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a b s t r a c t 

Localization of unknown nodes in wireless sensor networks, especially for new coming nodes, is an im- 

portant area and attracts considerable research interests because many applications need to locate the 

source of incoming measurements as precise as possible. In this paper, in order to estimate the geo- 

graphic locations of nodes in the wireless sensor networks where most sensors are without an effective 

self-positioning functionality, a new graph embedding method is presented based on polynomial map- 

ping. The algorithm is used to compute an explicit subspace mapping function between the signal space 

and the physical space by a small amount of labeled data and a large amount of unlabeled data. To alle- 

viate the inaccurate measurement in the complicated environment and obtain the high dimensional lo- 

calization data, we view the wireless sensor nodes as a group of distributed devices and use the geodesic 

distance to measure the dissimilarity between every two sensor nodes. Then employing the polynomial 

mapping algorithm, the relative locations of sensor nodes are determined and aligned to physical loca- 

tions by using coordinate transformation with sufficient anchors. In addition, the physical location of a 

new coming unknown node is easily obtained by the sparse preserving ability of the polynomial em- 

bedding manifold. At last, compared with several existing approaches, the performances of the presented 

algorithm are analyzed under various network topology, communication range and signal noise. The sim- 

ulation results show the high efficiency of the proposed algorithm in terms of location estimation error. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Wireless sensor networks (WSN) have received extensive inter-

st lately as a promising technology in many applications of wire-

ess communications, containing manufacturing [1] , health caring

2] , environment monitoring and forecasting [3] , habitat monitor-

ng and tracking. The location of nodes in WSNs plays an impor-

ant role in most application fields. In addition, knowing the rel-

tive locations of sensors makes use of location-based addressing

nd routing protocols, which can improve network robustness and

nergy-efficiency effectively. Therefore, sensor nodes localization is

ne of the fundamental issues in the implementation of WSNs. In

he large scale of sensor networks, even though some sensor nodes

ould be equipped with a global positioning system(GPS) to pro-
� This subject is supported by the National Natural Science Foundations of China 

No. 61179031, No. 61302149). 
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ide them with their absolute position, this is currently a costly

olution or impossible solution to some indoor cases. Therefore, it

s often assumed that the positions of some nodes are known ex-

ctly, so that it is possible to find the absolute positions of the

emaining nodes in the WSNs through the known locations of sen-

or nodes and the measurement data. The main task of WSNs lo-

alization algorithm is to determine the positions of sensor nodes

n a network given incomplete and disturbed by noise. Locating

he unknown nodes in a wireless system involves the collection

f location information from radio signals traveling between the

nknown nodes and a number of reference anchor nodes(anchors).

here are many classical positioning techniques, including the an-

le of arrival(AOA) [4–6] , the received signal strength(RSS) [7–9] ,

r time of arrival(TOA) [10–12] , which can be all used to deter-

ine the location of unknown nodes. The AOA technique uses the

ngles between the unknown node and a number of anchors to es-

imate the location of the unknown nodes, the RSS estimates the

eceived signal strength, and the time-based approaches measure

he arrival time of the received signal, respectively. 

http://dx.doi.org/10.1016/j.comnet.2016.06.032
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.06.032&domain=pdf
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Though many traditional localization methods can reach a high

localization accuracy, they are not suitable for dealing with large

scale sensor networks due to lot of time and material cost. Re-

cently, in order to handle these noisy measurements and time con-

sumption, several algorithms making use of kernel-based machine

learning have been proposed for locating sensor nodes with inac-

curate measurement in WSNs. Some different measurement meth-

ods about the sensor communication with each other are pre-

sented in [7] . A graph embedding localization algorithm for WSNs

is introduced in [13] , which views the sensor nodes as a group of

distributed devices to construct a graph to preserve the topological

structure of the sensor networks, and employs an appropriate ker-

nel function to measure the dissimilarity between sensors. A kernel

isometric mapping(KIsomap) algorithm is used to determine the

relative locations of sensors based on geodesic distance [14] and

a semi-supervised Laplacian regularized least squares algorithm is

presented in [15] using the alignment criterion to learn an ap-

propriate kernel function. In addition, a semi-supervised manifold

learning is used to estimate the location of mobile nodes in the

WSNs [16] . 

