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a b s t r a c t 

Content Delivery Networks (CDNs) have been identified as one of the relevant use cases where the 

emerging paradigm of Network Functions Virtualization (NFV) will likely be beneficial. In fact, virtual- 

ization fosters flexibility, since on-demand resource allocation of virtual CDN nodes can accommodate 

sudden traffic demand changes. However, there are cases where physical appliances should still be pre- 

ferred, therefore we envision a mixed architecture in between these two solutions, capable to exploit 

the advantages of both of them. Motivated by these reasons, in this paper we formulate a two-stage 

stochastic planning model that can be used by CDN operators to compute the optimal long-term net- 

work planning decision, deploying physical CDN appliances in the network and/or leasing resources for 

virtual CDN nodes in data centers. Key findings demonstrate that for a large range of pricing options and 

traffic profiles, NFV can significantly save network costs spent by the operator to provide the content 

distribution service. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

The worldwide success of content-rich web applications like so-

cial networks or on-demand streaming services has forced net-

work operators to invest a significant amount of money in order

to keep up-to-date their communication infrastructures [1] . In par-

ticular, Content Delivery Networks (CDNs) have nowadays become

a necessary (and well-established) technology to efficiently serve

the traffic demands that consumers are generating, while support-

ing the high level of performance and reliability that providers are

demanding [2] . 

Although CDN is an effective infrastructure to move replicas of

popular contents closer to the users’ locations, it requires signifi-

cant investments to be built and operated. As an example, the Aka-

mai infrastructure comprises more than 61 0 0 0 servers deployed

in 1 0 0 0 networks and 70 countries worldwide [3] . To reduce the

capital expenditures and improve the performance of CDNs, orga-

nizations such as the Internet Engineering Task Force (IETF) and

the European Telecommunications Standards Institute (ETSI) have
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ecently begun a standardization process for two alternative archi-

ectures: 

• Content Delivery Network Interconnection (CDNI); 

• Virtual Content Delivery Network (vCDN). 

Despite the fact that they both have to deal with network con-

ent distribution, these proposals have a radically different scope:

he former (CDNI) is mostly concerned with the co-operation of

any CDN providers [4] , whereas the latter (vCDN) proposes to

irtualize the CDN services on top of the novel layer for Network

unctions Virtualization (NFV) [5] . 

While both the architectures aim at optimally exploiting avail-

ble physical resources, the grounds of CDNI are settled on agree-

ents between different CDN operators that often are in direct

ompetition in the same market. On the other hand, the NFV ap-

roach is to run network functions in a virtualized environment,

xecuted on a shared physical infrastructure composed of industry

tandard high volume servers, storage and switches [5] . Therefore,

CDN implemented on top of NFV enjoys the positive advantage

f avoiding potential competition issues, since the virtualized en-

ironment ensures the necessary level of isolation between the dif-

erent network functions. Furthermore, spare NFV substrate capac-

ty can be leased by network operators to third parties, a condition

hat makes vCDN appear even more profitable. 

http://dx.doi.org/10.1016/j.comnet.2016.06.035
http://www.ScienceDirect.com
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Motivated by the previous background, in this paper we tackle a

undamental issue that arises in such context: the planning prob-

em for a mixed physical-virtual Content Delivery Network under

ncertain traffic demands. In our formulation, the CDN operator

an choose between purchasing physical CDN appliances and leas-

ng instances of virtual CDN nodes provided by an infrastructure

perator. However, while vCDN nodes can be activated on-demand

f the traffic requests require to do so, the installation of physi-

al CDN nodes must be chosen on a long-term schedule. For both

hysical or virtual CDN surrogate servers, the operator must care-

ully choose their location, while minimizing the overall costs. Due

o the fact that planning is performed on a long-term basis, the

heoretical framework of stochastic optimization will be used to

uarantee robustness of the solution with respect to the uncer-

ainty in the probabilistic description of future traffic demands. 

The contributions of this paper are summarized as follows: 

1. We formulate a two-stage stochastic planning model used by

CDN operators to compute optimal, long-term network plan-

ning decisions, under traffic demands uncertainty. In particular

we introduce the deterministic equivalent program in the ex-

tensive form of the two-stage stochastic CDN planning program.

2. We propose a greedy heuristic approach that finds good plan-

ning solutions (close to the optimum, in several cases) in poly-

nomial time even for large-scale network topologies. 

3. We implement the single and multicut versions of the L-shaped

algorithm [6] , which is a very effective approximation method

for the two-stage stochastic problem we formulate in this work.

4. We perform an extensive numerical evaluation, considering real

scale topologies and a wide range of parameters. We further

compare the execution time of the greedy heuristic with the

proposed exact solution strategies: (1) the deterministic equiv-

alent program and (2) the L-shaped algorithm. 

Our key findings suggest that a mixed physical-virtual CDN in-

rastructure leads to significant lower costs when compared to

hose obtained by a standard CDN, while being robust with respect

o sudden traffic demand changes. 

