the SPH continuity equation will be
introduced, naturally derived from the Unified Semi-Analytical
approach;

• Themasses of vertex particles evolve over time according to the
desired ingoing/outgoingmass flux at the connected segments;

• The vertex particles are used to create or delete fluid particles
which are free to move according to the SPH momentum
equation;

• The fields at the open boundaries are specified from the
Riemann invariants of the Euler equations.

All these changes allow the formulation to treat particles
entering and exiting the domainwithout perturbations of the fields
for both confined and free-surface flows.

The outline of the paper is as follows: first a short description
of the Unified Semi-Analytical boundary conditions for walls as
proposed in Ferrand et al. [8] is given in Section 2. These wall
conditions will be extended to inlets and outlets (Section 3).
It will be followed by a method prescribing the fields of
the ingoing/outgoing particles from Riemann invariants. These
developments will the be tested in Section 4, where the ability of
the present method to treat wall-bounded and free-surface flows
with complex open boundaries will be tested.

The work presented herein will use only the WCSPH approach
(for more details about this method, see Monaghan [10]).
Developing similar open boundaries in an Incompressible SPH
formulation is possible [11], however the equations in this case
are elliptic, which will change the treatment of fields at the
open boundaries. This article will focus on treating the hyperbolic
equations of the WCSPH approach, and the treatment to impose
compatible pressure and velocity fields on the open boundaries.
Treating the mass fluxes is equivalent for both WCSPH and ISPH
approaches.

Finally, this approach will be restricted to 2-D one-fluid flows.

2. Weakly compressible SPH with semi-analytical boundary
conditions

2.1. Space discretization

As illustrated in Fig. 1, the weakly compressible fluid domain
Ω is discretized by a set of SPH fluid particles F denoted by the
subscripts (.)a and (.)b, while the boundaries ∂Ω are discretized
by a set of vertex particles V denoted by (.)v and connected to
boundary segments S denoted by (.)s. Let P denote the particle
set that is the union of the sets F and V . Each element (particle or
segment) stores information such as mass ma, position centre ra,
particle velocity va (i.e. the Lagrangian derivative of the position),
fluid velocity ua (i.e. the velocity field at position ra), density ρa,
dynamic viscosity µa ≡ νρa, pressure pa and volume Va = ma/ρa.

It is important to underline that two sets of velocities are
needed here, since the vertex particles and boundary segments
at open boundaries are fixed in space but carry an information
on the fluid velocity, namely uv and us. In other words, we have
ua = va except for vertex particles and segments located onto
the open boundaries. On the other hand, this equality holds for
wall segments and vertex particles, thanks to the no-slip condition.
Furthermore, in our model all particle masses ma are constant in
time,with the exception of the vertex particles of open boundaries,
as detailed later.

Let ρ0 be the reference density of the considered fluid. In the
Weakly Compressible SPH approach used herein, the pressure field
is deduced from the density field using Tait’s equation of state [12],
given as:

pa =
ρ0c20
ξ


ρa

ρ0

ξ
− 1


, (1)

where c0 is the numerical speed of sound and ξ is taken to 7 for
water.

The SPH interpolation is based on aweighted interpolation from
a kernel function w, generally compactly supported. Here we use
the Wendland kernel of order 5 [13]. In our notation, Ωa refers to
the support of the kernel function centred on ra. The subscripts
(.)ab generally denotes the difference of a quantity between the
particles a and b (unless stated otherwise). For instance uab ≡

ua −ub and rab ≡ ra −rb. Some exceptions aremade, including the
following notations: wab ≡ w (rab) and ∇wab ≡ ∇aw (rab). The
symbol ∇a denotes the gradient with respect to the position ra.

2.2. Boundary renormalization

Following the work of several authors, in particular Ku-
lasegaram et al. [14] and Ferrand et al. [8], an additional field de-
noted by γa is used to include boundary terms. This field measures
the part of the kernel support which is inside the computational
domain and is defined as:

γa ≡


Ωa∩Ω

w (ra − r) dr. (2)

The field γa is computed from a dynamic governing equation
(see Section 2.5). The discrete SPH operators presented in the next
section also require the computation of ∇γa, which is performed
by a decomposition onto the boundary segments. Each segment
contribution ∇γas is defined as:

∇γas ≡


s
w (r) dS


ns, (3)

wherens is the inwardunit normal to the boundary segment s. Now
∇γa is written as:

∇γa =


s∈ S

∇γas. (4)

This gradient can be calculated analytically, see Ferrand
et al. [8].

2.3. Space differential corrected operators

In the present section, space discretized differential operators
defined by Ferrand et al. [8] will be used. These include Gγ ,+a {Ab}

which is a boundary-corrected gradient of the discrete scalar field
{Ab}, D

γ ,−
a {Ab} which is a boundary-corrected divergence of the
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discrete vector field {Ab}, and Lγa {Bb, Ab} which is a boundary-
corrected Laplacian of the discrete scalar (or vector) field {Ab}with
discrete diffusion field {Bb}. These operators are defined by the
following equations:

Gγ ,+a {Ab} ≡
ρa

γa


b∈ P

mb


Aa

ρ2
a

+
Ab

ρ2
b


∇wab

−
ρa

γa


s∈ S


Aa

ρ2
a

+
As

ρ2
s


ρs∇γas, (5)

Dγ ,−a {ub} ≡ −
1
γaρa


b∈P

mbuab · ∇wab +
1
γa


s∈S

uas · ∇γas, (6)

Lγa {Bb, Ab} ≡
1
γa


b∈ P

Vb2Bab
Aab

r2ab
rab · ∇wab

−
1
γa


s∈ S

(Bs∇As + Ba∇Aa) · ∇γas. (7)

The factor Bab is defined using a combination of Ba and Bb. In
most of the SPH literature, it is taken as their arithmetic mean.
However, to ensure continuity of shear flux, i.e. Ba∇Aa · rab =

Bb∇Ab · rab, here it is their harmonic mean:

Bab =
2BaBb

Ba + Bb
. (8)

Furthermore, as a first order approximation the two boundary
terms of Eq. (7) can be equalized, so that (Bs∇As + Ba∇Aa)·∇γas ≈

2 |∇γas| Bs∇As · ns. This is the flux at the boundary, therefore if a
Neumann boundary condition is imposed, then it will replace this
term and if a Dirichlet condition is imposed then it can be replaced
by −2 |∇γas| BasAas/(ras · ns), as explained by Ferrand et al. [8] and
Leroy et al. [9].

2.4. Space discretized equations

The equations to be solved are the momentum equation,
the equation of motion, the governing equation for γa and the
continuity equation:

ρa
dua

dt
= −Gγ ,+a {pb} + Lγa {µb, ub} + ρag,

dra
dt

= va,

dγa
dt

= ∇γas · vas,

dρa
dt

= −ρaDγ ,−a {ub}.

(9)

It is important to underline that the particle velocity va is used
to move the particles and update γa, while the fluid velocity ua is
used in viscous forces and density evolution.

When time is considered as continuous and in the absence of
open-boundaries, the last two lines of Eqs. (9) are fully equivalent
to [8]:

d (γaρa) = d


b∈P

mbwab


(10)

This formulation allows exact integration with time, and thus will
be preferred in the following. However, in presence of inlets or
outlets boundaries, the equivalence between Eqs. (9) and (10)
needs to be modified. The necessary developments are detailed in
Section 3.1.
2.5. Time stepping without open boundaries

The time-stepping scheme used in Ferrand et al. [8] to solve the
system of Eqs. (9) is recalled hereafter:

f na = Lγa {µn
b, u

n
b} − Gγ ,+a {pnb} + ρn

ag,

un+1
a = un

a +
∆t
ρn
a
f na ,

vn+1
a = un+1

a ,

rn+1
a = rna +∆tvn+1

a ,

γ n+1
a = γ n

a +∆t

s∈S

1
2


∇γ n+1

as + ∇γ n
as


· vn+1

as ,

ρn+1
a =

1

γ n+1
a


γ n
a ρ

n
a +


b∈P

mb

wn+1

ab − wn
ab


,

(11)

where pn = p(ρn) using Eq. (1).
Ferrand et al. [8] considered va = ua since they did not deal

with open boundaries, contrary to the present work.
In Section 3, this scheme will be adapted to account for ingoing

or outgoing mass fluxes at open boundaries.