Most kernel-based localization algorithms can capture the non-

linearity of the measured data due to the nonlinear property of the

kernel function. However, they cannot deal with the sensibility of

measurement parameters. In order to overcome the shortcoming of

the sensitive to the neighborhood parameters, a robust localization

method with ensemble-based manifold learning is introduced in

[17] , and a local patches alignment embedding localization is pro-

posed in [18] . However, a main drawback of many manifold learn-

ing methods is that they learn the low-dimensional output data

samples implicitly. We cannot obtain an explicit mapping relation-

ship from the input data manifold to the output embedding af-

ter the training process. Therefore, in order to obtain the physical

locations of new coming samples, the learning procedure has to

be extremely time consuming for sequentially arrived localization

data. Although some methods based on linear projection have been

proposed to get an explicit mapping, the linearity assumption may

still be too restrictive. Meanwhile, the kernel embedding meth-

ods have been also proposed to give nonlinear but implicit map-

pings for manifold learning localization [19–21] . In addition, be-

cause these mappings are computed within a subset of the feature

space rather than the whole feature space itself and are given in

terms of the kernel and the training data samples explicitly, their

computational process would be quite complicated for large-scaled

sensor networks. 

In this paper, a new graph embedding algorithm with poly-

nomial mapping (GEPM) is proposed for locating unknown nodes

in WSNs, especially to the new coming nodes. Firstly, location

data based on pair-wise distance is obtained by the geodesic dis-

tance measurement. Consequently, in order to solve the problem

of the sparse structure of the sensor networks and the sensitive

to neighborhood parameters easily, we can construct a graph to

represent the topological structure of the sensor networks and cal-

culate the weight matrix and the sparse preserving matrix. And

then, an eigenvalue function can be obtained by the polynomial

mapping based on spectral embedding optimization problem. Let-

ting some eigenvectors corresponding to the smallest eigenvalues

of function be the polynomial coefficients, the relative locations

of all sensor nodes can be obtained based on Rayleigh-Ritz the-

orem. At last, by the coordinate transformation, we can get final

physical locations of all unknown nodes. Meanwhile, for the new

coming unknown nodes, we can easily obtain the geodesic dis-

tance between them with the datum nodes. Based on the graph

theorem, the relative coordinates and physical coordinates can

be calculated simply. Compared with linear projection methods

and kernel-based nonlinear mapping methods, the presented al-

gorithm gives more accurate embedding and out-of-sample exten-
ion results and, meanwhile, is very fast in locating new coming

amples. 

The main features of the proposed locating method are given as

ollows. 

• The geodesic distance matrix is used to construct the neigh-

bor graph of the WSNs, which reduces the influence of noise in

the measurement and receives high accurate location estima-

tion, even with error-prone distance information. In addition,

the datum nodes are selected to determine the geodesic dis-

tance vector, i.e., the high dimensional localization data, based

on the geodesic distance matrix. Comparing with some previ-

ous manifold learning localization methods, it is to further re-

duce the computational complexity and enhance the precision

of the solution in our approach. The detailed analysis is given

in Section 4.4 . 

• The embedding mapping is nonlinear and the high dimensional

data space is considered as a nonlinear manifold. Comparing

with the linear projection-based methods, the proposed map-

ping provides a nonlinear polynomial mapping from the high

dimensional localization data space to the low dimensional rep-

resentation space. Therefore, it is more reasonable to use a

polynomial mapping to handle data samples lying on nonlin-

ear manifolds. Meanwhile, the proposed localization method is

suitable to the large scale WSNs and has high localization ac-

curacy. 

• The mapping can be straightforward to locate any new sen-

sor nodes participating the WSNs. It is different from the tradi-

tional manifold learning localization methods such as MDS, SDP,

SVM, and ISOMAP, which are not clear how new localization

data sample can be embedded in the low dimensional space

for the implicit mapping. Meanwhile, in contrast to the explicit

manifold learning algorithm such as KLPP and S 2 LapRLS, the

proposed localization method has a lower computational com-

plexity and is fast and efficient in finding the low dimensional

representations of new localization data even for vary lager

data sets. 

• The influence of the datum nodes to the localization accuracy

is analyzed in detail based on the RMS error under different

anchors, communication range and noise standard deviation for

WSNs. Finally, the optimal selection of the datum nodes is first

given by m op = [ − 3 
2 + 

√ 

2 N + 

9 
4 ] with q = 2 for different sensor

nodes and interested localization area. The detailed analysis and

experiments are given in Section 4.1 . 

The rest of this paper is organized as follows. The localiza-

ion problems, containing graph construction, original nodes loca-

ion and new coming data calculation, are presented in Section 2 .

ection 3 presents the main contribution of this paper about the

ensor nodes location estimation algorithm based on the graph

mbedding theorem with polynomial mapping. The extensive sim-

lation results are described in Section 4 . Finally, some concluding

emarks and future works are given in Section 5 . 