The paper is organized as follows: Section 2 discusses related

ork. In Section 3 we present our contribution; in particular,

he system is described in Section 3.1 ; the optimization model

s presented in Section 3.2 , while the L-shaped and greedy algo-

ithms are illustrated in Section 3.3 . Numerical results are pre-

ented in Section 4 , and Section 5 concludes this paper. 

. Related work 

In this section, we survey relevant literature on Net-

ork Functions Virtualization ( Section 2.1 ), Content Deliv-

ry Networks ( Section 2.2 ) and Stochastic Optimization tech-

iques ( Section 2.3 ). 

.1. Network functions virtualization 

One of the key enabling paradigms that will considerably in-

rease the dynamicity of ICT networks is Network Functions Vir-

ualization (NFV) [5] , which is discussed in recent surveys [7–11] .

ndeed, Service Providers and Network Operators are facing in-

reasing problems to design and implement novel network func-

ionalities, following the rapid changes that characterize the cur-

ent Internet and Telecom operators [12] . 

To support the network virtualization paradigm, one of the

hallenges that must be solved is to find a mapping between a

et of requests for virtual network resources and the available un-

erlying physical infrastructure, ensuring that desired performance

equirements on nodes and links are guaranteed [13] . This is the
irtual network embedding (VNE) problem, which is known to be

P-hard, since it can be reduced to the multi-way separator prob-

em [14] . VNE has received a lot of attention from the community,

nd several heuristic algorithms have been proposed, e.g., in [15–

8] . 

Jarray and Karmouch propose in [15] a column-generation tech-

ique coupled with a rounding heuristic to discover the most prof-

table embedding, under the constrained physical capacity of the

nfrastructure. Deterministic and randomized rounding techniques 

re used by Chowdhury et al. in [16] , where they further facili-

ate the virtual link mapping by designing an augmented graph

escription to efficiently support node location constraints. Cheng

t al. in [17] solve the node mapping step with a greedy algorithm:

igher ranking is given to the nodes that possess more spare re-

ources and are placed in better locations of the network. 

Rather than assuming that the operator knows a-priori the traf-

c demands, our contribution is to consider the case where their

robability distribution is known, and our proposed formulation is

obust with respect to such uncertainty. 

.2. Content delivery networks 

In the last few years, content multihoming is emerging as a novel

echnique for content delivery networks that makes it possible to

ointly use many CDN services: [1,2,19,20] . 

Adhikari et al. show in [1] that the Netflix infrastructure al-

eady leverages multiple CDNs (Akamai, LimeLight and Level-3).

he authors observe that the customers are mapped to a particu-

ar CDN in a rather static manner. In [2] , Liu et al. further confirm

hat other major content publishers such as Hulu, Microsoft, Ap-

le, Facebook and MSNBC are currently already exploiting content

ultihoming. Furthermore, given the practical relevance of this ar-

hitecture, they design optimization algorithms to minimize the

verall distribution costs under constrained quality requirements.

inally, Wang et al. extended in [19] the work of Liu et al., by ex-

licitly considering capacity constraints on the surrogate nodes. 

The novelty of our approach is to consider a new distribution

rchitecture, implemented on top of NFV, where virtual CDN nodes

an be used for content delivery purposes. Rather than forcing the

rovider to settle agreements with other CDN operators, our pro-

osal guarantees better isolation and dramatically limits potential

ompetition issues. 

.3. Stochastic optimization 

In practical scenarios, network design cannot assume that fu-

ure traffic demands are known a-priori; on the other hand, more

dvanced optimization techniques must be used to take into con-

ideration the stochastic nature of input parameters: [21–23] . 

Atamtürk and Zhang formulate in [21] a two-stage network

esign model with traffic demand uncertainty. In their approach,

he operator performs the planning decision according to a prob-

bilistic description of traffic demands. The value of the second-

tage recourse variables is chosen by changing flow routing. Liu

escribes in [22] the basic stochastic procedures applied to a flow

ssignment network design problem, showing the here-and-know

olution and the scenario-tracking result obtained for the flow-

ssignment. A multistage stochastic programming model for mo-

ile radio access networks has been proposed by Eisenblätter and

chweiger in [23] . In their formulation they jointly take into con-

ideration the coverage and capacity of their communication in-

rastructure. 

In line with previous literature, our formulation takes into ac-

ount the uncertainty embedded in future traffic demands. Our

ontribution is to apply the theoretical framework of stochastic op-

imization to content distribution. 
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Fig. 1. System model. The network is composed by consumers, routers, virtual and 

physical CDN surrogates. Our proposed optimization model selects (1) the planning 

of physical CDNs and (2) request routing. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 1 

Notation used in this paper. 

