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a b s t r a c t 

Growth models have been proposed for constructing the scale-free overlay topology to improve the per- 

formance of unstructured peer-to-peer (P2P) networks. However, previous growth models are able to 

maintain the limited scale-free topology when nodes only join but do not leave the network; the case of 

nodes leaving the network while preserving a precise scaling parameter is not included in the solution. 

Thus, the full dynamic of node participation, inherent in P2P networks, is not considered in these mod- 

els. In order to handle both nodes joining and leaving the network, we propose a robust growth model 

E-SRA, which is capable of producing the perfect limited scale-free overlay topology with user-defined 

scaling parameter and hard cut-off. Scalability of our approach is ensured since no global information 

is required to add or remove a node. E-SRA is also tolerant to individual node failure caused by errors 

or attacks. Simulations have shown that E-SRA outperforms other growth models by producing topolo- 

gies with high adherence to the desired scale-free property. Search algorithms, including flooding and 

normalized flooding, achieve higher efficiency over the topologies produced by E-SRA. 

© 2016 Elsevier B.V. All rights reserved. 

1

 

l  

g  

p  

t  

d  

t  

O  

n

 

n  

c  

e  

T  

t  

d  

t  

b  

a  

s

w  

a  

f  

h  

P  

g  

h  

t  

o  

m  

l  

 

o  

o  

j  

d  

t  

i  

m  

r  

t  

h

1

. Introduction 

In addition to the specific search strategies and resource al-

ocation methods, the overlay topologies (i.e. logical connectivity

raph) have significant impact on the performance of unstructured

eer-to-peer (P2P) networks. It has been shown that the scale-free

opology with the power-law distribution of node degrees is by

efinition well suited for P2P networks [1] . This is because such

opology has a logarithmically scaled diameter [5] (ranging from

 (ln N ) to O (ln ln N )), is highly tolerant to random failures [13] and

etwork congestion [15] , and it also is highly synchronizable [14] . 

In the original Barabasi-Albert (BA) model [12] , when a new

ode joins the network, its likelihood to connect to a node in-

reases with this node’s degree. This behavior, also known as “Pref-

rential Attachment”, generates a network with scale-free features.

he BA model, however, does not consider some important fea-

ures of P2P applications, including the hard cut-off on degree and

ynamic peer participation [11] . The hard cut-off, which restricts

he feasible topologies to limited scale-free networks, is required

ecause users in P2P networks usually are not willing to serve

s hubs (i.e. nodes with high degree) because of the high band-
∗ Corresponding author. 
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idth required to serve the ensuing traffic. Moreover, users usu-

lly keep joining and leaving the network periodically, which af-

ects the degree distribution in an unpredictable manner. Efforts

ave been made to build the limited scale-free overlay topology for

2P networks. Previous studies [6–8] have proposed cost-efficient

rowth models to construct the limited scale-free topologies with

ard cut-offs with nodes constantly joining the network. However,

he dynamic of nodes’ removal [11] is another inherent property

f P2P networks and it is not taken into account in these growth

odels. In previous studies [9,10] , although nodes are allowed to

eave, a precise scaling parameter can not be produced as specified.

Scale-free topologies are relatively robust in face of the removal

f randomly chosen nodes but are very vulnerable to the removal

f hubs [17,18] . In P2P networks, a selfish hub may quit and re-

oin the network to avoid high communication costs, potentially

istorting the degree distribution of the topologies. Admittedly,

he degree distribution of a scale-free topology is not significantly

nfluenced by infrequent node removal. However, when node re-

ovals are significant fraction of node additions over some pe-

iod, the accumulated effects will eventually destroy the scale-free

opology. In order to preserve the scale-free topology, a mechanism

s needed to keep the power-law degree distribution regardless of

he frequency of node removals. 

One challenge to preserve a scale-free topology is to avoid us-

ng global knowledge because the communication cost required

o obtain it grows linearly with the size of network. Yet, degree

http://dx.doi.org/10.1016/j.comnet.2016.06.019
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distribution is a global property. In addition, when a node is re-

moved, each of its neighbors has one connection terminated. Thus,

scale-free feature must be controlled with a cost-efficient approach

which does not require global information. On the other hand, it is

important to preserve an exact scaling parameter for a power-law

scale-free topology because the best performance of particular P2P

application is achieved when a specific scaling parameter is cho-

sen. But previous decentralized protocols can only produce over-

lays with an inexact and constant scaling parameter, depending on

the size of the network. 