. Localization problem statement 

Let us consider a p -dimensional(pD) localization problem in

SNs consisting of N sensor nodes in an interesting area C ⊆
 

p ( p = 2 or 3). Without loss of generality, we assume that the

rst n sensors are anchors, and the rests are unknown nodes. At

he same time, we select the first m ( p < m ) sensor nodes as da-

um nodes. The locations of anchors can be obtained by location

quipments, e.g., global positioning system, while the unknown

odes need to be measured by the anchors and localization data.

et p i be the i th sensor node whose coordinate is expressed as

( p 1 i , . . . , p pi ) 
T , i = 1 , 2 , . . . , N, and every sensor node can transmit
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Fig. 1. Distance between the nodes. 
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ocalization data to each of its neighbors upon some communica-

ion range d . Our goal is to determine the locations { p i } N i = n +1 
of the

nknown nodes by the anchors locations and the localization data

ith high localization accuracy and low complexity. Here, we use

he measurement pair-wise distance to calculate the localization

ata which can be obtained by the following description. 

For every pair of nodes p i and p j , their measured distance

enoted as x ij can be obtained by several measurement tech-

iques which contains time of arrival (TOA), round trip time of

rrival (RTTOA), time difference of arrival (TDOA), received signal

trength(RSS), connectivity and so on. As analyzed in many litera-

ures such as [14,15] , the pair-wise distance x ij can be replaced by

he geodesic distance g ij which contains the shortest path between

odes p i and p j where the geodesic distance matrix G = [ g i j ] N×N 

an be obtained by the following steps. First, we set g i j = x i j if

ode p i is within the communication range of node p j ; g i j = ∞
therwise. Second, for each value of l = 1 , . . . , N, replace all en-

ries g ij in turn by min { g i j , g il + g l j } . As shown in Fig. 1 , where the

lack circles represent anchors and the circles denote the unknown

odes; the blue lines between the nodes represent the measure-

ent distance through the Euclidean distance. When the nodes are

ot in each other’s communication radius, such as nodes p 1 and

 5 , we cannot estimate the Euclidean distance between them(the

otted line); consequently, the geodesic distance(the heavy line)

an be obtained, which represents the shortest path between them

n the neighborhood. 

According to the above criteria, the final matrix G is the

eodesic distance matrix which can be seen as a neighbor graph

bout the WSNs. Therefore, the topological structure of the WSNs

an be represented by a neighbor graph based on the geodesic dis-

ance, where each vertex represents a sensor node. We denote the

eodesic distance vector between the i th sensor and the m datum

odes in the sensor networks as 

 i = (g 1 i , . . . , g mi ) 
T , i = 1 , . . . , N, (1) 

hich is also called the high dimensional localization data. 

In addition, for a new coming sensor node p t (the red circle)

s shown in Fig. 1 , we can firstly obtain the nearest neighbor-

ng { p j } r j=1 
and the measurement distance between them. Then

he geodesic distance between p t and the datum node p 5 can

e calculated by min { x jt + g j5 } , for j = 1 , . . . , r, where g 5 j is the

eodesic distance between the anchor node p 5 and the j th sensor

ode p j of the nearest neighboring of p t . Therefore, we can easily

et the corresponding geodesic distance vector v t by (1) . Due to

he above processing of the measurement information where each

ode should communicate measurement data to the center node

r the based station, the proposed localization method is a cen-

ralized algorithm for wireless sensor networks localization prob-

em [22] . 
. Localization algorithm 

In this section, we attempt to learn an explicit nonlinear map-

ing from the localization data space to the physical space for sen-

or nodes localization. As well known that, the closer the locations

f some sensor nodes are, the more similar their localization data

re, i.e., the high dimensional localization data lie on a low dimen-

ional embedding manifold determined by the physical location

pace. In other words, when the locations of some sensor nodes

re known, the unknown nodes can be ground by exploiting the

eometry of the distribution of localization data, assuming their

onditional distribution are similar. After constructing the neighbor

raph, we can know that the topological structure of the WSNs can

e depicted by the neighbor graph G with a suitable similarity be-

ween every two sensors. Hence, the localization problem can be

iewed as a graph embedding problem. 

