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Abstract Maximizing shareholders’ value has always been an indispensable goal for pub-
licly traded companies. Shareholders value is highly dependent on the operating expenses,
profit margin, return on investment and the overall performance in public companies. We
propose a hybrid fuzzy multi-criteria decision making method for measuring the perfor-
mance of publicly held companies in the Pharmaceutical industry. The proposed method
helps investors choose a proper portfolio of stocks in the presence of environmental turbu-
lence and uncertainties. The proposed method is composed of three distinct but inter-related
phases. In the pre-screening phase, a set of financial and non-financial evaluation criteria are
selected based on the balanced scorecard (BSC) approach. In the efficiency measurement
phase, the DEMATEL method is used first to determine the inter-relationships among the
BSC perspectives. A fuzzy ANP method is used next to determine the relative importance
of the criteria based on the resulting DEMATEL interactive network. In the third step, two
different fuzzy data envelopment analysis (DEA) methods are used to evaluate the relative
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efficiency of the decision making units (DMUs). The fuzzy DEA models are modified by
using the relative importance of the criteria and the precedence relations among the input and
output weights as additional constraints. Finally, the modified fuzzy DEA models are used
to calculate the relative efficiency scores of the DMUs. In the ranking phase, an integration
method grounded in the Shannon’s entropy concept is used to combine different efficiency
scores and calculate the final ranking of the DMUs. The method proposed in this study is
used to evaluate the performance of publicly held pharmaceutical companies actively trading
on the Swiss Stock Exchange (SSE).

Keywords Performance evaluation · Balanced scorecard · DEMATEL · Fuzzy ANP ·
Fuzzy DEA

1 Introduction

It has been well established that performance measurement should be an essential component
of a rational and efficient investment management system. Yet there is little agreement on
what guidelines are appropriate for choosing the most suitable performance measurement
methods or how to implement them in practice. Because traditional performance measurement
systems have often been criticized, many studies have investigated ways that qualitative and
non-financial information can help address issues such as internal process, learning and
growth, and customer needs and satisfaction (Creamer and Freund 2010).

We propose a hybrid fuzzy multi-criteria decision making (MCDM) approach for measur-
ing the performance of publicly held pharmaceutical companies. The three-phase approach
proposed in this study is based on the decision-making trial and evaluation laboratory
(DEMATEL) method, the fuzzy analytic network process (ANP), and fuzzy data envelopment
analysis (DEA). First, a set of financial and non-financial evaluation criteria are identified
using the balanced scorecard (BSC) framework. In the first phase, a literature review and
expert opinions are used to identify a set of performance measurement criteria and cluster
them according to the BSC perspectives. In the second phase, the DEMATEL method is used
to construct an interactive network of BSC perspectives by identifying the inter-relationships
among the BSC perspectives. A fuzzy ANP method is used next to determine the relative
importance of the criteria based on the interactive network of DEMATEL. Two different
fuzzy DEA (FDEA) approaches are used to evaluate the relative efficiency of the pharma-
ceutical companies represented by decision making units (DMUs) in the DEA models. The
relative importance of the criteria, based on fuzzy ANP, is established next and the prece-
dence relations between the weights of the inputs and outputs in the fuzzy DEA models are
represented in the form of additional constraints. Then the relative efficiency scores of the
DMUs are calculated using the modified fuzzy DEA models. Finally, a method grounded in
the Shannon’s entropy concept is used to combine different efficiency scores and to calculate
the final ranking of the DMUs. The proposed method is applied to measure the performance
of 21 pharmaceutical companies publicly traded on the Swiss Stock Exchange (SSE).

The overall contribution of this study is fivefold: (1) using the BSC framework to identify
the most important indices for measuring the performance of publicly held pharmaceutical
companies; (2) using the DEMATEL method to capture the network of interdependencies
among these indices; (3) using the fuzzy ANP method to measure the relative importance
of these indices; (4) using the fuzzy DEA method to calculate the relative efficiency scores
and develop an overall ranking of the publicly held pharmaceutical companies; and (5) using
statistical analysis to determine the most efficient method.
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The remainder of this paper is organized as follows. In Sect. 2 we present a brief review
of the literature on performance evaluation, BSC, DEMATEL, ANP, and DEA. In Sect. 3 we
present the mathematical details of the hybrid approach proposed in this study. In Sect. 4 we
use the method proposed here to evaluate the performance of publicly held pharmaceutical
companies. In Sect. 5 we present our conclusions and future research directions.

2 Literature review

In this section, we present a brief review of the literature on performance evaluation, BSC,
DEMATEL, ANP, and DEA.

2.1 Performance evaluation

There are two basic views with regards to corporate performance evaluation: traditional and
modern. The traditional view is heavily influenced by financial criteria such as earnings per
share, return on assets, debt ratio, and so on. On the other hand, the modern view is more
concerned with the growth and development and improvement of the unit under evaluation.

Wang (2008) proposed a method for evaluating the financial performance of domestic
airline in Taiwan. Ertuğrul and Karaşoğlu (2009) proposed a method to evaluate the perfor-
mance of Turkish cement firms. Yalcin et al. (2012) proposed a methodology for evaluating
the financial performance of Turkish manufacturing industries. Bulgurcu (2012) proposed a
method for evaluating the financial performance of the high-technology firms on the Istanbul
Stock Exchange Market. Halkos and Tzeremes (2012) proposed a procedure to evaluate the
performance of manufacturing industries.

It is undisputed that sole consideration of financial criteria cannot lead to an equitable
and comprehensive performance assessment system. Non-financial and qualitative criteria
affecting the prospects of companies, such as customer satisfaction, innovation and learning,
technology, quality products and services should also be considered in a balanced and fair
performance assessment methodology.

2.2 BSC applications in performance evaluation

BSC is a performance management system developed by Kaplan and Norton (1992) for
plotting the future vision of an organization and codifying strategic objectives. BSC is used
to specify critical success factors and the causal relationship between these factors based
on the future perspectives and the organization’s strategic objectives. BSC evaluates orga-
nizational performance from the four perspectives of financial, customer, internal process
and learning and growth. BSC is a well-established tool for strategic management used by
many researchers and practicing managers. Eilat et al. (2008) embedded the BSC in the DEA
model through a hierarchical structure of constraints that reflected the BSC balance consider-
ations. They illustrated the proposed approach with a case study in research and development
project selection. Wu et al. (2009) proposed a fuzzy MCDM model based on the BSC for
banking performance evaluation. Wang et al. (2010) integrated the hierarchical BSC with a
non-additive fuzzy integral for evaluating high technology firm performance. Tzeng et al.
(2011) presented a BSC approach to establish a performance evaluation and relationship
model for hot spring hotels. Wu et al. (2011) used BSC to evaluate the performance of exten-
sion education centers in universities. Wu (2012) used BSC to construct a strategy map for
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banking institutions. Amado et al. (2012) combined the BSC method with DEA to enhance
performance assessment and provided a set of recommendations relating to the successful
application of DEA and its integration with the BSC. Lin et al. (2013) proposed a hybrid
model of hierarchical BSC with fuzzy linguistic variables to evaluate the performance of
operating rooms in hospitals.

2.3 Fuzzy analytic network process

The analytic hierarchy process (AHP) has been widely used in MCDM to measure quantita-
tive and qualitative criteria (Saaty 1977, 1980). AHP decomposes a MCDM problem into a
hierarchical structure by assuming that the relationships of criteria in different levels are inde-
pendent. Conventional AHP uses precise and crisp pair-wise judgments to derive weights
without considering any uncertainties in human understanding and intuition. In response,
Saaty and Vargas (1987) proposed an interval AHP to handle interval judgments. However,
this approach for interval judgment was found to be very difficult to implement in real-life
problems. In addition, the assumption of independent relationship in different levels of the
hierarchical structure in AHP was not always true in most MCDM problems. Saaty (1996)
proposed ANP, a generalization of AHP, to cope with problems involving interdependent rela-
tionships among criteria. ANP extends the AHP to problems with dependence and feedback
among criteria by using a network structure instead of a hierarchical structure.

Despite the popularity and wide spread use of the ANP, this method is not useful for
problems involving uncertainty. The judgments of individuals concerning their preferences
are often imprecise or ambiguous, and very hard to estimate with crisp numbers. In recent
years, many researchers have used fuzzy ANP to capture the impreciseness and ambiguity
in human decision making. Dağdeviren and Yüksel (2010a) used fuzzy ANP to assess the
sectorial competition level in manufacturing firms based on vision and strategy. Liu and Wang
(2010) used fuzzy ANP in an advanced quality function deployment model. Vinodh et al.
(2011) used fuzzy ANP to select suppliers in a manufacturing organization. Sevkli et al. (2012)
developed a fuzzy ANP model to evaluate the strength–weakness–opportunity–threat method
in the Turkish airline industry. Tavana et al. (2013a, b) introduced a hybrid group decision
support system based on fuzzy ANP for evaluation of the advanced technologies at NASA.