2.6. Volume diffusion correction

In the SPH operators used in Eq. (9), the pressure and velocities
are collocated, i.e. stored at the samepoints (the particle positions),
and therefore require stabilization. Several authors have developed
stabilization terms for SPH in order to solve this issue.Wewill refer
the reader to the work by Fatehi and Manzari [15] or to the work
by Ferrari et al. [16] whose work was adapted to Semi-Analytical
SPH boundaries by Mayrhofer et al. [17].

In the present work the stabilization factor is derived from the
pressure–velocity coupling available in the literature for finite el-
ements mesh-based method, namely Brezzi and Pitkäranta [18],
which was adapted to Semi-Analytical SPH boundaries by Ghai-
tanellis et al. [19]. The main principle behind this correction is to
develop the term in un+1

b in the continuity equation. In the absence
of viscosity, this gives:
ρn+1
a − ρn

a

∆t
= −ρn

aD
γ ,−
a


un
b −

∆t
ρn
a
Gγ ,+a {pnb} +

∆t
ρn
a
ρn
ag


≈ −ρn
aD

γ ,−
a


un
b


−ρn

aD
γ ,−
a


−
∆t
ρn
a
Gγ ,+a {pnb}+∆tGγ ,+a


g · rnb


. (12)

From this reasoning, a diffusion term∆ can be defined as:

∆n
= −ρn

a


−Lγa


∆t
ρn
b
, pnb


+ Lγa


∆t, g · rnb


. (13)

Note that ∆ is not exactly equal to the second term of Eq. (12)
since with SPH operators the Laplacian is not tantamount to the
divergence of a gradient. Following Brezzi and Pitkäranta [18] this
diffusion term will be weighted by an arbitrary factor Λ ∈ [0; 1],
and it will be added to the continuity equation. The last of Eqs. (11)
will therefore be rewritten as:

ρ̃a =
1

γ n+1
a


γ n
a ρ

n
a +


b∈F ∪V

mb

wn+1

ab − wn
ab


,

ρn+1
a − ρ̃a

∆t
= Λρ̃a


Lγa


∆t
ρ̃b
, p̃b


− Lγa {∆t, g · rb}


,

(14)

where p̃b = p(ρ̃b), andΛ is usually set to 0.1. In addition, the Lapla-
cian operator in Eq. (14) excludes the boundary elements. This cor-
rection is similar to the one developed byMayrhofer et al. [17], but
it is still valid when the density presents large variations.
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2.7. Boundary conditions

Discretizing the boundary in terms of segments and vertices
gives a method of dealing with the boundaries on the domain,
however the method for imposing boundary conditions is not
trivial. The approach chosen by Ferrand et al. [8], and later
extended in Leroy et al. [20], is that Dirichlet boundary conditions
will be imposed on the vertices andNeumann boundary conditions
will be imposed on the segments. An averaging is then used to find
the corresponding values on the segments or vertices.

For example, the shear stress on the walls (calculated either
through the no-slip condition or through a turbulence wall
function) is set by imposing the fluid velocity on the wall vertices,
and the shear stress of the segments is then found by averaging the
velocity of the connected vertices.

3. Formulation for unified semi-analytical open boundary
condition

3.1. Time integration of the continuity equation with unified semi-
analytical open-boundary conditions

In this section, the continuity equation will be carefully
integrated between two successive iterations. The aim is to
integrate exactly all the terms which depend only on particle
positions, in order to stop the imposed mass flux from introducing
errors on the density at each time step. Otherwise, these errors
would lead to density discontinuities for fluid particles near open
boundaries, which would in turn result in spurious shockwaves
when particles are created or deleted.

While integrating the continuity equation, newboundary terms
will naturally appear due to the presence of open boundaries.
Their time integration will be performed consistently with the
time stepping scheme proposed in Section 2.5, so that no artificial
density perturbation is induced by the open boundaries.

As stated above, the time-dependent SPH continuity equation is
the fourth line of the system (9) involving the fluid velocity ub. Let
us now rewrite this equation as a total derivative so that the time
integration will be exact. To do so, the continuity equation is first
rewritten using the divergence-operator definition of Eq. (6):

dρa = −ρaDγ ,−a {ub} dt

=
1
γa


b∈P

mb∇wab · uabdt −
ρa

γa


s∈S

∇γas · uasdt. (15)

To transform the sums in Eq. (15) into exact total derivatives,
the fluid velocity ub should be replaced by the particle velocity vb.
This is possible for all particles except for the sets of vertices and
segments which belong to the open boundaries (denoted by V i/o

and Si/o, respectively), and thus the density variation reads:

dρa =
1
γa


b∈P

mb∇wab · vabdt

−
1
γa


v∈Vi/o

mv∇wav · (uv − vv) dt

−
ρa

γa


s∈S

∇γas · vasdt +
ρa

γa


s∈Si/o

∇γas · (us − vs) dt. (16)

In order to compute the first and third terms of Eq. (16), we use
the fact that in a Lagrangian frame dr = vdt , so that:

dwab = ∇wab · vabdt,
dγa =


s∈S

∇γas · vasdt. (17)
Therefore Eq. (16) can be rewritten as:

d (γaρa) = γadρa + ρadγa = d


b∈P

mbwab


− γaδρ

i/o
a + ρaδγ

i/o
a , (18)

where δρ i/o
a and δγ i/o

a are defined by:

δρ i/o
a ≡

1
γa


v∈Vi/o

mv∇wav · (uv − vv) dt, (19)

δγ i/o
a ≡


s∈Si/o

∇γas · (us − vs) dt. (20)

It should be noted that Eq. (18) is a generalized version of
Eq. (10). Furthermore the terms in Eqs. (19) and (20) are non-
zero because particle and fluid velocities do not coincide at open
boundaries, as already mentioned. In addition, for Eq. (18) to
be valid, the particle masses should be constant over the time
integration of γaρa. Therefore, the particles masses mb are kept
constant on the time interval ]tn; tn+1

[ equal to mn
b . Since the

vertex masses will vary in time (see Section 3.3), this implies
that these variations will occur after the time integration of the
continuity equation.

Let us now integrate the continuity Eq. (18) from time tn to
tn+1

= tn +∆t , to have a consistent time marching scheme:

(γaρa)
n+1

− (γaρa)
n

=


b∈P n


mn

bw
n+1
ab − mn

bw
n
ab


−

 tn+1

tn
γaδρ

i/o
a +

 tn+1

tn
ρaδγ

i/o
a . (21)

Note that the summation is over the particles existing at time
n, denoted by P n and the operator, dt , in the integrals is included
in Eqs. (19) and (20). The particle creation/deletion algorithm is
described in Section 3.3.

The two time-integrated terms
 tn+1

tn γaδρ
i/o
a and

 t
n+1

tn ρaδγ
i/o
a

in Eq. (21) will be called virtual variation terms, and are the
only modification of the time-independent continuity equation
proposed by Ferrand et al. [8] (last line of Eq. (11)).

The key point in the time integration of the virtual variations
is that they are expected to maintain exactly a uniform flow field
with a constant density. The term γaδρ

i/o
a represents the variation

experienced by


v mvwav , with v ∈ V i/o, if the vertex particles v
weremovedwith the velocity (uv − vv)while the fluid particle a is
fixed. Similarly the term δγ i/o

a represents the variation experienced
by γa if the segments s ∈ Si/o were moved with the velocity
(us − vs)while the fluid particle a is fixed.