Here, we propose an explicit nonlinear mapping for manifold

earning with the assumption that there exists a polynomial map-

ing between high dimensional localization data space and low di-

ensional representation space. Comparing with the linear projec-

ion assumption previously used, the polynomial mapping is more

ccurate for localization data lying on nonlinear manifolds due

o providing a high order approximation to the unknown nonlin-

ar mapping. Precisely, we can assume that the k th component

 ki (k = 1 , . . . , p) of the low-dimensional representation y i corre-

ponding to the i th sensor node p i is a polynomial of degree q in

 i as the following manner 

 ki = 

∑ 

1 ≤l 1 + l 2 + ... + l m ≤q 

αl 
k g 

l 1 
1 i 

g l 2 
2 i 

. . . g l m 
mi 

, (2) 

here l 1 , l 2 , . . . , l m 

are nonnegative integers and v i =
(g 1 i , g 2 i , . . . , g mi ) 

T is the localization data which have been

btained based on the pair-wise distance measurement by (1) . It

hould be noted that there is not similar terms in the polynomial

xpression (2) such as g 1 i g 2 i and g 2 i g 1 i , and we only select the

ormer to participate the localization. Therefore, the superscript

 stands for the m -tuple indexing array (l 1 , l 2 , . . . , l m 

) , and the

ector of polynomial coefficients αk can be defined as 

k = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎜ ⎝ 

αl 
k 
| l 1 = q,l 2 =0 , ... ,l m =0 

αl 
k 
| l 1 = q −1 ,l 2 =1 , ... ,l m =0 

. . . 

αl 
k 
| l 1 =0 ,l 2 = q, ... ,l m =0 

αl 
k 
| l 1 =0 ,l 2 = q −1 , ... ,l m =0 

. . . 

αl 
k 
| l 1 =1 ,l 2 =0 , ... ,l m =0 

. . . 

αl 
k 
| l 1 =0 ,l 2 =0 , ... ,l m =1 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎟ ⎠ 

. (3) 

For a given localization data sample v i , we define V (i ) 
q as 

 

(i ) 
q = 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

q ︷ ︸︸ ︷ 
v i � ( v i � . . . ( v i � v i )) 

. . . 
v i � v i 

v i 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

, (4) 

here � denotes the Kronecker-like product defined on matri-

es, i.e., for a vector v i = (g 1 i , g 2 i , . . . , g mi ) 
T , v i �

q −1 ︷ ︸︸ ︷
( v i � . . . ( v i � v i ))

s a block column vector whose j th block is denoted as v 
q 
ji 

=
 ji V 

q −1 
ji 

with V 

q −1 
ji 

= ( v q −1 
ji 

, . . . , v 
q −1 
mi 

) T and v 1 
ji 

= g ji . Then, the low-

imensional representation (2) can be rewritten as 

 ki = αT 
k V 

(i ) 
q . (5) 
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Next, we should find the polynomial coefficients αk to deter-

mine an explicit mapping relationship, i.e., the unknown mapping

from the high-dimensional localization data samples into their

low-dimensional embedding space. It is well known that many

manifold learning methods, including Laplacian eigenmap, locally

linear embedding and isometric mapping, all can be placed into

the framework of spectral embedding [23] . Under this framework,

the localization problem is reduced to solve the following opti-

mization problem 

min 

y i 

N ∑ 

i, j=1 

1 

2 

w i j ‖ y i − y j ‖ 

2 
2 , (6)

s . t . 

N ∑ 

i =1 

λi y i y 
T 
i = I p , (7)

where W = [ w i j ] N×N defined by the localization data is symmetry

and positive weights matrix with w ij being the weight of the edge

between p i and p j , while λi = 

∑ N 
j=1 w i j . By the pair-wise distance

measurement data, for a given communication range d , we can de-

fine the weights matrix W with the heat kernel function 

w i j = 

{
exp (−w g g 

2 
i j 
) , if g i j ≤ d; 

0 , otherwise, 
(8)

where w g is the user-defined parameter which is usually given by

w g = 

1 

max { g 2 
i j 
} . 

Therefore, substituting (5) and (8) into (6) and (7) with a sim-

ply algebraic calculation, the optimization problem can be reduced

to 

min 

αk 

p ∑ 

k 

αT 
k V q UV 

T 
q αk , (9)

s . t . αT 
j V q DV 

T 
q αk = δ jk , (10)

where V q = [ V (1) 
q , V (2) 

q , . . . , V (N) 
q ] M×N is called the polynomial kernel

matrix with M = 

∑ q 
i =1 

C m −1 
m + i −1 

, U = D − W is the Laplacian matrix

and D is a positive diagonal matrix with D ii = 

∑ N 
j w i j which repre-

sents the degree of sensor networks. 

In general, because v i � = v j with i � = j and v ij ≥ 0, then we can

know that V q DV T q is M × M positive matrix if M ≤ N , otherwise not.