Input parameters 

D Set of consumers ( destination nodes) 

S Set of candidate surrogate servers ( source nodes) S = S P ∪ S V 
S P Set of candidate physical CDN servers 

S V Set of candidate virtual CDN servers 

T Set of time slots 

� Set of stochastic scenarios 

r 
t,φ
d 

Traffic requests of client d ∈ D, at time slot t ∈ T , for scenario φ ∈ �

ε Minimum service level guaranteed (fraction of traffic requests served 

with a bounded delay of at most �) 

� Maximum tolerated delay 

δs, d Delay between the nodes s ∈ S, d ∈ D
K P s Capacity of the physical CDN server s ∈ S P 
K V s Capacity of the virtual CDN server s ∈ S V 
C P s CAPEX and OPEX costs of the physical CDN server installed at a 

candidate site s ∈ S P 
C V s Usage cost of the virtual CDN server at the candidate site s ∈ S V 
p φ Realization probability for the scenario φ ∈ �
Decision variables 

a s 0-1 Physical CDN activation variable. a s = 1 if a physical CDN is 

installed at the candidate point s ∈ S P 
y 

t,φ
s,d 

Physical CDN flow variable for requests served by s ∈ S P to client 

d ∈ D, at time t ∈ T , and scenario φ ∈ �
z 

t,φ
s,d 

Virtual CDN flow variable for requests served by s ∈ S V to client d ∈ D, 

at time t ∈ T , and scenario φ ∈ �
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3. Optimal content delivery in NFV 

In this section we describe our proposed solution for the opti-

mal content delivery planning in NFV. Section 3.1 introduces the

system model and relevant assumptions. In Section 3.2 we formu-

late the optimization model, while in Section 3.3 we discuss the

design of the L-shaped and greedy algorithms. 

3.1. System model and assumptions 

Fig. 1 shows the system model we consider in our proposal.

In this work we tackle the long-term planning problem from the

point of view of a CDN provider. The aim of the provider is to per-

form two choices: 

1. Select whether and where physical CDN nodes should be in-

stalled in the network topology; 

2. Select the optimal request routing , given the installed physical

CDNs and the virtual nodes available. 

Since the planning decision is operated on a long-term time

schedule, the provider does not deterministically know what is go-

ing to happen in the future. On the other hand, we assume that an

estimate of the continuous probability distribution of future traf-

fic demands is known for the planning problem. However, for the

sake of simplicity, and as frequently done in the literature (e.g.,

[6,23] ), we discretize this information on a finite number of scenar-

ios, therefore our traffic model is jointly time-varying and stochastic

in its nature. 

As shown in Fig. 1 , traffic demands are expressed by the con-

sumers. Virtual and physical CDN nodes can both be used to effi-

ciently serve consumers’ demands, however there exist major dif-

ferences (in terms of capacity, activation choice and pricing policy)

between these two types of CDN hosts: 

• Capacity: virtual CDN nodes can serve a lower amount of traf-

fic requests since the presence of the hypervisor and the shared

hardware infrastructure reduces the throughput of the CDN sur-

rogates. 

• Activation choice: virtual CDN servers can be used on-demand,

and they do not need to be explicitly activated. On the other

hand, if the operator chooses to install a physical CDN server,

it will be activated once and it will stay active throughout the

entire time horizon. 

• Pricing policy: physical CDN nodes have an activation price that

considers both the capital expenditure (CAPEX) for the acquisi-

tion of the device as well as the long-term operational expen-

diture (OPEX) costs. On the other hand, the virtual CDN nodes
have a traffic-proportional price related to the OPEX cost com-

ponent, which is the per-bandwidth leasing price that the vCDN

owner charges. 

Since virtual CDN nodes can be used on-demand, they can serve

he portion of traffic requests with the highest variability. To im-

rove the quality of service of a CDN, surrogate servers must be

elected close to the location of consumers. For this purpose, we

se the link delay to control the performance of the infrastructure:

e assume that the content provider wants to serve a fraction of

he overall requests within a bounded limit on the delay. 

Popular CDN providers such as Amazon CloudFront or Microsoft

zure CDN do not have an activation cost but charge for their ser-

ices according to the amount of traffic that surrogates are pro-

iding, regardless of the caching storage used. Moreover, frequent

ash crowds make the object popularity suddenly change, whereas

aving an estimate of the aggregate future demands is instead

uch easier [24] . For these reasons, we focus on infrastructure

lanning and request routing, while we do not tackle the replica

lacement problem. 

.2. Optimization model 

In this section we describe the optimization model we formu-

ate for the optimal planning of a mixed physical-virtual CDN in-

rastructure. The notation is summarized in Table 1 . 

Let S = S P ∪ S V be the set of CDN surrogate servers, where S P 
nd S V represent candidate physical and virtual surrogate nodes,

espectively. Consumers are denoted with D, the set of time slots

s represented with T , while the set of stochastic scenarios is �.

ach scenario φ ∈ � has an associated realization probability, rep-

esented by p φ . Consumers d ∈ D express a time-varying traffic de-

and for each scenario φ ∈ �, that we indicate with r 
t,φ
d 

. The CDN

rovider ensures that at least a fraction ε of the aggregate requests

n every time slot is served by CDN nodes within a bounded delay,

enoted as �. The topological information is encoded in our pro-

osed optimization model using the δs, d input parameter, which

epresents the delay between client d ∈ D and CDN node s ∈ S . K 

P 
s 

nd K 

V 
s are the bandwidth capacities for physical and virtual CDNs,

espectively. Physical nodes have an activation cost C P s , while vir-

ual CDN nodes have a traffic-proportional cost C V s . 
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Algorithm 1: L-Shaped algorithm. 