Here, we introduce the E nhanced S emi- R andomized Growth

A lgorithm (E-SRA), which preserves the power-law degree distri-

bution in an overlay topology with nodes dynamically joining and

leaving the network. It allows arbitrary nodes to be removed from

a network and does not require collecting global information about

the topology. Our approach assumes only local information is avail-

able, i.e. degree of the neighbors of the removed node. One ad-

vantage of our approach is that it provides partial tolerance to

failing nodes. If a single node 1 fails due to attacks or errors, the

neighbors are able to detect the failure and work to preserve the

power-law distribution. In terms of the message complexity, one

broadcast is needed to remove one node. If nodes randomly leave

the network, the average number of the point-to-point messages

sent by a single node to preserve the power-law degree distribu-

tion is linear to the maximum (also called hard cut-off) degree of

the nodes. Combined with the growth model proposed in previous

work [8] , scale-free overlay networks can be maintained efficiently

with nodes freely joining and leaving. As discussed in [8] , it is im-

portant to adhere to exact scaling parameters because only then

full advantage of properties such as slowly growing diameter hold.

Moreover, capability to control post-construction parameters gives

the flexibility to have a desired γ that will give the best efficiency

in the search algorithm in use. 

Simulations have shown that our approach can generate the

perfect limited scale-free topologies with different patterns of

adding/removing nodes while other models presented in the lit-

erature [6–8] have failed to handle node removal, especially when

nodes with high degrees leave the network frequently. Moreover,

the overlay topologies constructed by E-SRA provide better search

performance in various settings; here, we considered search al-

gorithms including flooding, where messages are forwarded to

all neighbors, and normalized flooding, where messages are for-

warded to k (i.e. the minimum degree) randomly selected neigh-

bors. 

The major properties of E-SRA include the following: 

• Tolerance to dynamic peer participation: Nodes with any degree

are free to leave and join the network while the power-law dis-

tribution is preserved. 

• Partial tolerance to failures: the topology can recover from a

single node failure as long as the neighbors of the failing node

are alive at the moment of the failure. 

• Scalability: no global information is required to add or remove

a node. 

• Flexible parameter settings: a topology with user-defined pa-

rameters (i.e. the minimum/maximum degree, scaling parame-

ter γ ) is created to ensure its optimal performance in applica-

tions such as search algorithms. 

Section 2 introduces the previous work on growth models for

limited scale-free topologies. Section 3 presents the detailed algo-

rithms and its analysis. Section 4 describes simulation results. The
1 We assume the nodes crash incrementally. When a group of connected nodes 

crash at the same time, some global restoration algorithm would be more appro- 

priate. 

r  

s  

g  

h  

o  
iscussion is presented in Section 5 and the conclusions are in-

luded in Section 6 . 

. Related work 

The scale-free property is shown to exist in many natural or ar-

ificial systems, such as protein-protein interaction networks [19] ,

he Internet [2] , the World Wide Web [3] , and scientific collabo-

ation networks [4] . The degree distribution in these networks fol-

ows the power-law: P (i ) ∼ i −γ , where P ( i ) is the fraction of nodes

ith degree i and γ is the scaling parameter which varies between

ifferent types of networks (2 ≤ γ ≤ 3 in most cases). In a lim-

ted scale-free topology, only nodes with degrees smaller than the

ard cut-off (i.e. the maximum) degree have degree distribution

hat follows the power-law. 

The scale-free topology has some good properties, includ-

ng high tolerance to random attacks [13] , high synchronizabil-

ty [14] and resistance to congestion [15] . For this reason, several

rowth models are proposed to construct the scale-free overlay

opology. The BA model [12] manages to explain the evolution of

cale-free topologies by a core principle named “Preferential At-

achment”. But it is not practical in real P2P applications because

he global information is required to maintain it. To address this

ssue, HAPA [6] , Gaian [7] , subPA [9] and SRA [8] algorithms were

ntroduced to construct the scale-free overlay topology with partial

r no global information. 

“Preferential Attachment” [12] means a new node is more likely

o connect to heavily linked nodes when it joins the network. The

A model has some disadvantages as the growth model for the

verlay topology of P2P networks. Firstly, it does not provide hard

ut-offs. Since a heavily linked node uses a lot of bandwidth in

2P networks, nodes usually are not willing to maintain high de-

rees. For this reason, a user-defined hard cut-off (i.e. the maxi-

um) degree is imposed lower than the natural cut-off arising in

he BA model. The imposed hard cut-offs restrict the feasible over-

ays to the limited scale-free topologies, which are more practical.

oreover, the BA model also requires the global information about

he topology to add connections when a new node joins. In real-

orld applications, however, the communication cost of obtaining

he global information is prohibitive. Therefore, a distributed ap-

roach that constructs the topology without global information is

esired. 

In [6] , authors study the construction of limited scale-free over-

ay topologies for unstructured peer-to-peer networks. In the Hop-

nd-Attempt Preferential Attachment (HAPA) algorithm [6] , a new

ode joining the network connects to k (i.e. the minimum degree)

odes in a random route starting from a randomly chosen node.

his scheme works because high degree nodes are more likely to

ccur in a random route than nodes with low degree. The hard

ut-off is used to avoid “superhubs”, which are nodes with degrees

inear to the network size. HAPA algorithm produces the topolo-

ies with degree distribution approximately following the power-

aw with scaling parameter γ = 3 . 