Consequently the virtual displacement δr i/oa ≡ ∆t

un
a − vn

a


is used to compute the virtual variation terms. Thus the time-
integration of δρ i/o

a and δγ i/o
a can be computed consistently with

the last two lines of Eq. (11) as: tn+1

tn
γaδρ

i/o
a =


v∈Vi/o

mn
v


w

rnav + δr i/ov


− w


rnav

, (22)

and: tn+1

tn
ρaδγ

i/o
a =

ρn
a

2


s∈Si/o


∇γas


rnas + δr i/os


+ ∇γas


rnas


· δr i/os ,

(23)

where δr i/os = ∆t(un
s −vn

s ), the velocity of the segments are defined
by us = (uv1 + uv2)/2 and δr i/ov = ∆t(un

v − vn
v ). In the above

notation, v1 and v2 are the vertices connected to s.
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(a) t0 . (b) t1 . (c) t2 . (d) t3 .

Fig. 2. Mass evolution and particle creation for an inlet: the mass of vertex particles v is growing due to a positive flux us · ns at the segment s (times t0 to t3). When the
masses of the inlet vertices reach the defined threshold ofmref /2 (time t2), new fluid particles are created and the mass of vertex particles is decreased.
Eq. (23) is consistent with the way γ is calculated. If an
analytical formulation of γ is used (such as in Leroy et al. [9]) it
should be computed as: tn+1

tn
ρaδγ

i/o
a = ρn

a


s∈Si/o


γas

rnas + δr i/os


− γas


rnas

. (24)

The proposed continuity Eq. (21) allows to take account of
ingoing/outgoingmass flux through the last two terms,while other
terms depend only on particle positions; Eq. (21) combined with
Eqs. (22) and (23) gives:

ρn+1
a =

1

γ n+1
a


γ n
a ρ

n
a +


b∈P n

mn
b


wn+1

ab − wn
ab


+


v∈Vi/o

mn
v


wn

av − w

rnav + δr i/ov


+
ρn
a

2


s∈Si/o


∇γas


rnas + δr i/os


+ ∇γas


rnas


· δr i/os


. (25)

For simplicity the summations in the right hand side of Eq. (25)
will be noted as di/oa , which gives:

ρn+1
a =

1

γ n+1
a


γ n
a ρ

n
a + di/oa


. (26)

3.2. Time stepping with open boundaries

The time stepping scheme used in Eq. (11) is therefore adapted
to take into account the open boundaries with a volume diffusion
correction (Section 2.6):

f na = Lγa {µn
b, u

n
b} − Gγ ,+a {pnb} + ρn

ag,

un+1
a = un

a +
∆t
ρn
a
f na ,

vn+1
a = un+1

a for a ∈ F /V,

rn+1
a = rna +∆tvn+1

a ,

γ n+1
a = γ n

a +∆t

s∈S

1
2


∇γ n+1

as + ∇γ n
as


· vn+1

as , (27)

ρ̃a =
1

γ n+1
a


γ n
a ρ

n
a + di/oa


,

ρn+1
a − ρ̃a

∆t
= Λρ̃a


Lγa


∆t
ρ̃b
, p̃b


− Lγa {∆t, g · rb}


.

As a reminder di/oa is defined through Eqs. (25) and (26).
Furthermore, the constraints on the time step ∆t are described in
Appendix B.4.

3.3. Mass update of vertex particles

The method used to create or remove particle needs to be
carefully developed in order to keep a correct particle distribution
near the open boundaries (this process can be understood as
re-meshing). The choice made is to make the vertex particles
Fig. 3. Mass distribution process for an outgoing fluid particle a crossing a segment
s connecting vertices v0 and v1 . The dark grey line represents the factor βa,v0 .

grow (respectively decrease) over time on an inlet (respectively
outlet) boundary. Thus their masses and volumes are not constant.
However, the mass evolution should not create any perturbation
neither on the density nor on the momentum. Therefore, as stated
earlier a constant mass will be set between tn and tn+1 in Eqs. (27).
This is ensured by Eqs. (21)–(23). The masses will therefore be
updated outside of the marching scheme.

Nonetheless, the total mass of the system should change
smoothly in time. To do so the masses of the vertex particles in
v ∈ V i/o take into account the desired mass flux through the open
boundary ṁv . This mass flux is computed as a weighted average of
themass fluxes through the segments s ∈ Nsv , whereNsv is the set
of all the segments connected to v (usually two segments in 2-D):

ṁv =
1
2


s∈N

i/o
sv

ρsSs(us − vs) · ns, ∀v ∈ V i/o, (28)

where Ss is the length of a segment. The flux ṁv is positive for an
inlet and negative for an outlet.

The flux ṁv is used to update the vertex masses. Instinctively
one would assume that mn+1

v = mn
v + ∆tṁn

v . However, in the
case of an inlet, new fluid particles must be created near the open
boundary when the fluid particles move away from it (see Fig. 2).
For this purpose, each time the vertex particle mass mv reaches
a certain threshold θvmref, a fluid particle is created at the same
position with the reference mass mref and this mass is subtracted
from the vertex particle mass to prevent from any density shock.
For the sake of simplicity θv is the open angle of the vertex divided
by 2π (i.e. θv = 0.5 for a plane boundary) andmref is the mass of a
fluid particle.

In the case of an outlet, particles are removed when they cross
an open boundary segment. In order to remain consistent the
mass of an outgoing fluid particle is redistributed over the open
boundary vertices connected to this segment. Each of these vertices
receives themass βa,vma, where βa,v is a distribution (orweighing)
factor.

The factor βa,v is constructed so that most of the mass is
distributed to the closest vertex. For a segment s with vertices v0
and v1, vector pi is defined as the vector between vertex vi and
the projection of the particle a on the segment, i.e. pi = ravi −
ravi · n


n (see Fig. 3). Assuming that the projection belongs to the
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segment, then for v0 and v1 connected to s, βa,vi is defined as:

βa,v0 =
p1 · rv0v1
∥rv0v1∥2

,

βa,v1 =
p0 · rv1v0
∥rv1v0∥2

= 1 − βa,v0 .

(29)

Otherwise, βa,v is set to zero.
Therefore, themasses of vertex particles are updated as follows:

mn+1
v = mn

v +∆tṁn
v + δmn

v, ∀v ∈ V i/o, (30)

where δmn
v quantifies the mass variation due to particle cre-

ation/destruction, i.e. −mref each time a fluid particle is created at
position v, +βa,vma each time a particle a crosses a segment con-
nected to v. As stated above, the step described by Eq. (30) is added
at the end of the time stepping scheme (27).

In Eq. (30) only the mass flux positiveness determines whether
an open boundary repulses or attracts fluid particles. As illustrated
later in the periodic wave test case, i.e. Fig. 12, it is possible
to prescribe time-dependent velocities moving from negative
to positive values. Henceforth, the proposed strategy makes it
straightforward to treat both inlet and outlet at the same open
boundary, depending on space and time.

Free-surface flows can also be treated that way. For example,
for the periodic wave shown in Fig. 12 and later in Section 4.3, the
mass flux ṁv at the vertical open boundaries oscillates consistently
frompositive values to negative values as the velocity is prescribed
according to fifth-order solution to Stokes wave theory.

3.4. Imposing pressure and velocity

The Riemann problem formulation described in Appendix A
is used to define compatible pressure and velocity fields. The
principle is to used a method common in finite volumes, where
characteristic waves (λ−1, λ0 and λ+1) model discontinuities
between the exterior state (the boundary conditions) and the
interior state (the fluid) through Generalized Riemann Invariants
(GRI).