2.4 Fuzzy DEA

DEA is a non-parametric method to evaluate the relative efficiency of homogenous deci-
sion making units (DMUs) with multiple inputs and multiple outputs. The field of DEA has
grown enormously since the pioneering work of Farrell (1957). The first DEA model was
formally introduced by Charnes et al. (1978). The model is also known as CCR by which
the efficiency of DMUs with constant returns to scale is calculated. Banker et al. (1984)
developed the CCR model for variable returns to scale and introduced the BCC model.
In order to measure the efficiency of DMUs using conventional DEA models, inputs and
outputs should be positive, quantitative, and precise. However, in many real-life problems,
data is expressed as qualitative, imprecise and with ambiguity. Fuzzy logic has been used
in DEA to overcome these limitations. Sengupta (1992) presented a fuzzy programming
approach for fuzzy DEA modeling. Guo and Tanaka (2001) proposed a perceptual evalua-
tion method for fuzzy DEA. Lertworasirikul et al. (2003) developed fuzzy DEA models in the
form of fuzzy linear programming. Jahanshahloo et al. (2004) developed a slack based DEA
model for evaluating the efficiency and the ranking of DMUs with fuzzy inputs and outputs.
Wen and Li (2009) developed a fuzzy DEA model using fuzzy simulation and the genetic
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algorithm. Zerafatangiz et al. (2010) introduced a non-radial fuzzy DEA method for evaluat-
ing the performance of DMUs. Wang and Chin (2011) proposed a fuzzy DEA method based
on expected value. Zhou et al. (2012) proposed a fuzzy DEA model with an assurance region.

Abtahi and Khalili-Damghani (2011) proposed a mathematical formulation for measuring
the performance of agility in supply chains using single-stage fuzzy DEA. Khalili-Damghani
et al. (2011) applied the proposed formulation of Abtahi and Khalili-Damghani (2011) to
measure the efficiency of agility in supply chains and used simulation to rank the interval
efficiency scores. Khalili-Damghani and Abtahi (2011) measured the efficiency of just in time
productions systems using fuzzy DEA approach. Khalili-Damghani and Taghavifard (2012)
proposed a fuzzy two-stage DEA approach for performance measurement in supply chains.

Khalili-Damghani et al. (2012) used the ordinal data in a new two-stage DEA approach
for agility performance and illustrated the efficacy of their approach in a supply chain.
Khalili-Damghani and Taghavifard (2013) performed sensitivity and stability analysis in
two-stage DEA models with fuzzy data. They proposed several models for calculating the
stability radius in DEA problems with considerable input and output variations and uncertain-
ties. Khalili-Damghani and Tavana (2013) proposed a new network DEA model for measuring
the performance of agility in supply chains. The uncertainty of the input and output data were
modeled with linguistic terms and the proposed model was used to measure the performance
of agility in a real-life case study in the dairy industry. Tavana et al. (2013a, b) proposed a
fuzzy group DEA model for high-technology project selection at NASA.

Liu (2014) proposed a fuzzy two-stage DEA model where the weights were restricted in
ranges and the input and output data were treated as fuzzy numbers. The assurance region
approach was utilized to restrict weight flexibility and a pair of two-level mathematical pro-
grams was formulated to calculate upper and lower bounds for the fuzzy efficiency scores
based on Zadeh’s extension principle (Dubois and Prade 1980). This pair of two-level pro-
grams was then transformed into a pair of conventional one-level programs to calculate the
bounds for the fuzzy efficiency scores.

Tavana and Khalili-Damghani (2014) proposed a new fuzzy two stage DEA model based
on the Stackelberg (leader–follower) game theory approach to prioritize and sequentially
decompose the efficiency score of the DMU into a set of efficiency scores for its sub-DMUs.
The proposed models were linear (allowing for a quick identification of the global optimum
solution) and independent of the α-cut variables (allowing for a significant reduction in the
computational efforts). They also used Monte Carlo simulation to discriminately rank the
efficiencies in their model.

Kao et al. (2014) proposed a multi-objective programming method for solving network
DEA problems. They formulated the divisional efficiencies and the overall efficiency of
the organization as separate objective functions and measured the organization’s overall
efficiency without neglecting the efficiencies of its subunits. Khalili-Damghani et al. (2014)
proposed fuzzy DEA models for assessing the efficiency of agility in supply chains under
uncertainty and applied their models to study two agility patterns. They also introduced a
real-world case study to demonstrate the applicability of the proposed models.

3 Proposed hybrid approach

We use a three-phase hybrid fuzzy MCDM approach to evaluate the performance of a set of
companies in the pharmaceutical industry. Figure 1 presents a schematic view of the proposed
approach:
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Fig. 1 Schematic view of the proposed hybrid fuzzy MCDM approach

3.1 Pre-screening phase (Module 1)

In the pre-screening phase we first identify the relevant performance evaluation criteria using
a literature review and then use expert opinions to cluster the selected performance criteria
according to the BSC perspectives (i.e., financial, customer, internal process, and learning
and growth).

3.2 Efficiency measurement phase (Module 2)

In the efficiency measurement phase we first use the DEMATEL method (Module 1) to deter-
mine the interdependencies among the BSC perspectives by following the four procedures
proposed by Gabus and Fontela (1972, 1973):
Procedure 1. Construct the direct-relation matrix In this step we ask our experts to specify
the impact of perspective i on perspective j using a five point scale from 0 to 4. Zero indicates
that perspective i has no impact on perspective j . Four means that perspective i has a high
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impact on perspective j . The mean direct relation matrix D is obtained by collecting ideas
and calculating the means for the degree of influence the perspectives have on each other as
follows:

D =

⎡
⎢⎢⎢⎢⎢⎢⎣

d11 · · · d1 j · · · d1n
...

...
...

di1 · · · di j · · · din
...

...
...

dn1 · · · dnj · · · dnn

⎤
⎥⎥⎥⎥⎥⎥⎦

(1)

di j indicates the direct impact of factor i on factor j ; the main diagonal elements di j = 0
corresponding to i = j .
Procedure 2. Normalize the initial direct-relation matrix The normalized direct-relation
matrix can be obtained by using (2).

X = s · D

s = min

[
1

maxi
∑n

j=1

∣∣di j
∣∣ ,

1

max j
∑n

i=1

∣∣di j
∣∣
]

(2)

Procedure 3. Construct the total-relation matrix The total-relation matrix T is calculated by
using (3).

T = [ti j ]n×n = X + X2 + · · · + Xk = X (I − X)−1, i, j = 1, 2, . . . , n (3)

where I is the identity matrix, ti j (an element of T ) indicates the indirect effects of factor i
on factor j , and Matrix T reflects the total relationship between the factors.
Procedure 4. Determining the interconnection matrix We then determine the network rela-
tions by using (4) to calculate the totals of the rows and totals of the columns of Matrix T as
r and c vectors:

�r = [ri ]n×1 =
⎡
⎣

n∑
j=1

ti j

⎤
⎦

n×1

�c = [
c j

]
1×n =

[
n∑

i=1

ti j

]

1×n

(4)

where ri (the sum of the i-th row of Matrix T ) shows the total direct and indirect effects of
Factor i on the other factors. In addition, c j (the sum of the j-th column of Matrix T ) shows
the total direct and indirect effects of the other factors on Factor j .

Furthermore, when i = j, ri +ci shows all the effects given and received by Factor i . That
is, ri + ci indicates both Factor i’s impact on the whole system and the other system factors’
impact on Factor i . Therefore, the indicator ri +ci represents the degree of importance factor
i on the system. On the contrary, the difference between the two (ri −ci ) shows the net effect
of Factor i on the system. More specifically, if the value of ri − ci is positive, Factor i is a
net cause, i.e. having a net causal effect on the system. When ri − ci is negative, Factor i is
a net result clustered into an effect group.