Gaian [7] algorithm is proposed for distributed database sys-

ems whose efficiency and reliability depends on the overlay topol-

gy. In this algorithm, a new node broadcasts a message when it

oins the network using computing with time principle [20] . Each

eceiver computes the maximum time of delay, t v , which is propor-

ional to the inverse of its degree, and chooses the time of delay t d 
n the interval [0, t v ] uniformly randomly. Instead of replying to the

ender instantly, the receiver waits the time of delay t d and then

eplies. In this way, nodes with higher degrees are likely to wait

horter period. The new node connects to the first k responders. It

ives a better chance to the new node to connect to nodes with

igh degrees. This mechanism, which reduces the communication

verhead by allowing nodes to self-select themselves according to
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Table 1 

Comparison of growth models. 

Algorithm Global knowledge 

used 

Flexible γ Tolerance to 

removal 

BA [12] Complete No No 

HAPA [6] Partial No No 

Gaian [7] None No No 

subPA [9] τ j -hop and τ l -hop 

neighbors 

No Yes 

SRA [8] None Yes No 

E-SRA None Yes Yes 
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heir fitness to the desired property, is also known as computing

ith time [20] . The communication cost for selection is constant

n the number of candidates. Similar to HAPA algorithm, Gaian al-

orithm cannot produce an overlay topology with the user-defined

caling parameter. 

Although the growth models such as Gaian and HAPA can

onstruct a limited scale-free topology efficiently and are also

asy to implement, post-construction parameters of network struc-

ures (i.e. the scaling parameter related to the search perfor-

ance) cannot be adjusted. In [8] , the authors propose a flexible

rowth model that can produce a limited scale-free topology with

ser-defined parameters. The S emi- R andomized Growth A lgorithm

SRA) [8] requires no global information and imposes a hard cut-off

n degrees. In SRA, when a node joins the network, it broadcasts

 message containing the desired degrees of the k new neighbors.

hese degrees are computed according to the given network pa-

ameters. The receivers with the desired degrees reply to the new

ode using computing with time rule [20] . The new node connects

o the first k responders. The scaling parameter, as well as the hard

ut-off, can be defined by users in advance. So, the SRA model is

ble to produce overlay topologies, over which the efficiency of ap-

lications such as search algorithms is maximized. The constraints

f feasible values of these network parameters are presented in

21] . SRA outperforms other growth models by producing overlay

opologies with perfect matching to the arbitrary power-law de-

ree distribution. 

In [9] , the authors propose an ad-hoc limited scale-free network

odel, subPA 

2 , which performs the P referential A ttachment pro-

ess in a chosen sub set of nodes. When a new node joins the net-

ork, it constructs a set of nodes reachable in at most τ j hops

rom a random existing node and connects to k nodes in this set.

he probability a node being connected is proportional to its de-

ree. When a node is removed, its neighbors construct a set of

odes reachable in τ l or less hops from the deleted node, and

ach neighbor connects to one node using the similar preferen-

ial attachment rule. The hard degree cut-off is achieved by pro-

ibiting nodes with maximum degree from accepting new con-

ections. It is worth noting that this model becomes the prefer-

ntial attachment with global information when τ j value is large

nd τ l is zero and a BA network with γ = 3 is obtained. In [10] ,

he subPA model is extended to consider the popularity of a node,

hich is defined as the summation of the popularity of the items

t holds. The likelihood that an existing node being connected is

roportional to the linear combination of its degree and popular-

ty. In this way, the degree of the nodes which hold popular down-

oadable items increases, leading to reduced query response time.

ut this framework could not specify the scaling parameter of the

roduced topologies and it does not consider the removal patterns

hich are likely to destroy the scale-free property, such as frequent

emoval of hubs. The features of HAPA, Gaian, subPA and SRA al-

orithms are compared in Table 1 . 

To the best of our knowledge, however, allowing nodes to leave

etwork during overlay maintenance while producing the precise

caling parameter has not been studied. Yet, in peer-to-peer net-

orks, nodes are likely to join and leave the network frequently.

ith such dynamic peer participation, the scale-free topology pro-

uced by previous growth models are affected by node removal,

specially when hubs are removed. This effect can accumulate,

egatively impacting the performance of P2P networks, which are

uilt on top of the overlays. In this paper, we propose a robust

odel, in which nodes are allowed to leave the network in an

rbitrary pattern. Combined with the growth model proposed in
2 The approach proposed in [9] is named after “subPA” because it performs the 

referential Attachment ( PA ) process in a chosen sub -graph. Originally, the authors 

f [9] did not use any abbreviation for their approach. 

f

o

ur previous work [8] , the scale-free topology is maintained while

odes are allowed to freely join and leave the network. 