Therefore, based on the Rayleigh–Ritz theorem [24] , the optimal

solutions αk can be obtained by solving the following generalized

eigenvalue problem 

 q UV 

T 
q αk = μV q DV 

T 
q αk , α

T 
k V q DV 

T 
q α j = δk j . (11)

Then, we can get the column vectors, the solution of the above

equations, as α1 , α2 , . . . , αp , ordered according to their p small-

est non-zero eigenvalue μ1 ≤ μ2 ≤ . . . ≤ μp . Thus, for the origi-

nal training points, the p -dimensional mapping can be represented

as 

 = AV q , (12)

where Y = [ y 1 , y 2 , . . . , y N ] is the relative locations of sensor nodes

and A = [ α1 , α2 , . . . , αp ] 
T is the coefficient matrix. For a new com-

ing sample v t , its location in the low-dimensional embedding

manifold can be simply obtained by 

y t = (αT 
1 V 

(t) 
q , αT 

2 V 

(t) 
q , . . . , αT 

p V 

(t) 
q ) , (13)

where V (t) 
q can be calculated by (1) and (4) . In addition, based

on the property of manifold learning, the more the datum nodes,

the closer the obtained high-dimensional data manifold to the real

data space of the WSNs in general. And from (11) , we can know

that it should be M ≤ N for the Rayleigh-Ritz theorem problem.
hus, for the given q and N , the optimal datum nodes m op is given

y 

 op = max { m | 
q ∑ 

i =1 

C m −1 
m + i −1 

≤ N, m ∈ Z + } . (14)

or example, when q = 2 , there is m (m +3) 
2 ≤ N, then the optimal

atum nodes m op = [ − 3 
2 + 

√ 

2 N + 

9 
4 ] . 

For getting the physical locations of unknown nodes, based on

he coordinate transformation theorem, we can assume that there

s an affine coordinate transformation for each node as 

 i = B y i + c , i = 1 , . . . , N, (15)

here B = [ b jk ] p×p and c = (c 1 , . . . , c p ) 
T . Given sufficient number

f anchors, we can transform the relative locations to physical lo-

ations. The goal is to minimize the sum of squares of the errors

etween the true locations of the anchors and their transformed

ocations and the bias c in (15) can be eliminated by considering

he relative distance between sensors. 

Making use of the anchors { p i } n i =1 
and the corresponding rela-

ive locations { y i } n i =1 
, for a given anchor node p u , we set 

Y u = [�y 1 , �y 2 , . . . , �y u −1 , �y u +1 , . . . , �y n ] , (16)

P u = [�p 1 , �p 2 , . . . , �p u −1 , �p u +1 , . . . , �p n ] , (17)

here �y i = y i − y u and �p i = p i − p u . And then, we can formu-

ate the alignment problem as a least-squares optimization prob-

em 

in 

B, c 

n ∑ 

i =1 ,i � = u 
‖ B �y i − �p i ‖ 

2 
2 . (18)

hrough translating into a set of linear equations, it is easy to get

he analytical solution of above least-squares problem as 

 = �P u �Y T u (�Y u �Y T u ) 
−1 . (19)

inally, the estimation physical locations p̄ i of unknown nodes can

e obtained by the following formula as 

¯  i = B ( y i − y u ) + p u , i = n + 1 , . . . , N. (20)

or a new coming sensor node p t , the estimation physical location

an be also simply calculated by 

¯  t = B ( y t − y u ) + p u , (21)

here y t obtained by (13) is the low dimensional representation of

 t in the embedding manifold. 

Remarks: 

• This is a typical sensor network self localization problem for a

large number of unknown nodes using some reference anchors

and localization data via a nonlinear manifold learning method.

• The datum nodes m and polynomial degree q are two impor-

tant polynomial parameters which should be decided in ad-

vance through simulating with empirical data. In general, we

select the anchors to be the datum nodes. However, the actual

number of anchors can be more than the datum nodes m or

not. Obviously, the more the actual anchors are, the better the

topological structure of the sensor networks is. Consequently,

we can also select the unknown nodes to be the datum nodes. 

• There are many different measurement pair-wise distance mod-

els which can be selected to take part in the simulation. And

because of without the additivity, the proposed algorithm can-

not be used to deal with the signal strength measurement for

short communication range in general. However, we can select

an appropriate datum nodes set or eliminate the no commu-

nicating nodes for constructing the neighboring graph to deal

with received signal strength in the real world application. 
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Fig. 2. The performance of datum nodes m under different anchors n . 
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Fig. 3. The performance of datum nodes m under different communication range d . 

Fig. 4. The performance of datum nodes m under different noise σ . 

F  

n  

t  

r  
• Many applications only require the relative locations, so that

the coordinate transformation is optional. 

A summary of our algorithm is provided as follows: 

Node localization algorithm based on GEPM 

Input: { p i } n i =1 
: the location date set of the anchors; x ij : mea-

surement pair-wise distance. 

Output: The estimation physical locations { ̄p j } N j= n +1 
of the un-

known nodes. 