In the efficiency measurement phase we then use the fuzzy ANP method (Module 2) to
determine the relative importance of the criteria. We should note the interdependencies of
the evaluation criteria due to the interdependency relations between the BSC perspectives
in module (1). Fuzzy ANP as suggested by Dağdeviren and Yüksel (2010b) can be used to
determine the relative importance of the criteria using the following five procedures:
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Table 1 Linguistic variables and the TFNs used for the relative importance of the criteria

Linguistic variable TFN scale TFN reciprocal scale

Just equal (1, 1, 1) (1, 1, 1)

Equally important (EI) (1/2, 1, 3/2) (2/3, 1, 2)

Weakly more important (WMI) (1, 3/2, 2) (1/2, 2/3, 1)

Strongly more important (SMI) (3/2, 2, 5/2) (2/5, 1/2, 2/3)

Very strongly more important (VSMI) (2, 5/2, 3) (1/3, 2/5, 1/2)

Absolutely more important (AMI) (5/2, 3, 7/2) (2/7, 1/3, 2/5)

µRI

1

0 RI
1/2 1 3/2 5/2 7/22 3

EI WMI SMI VSMI AMI

Fig. 2 Linguistic terms used for representing the relative importance

Procedure 1. Determinate the network structure In this step we determine the network struc-
ture based on the goals, perspectives, and evaluation criteria.
Procedure 2. Determine the pairwise comparisons matrices Our experts are then asked to pro-
vide their pair-wise comparisons by assuming no interdependency among the factors (similar
to a simple hierarchy) using linguistic variables parameterized through triangular fuzzy num-
bers (TFNs) as presented in Table 1. Figure 2 presents a schematic view of the TFNs. Among
the various types of fuzzy numbers, triangular and trapezoidal fuzzy numbers are most often
used in real-world applications. We use TFNs because they are intuitive, easy to use, computa-
tionally simple, and useful in promoting representation and information processing in a fuzzy
environment.
Procedure 3. Calculate the local weights of the BSC perspectives and performance criteria
We then use the method proposed by Chang (1996) to determine the local weights of the
perspectives and criteria. We do not describe the method and its steps here for the sake of
brevity. Details can be found in Chang (1996) and Dağdeviren and Yüksel (2010a). Finally,
we use (5) to calculate the weight vector of criteria, called W, based on the method proposed
by Dağdeviren and Yüksel (2010b).

W = [W (A1), W (A2), . . . , W (An)]T (5)

Procedure 4. Determine the interdependent weights
Procedure 5. Determine the global weights of the criteria
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3.3 Calculate the efficiency scores of the DMUs (Module 3) using fuzzy DEA approaches

In last part of the efficiency measurement phase we calculate the efficiency scores of the
DMUs. Fuzzy DEA is proposed to calculate the efficiency scores because the inputs and
outputs are qualitative and mixed with uncertainty.

Assume that we have n DMUs that consume m fuzzy inputs as x̃i j , i = 1, 2, . . . , m to
produce s fuzzy outputs as ỹr j , r = 1, 2, . . . , s. Based on the CCR model proposed by
Charnes et al. (1978), the fuzzy CCR-Input oriented is represented by (6).

Max Z0 =
s∑

r=1

ũr ỹr◦

s.t.
m∑

i=1

ṽi x̃i◦ = 1

s∑
r=1

ũr ỹr j −
n∑

i=1

ṽi x̃i j ≤ 0 j = 1, 2, . . . , n

ṽi , ũr ≥ 0; r = 1, 2, . . . , s; i = 1, 2, . . . , m

(6)

Several approaches have been proposed in the literature to handle fuzziness in DEA mod-
els. Hatami-Marbini et al. (2011) has classified the fuzzy DEA methods into four primary cat-
egories: the tolerance approach, the alpha-level based approach, the fuzzy ranking approach,
and the possibility methods. We used two well-known approaches: the expected value method
proposed by Wang and Chin (2011) and the alpha-cut based approach proposed by Khalili-
Damghani et al. (2011). We further modified both methods to handle the additional constraints
prescribed in the process. Real-world fuzzy DEA models are usually customized using tri-
angular or trapezoidal fuzzy numbers. Similar to both Wang and Chin (2011) and Khalili-
Damghani et al. (2011), the methods developed in this research are based upon triangular
fuzzy numbers which allows us to make a fair comparison of the performances of the different
methods. In addition triangular fuzzy numbers are simple to use and easy to understand.

3.3.1 Wang and Chin’s (2011) expected value method

Wang and Chin (2011) consider the inputs and outputs in the form of trapezoidal fuzzy
numbers (TrFNs) and calculate the efficiency scores based on the optimistic and pessimistic
scenarios. The optimistic model is presented as Model (7).

Maximize θbest◦ =
s∑

r=1

(
ul

r yl
r◦ + um

r ym
r◦ + un

r yn
r◦ + uu

r yu
r◦

)

s.t.
m∑

i=1

(
vl

i xl
i◦ + vm

i xm
i◦ + vn

i xn
i◦ + vu

i xu
i◦

)
= 1

s∑
r=1

(
ul

r yl
r j + um

r ym
r j + un

r yn
r j + uu

r yu
r j

)

−
n∑

i=1

(
vl

i xl
i j + vm

i xm
i j + vn

i xn
i j + vu

i xu
i j

)
≤ 0, j = 1, 2, . . . , n

uu
r ≥ un

r ≥ um
r ≥ ul

r ≥ 0, r = 1, 2, . . . , s

vu
i ≥ vn

i ≥ vm
i ≥ vl

i ≥ 0, i = 1, 2, . . . , m

(7)
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Theorem I Model (7) is always feasible and bounded.

Proof The dual form of Model (7) can be written as follows:

Minimize ωo

s.t.
n∑

j=1
λ j xl

i j ≤ ωxl
io, i = 1, . . . , m

n∑
j=1

λ j xm
i j ≤ ωxm

io, i = 1, . . . , m

n∑
j=1

λ j xn
i j ≤ ωxn

io, i = 1, . . . , m

n∑
j=1

λ j xu
i j ≤ ωxu

io, i = 1, . . . , m

n∑
j=1

λ j yl
r j ≥ yl

ro, r = 1, . . . , s

n∑
j=1

λ j ym
r j ≥ ym

ro, r = 1, . . . , s

n∑
j=1

λ j yn
r j ≥ yn

ro, r = 1, . . . , s

n∑
j=1

λ j yu
r j ≥ yu

ro, r = 1, . . . , s

λ j ≥ 0, j = 1, 2, . . . , n

Consider an arbitrary solution for the dual model as follows:

λ j = 0, j = 1, 2, . . . , n, j �= o

λo = 1

ω = 1

It is clear that the above solution satisfies all the constraints in the dual model and hence it
is a feasible solution for the dual model. Therefore, it can be concluded that independent of
the values of inputs and outputs of DMUs, there is at least one feasible solution for the dual
model, and sequentially there is a feasible solution for the primal model (7). Thus, model (7)
is always feasible.

According to the direction of the objective function for the dual model (i.e., minimization),
the optimum value of the objective function (i.e., ω∗) is always less than or equal to any
arbitrary objective function value associated with a feasible solution (i.e. ω∗ ≤ ω is always
satisfied). Since ω = 1 in the proposed arbitrary solution, it can be concluded that ω∗ ≤ 1.
According to the basic theorem of linear programming, the optimum value of the primal and
dual models are equal. Therefore, θbest∗◦ = ω∗ ≤ 1. This completes the proof. �	
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The pessimistic model is presented as Model (8).

Minimize θworst◦ =
s∑

r=1

(
ul

r yl
r◦ + um

r ym
r◦ + un

r yn
r◦ + uu

r yu
r◦

)

s.t.
m∑

i=1

(
vl

i xl
i◦ + vm

i xm
i◦ + vn

i xn
i◦ + vu

i xu
i◦

)
= 1

s∑
r=1

(
ul

r yl
r j + um

r ym
r j + un

r yn
r j + uu

r yu
r j

)

−
n∑

i=1

(
vl

i xl
i j + vm

i xm
i j + vn

i xn
i j + vu

i xu
i j

)
≥ 0, j = 1, 2, . . . , n

uu
r ≥ un

r ≥ um
r ≥ ul

r ≥ 0, r = 1, 2, . . . , s

vu
i ≥ vn

i ≥ vm
i ≥ vl

i ≥ 0, i = 1, 2, . . . , m (8)

Solving Models (7) and (8) results in two different sets of efficiency scores for the DMUs.
In Model (7), if the optimum value of θbest◦ is equal to unity, the associated DMU is called
efficient and if the optimum value of θbest◦ is less than unity, the associated DMU is called
inefficient. In Model (8), if the optimum value of θworst◦ is equal to unity, the associated DMU
is called efficient and if the optimum value of θworst◦ is greater than unity, the associated DMU
is called inefficient. Details can be found in Wang and Chin (2011).

Theorem II Model (8) is always feasible.