Input : 〈D, S, T , �, r 
t,φ
d 

, K 

P 
s , K 

V 
s , C P s , C V s , δs,d , �, ε, p φ〉 

Output : ˆ a , ̂  y 
t,φ
s,d 

, ̂  z 
t,φ
s,d 

, min_cost 

1 Initialization : r = s = ν = 0 ; 

represent the optimization problem˜(1)-(7) in canonical 

form:˜(8)-(11); 2 ν = ν + 1 ; 

solve the Master Problem (MP) defined in (12)-(16); 

( a ν , θν ) = get_MP_solution() ; 

3 foreach φ ∈ Scenarios do 

solve the Linear Problem (LP) in (17)-(19); 

w 

′ = get_LP_solution_ObjFunValue() ; 

if w 

′ ≥ 0 then 

compute D r+1 and d r+1 according to (20) and (21); 

generate a feasibility cut; r = r + 1 ; 

add the feasibility cut to the MP problem; go to Step 

2; 

end 

end 

4 foreach φ ∈ Scenarios do 

solve the LP in˜(22)-(24); 

( ̂  y 
t,φ
s,d 

, ˆ z 
t,φ
s,d 

) = get_LP_solution( a ν ) ; 

compute E s +1 and e s +1 according to (25) and (26); 

end 

Let w 

ν = e s +1 − E s +1 a 
ν ; 

if θν < w 

ν then 

generate an optimality cut; s = s + 1 ; 

add the optimality cut to the MP problem; go to Step 2; 

end 

Optimal solution found: ˆ a = a ν ; 

min_cost = calculate_ObjFunValue( ̂  a , ˆ y 
t,φ
s,d 

, ˆ z 
t,φ
s,d 

) ; 

return( ̂  a , ˆ y 
t,φ
s,d 

, ˆ z 
t,φ
s,d 

, min_cost); 
Our proposed optimization model chooses the optimal physical

odes placement and request routing. a s is a binary decision vari-

ble that is set to 1 if and only if the physical candidate server

 ∈ S P is activated. Traffic requests for consumer d , in time slot t

or scenario φ can be served by flows y 
t,φ
s,d 

and z 
t,φ
s,d 

. In particular,

 

t,φ
s,d 

is a flow originating from the physical node s ∈ S P , while z 
t,φ
s,d 

s a flow provided by the virtual node s ∈ S V . 
The deterministic equivalent program in the extensive form for

he CDN planning problem of our infrastructure (EF-CDN) is for-

ulated as follows: 

in 

∑ 

s ∈S P 

[ 
C P s a s 

] 
+ E �

[ ∑ 

s ∈S V 

∑ 

t∈T 

∑ 

d∈D 

(
C V s z 

t,φ
s,d 

)] 

(1) 

ubject to: 
 

∈D 
y 

t,φ
s,d 

≤ a s K 

P 
s ∀ s ∈ S P , t ∈ T , φ ∈ � (2)

 

∈D 
z 

t,φ
s,d 

≤ K 

V 
s ∀ s ∈ S V , t ∈ T , φ ∈ � (3)

∑ 

 ∈S P 
y 

t,φ
s,d 

+ 

∑ 

s ∈S V 
z 

t,φ
s,d 

= r 
t,φ
d 

∀ d ∈ D, t ∈ T , φ ∈ � (4)

∑ 

d∈D 

[ ∑ 

s ∈S P | δs,d ≤�

y 
t,φ
s,d 

+ 

∑ 

s ∈S V | δs,d ≤�

z 
t,φ
s,d 

] 
∑ 

d∈D 
r 

t,φ
d 

≥ ε ∀ t ∈ T , φ ∈ � (5)

 s ∈ { 0 , 1 } ∀ s ∈ S P (6)

 

t,φ
s,d 

, z 
t,φ
s,d 

∈ R 

+ ∀ s ∈ S, d ∈ D, t ∈ T , φ ∈ �. (7)

The objective function (1) minimizes the overall costs given by

he activation of physical CDN nodes as well as the usage of the

irtual infrastructure. In particular, the virtual cost component is

omputed as the expected value for all the considered scenarios.

onstraints (2) set a capacity bound on the overall demand served

y physical CDN surrogates. If a physical surrogate is not activated,

hat is a s = 0 , it will not be capable to serve any request. Simi-

arly, the virtual CDN nodes capacity is fixed in (3) . In (4) we make

ure that the overall clients’ demands are served in any time slot

nd scenario, by virtual or physical surrogate servers. Flows can be

plit across multiple CDN servers. In (5) we control the overall ser-

ice quality. We make sure that a fraction of at least ε requests in

ach time slot is served by CDN surrogates within a maximum de-

ay of �. Finally, binary restrictions on the activation variables are

et in (6) , while non-negativity constraints on the continuous flow

ariables are enforced in (7) . Rather than considering the worst or

ean case, the stochastic formulation ensures that constraints hold

n every scenario, while the objective function is optimized given

he uncertainty on future traffic requests. 