3.4.1. Imposed velocity
When a velocity field is imposed on a boundary, for instance

an incoming free-surface wave velocity profile at an inlet, it
is imposed on the open boundary vertices (as it is a Dirichlet
boundary condition). Since the imposed velocity field is needed on
the open boundary segments, its value will be averaged from the
neighbouring vertices:

us =
1

|Nvs|


v∈Nvs

uv. (31)

This value will then be the prescribed velocity field on the
exterior state, i.e. uext = us. In this case the linearized Riemann
problem is used to compute the value of the density (or pressure)
fields at the exterior state, and therefore at the boundary segment
and vertices.

The GRI of wave λ+1 will therefore be used to calculate the
external state pressure pext from the internal state. However the
type of discontinuity of the wave λ+1 needs to be defined. It is
known that since λ+1,ext = λ+1,2, then if λ+1,ext > λ+1,int the
wave is a shock, however since pext is unknown then cext cannot be
calculated. Therefore assumptions needs to be made regarding the
relationshipλ+1,ext > λ+1,int . It will be assumed that this condition
is verified if un,ext > un,int , but this assumption will need to be
verified once cext is known. Therefore if:
1. If un,ext > un,int , the λ+1 wave is a shock wave. The Rank-
ine–Hugoniot relationships have to be used through the follow-
ing equation:

pext = pint + ρintun,int

un,int − un,ext


. (32)

2. If un,ext ≤ un,int , the λ+1 wave is an expansion wave. The cor-
responding Riemann invariant R+ must be used (i.e. R+1,ext =

R+1,int ):

un,ext − ψ (ρext) = un,int − ψ (ρint) , (33)

where ψ is defined by Eq. (A.8).

Once the pressures are known on the segments (since ps =

pext ), then the pressure on the vertices are found by averaging the
connected segments:

pv =
1

|Nsv|


s∈Nsv

ps. (34)

The densities are once again calculated using Eq. (1).
As mentioned earlier, if the imposed condition corresponds

to an inlet then the tangential velocity components need to be
defined, otherwise they will be defined from the interior state.

3.4.2. Imposed pressure (or density)
When a pressure field is imposed on a boundary, for instance

hydrostatic pressure at an outlet, it is imposed on the vertices (as
it is a Dirichlet boundary condition). Since the imposed pressure
field is needed on the open boundary segments, to do so its value
will be averaged from the neighbouring vertices:

ps =
1

|Nvs|


v∈Nvs

pv. (35)

This value will then be the prescribed velocity field on the
exterior state, i.e. pext = ps. In this case the linearized Riemann
problem is used to compute the value of the velocity fields at the
exterior state, and therefore at the boundary segment and vertices.
The GRI of wave λ+1 will therefore be used to calculate the normal
velocity component from the internal state. However the type of
discontinuity of the wave λ+1 also needs to be defined. In this case
it will be assumed that this condition is verified if cext > cint ,
but this assumption will need to be verified once un,ext is known.
Therefore if:

1. If cext > cint , the λ+1 wave is a shock wave. The Rank-
ine–Hugoniot relationships have to be used through the follow-
ing equation:

un,ext =
pint − pext
ρintun,int

+ un,int . (36)

Note that due to the presence of un,int in the denominator of
Eq. (36), when the pressure is imposed on a boundary adja-
cent to still water this formulation could pose difficulties. This is
why,when un,int → 0 the limit of Eq. (36) should be considered,
i.e.:

lim
un,int→0

un,ext = un,int . (37)

Practically, this condition will be imposed when un,ext > c0/10.
2. If cext ≤ cint , the λ+1 wave is an expansion wave. The corre-

sponding Riemann invariant R+ must be used (i.e. R+1,ext =

R+1,int ):

un,ext − ψ (ρext) = un,int − ψ (ρint) . (38)
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Once the velocities are known on the segments (since us =

uext ), then the velocities on the vertices are found by averaging the
connected segments:

uv =
1

|Nsv|


s∈Nsv

us. (39)

Again, if the imposed condition corresponds to an inlet then the
tangential velocity components need to be defined, otherwise they
will be defined from the interior state. Finally, the densities are still
calculated using Eq. (1).

3.4.3. Imposed open boundary conditions algorithm
The linearized Riemann problem is used to calculate the open

boundary conditions before the time stepping is done. Therefore
for an open boundary problem, the calculation steps are listed
below:

1. Calculation of the fields at the boundaries, using the method
described in Ferrand et al. [8] for wall boundaries, and
the method described in Sections 3.4.1 and 3.4.2 for open
boundaries.

2. Time stepping of the fluid particles in the domain using
Eqs. (27).

3. Update the mass of the vertex particles using Eq. (30), create
particles if mv > θvmref and delete particles that have crossed
an open boundary.

The parallel implementation for this algorithm is described in
Appendix B.

4. Numerical tests

For all the simulations, the quintic Wendland kernel with
smoothing length h = 2∆r will be used.

4.1. Non-orthogonal flux on inlet/outlet in a square

The first test case presented is that of a 2-D square fluid domain
of size L with only inlet/outlet boundary conditions (see Fig. 4).
The flow is at an angle of π/4 to the normal to the boundaries;
in other words, the velocity imposed at all boundaries is u0 =

|u0|/
√
2(1, 1)T . It illustrates one of the advantages of present

Semi-Analytical inlet/outlet boundary treatment: the absence of
buffer layer makes it possible to prescribe a non-orthogonal flow
quite easily, regardless of the open boundary shape.

The initial conditions are of constant velocity and density
fields with the same values as imposed at the boundary. Particles
are initially distributed onto a Cartesian grid, the inter-particle
distance ∆r and segment size are non-dimensionalized using the
problem size, i.e. ∆r+

= ∆r/L for all different tests performed
(from 0.8k to 41.6k particles). Furthermore the speed of sound at
rest is set to c0 = 10|u0|. The fluid viscosity ν is set to 10−2 m2.s−1

and the volumic diffusion factorΛwill be set to 0, so that the focus
of this case is on the open boundary conditions.

The evolution of the L2 errors for both density and velocity is
computed as:

ερ =


1
NP


a∈ P

(ρa − ρ0)2

ρ2
0

and

εu =


1
NP


a∈ P

|ua − u0|
2

|u0|
2

, (40)

where NP is the number of fluid and vertex particles.
As a first test the Riemann invariants will not be used and both

the velocity and density will be imposed as u0 and ρ0 respectively.
Fig. 4. Non-orthogonal inlet/outlet in a square.

The evolution of the errors is displayed in Fig. 5 with respect to
non-dimensional time t+ = t|u0|/L. It is therefore shown that
the errors are very small; they are mainly linked to the round-
off errors. Since the simulations presented are computed on single
precision GPU (Graphics Processing Units), the values observed are
acceptable.

It should be emphasized that the additional terms in the
continuity equation (Eq. (18)) are essential, as the authors have
observed that the simulations that ran without those terms
crashed immediately.

As a second test, the velocity are imposed on inlets and the
pressure on the outlets together with Riemann invariants. As
shown by Fig. 6, the errors are slightly larger than previously. This
is because the previous case was over-constrained. Furthermore,
when using Riemann invariants at the open boundaries the error
is almost independent of the particle size. However the error on the
velocity is of an order of magnitude higher than that of the density.
This can easily be explained by linearizing the Euler equations for
the numerical perturbations δρ et δu:

δu
τ

∼
c20
ρ0

δρ

λ
, (41)

δρ

τ
∼ ρ0

δu
λ
, (42)

where τ and λ are time and length scales corresponding to the
perturbation propagation.