Consider an arbitrary solution for Model (8) as follows:

vl
i = 1

4 × m × xl
i j

, vm
i = 1

4 × m × xm
i j

, vn
i = 1

4 × m × xn
i j

, vu
i = 1

4 × m × xu
i j

ul
r = 1

4 × s × yl
r j

, um
r = 1

4 × s × ym
r j

, un
r = 1

4 × s × yn
r j

, uu
r = 1

4 × s × yu
r j

θworst◦ = 1

It is clear that the above solution satisfies all the constraints in Model (8) and hence it is
a feasible solution for Model (8). Therefore, it can be concluded that, there is at least one
feasible solution for Model (8). Thus, Model (8) is always feasible. This completes the proof.

�	

Lemma I The optimality conditions of Model (8) are as follows: (a) θworst◦ = 1 for efficient
DMUs; and (b) θworst◦ > 1 for inefficient DMUs.

According to the following constraints in Model (8):

s∑
r=1

(ul
r yl

r j + um
r ym

r j + un
r yn

r j + uu
r yu

r j ) −
n∑

i=1

(vl
i xl

i j + vm
i xm

i j + vn
i xn

i j + vu
i xu

i j ) ≥ 0,

j = 1, 2, . . . , n
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For each DMUo under consideration we have:

s∑
r=1

(ul
r yl

ro + um
r ym

ro + un
r yn

ro + uu
r yu

ro) ≥ 1

If the above inequality is prescribed as an equality,
∑s

r=1(u
l
r yl

ro + um
r ym

ro + un
r yn

ro
+uu

r yu
ro) = 1 and hence θworst◦ = 1; otherwise,

∑s
r=1 (ul

r yl
ro + um

r ym
ro + un

r yn
ro + uu

r yu
ro) >1

and hence θworst◦ > 1. Therefore, the optimum value for the objective function of Model (8)
is equal to 1 for the efficient DMUs and it is greater than 1 for the inefficient DMUs.

Khalili-Damghani et al.’s (2011) alpha-cut based method

Khalili-Damghani et al. (2011) proposed an α-cut based fuzzy DEA model. They used
TrFNs and demonstrated the uncertainty of the inputs and the outputs. Khalili-Damghani
et al. (2011) calculated the upper- and lower-limit of the fuzzy inputs and outputs as
follows:

(x L
i j )αi = xl

i j + αi (xm
i j − xl

i j ); αi ∈ [0, 1], i = 1, . . . , m; j = 1, . . . , n (9)

(xU
i j )αi = xu

i j − αi (xu
i j − xn

i j ); αi ∈ [0, 1], i = 1, . . . , m; j = 1, . . . , n (10)

(yL
r j )αr = yl

r j + αr (ym
r j − yl

r j ); αr ∈ [0, 1], r = 1, . . . , s; j = 1, . . . , n (11)

(yU
r j )αr = yu

r j −αr (yu
r j −yn

r j ); αr ∈ [0, 1], r = 1, . . . , s; j = 1, . . . , n (12)

Using this method, the upper- and lower-limit for the efficiency scores can be obtained
for each DMU by Replacing (9)–(12) in Model (6). The upper-limit for the efficiency scores
can be calculated by using Model (13).

Max EU =
s∑

r=1

ur yu
ro − ηr (yu

ro − yn
ro)

s.t.
s∑

r=1

ur yl
r j +ηr (ym

r j − yl
r j )−

m∑
i=1

vi xu
i j −λi (xu

i j −xn
i j )≤0; j = 1, . . . , n, j �= o,

s∑
r=1

ur yu
ro − ηr (yu

ro − yn
ro) −

m∑
i=1

vi xl
io + λi (xm

io − xl
io) ≤ 0,

m∑
i=1

vi xl
io + λi (xm

io − xl
io) = 1,

vi ≥ 0, i = 1, 2, . . . , m,

ur ≥ 0, r = 1, 2, . . . , s,

0 ≤ λi ≤ vi ; i = 1, 2, . . . , m,

0 ≤ ηr ≤ ur ; r = 1, 2, . . . , s. (13)

Theorem III Model (13) is always feasible and bounded.
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Proof Defining proper dual variables, the dual form of Model (13) can be written as follows:

Min z = θ

s.t.
n∑

j = 1
j �= o

yl
r jα j + yu

roαo − μr ≥ yu
ro, r = 1, 2, . . . , s,

n∑

j = 1
j �= o

(ym
r j − yl

r j )α j − (yu
ro − yn

ro)αo − γr + μr ≥ −(yu
ro − yn

ro), r = 1, 2, . . . , s,

−
n∑

j = 1
j �= o

xu
i jα j − xl

ioαo + xl
ioθ − φi ≥ 0, i = 1, 2, . . . , m,

n∑

j = 1
j �= o

(xu
i j − xn

i j )α j−(xm
io − xl

io)αo + (xm
io − xl

io)θ − βi + φi ≥ 0, i = 1, 2, . . . , m,

α j ≥ 0, j = 1, 2, . . . , n,

φi , βi ≥ 0, i = 1, 2, . . . , m,

μr , γr ≥ 0, r = 1, 2, . . . , s,

θ f ree

Consider a solution for the dual model as follows:

α j = 0, j = 1, 2, . . . , n, j �= o

α0 = 1

φi = βi = 0, i = 1, 2, . . . , m,

μr = γr = 0, r = 1, 2, . . . , s,

θ = 1

It is obvious that the above solution is a feasible solution for the dual model. Therefore,
independent of the input and output variables, there is always at least one feasible solution for
the dual and the primal models. Consequently, the optimum value for the objective function
of the dual model is definitely less than or equal to 1 (i.e., Z∗ ≤ 1). By the virtue of the
duality theorem in linear programming, the objective function of the dual and the primal
models are equal for the optimal solution (i.e., Z∗ = E∗U

o ). Therefore, it can be concluded
that E∗U

o ≤ 1 is always true. Hence, the Model (13) is always bounded. This completes the
proof. �	

The lower-limit for the efficiency score can be calculated by using Model (14).

Max E L =
s∑

r=1

ur yl
ro + ηr (ym

ro − yl
ro)

s.t.
s∑

r=1

ur yu
r j − ηr (yu

r j − yn
r j ) −

m∑
i=1

vi xl
i j + λi (xm

i j − xl
i j ) ≤ 0; j = 1, . . . , n, j �= o
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s∑
r=1

ur yl
ro + ηr (ym

ro − yl
ro) −

m∑
i=1

vi xu
io − λi (xu

io − xn
io) ≤ 0

m∑
i=1

vi xu
io − λi (xu

io − xn
io) = 1

vi , ur ≥ 0; r = 1, 2, . . . , s; i = 1, 2, . . . , m

0 ≤ λi ≤ vi ; i = 1, 2, . . . , m

0 ≤ ηr ≤ ur ; r = 1, 2, . . . , s (14)

Theorem IV Model (14) is always feasible and bounded.

Proof Defining proper dual variables, the dual form of Model (14) can be written as follows:

Min z = θ

s.t.
n∑

j = 1
j �= o

yu
r jα j + yl

roαo − μr ≥ yl
ro, r = 1, 2, . . . , s,

n∑

j = 1
j �= o

(yu
r j − yn

r j )α j − (ym
ro − yl

ro)αo − γr + μr ≥ −(ym
ro − yl

ro), r = 1, 2, . . . , s,

−
n∑

j = 1
j �= o

xl
i jα j − xu

ioαo + xu
ioθ − φi ≥ 0, i = 1, 2, . . . , m,

n∑

j = 1
j �= o

(xm
i j − xl

i j )α j−(xu
io − xn

io)αo + (xu
io − xn

io)θ − βi + φi ≥ 0, i = 1, 2, . . . , m,

α j ≥ 0, j = 1, 2, . . . , n,

φi , βi ≥ 0, i = 1, 2, . . . , m,

μr , γr ≥ 0, r = 1, 2, . . . , s,

θ f ree

Consider a solution for the dual model as follows:

α j = 0, j = 1, 2, . . . , n, j �= o

α0 = 1

φi = βi = 0, i = 1, 2, . . . , m,

μr = γr = 0, r = 1, 2, . . . , s,

θ = 1

It is obvious that the above solution is a feasible solution for the dual model. Therefore,
independent of the input and output variables, there is always at least one feasible solution for
the dual and the primal models. Therefore, the optimum value of the objective function for
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the dual model is definitely less than or equal to 1 (i.e., Z∗ ≤ 1). By the virtue of the duality
theorem in linear programming, the objective function of the dual and the primal models are
equal for the optimal solution (i.e., Z∗ = E∗L

o ). Therefore, it can be concluded that E∗L
o ≤ 1

is always true. Hence, Model (14) is always bounded. This completes the proof. �	

3.3.2 Proposed fuzzy DEA method

We modify the Wang and Chin’s (2011) and Khalili-Damghani et al.’s (2011) method to
consider the preferences of the DMs on the priority of the inputs and the outputs criteria.
To accomplish this modification, the weights of the criteria achieved by fuzzy ANP are
considered in the form of additional constraints. The efficiency scores are recalculated and
compared with the efficiency scores in the original models using TFNs.