In order to solve the optimization problem (1) –(7) we employ

ifferent strategies: 

1. A mixed integer linear programming solver (MILP); 

2. The L-shaped algorithm ( single and multicut versions); 

3. A polynomial-time greedy heuristic. 

In Section 3.3 we present the L-shaped and greedy algorithms. 

.3. Stochastic CDN planning algorithms 

Finding the optimal solution for the stochastic CDN planning

roblem is extremely time consuming, especially in large-scale,

eal network scenarios, as those used in our numerical evaluation.

otivated by this observation, we now present two algorithms to

fficiently solve the stochastic CDN planning problem: i) the L-

haped algorithm and ii) the greedy algorithm. 
.3.1. L-Shaped algorithm 

The L-shaped algorithm can be used to find an exact solution

f the optimization problem we formulated in Section 3.2 . Theo-

etical results guarantee that the L-shaped algorithm converges to

he optimal solution, but in some cases the speed of convergence

ight be too slow for the considered application. 

The L-shaped algorithm, whose pseudo code is given in

lgorithm 1 , proceeds according to the following steps (we refer

o Birge and Louveaux [6] for an introduction to this algorithm): 

• Step 1 : We initialize indices r, s, ν to zero ( r = s = ν = 0 ) and

we define the optimization problem in canonical form: 

min c T a + 

∑ 

φ∈ �
p φq 

T 
φy φ (8) 

subject to: 

T φa + W y φ = h φ φ ∈ � (9)

a s ∈ { 0 , 1 } (10) 

y φ ≥ 0 φ ∈ � (11) 

where c is the vector of physical CDN server installation costs,

c = {C P 1 , . . . , C 
P 
|S P | } , and q φ is a three-dimensional matrix, which

can be straightforwardly expressed in terms of the usage cost

of virtual CDN servers. Similarly, when the problem in (1) –(7) is

represented in canonical form, the constraints are represented

in matricial form, and therefore T φ and h φ can be easily defined

as a function of parameters K 

P 
s , K 

V 
s , r 

t,φ
d 

and ε. 
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Algorithm 2: Greedy algorithm. 

Input : 〈D, S, T , �, r 
t,φ
d 

, K 

P 
s , K 

V 
s , C P s , C V s , δs,d , �, ε, p φ〉 

Output : ˆ a , ̂  y 
t,φ
s,d 

, ̂  z 
t,φ
s,d 

, min_cost 

1 ˆ a = [ 1 ; 1 ; ... ; 1 ] ; phy_nodes = sort_phy_CDN_nodes() ; 

2 if ¬ is_feasible ( ̂  a ) then 

return INFEASIBLE_ASSIGNMENT ; 

end 

〈 ̂  y 
t,φ
s,d 

, ̂  z 
t,φ
s,d 

, min_cost 〉 = get_LP_solution ( ̂  a ); best_sol = ˆ a ; 

3 foreach s ∈ phy_nodes do 

ˆ a s = 0 ; 

〈 ̂  y 
t,φ
s,d 

, ̂  z 
t,φ
s,d 

, current_min_cost 〉 = get_LP_solution ( ̂  a ); 

if current_min_cost ≥ min_cost then 

break ; 

end 

min_cost = current_min_cost ; best_sol = ˆ a ; 

end 

4 ˆ a = best_sol ; 〈 ̂  y 
t,φ
s,d 

, ̂  z 
t,φ
s,d 

, min_cost 〉 = get_LP_solution ( ̂  a ); 

 

 

 

 

3

 

d  

p  

t

 

n  

o  

d  

i  

t

 

t  

f  

d  

t  

p  

o

 

i  

c  

L  

b

4

 

p  

r

 

i  

2  

e  

y  

e  
We have two sets of variables: i) “here-and-now” variables

which are the binary activation variables a s for the physical

CDN nodes and ii) “wait-and-see” variables which are the con-

tinuous flow variables y φ , composed of elements y 
t,φ
s,d 

and z 
t,φ
s,d 

.

It is worth noting that it is easier to determine the flow vari-

ables y φ once given the nodes activation variables a s . 

• Step 2 : We increment ν by 1 ( ν = ν + 1 ) and we solve the Mas-

ter Problem (MP) (12) –(16) : 

min c T a + θ (12)

subject to: 

D l a ≥ d l l = 1 , ..., r (13)

E l a + θ ≥ e l l = 1 , ..., s (14)

a ∈ { 0 , 1 } (15)

θ ∈ R 

+ (16)

In MP, we consider only the physical nodes activation variables

(the MP problem does not contain the stochastic scenarios). The

set of inequalities in (13) and (14) represent the feasibility and

optimality cuts of MP, respectively. In the first round, these sets

are empty. Let ( a ν , θν ) be an optimal solution of MP. If no con-

straint (14) is present, θν is set equal to −∞ and is not consid-

ered in the computation of the vector a ν . 