Other decentralized or self-organized algorithms which con-

truct the overlay topologies in a wide variety of applications for

nstructured peer-to-peer systems include [23–26] . These proto-

ols construct overlay topologies efficiently based on the superpeer

hich operates as the server for a set of clients. They trade the

trict adherence to the precise degree distributions for increased

esilience in the face of frequent and simultaneous join and leave

vents. Compared with these protocols, the primary concern of our

ork is to construct power-law topologies with a precise and con-

rollable scaling parameter so that P2P applications achieve the

est performance over them. And our work does not assume the

xistence of such superpeers for maintaining overlay topologies,

hich in purely P2P applications are not assumed to exist. 

. Approach and analysis 

We describe the problem and propose our approach which fo-

uses on preserving the power-law degree distribution while nodes

ynamically join and leave the network. Below, we discuss leaving

nly since the joining part is presented in detail in [8] . 

.1. Problem formulation 

The degree of a node is defined as the number of connections it

as in an overlay topology. Using the same notation as in [8] , the

raction of nodes with degree i is denoted as P i , 

 i = 

N i 

N 

(1) 

here N i is the number of nodes with degree i and N is the total

umber of nodes. 

In a scale-free topology, degree distribution follows the power-

aw: P i ∼ i −γ where γ is a constant. In a limited scale-free topol-

gy, P i follows the power-law for i < m , where m is the hard cut-

ff (i.e. the maximum) degree. 

The value of P i in a limited scale-free topology is given by Eq.

7] in [8] as f i as a function of the maximum degree m , the mini-

um degree k and the scaling parameter γ , 

f i = 

m − 2 k 

i γ
∑ m −1 

j= k 
m − j 

j γ

for i < m (2)

nd f m 

, that does not need to follow the power-law distribution, is

iven as, 

f m 

= 1 −
m −1 ∑ 

i = k 
f i (3) 

he goal is to maintain the degree distribution as f i for i = k, . . . , m

hile nodes with arbitrary degrees are added or removed 

3 . For
3 We are interested in preserving the power-law distribution because of the per- 

ormance improvements it brings. Our approach actually solves the general problem 

f keeping any fixed degree distribution. 
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the sake of simplicity, we assume one node is removed at a time

and the node to be removed is denoted as node R and the number

of its neighbors is denoted by b . 

3.2. Atomic operations 

In order to preserve the power-law distribution, we made three

observations about the dynamics of the topology when a single

node R is removed. 

Observation 1 : If an arbitrary node R is removed, the neighbors

of R are able to detect the removal because each of them has one

connection terminated. 

Observation 2 : If an arbitrary node R is removed, the degree

of each neighbor of R decreases by one, influencing the resulting

degree distribution. One simple countermeasure is to connect each

neighbor with a random node so that the degrees of R ’s neighbors

stay the same. 

Observation 3 : If an arbitrary node R with degree b is removed,

the numbers of nodes with degrees both lower and higher than

b should change to preserve the power-law distribution. This sce-

nario is analogous to maintaining hierarchical management struc-

ture in a large company. If many middle managers resign, in or-

der to keep the original ratio of managers on different levels with-

out hiring new employees, some low-level managers must be pro-

moted while some managers have to be downgraded. 

The main challenge here is that the pattern how the node de-

grees change is unpredictable. In order to handle the dynamics,

each neighbor of R can connect to a new node, then all neigh-

bors of R will have the same degrees. It means there are a total

of b connections added by the neighbors of R , and the degrees of

the nodes on the other end of these b connections will increase

by one. If the nodes on the other end of these b connections are

chosen carefully, then the change of degrees is predictable. 

In addition, from Observation 3 , we know that in some cases,

certain connections should be removed to preserve the power-law

degree distribution. How to locate these connections? A solution

that we use here is based on the following observation. Consider a

node X that is a neighbor of node R and two nodes A and B that are

not but they are connected to each other. When node A connects

to X and also terminates its connection to B , then, nodes A and X

keep their original degrees while the degree of node B decreases

by one. If node B is carefully chosen to have the right degree, then

the degrees are changed as desired. 

To sum up this idea, there are two types of operations that can

be conducted by each neighbor of R : 

• PUSH: The neighbor of R connects to a new node A . 

• SHUFFLE: Besides connecting to a new node, the neighbor of R

also asks the new node A to terminate one connection to some

node B . 

One PUSH will increase the degree of node A by one and one

SHUFFLE will decrease the degree of node B by one. In the rest of

this paper, we say a neighbor of R PUSHes on degree i , if it con-

nects to a new node A with degree i , causing A to increase its de-

gree to (i + 1) . And we say a neighbor of R SHUFFLEs on degree i ,

if it connects to a new node A and asks A to terminate its existing

connection to a node B of degree i , causing B to decrease its de-

gree to (i − 1) . The neighbor of R will keep the original degree no

matter whether it PUSHes or SHUFFLEs. 

How many PUSHes and SHUFFLEs should be assigned to the

neighbors of R ? Since the degree distribution of a limited scale-

free topology does not change, the same average degree 2 k should

be preserved. Thus, if one node is removed, totally k connections

should be removed. So, when b connections of node R are re-

moved, (b − k ) connections should be added to keep the average

degree at 2 k . This could be achieved by (b − k ) PUSHes and k
HUFFLEs per removal because each PUSH adds one connection

nd each SHUFFLE does not change the total number of connec-

ions. 