Models (7)–(8) and Models (13)–(14), which are the original models proposed by Wang
and Chin’s (2011) and Khalili-Damghani et al. (2011), respectively, were developed based
on trapezoidal fuzzy numbers. The modified models, which used the relative importance
of the inputs and the outputs attained from the ANP, also were developed using triangular
fuzzy numbers which are easy to interpret and sensible to use in terms of consistency and
comparability.

We first use the criteria weights and rank them. We then introduce a set of linear constraints
using Wang and Chin’s (2011) and Khalili-Damghani et al.’s (2011) models based on these
priorities. As a result of this modification, the weight of each input and output criteria (i.e.,
ur or vi ) can be controlled based on the DM preferences.
Modified Wang and Chin’s (2011) method Assume that inputs and outputs are ranked based
on their priorities. The most important input is ranked 1 and the least important input is ranked
m (there are m inputs, i = 1, 2, . . . , m). Also, the most important output is ranked 1 and the
least important output is ranked s (there are s outputs, r = 1, 2, . . . , s). The ranks of inputs
and outputs are assigned based on the fuzzy ANP weights. Consequently, the following sets
of constraints are added to Wang and Chin’s (2011) model.

∀i : vi ≥ vp; i = 1, . . . , m − 1, p = i + 1, . . . , m

∀r : ur ≥ uk; r = 1, . . . , s − 1, k = r + 1, . . . , s (15)

Next, the following sets of constraints are considered in order to derive the relative dom-
inance of the inputs and outputs since fuzzy weights were used in the original Wang and
Chin’s (2011) method.

∀i : ṽi ≥ ṽp; i = 1, . . . , m − 1, p = i + 1, . . . , m

∀r : ũr ≥ ũk; r = 1, . . . , s − 1, k = r + 1, . . . , s (16)

where, ṽi = (vl
i , v

m
i , vu

i ) and ũr = (ul
r , um

r , uu
r ). Therefore, constraints (16) will be repre-

sented as constraints (17).

(vl
i , v

m
i , vu

i ) ≥ (vl
p, v

m
p , vu

p); i = 1, . . . , m − 1, p = i + 1, . . . , m

(ul
r , um

r , uu
r ) ≥ (ul

k, um
k , uu

k ); r = 1, . . . , s − 1, k = r + 1, . . . , s (17)

The practical set of constraints added to the original method of Wang and Chin (2011) are
presented as follows in constraints (18):
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⎧⎪⎪⎪⎨
⎪⎪⎪⎩

vl
i ≥ vl

p

vm
i ≥ vm

p

vu
i ≥ vu

p

;
i = 1, . . . , m − 1

p = i + 1, . . . , m

⎧⎪⎪⎨
⎪⎪⎩

ul
r ≥ ul

k

um
r ≥ um

k

uu
r ≥ uu

k

; r = 1, . . . , s − 1

k = r + 1, . . . , s

(18)

Model (7) is modified using (18) and a modified version of the optimistic model by Wang
and Chin (2011) is developed as Model (19).

Maximize θbest◦ =
s∑

r=1

(ul
r yl

r◦ + 2um
r ym

r◦ + uu
r yu

r◦)

s.t.
m∑

i=1

(vl
i xl

i◦ + 2vm
i xm

i◦ + vu
i xu

i◦) = 1

s∑
r=1

(ul
r yl

r j + 2um
r ym

r j + uu
r yu

r j ) −
n∑

i=1

(vl
i xl

i j + 2vm
i xm

i j + vu
i xu

i j ) ≤ 0,

j = 1, 2, . . . , n,

vl
i ≥ vl

p; i = 1, . . . , m − 1, p = i + 1, . . . , m

vm
i ≥ vm

p ; i = 1, . . . , m − 1, p = i + 1, . . . , m

vu
i ≥ vu

p; i = 1, . . . , m − 1, p = i + 1, . . . , m

ul
r ≥ ul

k; r = 1, . . . , s − 1, k = r + 1, . . . , s

um
r ≥ um

k ; r = 1, . . . , s − 1, k = r + 1, . . . , s

uu
r ≥ uu

k ; r = 1, . . . , s − 1, k = r + 1, . . . , s

uu
r ≥ um

r ≥ ul
r ≥ 0; r = 1, 2, . . . , s

vu
i ≥ vm

i ≥ vl
i ≥ 0; i = 1, 2, . . . , m (19)

Model (8) is also modified using (18) and a modified version of the pessimistic model by
Wang and Chin (2011) is developed as Model (20).

Minimize θworst◦ =
s∑

r=1

(
ul

r yl
r◦ + 2um

r ym
r◦ + uu

r yu
r◦

)

s.t.
m∑

i=1

(
vl

i xl
i◦ + 2vm

i xm
i◦ + vu

i xu
i◦

)
= 1

s∑
r=1

(
ul

r yl
r j + 2um

r ym
r j + uu

r yu
r j

)
−

n∑
i=1

(
vl

i xl
i j + 2vm

i xm
i j + vu

i xu
i j

)
≥ 0,

j = 1, 2, . . . , n,
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vl
i ≥ vl

p; i = 1, . . . , m − 1, p = i + 1, . . . , m

vm
i ≥ vm

p ; i = 1, . . . , m − 1, p = i + 1, . . . , m

vu
i ≥ vu

p; i = 1, . . . , m − 1, p = i + 1, . . . , m

ul
r ≥ ul

k; r = 1, . . . , s − 1, k = r + 1, . . . , s

um
r ≥ um

k ; r = 1, . . . , s − 1, k = r + 1, . . . , s

uu
r ≥ uu

k ; r = 1, . . . , s − 1, k = r + 1, . . . , s

uu
r ≥ um

r ≥ ul
r ≥ 0; r = 1, 2, . . . , s

vu
i ≥ vm

i ≥ vl
i ≥ 0; i = 1, 2, . . . , m

uu
r ≥ um

r ≥ ul
r ≥ 0; r = 1, 2, . . . , s

vu
i ≥ vm

i ≥ vl
i ≥ 0; i = 1, 2, . . . , m (20)

Models (19) and (20) consider the decision makers’ preferences on the priority of the
inputs and outputs. This leads to more reasonable coefficients for the inputs and outputs and
more accurate efficiency scores for the DMUs.
Modified Khalili-Damghani et al.’s (2011) method We then develop Models (21) and (22)
by adding a set of constraints (15) to Models (13) and (14). Model (21) is used to calculate
the upper-bound for the efficiency scores of the DMUs.

Maximize EU =
s∑

r=1

ur yu
ro − ηr (yu

ro − yn
ro)

s.t.
s∑

r=1

ur yl
r j + ηr (ym

r j − yl
r j ) −

m∑
i=1

vi xu
i j − λi (xu

i j − xn
i j ) ≤ 0;

j = 1, . . . , n, j = 1, 2, . . . , n, j �= o
s∑

r=1

ur yu
ro − ηr (yu

ro − yn
ro) −

m∑
i=1

vi xl
io + λi (xm

io − xl
io) ≤ 0

m∑
i=1

vi xl
i◦ + λi (xm

i◦ − xl
i◦) = 1

m∑
i=1

vi xl
i◦ + λi (xm

i◦ − xl
i◦) = 1

vi ≥ vp; i = 1, . . . , m − 1, p = i + 1, . . . , m

ur ≥ uk; r = 1, . . . , s − 1, k = r + 1, . . . , s

vi , ur ≥ 0; r = 1, 2, . . . , s; i = 1, 2, . . . , m

0 ≤ λi ≤ vi ; i = 1, 2, . . . , m

0 ≤ ηr ≤ ur ; r = 1, 2, . . . , s (21)

Model (22) is used to calculate the lower-bound for the efficiency scores of the DMUs.
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Maximize E L =
s∑

r=1

ur yl
ro + ηr

(
ym

ro − yl
ro

)

s.t.
s∑

r=1

ur yu
r j −ηr (yu

r j −yn
r j )−

m∑
i=1

vi xl
i j +λi

(
xm

i j −xl
i j

)
≤0; j =1, . . . , n, j �=o

s∑
r=1

ur yl
ro + ηr

(
ym

ro − yl
ro

)
−

m∑
i=1

vi xu
io − λi

(
xu

io − xn
io

) ≤ 0

m∑
i=1

vi xu
io − λi

(
xu

io − xn
io

) = 1

vi ≥ vp; i = 1, . . . , m − 1, p = i + 1, . . . , m

∀r : ur ≥ uk; r = 1, . . . , s − 1, k = r + 1, . . . , s

vi , ur ≥ 0; r = 1, 2, . . . , s; i = 1, 2, . . . , m

0 ≤ λi ≤ vi ; i = 1, 2, . . . , m

0 ≤ ηr ≤ ur ; r = 1, 2, . . . , s (22)

The main advantages of the two modified methods over the original models are: (1) the
modified approaches take into consideration the preferences of the DMs on the priority
of the inputs and outputs criteria and result in a fair and exact efficiency score for each
DMU; and (2) the DMUs cannot select coefficients of inputs and outputs in an unconstrained
situation. However, restricting the coefficients of the inputs and outputs according to the
DMs’ preferences in a constrained situation enhances the discrimination power of the DEA
models.