1: Construct the neighbor graph G . Compute the polynomial ker-

nel matrix V q , the basic weight matrix W with the localization

data and the graph Laplacian matrix U with U = D − W . 

2: Obtain the high-dimensional sample data { v i } N i =1 
of the sensor

nodes and the new coming localization data v t based on mea-

sured pair-wise distance. 

3: Calculate the relative locations using GEPM to estimate the re-

lationship between the localization data space and relative lo-

cation space. Solving the eigenvector problem in Eq. (11) , the p

orthogonal eigenvectors α1 , . . . , αp corresponding to the small-

est p non-zero eigenvalues can be obtained by Rayleigh–Ritz

theorem. Then the p -dimensional relative coordinate matrix Y

can be obtained by Eq. (12) . 

4: Given sufficient anchor nodes ( n ≥ 3 for 2D or n ≥ 4 for 3D),

the estimation physical locations { ̄p i } N i = n +1 
can be transformed

by the relative coordinates { y i } N i = n +1 
. And for a new coming

node p t , we can simply get its physical coordinate by Eq. (21) . 

. Simulation results 

To evaluate the performance of the proposed algorithm GEPM,

e simulate the localization algorithms with Matlab 1 and sup-

ose 200 sensor nodes including n anchors are randomly placed

n 2D environment, which is formed by 10 × 10 unit’s square re-

ion. The measurement distance x ij between p i and p j can be rep-

esented as x i j = ˜ x i j (1 + N(0 , σ 2 )) , where ˜ x i j is the real distance

nd σ is the standard deviation of noise [15] . In the experiments,

he heat kernel parameter is simply set as w g = 0 . 05 and the de-

ailed analysis of the polynomial parameters selection is given in

ubsection A. The mean location estimation error, i.e., root-mean-

quare(RMS) error calculated by Error = 

1 
N−n 

∑ N 
i = n +1 ‖ ̄p i − p i ‖ 2 , is

sed to measure the performance of the presented algorithm. To

et the optimal estimations and make full use of the localization

ata, the degree of polynomial mapping is usual set with q = 2 .

therwise, there is much more complicated calculation and time

osting. Thus, the optimal datum nodes m op is set as 18 with

 = 200 . It should be noted that the measurement data is always

ffected by kinds of noise. For example, some objects around the

ensor nodes, including cars, trees and buildings, may block the

ensor nodes, which in turn makes the measurements inaccurate.

onsequently, we assume that the standard deviation σ ≥ 0.05 and

ll of the reported simulation results are the average over 30 trials.

.1. The polynomial parameters selection 

In this subsection, the influence of the datum nodes m to the

ocalization accuracy is analyzed in detail based on the RMS er-

or under different anchors n , communication range d and noise

. As shown in Fig. 2 with d = 5 , σ = 0 . 2 and n = 10 , 30 , 50 , 70 ,
1 http://cn.mathworks.com/matlabcentral/fileexchange/57394-sensorsourcecode/ 

ontent/SensorSourceCode.m 

t  

r  

o  

r  
ig. 3 with n = 20 , σ = 0 . 4 and d = 4 , 6 , 8 , 10 , and Fig. 4 with

 = 40 , d = 7 and σ = 0 . 1 , 0 . 3 , 0 . 5 , 0 . 7 , respectively, we can know

hat the RMS error is decreasing slowly with the value of m and

eaches the minimal value at m = 18 . And when the fundamen-

al nodes number m ≥ 19, the RMS error would reach a big value

apidly. It can be seen that a good localization accuracy can be

btained when m ≤ 18, especially at m = 18 , the RMS error can

each the minimal value. Even for m = 5 , the RMS error is also not

http://cn.mathworks.com/matlabcentral/fileexchange/57394-sensorsourcecode/content/SensorSourceCode.m
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Table 1 

Parameter selection with different interesting region. 

Side length 10 20 30 40 50 60 

Com. range 6 12 18 24 30 36 

Datum nodes 18 18 18 18 18 18 

RMS error 0 .45 1 .56 2 .82 4 .05 5 .38 6 .56 

Table 2 

Parameter selection with different sensor number. 

Sensor nodes 50 100 150 200 250 300 

Datum nodes 8 12 15 18 20 23 

RMS error 0 .65 0 .56 0 .52 0 .45 0 .38 0 .36 

Sensor nodes 350 400 450 500 550 600 

Datum nodes 25 26 28 30 31 32 

RMS error 0 .33 0 .32 0 .33 0 .32 0 .32 0 .33 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

0 2 4 6 8 10
0

1

2

3

4

5

6

7

8

9

10

x

y

RMS error is 0.6235

Fig. 5. Localization result with n = 40 , d = 4 and σ = 0 . 1 . 
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Fig. 6. Localization result with n = 20 , d = 6 and σ = 0 . 4 . 