The order of magnitude of the errors are ερ ∼ δρ/ρ0 and
εu ∼ δu/|u0|. Combining the last two equations in order to remove
τ and λ yields εu ∼ (c0/|u0|) ερ . The error on the velocity is thus
amplified by the numerical Mach number, which is taken as 10 as
explained above.

4.2. Rapidly expanding pipe

In this next test case, the flow from a small pipe (named pipe 1)
will enter a large pipe (named pipe 2), creating a sudden expansion
of the flow. See Fig. 7 for details on the geometry. Far from the
expansion, the flow should follow the Hagen–Poiseuille equations,
which for a flow between two infinite plates is given by:

ux = Umax


1 −

z2

W 2


, (43)

dP
dx

= −
2ρ0νUmax

W 2
, (44)

where the origin of z lies on the central pipe axis, W is the half
width of the pipe and Umax is the maximum velocity. To ensure



36 M. Ferrand et al. / Computer Physics Communications 210 (2017) 29–44
Fig. 5. Non-orthogonal inlet/outlet in a square. Evolution of the L2 error in density (left) and velocity (right) for different discretizations without using Riemann invariants.
Fig. 6. Non-orthogonal inlet/outlet in a square. Evolution of the L2 error in density (left) and velocity (right) for different discretizations using Riemann invariants with
imposed velocities on the inlets and imposed pressure on the outlets.
Fig. 7. Configuration of the rapidly expanding pipe. The origin is placed at the
beginning of the second pipe, and on the central axis of the pipes.

that the flow stays laminar, this maximum velocity will be defined
according to a Reynolds number Re:

Umax =
νRe
2W

. (45)

Eq. (43) will therefore be used to impose a Poiseuille flow
velocity profile on the inlet, and a constant pressure will be
imposed on the outlet. The geometrical parameters are chosen
to correspond to one of the experiments presented by Hammad
et al. [21]:W1 = 0.13m, L1 = 3W1,W2 = 2W1 and L2 = 4W2. The
particle spacing∆r = W1/26 and the physical parameters chosen
are ρ0 = 1190 kg.m−3, ν = 3.19 × 10−5 m2.s−1 and Re = 20.6.
The numerical parameters are c0 = 0.03 m.s−1 and Λ = 0.1. A
background pressure is used to help the flow stabilize.
Fig. 8 shows the horizontal velocity and density profiles at the
inlet and outlet. As can be seen the velocity profile at the outlet is
very close to the Poiseuille flow. In addition, the density at the inlet
is greater than at the outlet, which is a necessary condition as the
pressure is linked to the density through the state Eq. (1). Finally,
integrating the profile in Fig. 8 to calculate the mass fluxes at the
inlet and outlet we get the following time averaged values:
• Mass flux in: 0.523 kg.m−1.s−1.
• Mass flux out: 0.525 kg.m−1.s−1

• Analytical mass flux: 0.521 kg.m−1.s−1.

The mass flux differences appear because even though the
fluid particles have fixed masses throughout the simulation,
the open boundary vertices have a variable mass. The mass
variations are consistent with the boundary mass flow, and the
differences between the inlet and the outlet are a result of the
compressiblemediumwhich cannot achieve a perfect steady state.
The normalized error in themass flux is therefore equal to 4×10−3,
which is acceptable relative to the spatial discretization, and it does
not have a significant impact on the simulation.

In Fig. 9 the streamlines obtained from the stream function are
compared with the experimental results presented in Hammad
et al. [21] and a finite volume solution using Code_Saturne [22].
The calculation of the stream function Ψ from a velocity field can
be performed using different methods and can provide insight into
sources of disagreement with the experimental values. To analyse
the simulation results the following equation was used:

Ψ (x, z) =


 r(x,z)

r(L2,W2)
(uxdz − uzdx) above the central axis r(x,z)

r(L2,−W2)
(uxdz − uzdx) below the central axis.

(46)
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(a) Imposed velocity at inlet. (b) Computed velocity at outlet.

(c) Computed density at inlet. (d) Imposed density at outlet.

Fig. 8. Horizontal velocity and density profiles at the inlet and the outlet of the rapidly expanding pipe. The dashed line shows the analytical solution for a Poiseuille flow,
and the solid line the simulation results.
Fig. 9. Streamlines in the rapidly expanding pipe from the SPH simulated flow (above), experimental results by Hammad et al. [21] (middle) and simulation result using
Code_Saturne [22]. The values displayed at the streamlines are Ψ /Ψ (0, 0).
Amongst the differences between the SPH simulation and the
experimental results, the stream line at Ψ = 0 does not cross
the wall at the same distance from the expansion, meaning that
the recirculation zone is smaller in the simulations. This could be
because in the state Eq. (1) the value of ξ for diethylene glycol
(which was used in the experiment) is not readily available, and
therefore ξ = 7 was imposed, which is the value for water. This
is also true for the simulations using Code_Saturne, although the
incompressible model used in this case allows these results to be
closer to the experimental values.
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Fig. 10. The three regions in the rapidly expanding pipe that can be defined to
calculate the head loss from the simulated flow.

Nonetheless, at the outlet the streamlines of the simulations are
close to the experimental results. As a further check of the validity
of the simulation, the head loss will be modelled. Looking at the
streamlines of the flow, plotted in the flow can be separated into 3
regions: a Poiseuille flow inside pipe 1, a recirculation zone created
by the sudden expansion and a Poiseuille flow inside pipe 2 (see
Fig. 10). One can estimate the head loss in each section by (see
Hammad et al. [23] for more details):

1
2

U2
1 −U2

1′


=

1
ρ2
(P1′ − P1) ,

1
2

U2
1′ −U2

2′


+

1
ρ2
(P1′ − P2′) =

1
2

U1′ −U2′

2
,

1
2

U2
2 −U2

2′


=

1
ρ2
(P2′ − P2) ,

(47)

where the subscript represent the interface between different
zones of the flow. Subscript 1 denotes the interface between
the inlet and pipe one, subscript 1′ the interface between the
Poiseuille flow of pipe one and the recirculation area, subscript 2′

the interface between the recirculation area and the Poiseuille flow
of pipe two and subscript 2 the interface between pipe two and
the outlet (see Fig. 10). FurthermoreU2

= 1/(2W )
 W
−W U2dz and

P = 1/(2W )
 W
−W pdz.

These three equations can be combined to give:
1
2

U2
1 −U2

2


+

1
ρ2
(P1 − P2)

=
1
2

U1 −U2
2

+
1
ρ2
(P1 − P1′)+

1
ρ2
(P2′ − P2)

+ O


νU1

W2


. (48)

Defining the head of the flow by:

H =

U2

2g
+

P
gρ2

. (49)

The theoretical head loss between the inlet and the outlet is thus
equal to (neglecting the last term in Eq. (48)):

H1 − H2 =
1
2g

U1 −U2
2

+
1

gρ2
(P1 − P1′)

+
1

gρ2
(P2 − P2′) . (50)

The expected head loss is therefore equal to the sum of
head loss of the Poiseuille flows, and Borda–Carnot head loss in
the recirculation zone. Fig. 11 shows the head along the x-axis.
Extracting the simulated head loss and calculating the theoretical
head loss gives:
• Head loss from simulations = 5.04 × 10−7 m
• Theoretical head loss = 5.00 × 10−7 m.
Fig. 11. Head profile plotted along the x-axis of the rapidly expanding pipe. The
blue line is the computed head, the dashed lines show the theoretical head gradient
of the Poiseuille flows (from (44) and (45)) and the arrows around the dotted line
show the head loss from the Borda–Carnot equation. (For interpretation of the
references to colour in this figure legend, the reader is referred to the web version
of this article.)

Therefore, the simulated head loss has less than a 1% difference
with the theoretical head loss.