3.3.3 Ranking the DMUs

The proposed fuzzy DEA methods do not provide similar results and it is necessary to use a
procedure to combine the results of the proposed fuzzy DEA approaches systematically. The
following procedure is proposed to accomplish this goal.
Step 1. The rank assigned to each DMU in each method is determined for both the optimistic
and pessimistic scenarios. Then, using the Spearman correlation test, the correlations between
the achieved ranks from different methods are determined. The following method is used to
calculate the rank correlation coefficient for the paired data:

rs = 1 − 6
(∑

i d2
i

)
n(n2 − 1)

(23)

where di represents the difference between the rank order of each pair. Consider the case
where the rankings for each pair are equal. In that case, all the values of di are zero which
shows there is a strong correlation between the two methods. In contrast, if the ranks are not
equal and the difference between di is large, the Spearman correlation will produce a small
value. The Spearman test has a t-student distribution with degrees of freedom n−2 as follow:

t = rs

√
n − 2

1 − r2
s

(24)

The null hypothesis is rejected if the test statistic is greater than the theoretical value tα,n−2

from the t-student table. Otherwise, the null hypothesis is accepted.
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Step 2 After the Spearman correlation test, the low-correlated methods are selected in order to
determine the final ranking of the DMUs. We then use the method introduced by Soleimani-
damaneh and Zarpisheh (2009) to combine the efficiency scores obtained from different DEA
models and determine the final rankings for the DMUs. The method is revisited here briefly.

Suppose the efficiency scores of n DMU’s are calculated according to the k DEA methods
and the Matrix E is obtained as follows:

E =

⎛
⎜⎜⎜⎝

E11 E12 · · · E1k

E21 E22 · · · E2k
...

...
. . .

...

En1 En2 · · · Enk

⎞
⎟⎟⎟⎠ (25)

where E jl , j = 1, 2, . . . , n; l = 1, 2, . . . , k represent the efficiency scores of DMU j achieved
from the l-th model. The efficiency scores are normalized using (26).

Ē jl = E jl∑n
j=1 E jl

; j = 1, 2, . . . , n; l = 1, 2, . . . , k (26)

The entropy values are then calculated using (27).

el = −(ln n)−1
n∑

j=1

Ē jl . lnĒ jl; l = 1, 2, . . . , k (27)

Next, the degree of diversification (dl) is calculated using (28).

dl = 1 − el; l = 1, 2, . . . , k (28)

The importance weight of the l-th model is calculated using (29).

wl = dl∑k
l=1 dl

; l = 1, 2, . . . , k (29)

Finally, a final efficiency index is calculated for each DMU j using (30).

β j =
k∑

l=1

wl E jl; j = 1, 2, . . . , n (30)

The entire process represented by Eqs. (25)–(30) is based on both the optimistic and
pessimistic models of the low-correlated method and therefore the two final efficiency indices
are calculated using these models.

4 Case study: stock exchange for pharmaceutical companies

One of the most important financial markets is the Securities Exchange. Active participation
of investors in the Securities Exchange guarantees the viability of the investment market and
sustainable development of countries. One of the strategic industries in this market that is
extremely sensitive to others, is the pharmaceutical industry. The pharmaceutical industry
has direct effect on the living conditions and health of the community. Improving health
standards are a predisposing factor for economic development. This industry requires large
investments particularly in research and development in order produce the most effective
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Table 2 Evaluation criteria based on the BSC

Financial criteria Customer criteria Learning and growth criteria Internal process criteria

Perspectives

EPS Market share Number of registered drugs Number of products

P/E ratio Volume of exports R&D Management performance

Sales growth Customer satisfaction Employee satisfaction New technologies

Debt ratio Customer loyalty Employee training Percent of waste

Rank of liquidity Increasing of customer Increasing of employee Number of acquired certificates

Operating budget Number of updating formula

Table 3 Total interactions among the BSC perspectives

Perspective Financial Customer Learning
and growth

Internal
process

r c r + c r − c

Financial 1.8768 2.037 1.9244 1.5877 7.426 7.9991 15.4251 −0.5731

Customer 2.1112 1.7359 1.8881 1.5211 7.2564 7.581 14.8374 −0.3246

Learning and
growth

2.0947 1.9502 1.6446 1.5753 7.2648 7.1712 14.4359 0.0936

Internal process 1.9164 1.8579 1.714 1.2657 6.754 5.9498 12.7038 0.8042

products and ultimately achieve appropriate returns. Thus effective performance evaluation
is particularly critical for this industry.1

4.1 Case study

We used the method proposed in this study to evaluate the performance of 21 pharmaceutical
companies actively trading on the SSE for Morgan Bank, a New York investment banking
firm specialized in pharmaceutical companies worldwide. We first utilized the expertise of
six pharmaceutical investment bankers at Morgan Bank to identify the most important and
widely used performance evaluation criteria in the pharmaceutical companies considering
the BSC framework with the four perspectives of financial, customer, learning and growth
and internal processes. The criteria considered for each perspective are presented in Table 2.

4.2 Determine the network of the BSC perspectives

We then determined the interdependence between the BSC perspectives based on the DEMA-
TEL method by preparing a questionnaire and distributing them among our six investment
bankers. The total correlation matrix is presented in Table 3. Using the threshold of relations
(i.e., the mean of the matrix elements, 1.7938), the network relationship is presented in Fig. 3.

As shown in Table 3, the financial perspective has the highest relation with the customer
perspective and the lowest relation with the learning and growth perspective. The customer
perspective has the highest relation with the financial perspective and the lowest relation
with itself. The learning and growth perspective has the highest relation with the financial

1 The name of the New York investment banking firm and the Swiss pharmaceutical companies are changed
to protect their anonymity.
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Fig. 3 Interdependence among
the BSC perspectives

Financial

Customer

Learning 
& growth

Internal 
process

perspective and the lowest relation with the internal process perspective. The internal process
perspective has the highest relation with the financial perspective and the lowest relation with
itself.

The relations between the financial–internal process, customer–customer, customer–
internal process, learning and growth-learning and growth, learning and growth–internal
process, internal process–internal process, are discarded because they are lower than the
threshold value of 1.7938. The remaining relations are the subject for further study.

The column “r” and column “c” in Table 3 are the sum of the rows and columns of the total
correlation matrix, respectively. For instance, 7.426 is the sum of 1.8768+2.037+1.9244
+1.5877. The “r” column indicates the sum of the impacts a certain perspective puts
on the other perspectives. Therefore, the financial perspective is the strongest criteria
among the impact group. For instance, in column “c”, 7.9991 is the sum of the first
column of total correlation matrix (i.e., 1.876+2.1112+2.0947+1.9164). The “c” col-
umn indicates the sum of the impacts a certain perspective receives from the other per-
spectives. Therefore, the financial perspective is the strongest criteria among the effect
groups.

The column “r +c” in Table 3 presents the sum of effect and cause behavior of a criterion.
It indicates the degree of interaction of a criterion with other criterion in the network. The
most interactive criterion is financial perspective while the least interactive criterion in the
network is internal process.

The column “r − c” in Table 3 indicates the difference between the cause and effect of a
criterion. A positive value for “r − c” indicates that the impact of a criterion is stronger than
its receiving effects and therefore it is a cause criterion. A negative value for “r −c” indicates
that the impact of a criterion is weaker than its receiving effects and therefore it is an effect
criterion. Hence, financial and customer perspectives are effect criteria while learning and
growth and internal process are cause criteria.