• Step 3 : We assume in this step that the here-and-now variables

are known (i.e., the vector a ν is computed in the previous step)

and we solve, for each scenario φ ∈ �, the following linear

problem: 

min w 

′ = (1 , . . . , 1) v + + (1 , . . . , 1) v − (17)

subject to: 

W y + Iv + − Iv − = h φ − T φa ν (18)

y ≥ 0 , v + ≥ 0 , v − ≥ 0 (19)

If for some φ the optimal value w 

′ > 0, then let σν be the

corresponding multiplier and we define D r+1 and d r+1 as fol-

lows: 

D r+1 = (σ ν ) T T φ (20)

d r+1 = (σ ν ) T h φ (21)

D r+1 and d r+1 are used to generate a constraint called a feasi-

bility cut of type (13) . Then, r is incremented by 1 and this fea-

sibility cut is added to the set (13) . At this point, go to Step 2.

When for all φ ∈ � w 

′ = 0 , go to Step 4. 

• Step 4 : As in Step 3, for each scenario φ ∈ �, we solve the

following linear problem: 

min q 

T 
φy (22)

subject to: 

W y = h φ − T φa ν (23)

y ≥ 0 (24)

Then we define the multiplier πν
φ

associated with the optimal

solution of the above problem (for each φ ∈ �). In this step,

we define E s +1 and e s +1 as follows: 

E s +1 = 

∑ 

φ∈ �
p φ(πν

φ ) T T φ (25)

e s +1 = 

∑ 

φ∈ �
p φ(πν

φ ) T h φ (26)
e  
Let w 

ν = e s +1 − E s +1 a 
ν . If θν ≥ w 

ν , stop; a ν is an optimal so-

lution. Otherwise, s = s + 1 and we generate the constraints

(called the optimality cuts ) using the above calculated terms in

(25) and (26) , and we add the optimality cuts to the set (14) and

then the algorithm returns to Step 2. 

.3.2. Greedy algorithm 

In this section we describe the polynomial-time heuristic we

esigned to compute a close-to-optimal solution to the planning

roblem. The pseudo-code is provided in Algorithm 2 to describe

he steps we use to achieve this purpose. 

At the beginning of the algorithm, in Step 1, all the physical

odes are activated and sorted. In particular, we give higher pri-

rity to those nodes that can serve the largest amount of traffic

emands within a delay of �. Given the structure of the problem,

nfeasible solutions are those that cannot be served even when all

he physical CDN nodes have been activated. 

In Step 2 we check this condition and eventually signal a poten-

ial infeasibility. The get_LP_solution function computes a solution

or the continuous relaxation of the model (1) –(7) , using a stan-

ard linear programming solver, and therefore has a polynomial-

ime complexity. As outputs, it returns the optimal flows for the

hysical and virtual CDN nodes as well as the overall cost. In case

f infeasibility, the output value of min_cost is set to infinite. 

The loop in Step 3 deactivates at every iteration one new phys-

cal node, according to the previously generated ordering, and it

ompletes when the objective function does not improve anymore.

astly, in Step 4 we compute the optimal flows starting from the

est physical nodes allocation choice. 

. Numerical results 

In this section we present the numerical results we obtained

erforming a thorough analysis of our models and heuristics under

ealistic network conditions. 

Unless stated otherwise, our network topology is created us-

ng the Barabási-Albert model and is composed of 50 consumers,

0 physical and 15 virtual CDN nodes. Traffic demands are gen-

rated using as a reference the Cisco VNI data for the 2014–2017

ears: the planning horizon is of 3 years and we used 36 differ-

nt time slots. Traffic uncertainty is taken into account by consid-

ring 10 different traffic scenarios, with a variable overall demand
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Fig. 2. Effect of the Service Level and Delay. The figure shows the overall cost as a function of the desired service level ( ε) and for different delays ( � = { 25 , 30 , 35 , 40 } ms). 
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etween 80% and 120% of the Cisco forecast. To control the over-

ll demand, we limit to 20 Gbit/s the maximum traffic requests

hat a consumer can generate in a time slot of a scenario. Physical

DN nodes have a capacity of 12.5 Gbit/s, while virtual CDNs can

erve up to 8 Gbit/s. Similar trends have been observed for other

apacity values, omitted here for the sake of brevity. Link delays

re generated in the range of those available on Rocketfuel for the

printlink (US) topology, with an average delay of 3 ms. Moreover,

e assume the CDN provider wants to guarantee that at least 95%

f the requests are served by surrogates with a delay lower than

2 ms, that is, selected CDN nodes are, on average, 4 hops far from

he consumer’s location. 