Fig. 7. Root-mean-square error on location with different noise σ and anchors n . 

r  

i  

s  

n  

0  

i  
vary large. Meanwhile, for the given N = 200 , n = 20 and σ = 0 . 1 ,

we present the localization results under different localization re-

gion with different side length and an appropriate communication

range(Com. Range) in Table 1 . We can see that the optimal datum

nodes m is also at m = 18 . Finally, we can know that the optimal

parameter of datum nodes is not effected by anchors n , communi-

cation range d and noise standard deviation σ for different inter-

esting region in general. 

Furthermore, through sequential experiment with n = 20 , σ =
0 . 1 , d = 6 and r ∈ [5,50], we can obtain the optimal datum nodes

number and the corresponding RMS error as shown in Table 2 un-

der different sensor nodes in the interesting area 10 × 10, where

N = 50 , 100 , . . . , 600 . From Table 2 , we can known that the opti-

mal datum nodes m op is consistent with m op = [ − 3 
2 + 

√ 

2 N + 

9 
4 ]

and the RMS error is decreasing with the density of the sensor

nodes in the localization region. At the same time, the presented

algorithm also has a great ability to preserve the sparsity structure

of the localization data. Even when N = 50 , m = 8 , the RMS error

is only about 0.65 at d = 6 and σ = 0 . 1 . 

From the above analysis, we can also know that the selection

of datum nodes m is only relative to the sensor nodes N with a

given polynomial degree q . In theory, the topological structure of

the sensor network is represented by a network graph G with N

sensor nodes under a given communication range d , where each

vertex represents a sensor node. Because the communication range

is not too small and the noise is also not too large comparing

the interesting region, otherwise there would be no sense, with

the application of geodesic distance, the dimension m of the high-

dimensional data manifold is mainly determined by the density of

the sensor network, i.e., the number of sensor nodes N , especially

for a big change with N . 

4.2. The localization result analysis 

In this subsection, we present the localization results and make

a detailed analysis under different anchors n , communication range

d and noise standard deviation σ . There are 200 sensor nodes

which are placed randomly in the interesting area mentioned pre-

viously and the number of datum nodes is always set as m = 18

in the next simulations. The location results of each sensor node

are shown in Figs. 5 and 6 . The squares are anchors and the cir-

cles denote the unknown nodes. Each line connects a true node

location and its estimation whose length denotes the localization

error. We set n = 40 , d = 4 , σ = 0 . 1 , and depict the estimated loca-

tion of each sensor node in Fig. 5 . The RMS error is about 0.6235.

We take n = 20 , d = 6 , σ = 0 . 4 , and plot the final estimated loca-

tion in Fig. 6 . The final RMS error is about 0.5742. 

Firstly, we present the effects of the anchors n with different

d and σ on the localization performance as shown in Figs. 7 and

8 , corresponding to d = 6 , σ = 0 . 1 , 0 . 3 , 0 . 5 and σ = 0 . 1 , d = 4 , 6 , 8 ,
espectively. We can see that the performance is not significantly

mproved with increasing of n . This demonstrates that the pre-

ented algorithm can achieve a good performance with a small

umber of anchors. Even when n = 4 , the RMS error is only about

.56 with d = 6 and σ = 0 . 1 . Consequently, in practical application,

f the anchors are very large, we can select appropriate anchors to
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Fig. 8. Root-mean-square error on location with different communication range d 

and anchors n . 

Fig. 9. Root-mean-square error on location with different noise σ and communica- 

tion range d . 

Fig. 10. Root-mean-square error on location with different communication range d 

and noise σ . 
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Fig. 11. Localization results with new coming data. 

Table 3 

The optimal localization results with different sensor number for 

new coming. 

Sensor nodes 50 100 200 300 400 500 

RMS error 1 .25 1 .09 0 .96 0 .96 0 .91 0 .86 
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c  
onstruct the neighbor graph for reducing the computational com-

lexity. 

Next, we set anchors n = 20 in the later simulations and

resent a quantitative analysis of the effects of d and σ in Figs. 9

nd 10 . We set σ = 0 . 1 , 0 . 3 , 0 . 5 , respectively, and plot the RMS

rror under different values of d in Fig. 9 . Meanwhile, we set

 = 4 , 6 , 8 , respectively, and plot the RMS error under different val-
es of σ in Fig. 10 . For a fixed σ , the RMS error is decreasing with

he value of d , and when the communication range d > 7, the lo-

alization accuracy does not increase obviously but decrease slowly

n same level. For a given value of d , it can be seen that the RMS

rror is increasing with the value of σ . 