.3. Analysis 

We are interested in the degree of every PUSH and SHUFFLE

hen a single node is removed. Let D i denote the number of SHUF-

LEs on degree i and I i denote the number of PUSHes on degree i .

ince (b − k ) PUSHes and k SHUFFLEs are needed, we have, 

 −1 ∑ 

i = k 
I i = b − k (4)

m ∑ 

 = k +1 

D i = k (5)

hese SHUFFLEs and PUSHs make D i nodes decreasing their degree

rom i to (i − 1) and I i nodes increasing their degree from i to (i +
) . Also, I m 

= 0 , D k = 0 because the degrees of all nodes are kept

n range [ k, m ]. I i , D i are non-negative for i ∈ [ k, m ]. 

Let’s consider the total number of nodes with degree k after

ode R is removed from a network of size n . Before removal, there

ere f k n nodes originally of degree k . Additional D k +1 nodes origi-

ally with degree (k + 1) are added and I k nodes are moved from

his count by SHUFFLEs and PUSHes. If the fraction of nodes with

egree k is still f k , we have, 

f k (n − 1) = f k n − I k + D k +1 (6)

here n is the total number of nodes before R quits. Similarly, the

egrees of I d nodes increase from d to (d + 1) . The degrees of I d−1 

odes increase from (d − 1) to d . The degrees of D d+1 nodes de-

rease from (d + 1) to d . And the degrees of D d nodes decrease

rom d to (d − 1) . If the fraction of nodes with degree d remains

 d , then 

f d (n − 1) = f d n − I d + I d−1 + D d+1 − D d (7)

or k < d < m and d � = b . Since node R itself is removed, 

f b (n − 1) = f b n − I d + I d−1 + D d+1 − D d − 1 (8)

ue to the hard cut-off, nodes with degree m should not accept

ny new connections, 

f m 

(n − 1) = f m 

n + I m −1 − D m 

(9)

implifying Eqs. (6 )–( 9) , we obtain that for k ≤ i ≤ b − 1 , 

 i − D i +1 = 

i ∑ 

j= k 
f j (10)

nd for b ≤ i < m , 

 i − D i +1 = 

i ∑ 

j= k 
f j − 1 (11)

et non-negative vectors �
 D = (D k +1 , D k +2 , . . . , D m 

) T , and
 

 = (I k , I k , . . . , I m −1 ) 
T be such that, 

 

 − �
 D = 

⎡ 

⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎢ ⎣ 

f k 
f k + f k +1 

. . . ∑ b−1 
i = k f i ∑ b 

i = k f i − 1 

. . . ∑ m −1 
i = k f i − 1 

⎤ 

⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎥ ⎦ 

(12)
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Algorithm 1 Enhanced Semi-Randomized Growth Algorithm (E- 

SRA) 

1: procedure OnQuit 

2: Quit 

3: procedure OnDegreeChange (newDegree) 

4: b ← newDegree 

5: update message ← {} 
6: for i = 1 to b do 

7: r 1 ← random number in [0 , 1) 

8: r 2 ← random number in [0 , 1) 

9: if r 1 < 

k 
b 

then 

10: for j = k + 1 to m do 

11: if r 2 ∈ [ v j , v j+1 ) then 

12: op i ← ( IP i , SHUFFLE on degree j ) 

13: else 

14: for j = k to m − 1 do 

15: if r 2 ∈ [ u j , u j+1 ) then 

16: op i ← ( IP i , PUSH on degree j ) 

17: update message ← { op 1 , op 2 . . . , op b , b} 
18: Send the update message to every neighbor 

19: procedure OnNeighborQuit 

20: Broadcast the latest update message received from the quit- 

ting neighbor 

21: Connect to the first responder 

22: procedure OnReceiveUpdateMessage (updateMsg) 

23: b ← the degree of itself 

24: for each op i in updateMsg do 

25: if op i = ( IP i , PUSH on degree b) then 

26: Reply to the node with IP i 
27: Return 

28: else if op i = ( IP i , SHUFFLE on degree b) then 

29: Terminate its existing connection to a random neigh- 

bor RN 

30: Ask RN to reply to the node with IP i 
31: Return 
ith the L 1 norm ‖ � I ‖ 1 = b − k, ‖ � D ‖ 1 = k . The solution to Eq.

12) depends on the degree distribution f i , the degree of removed

ode b and the hard cut-off m , but is independent from the cur-

ent network size n . It allows us to design an algorithm that does

ot need any global information. 

One simple solution to Eq. (12) is, 

 

∗
i = 

{
1 k ≤ i < b 
0 otherwise 

(13) 

nd for i ∈ [ k + 1 , m ] , 

 

∗
i = 1 −

i −1 ∑ 

j= k 
f j (14) 

t could be observed that D 

∗
i +1 

= a (i ) which is the average number

f nodes increasing degree from i to (i + 1) when a node joins the

etwork in the growth model [8] . This is because, intuitively, the

ecreasing degree is exactly the opposite to a new node’s connect-

ng to k neighbors. 