4.3 Determine the local and global weights of the perspectives and criteria

We then constructed the hierarchical structure of the criteria and the perspectives presented
in Fig. 4. A questionnaire was given to our six investment bankers and they were asked
to present their preferences assuming no interdependence between the perspectives using
the linguistic variables in Table 1. The pair-wise comparisons are summarized in Tables 4,
5 and 6. The geometric mean was used to aggregate the opinions of the six investment
bankers.
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Assessment of pharmaceutical Companies

Financial Internal processLearning & growthCustomer

EPS

Sales growth

Debt ratio

P/E ratio

Market share

Customer satisfaction

Volume of exports

Number of registered drugs

Number of updating formula

Advertising and Marketing

Number of products

Number of acquired certificatesRank of liquidity

Customer loyalty Employee training

Increasing of employee

New technologies

Percent of waste

Employee satisfaction

Cost of goods sold

Management performance

Increasing of customer

Fig. 4 Hierarchical evaluation structure

Using the proposed fuzzy ANP method, the local weights of the BSC perspectives and
the performance criteria were determined. The results are presented in Table 7.

The interdependence matrix of the perspectives was then calculated as follows:

WBSC =

⎡
⎢⎢⎣

F
C
L
I

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0.5775 0.8092 0.7041 0

0.2062 0 0.2959 0

0.0862 0.1255 0 0

0.1301 0.0654 0 0

⎤
⎥⎥⎥⎦ ⊗

⎡
⎢⎢⎢⎣

0.5667

0.2440

0.1063

0.0830

⎤
⎥⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0.5996

0.1483

0.0794

0.0897

⎤
⎥⎥⎥⎦

The interdependent weights for the BSC perspectives are obtained by normalizing the
above vector as follows:

WBSC =

⎡
⎢⎢⎣

F
C
L
I

⎤
⎥⎥⎦ =

⎡
⎢⎢⎢⎣

0.6538

0.1617

0.0866

0.0978

⎤
⎥⎥⎥⎦

The global weights of the criteria were calculated next and the results are given in Table 8.

4.4 Calculate the efficiency scores of the DMUs using the proposed fuzzy DEA model

The criteria are prioritized and clustered next as inputs and outputs in Table 9 according to
the global weights obtained in the previous step.

As shown in Table 9, operating budget and cost of goods sold are classified as inputs
and market share, EPS, P/E ratio, sales growth, rank of liquidity, and volume of exports are
classified as outputs. These inputs and outputs are used in the proposed fuzzy DEA models.
If a new input or output is created based on the ratio of two distinct variables (i.e., inputs or
outputs) from the production possibility, then, the final model may cause some infeasibility
or may perturb the convexity assumption of the production possibility set (Hollingsworth
and Smith 2003; Emrouznejad and Amin 2009). We should note that infeasibility does not
occur in the case of the P/E ratio, which has been used in the proposed model as an output,
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Table 5 Interdependence matrix of the perspectives with respect to the customer perspective

Perspectives Financial Learning and growth Internal process Weights

Financial (1, 1, 1) (1.831, 2.34, 2.846) (1.355, 1.861, 2.264) 0.8092

Learning and growth (0.351, 0.427, 0.546) (1, 1, 1) (0.783, 1.189, 1.655) 0.1255

Internal process (0.422, 0.537, 0.778) (0.604, 0.841, 1.278) (1, 1, 1) 0.0653

Table 6 Interdependence matrix
of the perspectives with respect to
the learning and growth
perspective

Perspectives Financial Customer Weights

Financial (1, 1, 1) (1.456, 1.968, 2.475) 0.7041

Customer (0.481, 0.639, 0.971) (1, 1, 1) 0.2959

Table 7 Local weights of the BSC perspectives and the evaluation criteria

Perspectives Local weights Criteria Local weights

Financial 0.5667 EPS 0.3264

P/E ratio 0.3210

Sales growth 0.2314

Debt ratio 0.0270

Rank of liquidity 0.0443

Operating budget 0.0498

Customer 0.244 Market share 0.2621

Customer satisfaction 0.2035

Volume of exports 0.1981

Customer loyalty 0.2019

Increasing of customer 0.1344

Learning and growth 0.1063 Number of registered drugs 0.1040

R&D 0.2468

Number of updating formula 0.1725

Employee training 0.2750

Increasing of employee 0.0470

Employee satisfaction 0.1548

Internal process 0.083 Number of products 0.2235

Number of acquired certificates 0.0618

New technologies 0.2082

Percent of waste 0.1899

Management performance 0.3166

since this is a very well-known financial ratio and is not made based on two distinct variables
from the production possibility set. The estimates presented in Table 10 are provided by SSE
based on 3 years of historical data.

It is notable that a crisp number m is a special case of a TFN number (m, m, m). The
efficiency scores of each DMU in both the optimistic and pessimistic scenarios were cal-
culated using the proposed fuzzy methods. As a result, 4 optimistic efficiency scores and 4
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Table 8 Global weights of the performance criteria

Perspectives Interdependent weights Criteria Global weights

Financial 0.6538 EPS 0.2134

P/E atio 0.2099

Sales growth 0.1513

Debt ratio 0.0176

Rank of liquidity 0.029

Cost of goods sold 0.0326

Customer 0.1617 Market share 0.0424

Customer satisfaction 0.0329

Volume of exports 0.032

Customer loyalty 0.0326

Increasing of customer 0.0217

Learning and growth 0.0866 Number of registered drugs 0.009

R&D 0.0214

Number of updating formula 0.0149

Employee training 0.0238

Increasing of employee 0.0041

Employee satisfaction 0.0134

Internal process 0.0978 Number of products 0.0223

Number of acquired certificates 0.0062

New technologies 0.0207

Percent of waste 0.0189

Management performance 0.0316

Table 9 Inputs and outputs of
the fuzzy DEA models

Input Output

Operating budget Market share

Cost of goods sold Earnings per share (EPS)

P/E ratio

Sales growth

Rank of liquidity

Volume of exports

pessimistic efficiency scores were calculated for each DMU. All models were coded using
LINGO software on a Pentium IV 2.4 GHz, PC with 2G of RAM, and MS-XP. The resulting
efficiency scores are represented in Table 11.

Table 11 shows that the efficiency scores of all the DMUs have been calculated in both the
optimistic and pessimistic scenarios. In the classical DEA methods, the efficient DMU has an
efficiency score equal to 1 while the inefficient DMUs have efficiency scores less than 1. This
situation is correct for the optimistic and pessimistic scenarios in both the modified and the
original Khalili-Damghani et al. (2011) methods. Therefore, the DMUs can be categorized
into three classes for the optimistic and pessimistic scenarios in the modified and original
Khalili-Damghani et al. (2011) methods.
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In the first class, a DMU is efficient in both the optimistic and the pessimistic scenarios
(the efficiency score is always equal to 1). These DMUs (called E++) are not sensitive to
the inputs and outputs, and are always efficient. As shown in Table 11, eleven DMUs are
classified in the E++ group using the original Khalili-Damghani et al. (2011) method, while
only two DMUs are classified in the E++ group using the modified Khalili-Damghani et al.
(2011) method. This means that the extra information used in the modified Khalili-Damghani
et al. (2011) method not only considers the decision makers’ preferences on the priority of
the inputs and outputs, but also improves the discrimination power in DEA modeling.

In the second class, a DMU is inefficient in both the optimistic and the pessimistic scenarios
(efficiency score is always less than 1). These DMUs (called E−) are not sensitive to the inputs
and outputs, and are always inefficient. As shown in Table 11, six DMUs are classified in the
this group using the original Khalili-Damghani et al. (2011) method, while eighteen DMUs
are classified in the E− group using the modified Khalili-Damghani et al. (2011) method.
This means that the extra information used in the modified Khalili-Damghani et al. (2011)
method not only considers the decision makers’ preferences on the priority of the inputs and
outputs, but also provides a fair assessment and ensures the proper classification of the DMUs

In the third class, a DMU is efficient in the optimistic scenario and inefficient in the
pessimistic scenario. Such DMUs (called E+) are sensitive to the input and output values
and therefore may be either efficient or inefficient. As shown in Table 11, four DMUs are
classified in the E+ group using the original Khalili-Damghani et al. (2011) method, while just
one DMU is classified in the E+ group using the modified Khalili-Damghani et al. (2011)
method. Thus, the extra information used in the modified Khalili-Damghani et al. (2011)
method not only considers the decision makers’ preference on the priority of the inputs and
outputs, but also improves the discrimination power in DEA modeling.

As indicated in Sect. 3.3.1, the definition of an efficient DMU in the pessimistic scenario
for both the original and modified Wang and Chin (2011) methods are not typical. However,
the definition of the efficient and inefficient DMUs are typical in the optimistic scenario.
In the pessimistic scenario, if the optimum value of the objective function is equal to 1, the
associated DMU is called efficient and if the optimum value of the objective function is greater
than 1, the associated DMU is called inefficient. Therefore, the DMUs in the optimistic and
pessimistic scenarios in both the original and modified Wang and Chin (2011) methods are
classified into the following three classes.