Lastly, prices are set as follows: we assume that the cost to in-

tall and operate one CDN node is set in the range [8; 12] kUSD,

hile different prices will be considered for virtual CDN nodes in

he range [0.001; 10] USD per Mbit/s. For the same physical-virtual

rice ratios, even by considering different values for the physical

DN pricing, we observed similar trends as those discussed in this

ection. Hereafter, we report the result we obtained using CPLEX

2.5 [25] as a MILP solver, bounding the maximum execution time

f the algorithms to 1 h (with a 5% MIP gap), and using a machine

quipped with a quad-core Intel i7-3770 (3.40 GHz) CPU with 16

byte of RAM. Lastly, for each of the results we performed 20 dif-

erent runs and we report the narrow 95% confidence intervals. 

We first present an example network scenario ( Section 4.1 ),

hen we analyze NFV benefits in large-scale topologies in terms

f network cost, studying the impact of the physical CDN capac-

ty, the number of clients, the number of physical and virtual

odes, traffic uncertainties and minimum service level to be guar-

nteed ( Section 4.2 ). The effect of vCDN pricing is then discussed

 Section 4.3 ), along with the computing time necessary to obtain

he solution ( Section 4.4 ). 

.1. Example network scenario 

To highlight the impact of the � and ε parameters (the max-

mum tolerated delay and the minimum service level guaranteed,

espectively), expressed in constraints (5) , on the solution of the

ptimization model (1) –(7) , we present here an example scenario,

here 5 physical CDNs (with a capacity of 50 Gbit/s each) are de-

loyed. 

Fig. 2 shows the objective function value (the overall cost) as

 function of these two parameters. In particular, the lower the

olerated delay �, the higher the overall cost the operator must

ncur to ensure the feasibility of the solution. In fact, the overall

ost for � = 25 ms is up to ≈ 5 times higher than that obtained

ith � = 40 ms. Similarly, the higher the value of ε, the higher

he overall cost, which more than doubles when the required ser-

ice level increases from 70% to 95% for � = 35 and 40 ms, for ex-
mple. In particular, this behavior is explained by the fact that the

perator must use in these cases virtual CDN nodes to serve the

raffic requests within the maximum tolerated delay, while guar-

nteeing the minimum service level. On the other hand, when �

s large (or ε is small), the model can leverage the services pro-

ided by physical CDNs even though they are far from the content

onsumers, and thus decreases the overall operator cost. 

.2. NFV benefits 

Fig. 3 shows the cost benefits for the mixed physical-virtual

DN architecture, considering different virtual prices. As expected,

n Fig. 3 a–f, lower CDN prices lead to lower overall costs. The effect

f the physical CDN capacity is shown in Fig. 3 a. If the capacity of

he physical CDN appliances is lower than 10 Gbit/s, using virtual

odes becomes mandatory since otherwise an infeasibility is pro-

uced. When the physical CDN nodes capacity is set to 15 Gbit/s,

ost savings up to 46% are experienced for cheap virtual CDN pric-

ng (i.e., 0.001 USD per unit of bandwidth), whereas the saving is

educed to 16% if we set a vCDN price of one order of magnitude

arger (i.e., 0.01 USD per unit of bandwidth). 

Fig. 3 b shows the effect of the number of clients on the costs.

he physical-only CDN infrastructure cannot handle more than 50

lients, whereas up to 100 clients can be served if we also leverage

he 15 virtual CDNs deployed. The effects of traffic uncertainties are

uantified in Fig. 3 c, where we show the overall cost as a function

f the traffic demand variance (starting from 0, i.e., from perfect

raffic knowledge, and increasing it). With the largest variance that

e took into account, the vCDN infrastructure leads to cost savings

n the range 16–43% according to the vCDN pricing. 

Fig. 3 d shows the effect of the minimum service level ( ε) on the

ost. It can be seen that in the four considered cases the cost in-

reases with ε. Note that the impact of ε on the solution of the

tochastic CDN planning problem can be more appreciated when

he number of physical and virtual nodes is smaller, and to guar-

ntee feasibility, virtual CDN nodes must be used more extensively.

Finally, in Fig. 3 e and f we plot the total cost the operator in-

urs when varying the number of physical and virtual CDN nodes ,

espectively. As expected, the higher the number of physical nodes

eployed in the network, the lower is the cost for the operator;

his trend is the same for the four considered cases. Given that

he number of physical CDN servers is fixed and equal to 20, in

ig. 3 f we plot the overall cost obtained when the number of vir-

ual nodes increases from 1 to 50. We can observe from this figure

hat for a small-to-medium number of virtual CDN nodes (i.e., ≤
0), the planning cost significantly decreases with this parameter

from 1.5 × 10 5 to 0.5 × 10 5 USD, especially, when the cost per

nit of bandwidth is 0.001 (the “vCDN 0.001” case) and then it

tabilizes (at 0.5 × 10 5 USD) for large values. The trend in Fig. 3 e
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Fig. 3. NFV Benefits . Plots 3 a–f show the overall cost benefits of an architecture composed of a mix of physical and virtual CDN nodes (denoted in the figures with vCDN), 