4.3. 2-D periodic free-surface water wave

The next test case shows that these new open boundary
conditions can be used for both inflows and outflows, and that
open boundaries can alternate between the two without any
difficulties, evenwith a free-surface. To do so periodicwaterwaves
propagating on a flat bed will be imposed. The waves imposed
are calculated from the fifth-order solution to Stokes wave theory
given by Fenton [24]:

kη(x, t) =

5
i=1

ϵ i
i

j=i

Bij cos

jk

x − ct +

θ
k


(51)

U


k
g

1/2
= C0 + ϵ2C2 + ϵ4C4 (52)

c = U c + U (53)
ux(x, z, t) =


c − U


+ C0


g
k3

1/2 5
i=1

ϵ i
i

j=1

Aij cosh (jkz) jk

× cos

jk

x − ct +

θ
k


(54)

uz(x, z, t) = C0


g
k3

1/2 5
i=1

ϵ i
i

j=1

Aijjk sinh (jkz)

× sin

jk

x − ct +

θ
k


(55)

Rk
g =

1
2C

2
0 + kD + ϵ2E2 + ϵ4E4 (56)

p(x,z,t)
ρ0

= R − gz −
1
2


(ux − c)2 + u2

z


(57)

where η is the free-surface elevation (with the water depth h =

D + η), A is the wave amplitude (i.e. half of the wave height), D
is the mean water depth, g is the acceleration due to gravity, k
is the wave number (defined as k = 2π/L, where L is the wave
length), c is the wave velocity, U c is the mean current velocity, U
is the mean horizontal velocity, θ is a phase constant and R is the
Bernoulli constant. The wave period T can be calculated from the
wave number and wave velocity, i.e. T = 2π/(kc). Furthermore
the z-axis has its origin at the bed. The constants are given in
Table 1.
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Table 1
Constants for the fifth-order solution to Stokes wave theory given by Fenton [24] and used in Eqs. (51)–(57).

A11 = 1/ sinh (kD)
A22 = 3S2/[2(1 − S)2]
A31 = (−4 − 20S + 10S2 − 13S3)/[8 sinh(kD)(1 − s)3]
A33 = (−2S2 + 11S3)/[8 sinh(kD)(1 − s)3]
A42 = (12S − 14S2 − 264S3 − 45S4 − 13S5)/[24(1 − S)5]
A44 = (10S3 − 174S4 + 291S5 + 278S6)/[48(3 + 2S)(1 − S)5]
A51 = (−1184 + 32S + 13232S2 + 21712S3 + 20940S4 + 12554S5 − 500S6 − 3341S7 − 670S8)/[64 sinh(kD)(3 + 2S)(4 + S)(1 − S)6]
A53 = (4S + 105S2 + 198S3 − 1376S4 − 1302S5 − 117S6 + 58S7)/[32 sinh(kD)(3 + 2S)(1 − S)6]
A55 = (−6S3 + 272S4 − 1552S5 + 852S6 + 2029S7 + 430S8)/[64 sinh(kD)(3 + 2S)(4 + S)(1 − S)6]
B11 = 1
B22 = coth(kd)(1 + 2S)/[2(1 − S)]
B31 = −3(1 + 3S + 3S2 + 2S3)/[8(1 − S)3]
B33 = −B31
B42 = coth(kd)(6 − 26S − 182S2 − 204S3 − 25S4 + 26S5/[6(3 + 2S)(1 − S)4])
B44 = coth(kd)(24 + 92S + 122S2 + 66S3 + 67S4 + 34S5)/[24(3 + 2S)(1 − S)4]
B51 = −(B53 + B55)

B53 = 9(132 + 17S − 2216S2 − 5897S3 − 6292S4 − 2687S5 + 194S6 + 467S7 + 82S8)/[128(3 + 2S)(4 + S)(1 − S)6]
B55 = 5(300 + 1579S + 3176S2 + 2949S3 + 1188S4 + 675S5 + 1326S6 + 827S7 + 130S8)/[384(3 + 2S)(4 + S)(1 − S)6]
C0 = [tanh(kD)]1/2

C2 = [tanh(kD)]1/2(2 + 7S2)/[4(1 − S)2]
C4 = [tanh(kD)]1/2(4 + 32S − 116S2 − 400S3 − 71S4 + 146S5)/[32(1 − S)5]
E2 = tanh(kD)(2 + 2S + 5S2)/[4(1 − S)2]
E4 = tanh(kD)(8 + 12S − 152S2 − 308S3 − 42S4 + 77S5)/[32(1 − S)5]

Where S = sech (2kD).
Fig. 12. Propagation of a regular waves on a flat bottomwith open boundaries given at 2 instances. A time varying velocity profile is prescribed on both vertical boundaries
so they alternate between inlets and outlets.
For the present test case a depth of 0.5 m, an amplitude of 0.05
m and awave length of 2.5mhave been chosen. Furthermore there
will be nomean current in the flow. The Ursell number for this case
is 2AL2/d3 = 5 ≪ 32π2/3, which would mean that linear wave
theory is applicable. However, a higher order solution is used, as
phase difference can occur after several time periods. Finally, in
the simulation the fluid viscosity ν is set to 10−6m2s−1, the particle
spacing ∆r is set to one tenth of the amplitude and the numerical
parameters are c0 = 20 m.s−1 andΛ = 0.1. An illustration of this
test case can be found in Fig. 12 where it is shown that the open
boundaries alternate between inlets and outlets.

A simulation will be run where the fluid velocities calculated
from the analytical solution (Eqs. (51)–(57)) will be imposed along
the normal of the open boundaries, and Riemann invariants will
be used to calculate the pressure. This will be compared to the
analytical solution and a simulation with periodic conditions.
Periodic conditions mean that particles exiting the domain on one
side will enter the domain on the other side, but more importantly
particles on one side will have as neighbours particles close to
the other side, acting as if the domain was truly infinite. This
will therefore serve as a reference, because ideal open boundary
conditions would give the same values as an extension of the
domain filled with fluid and wall particles. Furthermore, it should
be noted that if both the pressure and the velocities would be
imposed, then the problemwould be overconstrained andparticles
would exit the domain.
Plots of the free-surface are then presented in Fig. 13. The first
conclusion is that even after several wave periods the free-surface
stays very close to the analytical solution for all type of boundaries.
Secondly, because of its nature, the simulation that uses periodic
conditions needs the domain to be a multiple of the wave length.
This is not the case with open boundary conditions (as can be
seen from the fact that the green free-surface particles extend over
a longer range than the blue free-surface particles). Finally, the
waves propagating through a periodic domain are slightly slower
than the analytical solution, which is not true for simulations with
open boundary conditions as the analytical solution is imposed on
the velocities.

Furthermore, let us define the error for the free-surface location
using the following equation:

εη =


1

NF S


a∈ F S

(ηsim − η)2

A2
, (58)

whereF S represents the free-surface particles,NF S is the number
of free-surface particles, ηsim is the free-surface elevation of the
simulations and η is the analytical solution given in Eq. (51).

These errors are plotted over time in Fig. 14, which shows that
for these discretization the error (the solid line) is of the order
of the particle spacing (the dashed line). Unfortunately, this is
not the case for particle size smaller than shown in Fig. 14 as
an unstability develops, increasing the error. These instabilities
appear as a checkerboarding effect close to the inlets, and work
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Fig. 13. Free-surface particles for simulations using different boundary conditions
compared to the analytical solution of Eqs. (51)–(57).

Fig. 14. Errors on the free-surface for simulations with an imposed velocity profile
on the open boundaries for two particle spacing∆r . The dashed line shows the two
values∆r/A.

Fig. 15. Configuration of the 2D solitary wave on a sloped domain.

on the volume diffusion term close to open boundaries will be
necessary in the future to reduce those errors for very refined
simulations.

In all cases the open boundary conditions seem to model
properly the propagating waves, and no discrepancies appear
between the fluid and imposed free-surfaces even after sevenwave
periods.