In the first class (called E++), a DMU is always efficient in the optimistic and pessimistic
scenarios. In the original Wang and Chin (2011) method, none of the DMUs are classified in
this group. However, six DMUs are classified in this group in the modified Wang and Chin
(2011) method. In the second class (called E−), seventeen DMUs are classified in this group
in the original Wang and Chin (2011) method and five DMUs are classified in this group
in the modified Wang and Chin (2011) method. Finally, in third class (called E+), a DMU
is efficient in the optimistic scenario and inefficient in the pessimistic scenario. Two DMUs
are classified in this group in the original Wang and Chin (2011) method and five DMUs are
classified in this group in the modified Wang and Chin (2011) method.

4.5 Rank the DMUs

The method proposed by Soleimani-damaneh and Zarpisheh (2009) was used to combine
different efficiency scores and obtain a final ranking for the DMUs. First, the Spearman
test was used to check the different rankings. The results of the Spearman rank correla-
tion test between each pair of methods in both the optimistic and pessimistic scenarios
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Table 12 Results of the Spearman test for the optimistic scenario

Methods Correlation
coefficient

Significant H0 Test results

Wang and Chin (2011) and
Khalili-Damghani et al. (2011)

0.860 0 Reject Equal rank

Wang and Chin (2011) and modified Wang
and Chin (2011)

0.362 0.107 Accept Unequal rank

Wang and Chin (2011) and modified
Khalili-Damghani et al. (2011)

0.343 0.128 Accept Unequal rank

Khalili-Damghani et al. (2011) and modified
Wang and Chin (2011)

0.365 0.104 Accept Unequal rank

Khalili-Damghani et al. (2011) and modified
Khalili-Damghani et al. (2011)

0.344 0.127 Accept Unequal rank

Modified Wang and Chin (2011) and
modified Khalili-Damghani et al. (2011)

0.993 0 Reject Equal rank

Table 13 Results of the Spearman test for the pessimistic scenario

Methods Correlation
coefficient

Significant H0 Test results

Wang and Chin (2011) and
Khalili-Damghani et al. (2011)

0.218 0.342 Accept Unequal rank

Wang and Chin (2011) and modified Wang
and Chin (2011)

0.469 0.032 Accept Unequal rank

Wang and Chin (2011) and modified
Khalili-Damghani et al. (2011)

0.522 0.015 Accept Unequal rank

Khalili-Damghani et al. (2011) and modified
Wang and Chin (2011)

0.393 0.078 Accept Unequal rank

Khalili-Damghani et al. (2011) and modified
Khalili-Damghani et al. (2011)

0.362 0.107 Accept Unequal rank

Modified Wang and Chin (2011) and
modified Khalili-Damghani et al. (2011)

0.772 0 Reject Equal rank

are presented in Tables 12 and 13, respectively. The test was run with a 99 % confidence
level.

The results of the Spearman test for the optimistic scenario in Table 12 shows that the
modified methods have produced different rankings when compared with the classical meth-
ods. As shown in Table 12, the correlation between the modified expected value approach
of Wang and Chin (2011) and the modified approach of Khalili-Damghani et al. (2011) is
high (0.993). This means that these methods produce rankings that are statistically similar
since there is not enough evidence to accept the null hypothesis. The correlation between
the original method of Wang and Chin (2011) and the original method of Khalili-Damghani
et al. (2011) is similar with a high correlation of 0.860. In all other pairwise comparisons
in Table 12 where one side is an original method and other side is a modified method, the
null hypothesis is accepted. This means that the modifications of the original methods, which
incorporates the opinion of the decision makers, is effective and produce different rankings.
Thus, the efficiency scores from the modified methods were used to determine the final
ranking of the DMUs based on the method proposed by Soleimani-damaneh and Zarpisheh
(2009). In the optimistic scenario, when using this final ranking of the DMUs, the relative
importance scores are 0.5160 and 0.4839 for the modified Wang and Chin (2011) and the
modified Khalili-Damghani et al. (2011) methods, respectively.
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Table 14 Final rankings of the DMUs

DMU Optimistic scenario Pessimistic scenario

β j Final rank β j Final rank

Accola 0.879562979 3 5.611782426 2

Benziger 0.440519353 10 2.644216203 8

Camenzind 1 1 4.53969255 3

Dettwiler 0.084016285 20 0.604510952 21

Eschmann 0.749953034 4 3.880354704 4

Fluckiger 0.483194104 9 1.40723278 13

Gantenbein 0.197452145 18 1.064230959 18

Hauenstein 0.240691663 15 1.273495379 14

Inabinet 0.167846633 19 0.642519492 20

Jaecks 0.663272326 5 3.055870986 6

Kellerhals 0.538527891 7 0.814383364 19

Lichtenwalter 0.210537617 17 1.080305741 17

Muetzel 0.22196955 16 1.208206548 16

Nuessle 0.42011519 11 2.249731778 10

Oblinger 1 1 2.041327094 12

Pfister 0.417403862 12 2.953499629 7

Rechsteiner 0.487584648 8 2.202217559 11

Scherzer 0.373453695 14 1.243920416 15

Tschanz 0.640415756 6 3.088979485 5

Utzinger 0.997897321 2 6.453620897 1

Voirol 0.412344436 13 2.344210158 9

Table 13 presents the results of the Spearman test for the pessimistic scenario. Again,
the modified methods have produced different rankings when compared with the classi-
cal methods. As shown in Table 13, the correlation between the modified expected value
approach of Wang and Chin (2011) and the modified method of Khalili-Damghani et al.
(2011) is high (0.772). This means that these methods produce rankings which are statis-
tically similar and there is not enough evidence to accept the null hypothesis. In all other
pairwise comparisons in Table 13, the null hypothesis is accepted. Thus the modification
of both methods, which incorporates the opinions of the decision makers is effective and
can result in different rankings. In the pessimistic scenario, when using the final rank-
ing of the DMUs based on the method proposed by Soleimani-damaneh and Zarpisheh
(2009), the relative importance scores are 0.5683 and 0.4316 for the modified Wang and
Chin (2011) and the modified Khalili-Damghani et al. (2011) methods, respectively. The
final rankings of the DMUs in both the optimistic and pessimistic scenarios is presented in
Table 14.

5 Conclusion and future research directions

The effects of financial markets on the economic growth and progress of developing
economies is undeniable. The primary function of the financial markets is to effectively
move capital markets and allocate financial resources to various sectors of the economy.
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Various performance evaluation methods can be used to help investors make informed
decisions by following the measured growth and the dynamics of companies on the Stock
Exchange.

In this study we proposed a new method for measuring the efficiency of pharmaceutical
companies. Financial and non-financial metrics were used in the proposed method within a
BSC framework. The DEMATEL approach was used to capture the causal relationships and
the interaction between the BSC perspectives. Fuzzy ANP was used next to determine the
relative importance of the factors within a network structure. High priority factors were then
divided into the input and output factors. To measure the performance of the pharmaceutical
companies (represented by DMUs), two fuzzy DEA models [i.e., the model proposed by Wang
and Chin (2011) and the model proposed by Khalili-Damghani et al. (2011)], were modified
based on the weight constraints developed using the fuzzy ANP. Finally, statistical tests were
performed to check whether there were differences between the achieved ranks. The high
correlated methods were discarded and an aggregation method based on Shannon’s entropy
proposed by Soleimani-damaneh and Zarpisheh (2009) was applied to rank the DMUs.

The contribution of the proposed performance measurement system is fivefold: (1) the
proposed method helps investors choose a proper portfolio of stocks in the presence of
environmental turbulence and uncertainties; (2) it considers fuzzy logic and fuzzy sets to
represent ambiguous, uncertain or imprecise information; (3) a comprehensive performance
measurement method is proposed to combine ANP and DEMATEL within a DEA system;
(4) an integration method grounded in the Shannon’s entropy concept is used to combine
different efficiency scores and calculate the final ranking of the DMUs; and (5) the proposed
method synthesizes a representative outcome based on qualitative judgments and quantitative
data.

The method proposed in this study is flexible and versatile. It can be easily customized
to handle a large number of different problems in different application domains. In addition,
triangular and trapezoidal fuzzy numbers were used in the model proposed in this study. The
models can be easily modified to handle other well-known fuzzy numbers such as Gaussian or
left–right fuzzy numbers. Finally, ranking methods other than the Shannon’s entropy method
can be utilized in the proposed model to rank the DMUs.
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