The solution to Eq. (12) may not be unique, an optimized solu-

ion with minimum message cost is discussed in Section 3.5 . 

.4. Protocol design 

According to the analysis in Section 3.3 , there should be I i 
eighbors of R that PUSH on degree i and D i neighbors of R that

HUFFLE on degree i , for i = k, . . . , m . For the specific protocol de-

ign, we use the solution I ∗
i 

and D 

∗
i 

presented in Eqs. (13) and (14) .

It is necessary for every neighbor of R to know operations

eeded when R leaves the network, regardless if the departure is

oluntary or caused by a crash. To ensure this, R should assign

uch operations to its neighbors as early as possible because it

ay accidentally crash anytime. As shown in Section 3.3 , the oper-

tions which will be assigned depend on the degree of R because

he value of I ∗
i 

depends on the degree of R . Therefore, R should re-

ompute I ∗
i 

and assign the new PUSH/SHUFFLE operations to the

eighbors if its degree changes; in such a case the node sends up-

ates messages which contain its own degree and PUSH and SHUF-

LE operations to its neighbors. 

If the degree of a node R changes to be b ′ , R computes two

on-decreasing sequences, 

 i = 

i ∑ 

j= k +1 

D 

∗
j 

k 
and u i = 

i ∑ 

j= k 

I ∗
j 

b ′ − k 
(15) 

nd generates two random values r 1 , r 2 distributed uniformly over

he range [0, 1) for each of the b ′ neighbors. If r 1 < k / b ′ and r 2 is

n the interval [ v i , v i +1 ) , then the neighbor SHUFFLEs on degree i ;

f r 1 ≥ k / b ′ and r 2 is in the interval [ u i , u i +1 ) , then the neighbor

USHes on degree i . In this way, the probability of PUSH on degree

 is (1 − k 
b ′ ) 

I ∗
i 

b ′ −k 
= 

I ∗
i 

b ′ and the probability of SHUFFLE on degree i is

k 
b ′ 

D ∗
i 

k 
= 

D ∗
i 

b ′ . 
Furthermore, node R sends the list of its neighbors’ IPs in the

pdate message . When R is removed from the network, all neigh-

ors of R broadcast the last update message sent by R . Any receiver

ith one of the desired degrees in the update message connects to

he corresponding neighbor of R . And each neighbor of R connects

nly to the first responder. It is worth noting that only one broad-

ast is needed because all neighbors of R broadcast an identical

essage and nodes in the network forward the first message they

eceive. 

The frequency of update message s being sent significantly in-

uences the efficiency and effectiveness of our protocol. If the

essages were sent too frequently, the channels would be over-

helmed by update message s, delaying regular traffic. Thus, our

rotocol should only use a limited number of update message s. It
s particularly important when nodes join and leave the network

requently. Here, we show that M ave , the average number of the

pdate message s sent by a node during its lifetime, is bounded lin-

arly by the maximum degree m if nodes are randomly removed.

pecifically, 

 a v e ≤ 3(m − 1 + k ) k (16)

here the minimum degree k is a small constant. The details of

erivation of this bound are given in Appendix A . 

Applying the solution from Eqs. (13) and (14) to our protocol,

e obtain a new Enhanced Semi-Randomized Growth Algorithm: 

Approach: E-SRA (Assuming one node is removed at a time) To

emove a node R with degree b , each neighbor of R either SHUF-

LEs on degree i by the probability 
1 −∑ i −1 

j= k f j 
b 

for i = k + 1 , . . . , m or

USHes on degree j with probability 1 
b 

for j = k, . . . , b − 1 . 

The pseudo-code is listed as Algorithm 1 . The message com-

lexity of the algorithm is one broadcast per removal. 

As illustrated in Algorithm 1 , if a node’s degree is changed, it

ends an update message to its neighbors (as shown in lines 3–18)

o that they know to which nodes to rewire if the failure occurs.

he operations in the update message are computed by generating

 sequence of random numbers (as shown in lines 7–16). Since a

ode knows its operations in advance, if a neighbor fails, this node

ill operate as what it was assigned (as shown in lines 19–21).

nd the design of this protocol does not require any extra steps

or a node gracefully quitting (as shown in lines 1–2) because the
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4 In our simulations, this case occurred in only 3% of the deletions until the first 

network topology obtained with all degrees. 
neighbors of this quitting node already know the desired degrees

of the nodes to which they should rewire afterwards. 

In Eq. (14) , the greater i is, the smaller D 

∗
i 

is. This fact makes

the protocol more practical because there are a large number of

nodes with low degrees and only a small fraction of nodes with

high degrees in a scale-free network. Nodes with low degrees are

easily reached by broadcasts in a few hops; Eq. (13) implies that

the number of PUSH operations increases linearly with the degree

of node R . 