with respect to the scenario where only the physical CDN infrastructure is used (denoted in the figures with CDN). Different prices are considered for the vCDN case, as 

shown in the legend (0.01, 0.0 05, 0.0 01). The impact of several parameters is investigated, including the physical CDN capacity, the number of clients, the traffic variance, 

the desired service level, the number of available physical and virtual nodes. 
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and f is due to the fact that a medium number of virtual and

physical nodes is sufficient to serve all the traffic requests of con-

sumers while guaranteeing a minimum service level of 95%; we

intuitively expect that for a small number of physical CDN nodes,

more and more virtual nodes are needed in order to serve con-

sumers at higher service levels. 

4.3. Effect of the vCDN price 

Due to its remarkable effect, in Fig. 4 we show the impact of

the virtual CDN pricing using the different solution algorithms con-

sidered in this work. The overall cost is portrayed in Fig. 4 a. Solu-

tions obtained with exact solvers such as the deterministic equiva-

lent program in the extensive form or the L-shaped algorithm lead

to costs up to 11% (and on average 6%) lower than those reported

with the greedy heuristic. Fig. 4 a clearly shows that the higher the

prices, the lower the economic benefits of using a mixed physical-

virtual CDN infrastructure. In particular, considering prices in the

range [0.001; 0.5] USD per unit of bandwidth, the cost savings

compared to the physical-only solution are in the range 5–64%.

Fig 4 b shows the proportion of physical traffic with respect to

the overall demand, as a function of the price of virtual nodes.

Cheap prices make the virtual CDN capacity be fully saturated,

and for this reason the left hand-side of Fig. 4 b has an horizontal

trend that accounts for 57% of the overall traffic. As a consequence,

Fig. 4 c shows that the number of activated physical CDN nodes

does not increase for virtual prices lower than 0.01 USD. Compar-

ing Fig. 4 b and c, the slope of the curve is less steep in the second
lot, since there are cases where it is convenient to strategically

eploy a physical CDN server in a special position of the topology

ven though it is not fully used by the clients. It is interesting to

ote that for both Fig. 4 b and c the heuristic algorithm leads to

olutions that are practically overlapped to the optimal choice. 

.4. Computing time 

To limit the effects of infeasibilities that negatively affect re-

ults on the computing time, hereafter we raise the number of vir-

ual CDN nodes to 50, making the network be capable to serve up

o 150 consumers. Fig. 5 shows the execution time of the differ-

nt algorithms as a function of the number of clients ( Fig. 5 a), the

umber of physical ( Fig. 5 b), and virtual CDN nodes ( Fig. 5 c). 

The number of clients is the parameter that mostly affects the

xecution time, as portrayed in Fig. 5 a. In particular, the MILP

olver for the deterministic equivalent program has a time trend

hat is exponential in the number of served clients ( Fig. 5 a),

ut linear in the number of physical ( Fig. 5 b) and virtual

DNs ( Fig. 5 c). While the MILP solver can hardly scale to topologies

ith a larger number of nodes, this possibility is instead offered

y the L-shaped decomposition and our proposed heuristic. As a

atter of fact, all these algorithms can solve the planning problem

aving up to 94% of time compared to the MILP problem, when

onsidering 150 clients, as shown in Fig. 5 a. Lastly, although there

re cases where the heuristic algorithm is slightly slower than the

-shaped algorithm (as in Fig. 5 c), we remark the fact that the

euristic has a worst-case polynomial time complexity, whereas a
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Fig. 5. Execution time . Plots 5 a–c show the behavior of the different solution algorithms as a function of the number of clients as well as the number of surrogate nodes. 

We observe that the number of clients has the most remarkable effect on the execution time. 
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omparable theoretical result for the L-shaped algorithm does not

old. 

. Conclusion 

In this paper we tackled the stochastic planning problem for

ontent delivery to study potential benefits that Network Func-

ions Virtualization can provide for content distribution purposes.

e considered a mixed architecture where both physical as well

s virtual CDN nodes can be used by a CDN owner to implement

he content distribution service. The owner performs the planning

hoice for the physical CDN infrastructure on a long-term time

chedule, possessing only a stochastic estimate of future traffic de-

ands. 

Our study shows that a mixed solution where both virtual an

hysical CDN nodes are used can dramatically reduce the overall
osts sustained by the operator to purchase and operate the dis-

ribution infrastructure. In particular, we observed that gains can

e up to 65% when considering the cheapest vCDN price. Our con-

ribution is also to formulate efficient solution algorithms for the

wo-stage stochastic planning problem that can scale to realistic

opology sizes. Rather than solving the deterministic equivalent

roblem in the extensive form, our proposed L-shaped algorithm

nd the greedy heuristic can efficiently find a solution, saving up

o 95% of time compared to the MILP solver. 
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