4.4. 2D solitary wave

The Riemann invariants become particularly useful when the
boundary conditions are not well known, or not easy to predict. To
illustrate this concept, a test case for the propagation of a solitary
wave on a bed with a step, that will cause it to break will be
presented. See Fig. 15.

At the inlet the solitary wave will be imposed from the
Korteweg–De Vries solitary wave equation [25]:

η(t) = A sech2 (k(ct − x0)) , (59)
h(t) = D + η(t), (60)

p(z, t) = ρg(z − h(t)), (61)

ux(z, t) = c
η(t)
h(t)

, (62)

uz(z, t) =
z

h(t)
∂η

∂t
(t). (63)

η(x, t) = A sech2 (k(x − ct − x0)) , (64)

where A is the amplitude and x0 is wave shifting length. The
wave number and celerity are computed as k =


3A/4D3, c =

√
g(A + D).
At the outlet a hydrostatic pressure corresponding to the

reference level D will be imposed and the velocities will be
calculated using Riemann invariants.

The geometry chosen for the test case illustrated in Fig. 15 is
the reference depth D = 0.6m, wave amplitude A = D/2 and
characteristic length L = 2.5D. The wave shifting length is set to
ensure that the waves are not in the domain at the initialization,
i.e. x0 = −4k.

The fluid viscosity ν is set to 10−6 m2 s−1, the particle spacing
will be set to one thirtieth of the amplitude (∆r = A/30) and the
numerical parameters are c0 = 20 m.s−1 andΛ = 0.1.

The evolution of the solitary wave within the domain at
different instances is shown in Fig. 16. It shows that the step causes
the wave to break, creating a highly disturbed flow to exit the
domain. Nonetheless, imposing a hydrostatic pressure and using
Riemann invariants is sufficient for the wave to exit the domain
without any visible reflection in WCSPH. This shows the high
flexibility of these new open boundary conditions.

Finally, it should be noted that the small peak that appears in
the last frame of Fig. 16 appears because when the wave goes
over the step, a portion of its energy is reflected back to the inlet,
which in turn reflects it back towards the step. This last reflection
occurs because after the wave has entered the domain the velocity
is imposed as zero, making it essentially a wall.

5. Conclusion

The Unified Semi-Analytical boundary condition have been
extended to treat complex inlets and outlets without spurious
shocks. This was achieved by allowing the mass of the vertices
to vary according to the imposed flow rate, and then creating or
deleting particles accordingly. Furthermore, it was necessary to
take into account the imposed Eulerian velocity field in order to
integrate properly in time the continuity equation, and thus avoid
artificial density perturbations near the boundary. Using Riemann
invariants it is possible to impose compatible density and velocity
fields that can support both Neumann and Dirichlet boundary
condition.
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Fig. 16. Propagation of a solitary wave on a bed with a step. As a reminder, the wave period T = 2π/(kc).
These new boundary conditions have been tested on several
test case. Firstly a simple flow entering and leaving the domain
in a non-orthogonal way, on periodic waves where the open
boundaries were used as both inlets and outlets and on a solitary
waves for which the outlet boundary conditions were unknown.
In all cases this formulation of open boundaries in a Smoothed
Particle Hydrodynamics framework has proved to be appropriate
to complex confined and free-surface flows.

Finally, the extension to 3-D should be straightforward, but
since the boundary elements will be more complex greater care
will be needed to allow fluid particles to enter and leave the
domain without creating any artificial perturbations.
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Appendix A. The Riemann problem formulation

In the present approach, the mass flux through an open
boundary is calculated at the position of the segments (although
it is applied to the connected vertices), therefore the values of the
pressure and velocity fields on those segments are required. Since
theWSPHmethod is used, the boundary conditions can be derived
using a linearized Riemann problem. This methodology is widely
used in the literature for finite volumes, but it is not as common
for SPH problems. The approach chosen here follows the work of
Blondel et al. [26], with simplifying assumptions of barotropic fluid
and subsonic flow. The latter assumption is justified by the fact
that weakly compressible SPH assumes the speed of sound to be
significantly larger than the flow velocity.

Let us consider a segment s on an open boundary and work
in the local reference frame of space dimension d relative to s,
denoted by (n, t1, . . . , td−1), n being the local normal unit vector
and tk the tangential unit vectors. In this section, for simplicity we
will drop the label s relative to all fields. The linearized Riemann
problem (LRP) can now be written as:

∂Y
∂t

+ B (Y )
∂Y
∂n

= 0, (A.1)

where the unknown vector is defined as:

Y ≡


ρ
un
ut1
...

utd−1

 =


ρ

u · n
u · t1
...

u · td−1

 , (A.2)
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and the matrix B as:

B (Y ) ≡



un ρ 0 · · · 0
c2

ρ
un 0 · · · 0

0 0 un 0 · · ·

...
... 0

. . . 0
0 0 · · · 0 un

 . (A.3)

Furthermore the speed of sound c is defined from the state
Eq. (1) as:

c ≡


∂p
∂ρ

= c0


ρ

ρ0

 ξ−1
2

. (A.4)

The eigenvalues of B are λ−1 ≡ un − c , λ0 ≡ un (with a
multiplicity d − 1) and λ+1 ≡ un + c.

Along the open boundary there is a discontinuity between the
exterior state (upon which we want to impose our values) and
the interior state (i.e. the fluid domain). The eigenvalues of the
problem, λi, represent the slope of the characteristic curves of the
Riemann problem (see Fig. A.1), which are discontinuities between
the states on their right and left sides (for example the wave λ0 is a
discontinuity between the data state Y1 and Y2). The characteristic
waves can therefore be used to link the exterior state and the
interior state. To go from one state to another the Generalized
Riemann Invariants (GRI)will be used, as these define relations that
hold true, for certain waves, across the wave structure. These are
calculated from the relations defined by Jeffrey [27]:

dY1

V λr,1
=

dY2

V λr,2
= · · · =

dYd

V λr,d
, (A.5)

where Yi is a components of vector Y and V λr,i is a components of
the right eigenvector of B associated to the eigenvalue λ.

The GRI corresponding to the celerities λ−1 and λ+1 are
respectively denoted by R−1 and R+1:

R−1 ≡ un + ψ, (A.6)
R+1 ≡ un − ψ, (A.7)

where:

ψ ≡

 ρ

ρ0

c
ρ̃
dρ̃, (A.8)

i.e. ψ =
2c0
ξ−1


ρ

ρ0

 ξ−1
2

if ξ > 1, ψ = c0 ln
ρ

ρ0
if ξ = 1.

As displayed in Fig. A.1, the state of the segment value Ys is
either defined by the first state (see Fig. A.1(a)) or by the second
state (see Fig. A.1(b)) which respectively correspond to λ0 = un ≥

0 (ingoing mass flux) and λ0 = un < 0 (outgoing mass flux). One
should bear inmind thatλ−1 is supposed to be always negative and
λ+1 always positive as the flow is to be subsonic.

Therefore to link the exterior state a first assumption is made,
that the wave λ−1 is a ‘‘ghost’’ wave, as it is outside of the domain.
This means that the data Yext of the exterior state is assumed equal
to the data Y1 of state 1.

Wave λ0 is known as a contact discontinuity, i.e. λ0,1 =

λ0,2 [28]. This implies that un,1 = un,2, which is consistent with
the GRI relations. Through these relations it is also considered that
dρ = 0 across λ0. Therefore ρ1 = ρ2, but also p1 = p2 as the
pressure is defined by Eq. (1).