Note that we assume the neighbors of node R are able to PUSH

or SHUFFLE when R is removed. When two connected nodes vol-

untarily quit at the same time, one node should wait until the

other node quits successfully (the tie can be broken by the order

of IP addresses); if a node crashes while its neighbors are alive,

the neighbors can also PUSH or SHUFFLE correctly. However, the

above algorithm does not work if node R and its neighbor crash at

the same time because both crashed nodes can neither PUSH nor

SHUFFLE. In this paper, we assume that the nodes crash incremen-

tally, one after the other; in the case that a group of connected

nodes crash simultaneously, a global restoration algorithm is more

appropriate to use. 

3.5. Optimization of the message costs 

The number of replies to the neighbors of R can be optimized

by applying better solutions satisfying Eq. (12) . 

Let s i denote the number of nodes with degree i for i ∈ [ k, m ]

among the neighbors of node R (thus, 
∑ m 

i = k s i = b). If a neighbor

of R is assigned to SHUFFLE on degree i and this neighbor has i

connections, then it does not broadcast because it lost the connec-

tion to R , so its degree decreases to (i − 1) , matching the desired

decrease of degree. Taking this into consideration, one SHUFFLE on

degree i can be skipped if R has a neighbor with degree i . The aver-

age number of the skipped SHUFFLEs is 
∑ m 

i = k +1 | s i − D i | . Using Eq.

(12) as the constraint, the optimization problem can be formulated

over � I and 

�
 D as, 

min 

 I ≥0 , � D ≥0 
‖ 

�
 S − �

 D ‖ 1 (17)

subject to 

�
 I − �

 D = 

�
 C b (18)

‖ 

�
 I ‖ 1 = b − k (19)

‖ 

�
 D ‖ 1 = k (20)

where �
 C b = ( f k , f k + f k +1 , . . . , 

∑ b 
i = k f i − 1 , . . . , 

∑ m −1 
i = k f i − 1) T and

�
 S = (s k +1 , s k +2 , . . . , s m 

) . This problem can be rewritten as linear

programming problem and be solved by the linear programming

technique efficiently in real time. 

The optimal solution depends on the degree distribution of R ’s

neighbors. So, node R computes the new optimal solution and as-

signs new atomic operations to its neighbors via sending an update

message if its degree changes. 

4. Simulations 

Empirical experiments are conducted to evaluate the overlay

topologies produced by E-SRA in various settings. These topologies

are compared with those produced by HAPA, Gaian and subPA al-

gorithms using the same configurations. We measure the fitness of

the produced degree distribution to the power-law and then evalu-

ate the search efficiency over these topologies by running Flooding

(FL) algorithm and Normalized Flooding (NF) algorithm, which are

simple search algorithms used in unstructured P2P networks [16] . 
.1. Simulation settings 

By adding and removing nodes dynamically, a set of network

opologies are produced with different parameters. At the begin-

ing, a network of (2 k + 1) nodes is constructed. Each node con-

ects to all the other 2 k nodes so that the average degree is 2 k .

or all simulations, 50 0 0 nodes are added first and then we run

45,0 0 0 iterations of joining and removing nodes to produce one

opology. In each iteration, either a new node joins the network or

n existing node is removed. In order to simulate the dynamics of

odes joining and leaving in real-world applications, a node joins

ith probability (1 − p) and quits with probability p in one iter-

tion. Thus, a few nodes are quite likely to join or leave the net-

ork in a sequence of iterations. The value of p is smaller than 1/2

o keep the network growing. In a topology produced by E-SRA,

odes with desired degrees may not exist when the network size

s small. In such cases, the nodes can rewire to the existing nodes

ith any degree 4 . However, with the growth of the network, there

ill be sufficient nodes with all possible degrees. 

Experiments have been conducted on the topologies produced

y HAPA, Gaian and subPA algorithms with the same pattern of

odes joining and leaving the network. After a sufficient number

f such operations, the degree distribution is calculated based on a

snapshot” of the network topology and is compared with the per-

ect power-law distribution. Since all four algorithms utilize ran-

omized approaches, we take the average of the degree distribu-

ion of 10 randomly produced topologies with the same parame-

ers to study the average cases. 

Search algorithms are implemented to test the search efficiency

ver the produced topologies in different settings. We consider two

earch algorithms in P2P networks: 1) Flooding (FL), where every

ode forwards a query to all neighbors until the query hits the tar-

et. 2) Normalized Flooding (NF), where every forwarder randomly

hooses k (i.e. the minimum degree) neighbors and sends them the

uery. Time to live (TTL), which is the maximum number of hops

 message can traverse, is set up to limit the lifetime of a query in

 network. So, a query either reaches its destination or expires due

o its TTL. It is assumed that the message sources are uniformly

istributed in the network. 