.3. The localization for new coming nodes 

In this subsection, we assume that 20 new coming un-

nown nodes are putted into the location region as described in

ection 4.1 . Then, we can get the geodesic distance between the

ew coming nodes and the datum nodes by geodesic graph. Un-

er the same condition as Section 4.1 , the optimal estimation er-

or with different sensor nodes is shown in Table 3 which indicates

hat the RMS error is increasing with the sensor nodes due to pre-

erving the topological structure. Meanwhile, the proposed algo-

ithm also has a good preservability, and even for N = 50 , the RMS

rror is only about 1.25 with n = 6 , d = 6 and σ = 0 . 1 . In addition,

e set N = 200 , n = 20 , d = 6 , σ = 0 . 1 , and plot the localization re-

ult in Fig. 11 . It can be seen that the new coming nodes at the

enter of the region have a higher positioning accuracy, especially

or the low noise and high density of the localization region. 

.4. Comparison with other kernel learning localization methods 

In the simulations, we compare our algorithm with two

elated rang-based localization algorithms: (1) Isometric map-

ing(ISOMAP) based on centralized algorithm proposed in [14] ; (2)

 graph embedding method for wireless sensor network localiza-

ion based on kernel locality preserving projection(KLPP) [13] . 

.4.1. The comparison of computational complexity 

For the measurement pair-wise distance, the complexity of

omputing G and W are O ( N 

3 ) and O ( N 

2 ), respectively. The com-

lexity of calculating V 2 is O ( Nm (m +1) 
2 ) . The computational com-

lexity of the final generalized eigenvector problem is O ((N +
p)[ m (m +3) 

2 ] 2 ) . The complexity of the coordinate transformation is

pproximate to O ( m 

2 ). Therefore, the total computational com-

lexity of the proposed algorithm is O (N 

3 + N 

2 + 

Nm (m +1) 
2 + (N +

p)[ m (m +3) 
2 ] 2 + m 

2 ) . While the time complexity of the other two lo-

alization methods, i.e., ISOMAP and KLPP, are O (2 N 

3 + m 

2 ) and
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Fig. 12. Performance of diffenrent algorithms with different anchors n . 
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Fig. 14. Performance of diffenrent algorithms with different noise σ . 
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O (2 N 

3 + (p + 2) N 

2 + m 

2 ) , respectively [13,14] . Finally, we can eas-

ily get that the three algorithms have the similar computational

complexity for the localization of sensor nodes in WSNs. 

4.4.2. The comparison of localization accuracy 

We set d = 6 , σ = 0 . 4 and plot their RMS error under differ-

ent anchors n as shown in Fig. 12 . We also set n = 20 , σ = 0 . 4

and plot their RMS error under different d in Fig. 13 . While we

set d = 6 , n = 20 and report their RMS error under different σ in

Fig. 14 . From the simulation results, we can know that GEPM can

achieve the same accuracy as KLPP and is better than ISOMAP.

Though KLPP can also reach a high localization accuracy, it is more

complicated to deal with the new coming nodes than GEPM due

to calculating the total geodesic distance. 

Based on the all above simulation results for original data and

new coming data in WSNs, it can be seen that the presented al-

gorithm can achieve small average location error due to its great

ability of preserving the sparsity structure of the localization data

and the great ability of dealing with the measurement noise. Espe-

cially, it is also effect to the new coming sensor nodes without re-

constructing the topological network and reduces a lot of compli-

cated computations. Meanwhile, it is sensitive with the overlarge

datum nodes. Therefore, selecting a proper polynomial parameter

is very important for different localization environment. 
. Conclusion 

We have presented a graph embedding method for the loca-

ion estimation problem in WSNs based on measured pair-wise

istance. We view the sensors in the network as independently

istributed devices and choose a suitable heat kernel function to

easure the similarity between each pair of sensor nodes. Then we

ropose a novel localization algorithm under the manifold learn-

ng processes with an explicit nonlinear mapping based on the

ssumption that there exists a polynomial mapping between the

ocalization data space and their low dimensional representations.

or computing the geodesic distance graph, a suitable datum nodes

 and polynomial degree q are selected in a right way. And then,

he polynomial mapping method is presented and the relative lo-

ations are estimated by GEPM method. Finally, the physical co-

rdinates of the sensor nodes can be obtained by the affine co-

rdinate transformation. Experimental results confirm the promis-

ng performance of the proposed GEPM. Our future work will focus

n the explicit nonlinear mapping of manifold learning localization

ethods for the target detection and tracking in the wireless sen-

or networks. 
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