Therefore to link the fluid velocity along the normal of the
segment and the pressure, one needs only to find a relation
between state 2 and the interior state; i.e. across the characteristic
wave λ+1 (the tangential velocities will be discussed later).
In terms of notation, a distinction will be made between this
characteristic wave within state 2, λ+1,2, and its value within the
interior state, λ+1,int . As defined in Toro [28] the characteristic
wave λ+1 can belong to three possible type of discontinuity:

1. Contact wave
In this case the characteristics are parallel in both states, this

means that the following condition is true:

λ+1,2 = λ+1,int , (A.9)

and the GRI relations hold across the characteristic wave:

R+1,2 = R+1,int . (A.10)

2. Expansion (or rarefaction) wave
In this case the characteristics are diverging, and the two

data states are connected through a smooth transition. This case
is defined by the following condition:

λ+1,2 < λ+1,int , (A.11)

and the GRI relations hold across the characteristic wave:

R+1,2 = R+1,int . (A.12)

3. Shock wave
In this case the characteristics are converging towards the

wave λ+1, meaning that this case is defined by the following
condition:

λ+1,2 > λ+1,int . (A.13)

In this case the GRI relations do not hold across the character-
istic wave, and therefore the Rankine–Hugoniot relationships
have to be used:

Conservation of mass:
ρ2un,2 = ρintun,int ,

Conservation of momentum: p2+ρ2u2
n,2 = pint +ρintu2

n,int .

(A.14)

For the case of the tangential velocities the Riemann invariants
relations make it possible to write dut1 = · · · = dutd−1 = 0
across the wave λ+1 (we will assume these relations still hold in
the case of a shock). Therefore the tangential velocities are equal
between state 2 and the interior state. However, the wave λ0 acts
as a discontinuity.

Therefore if the problem is that of an inlet then the discontinuity
prevents a relationship between state 2 and state 1 to be defined
for these velocities, all that is known is that dut1 = · · · = dutd−1 =

Const . This means that these velocities need to be defined by the
user for inlet open boundaries. However for the case of an outlet
then the λ0 will be assumed to be a ‘‘ghost’’ wave and the exterior
tangential velocities will be assumed to be equal to the tangential
velocities of state 1 and 2, and therefore equal to the velocities of
the interior state.

In mesh-based methods, such as finite volumes, knowing the
interior state data is simple as boundary segments are only
connected to one element. However in the SPH formulation there
is more than one fluid particle connected to a boundary segment.
Therefore defining the interior state is non-trivial. The method
chosen is to use the SPH interpolations as defined by Ferrand
et al. [8]:

ps,int =
1
αs


b∈F

Vbpbwbs, (A.15)

where, as a reminder, F contains only fluid particles and αs is the
Shepard filter defined for a segment s by:

αs =


b∈F

Vbwbs. (A.16)
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(a) Inlet. (b) Outlet.

Fig. A.1. Sketches of the Riemann problems.
Similarly, the interior velocity is defined as:

us,int =
1
αs


b∈F

Vbubwbs. (A.17)

Finally, the density will be calculated using Eq. (1).

Appendix B. Handling varying number of particle in a parallel
implementation

Handling a varying number of particles in a parallel implemen-
tation can be difficult. To allow the algorithm presented here to be
easily implemented, several key numerical considerations will be
described in the following sections.

B.1. Creating and deleting particles

As mentioned earlier this algorithm has been implemented in a
parallel framework, and therefore particle creation/deletion can be
non-trivial. Namely, adding an extra particle needs to be an atomic
operation (i.e. an operation that will be done sequentially on all
processors). The same is true when deleting particles and themass
of the concerned vertex particles.

The implementation tested is based on a branch of the GPUSPH
software [29,30], and therefore most of the memory is handled in
the same manner. In addition to the aforementioned problem, all
the arrays are of a fixed size at the initialization. As such, changing
the size of any array when a particle is removed or added can be
quite expensive, especially when it happens at each iteration. Thus
it is suggested to allocate larger arrays. The user has to evaluate the
total number of particles that will be added during the simulation
time. Regardless of this number, the loops are only done on the
current number of particles at each iteration.

Furthermore it is very important that the masses of the open
boundary vertices is kept constant during the stepping algorithm,
so that the condition mb = mn

b during the open time interval
]tn, tn+1

[ is maintained (i.e. excluding both tn and tn+1). The
same is true for the set of particles, i.e. during the continuity
equation step, the particles that have crossed an open boundary
are considered, but not the particles that will be created.

B.2. Updating vertices and segments

When dealing with the semi-analytical boundary conditions, it
has been established that Dirichlet boundary conditions will be
imposed on the vertices, and Neumann boundary conditions on
the segments [20]. This implies that for walls the velocity will be
imposed on the vertices, and that velocity on the segments will
be the average of the connected vertices. For the pressure the
condition ∂p/∂n = 0 will be used to calculate the pressure on
the segments, and on the vertices it will be the average of the
connected segments.

When dealing with an open boundary, either the velocity or the
pressure will be imposed on the vertices and Riemann conditions
Fig. B.2. Illustration of the different boundary conditions that can be imposed on
vertices and segments. The symbolD represents a Dirichlet boundary condition and
the symbol N represents a Neumann boundary condition. The superscripts show if
these conditions are imposed on the velocity u or on the pressure p.

will be used to calculate the corresponding pressure or velocity on
the segments. In all cases the missing values on the segments and
verticeswill be calculated from the connected vertices or segments
(see Sections 3.4.1 and 3.4.2). Furthermore the mass flux will only
affect the masses of vertices, even though it uses the densities,
velocities and lengths of the connected segments.

However, as illustrated by Fig. B.2, dealingwith the vertices that
are in between awall and an open boundary segments is not trivial.
For the vertices that are in-between a segment with an imposed
velocity and a wall, it is recommended to impose the wall velocity,
and to deduce the pressure from the connected segments. For the
vertices that are in between a segment with imposed pressure and
awall, it is recommended to impose the wall velocity and the open
boundary pressure. Furthermore, it is recommended to keep the
masses of the vertices that are in betweenwall segments and open
boundaries constant. Therefore, even though these particles will
be used to calculate the mass repartition factor β their masses will
not evolve. This implies that the open boundary vertices can be
considered as an interpolation of the Eulerian fields imposed.

This means that in the implementation 4 loops would be
necessary:

1. Calculate the values that are imposed.
2. Update the vertices and segments according to the connected

segments or vertices.
3. Apply the time marching scheme on the fluid particles.
4. Update the masses of the open boundary vertices.

Furthermore, it is good practice to impose the velocities on the
inlets and to impose the pressure on the outlets.

B.3. Mass of the vertices

For open boundaries segments it is strongly recommended that
their masses stay between ±mref . For the vertices that are slightly
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above the free-surface or near walls, the SPH interpolation can
create mass fluxes that will break the condition −m0/2 < mv <
m0/2. This is particularly critical at the outlets, and therefore it is
recommended to clip the masses and for open boundaries with
imposed pressures, the mass flux above the free-surface is only
allowed to be negative. Finally, above the free-surface the mass is
initialized at 0.

B.4. Constraints on the time-step

The time marching scheme uses an adaptive time-stepping,
where the time-step is calculated using the following condition:

∆t ≤
0.4h
c0
, (B.1)

where the speed of sound c0 is chosen such that the following
condition is always satisfied:

c0 ≥ 10 max

|umax| ,


gD

, (B.2)

h is the smoothing length of the kernelw, D is the water depth (in
case of free-surface flows) and |umax| is the norm of the maximum
fluid velocity in the domain (i.e. for the fluid particles, but also for
the open boundaries).

In addition, since γa is calculated through its gradient (see the
marching scheme presented in Eq. (27)), this

gives an additional constraint on the time step:

∆t ≤ 0.004
1

max
a∈ F


max
s∈ S

[|∇γas · (uas − vas)|]
 . (B.3)

Additional details about the numerical stability of WCSPH are
available in Violeau and Leroy [31].
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