Gaian [7] and HAPA [6] algorithms do not specify how nodes

re removed so their nodes with the minimum degree k are likely

o lose connections. This results in appearance of nodes with the

egree smaller than the minimum degree k . To avoid such effect,

e assume the node with degree smaller than k will connect to

xisting nodes using the original approach to regain k connec-

ions. Nodes with the maximum degree m will not accept new

onnections. The hard cut-off is implemented as in the original

pproaches and will not be influenced by the effect of remov-

ng nodes. In subPA, the parameter used to constructed subset of

odes is τ j = 2 , τl = 2 . 

.2. Degree distribution 

It can be observed that regardless of parameter settings E-

RA has produced topologies with the degree distribution perfectly

atching the power-law. 

Fig. 1 illustrates the degree distribution of the produced topolo-

ies when nodes are removed randomly. In each iteration, either

n existing node quits with probability p = 1 / 3 or a new node

oins the network with probability 1 − p = 2 / 3 . The node to be

emoved is randomly chosen from the network. We apply a to-

al of 1.5 × 10 5 iterations to produce the final topology. Thus
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(a) E-SRA γ = 2.5 (b) E-SRA γ = 2.7

(c) E-SRA γ = 3 (d) Gaian

(e) HAPA (f) subPA

Fig. 1. Degree distribution of the topologies where nodes are randomly removed. n ≈ 50, 0 0 0, p = 1 / 3 . 
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very topology has approximately (1 − 2 p) × (1 . 5 × 10 5 ) = 5 × 10 4 

odes. In E-SRA, the scaling parameter is set as 2.5, 2.7 and 3 re-

pectively. It can be observed from Fig. 1 that both Gaian and HAPA

lgorithms have produced a sufficient number of nodes with low

egrees whereas the number of nodes with high degrees is insuffi-

ient. Since nodes with high degrees are more likely to connect to

he nodes to be removed, their degrees decrease with high prob-

bility compared to nodes with low degrees. Compared to HAPA

nd Gaian algorithms, E-SRA and subPA have generated sufficient

umber of nodes with high degrees. 

As the simulation results suggest, the power-law is approxi-

ately preserved in all four growth models compared here when

he maximum degree is m = 10 . But, if the maximum degree is

 = 50 , HAPA and Gaian algorithms produce fewer nodes with

igh degree than needed. This is because the number of nodes

ith high degrees are of the order of several thousand with

 = 10 , but there are fewer than 100 when m = 50 . So the fi-

al degree distribution is more sensitive to algorithm imprecision

nd the difference is easier to observe for m = 50 than for m = 10.

or the same reason, E-SRA produces a topology with a small

ail at degree 4 8, 4 9 when m = 50 . As the network size grows,
he total numbers of nodes at all degrees increase and the tail

isappears. 

Fig. 2 shows the simulation results when the nodes with degree

t least 3 k are randomly removed. Here, every iteration removes a

ode with degree at least 3 k with probability p = 1 / 5 or adds a

ode with probability 1 − p = 4 / 5 . This removal pattern simulates

 topology with hubs leaving frequently. As shown in Fig. 2 d and

, the scale-free topologies constructed without a special mecha-

ism handling the removal are very vulnerable to attacks on hubs.

he topologies produced by Gaian and HAPA algorithms are sig-

ificantly below the required number of nodes with high degrees

hen the maximum degree m = 20 or higher. In HAPA, nodes with

egrees close to the cut-off value completely vanish. The topolo-

ies with the maximum degree 10 are a little more robust in

ubPA, HAPA and Gaian, but even in this case nodes with degrees

f 9 and 10 are less numerous than what the power-law requires.

n contrast to subPA, HAPA and Gaian algorithms, E-SRA manages

o maintain the limited scale-free topology when nodes with de-

rees at least 3 k are randomly removed. 

The degree distribution of the topologies where nodes with de-

ree smaller than 2 k are removed is shown in Fig. 3 . The proba-
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(a) E-SRA γ = 2.5 (b) E-SRA γ = 2.7

(c) E-SRA γ = 3 (d) Gaian

(e) HAPA (f) subPA

Fig. 2. Degree distribution of the topologies where nodes with degree at least 3 k are randomly removed. n ≈ 90, 0 0 0, p = 1 / 5 . 
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bility to remove a node in each iteration is p = 1 / 3 . Fig. 3 shows

all four compared approaches produce the network topologies ap-

proximately matching the power-law degree distribution. In theory,

a degree distribution following the power-law should be presented

as a straight line with slope −γ (parallel to the blue dashed line)

in the log-log plot. However, it can be observed in Fig. 3 d and e

that the slope of the curve in HAPA and Gaian cases for the range

of degrees [2, 4] is above the value of −γ , indicating lower than

needed number of low degree nodes for these methods. In con-

trast, subPA and E-SRA produce the network topology with a per-

fect matching to the power-law degree distribution at low degrees,

undisturbed by removal of nodes with degree smaller than 2 k . 

We estimate the scaling parameter of the produced topolo-

gies using the MLE method in [22] . In [22] , the authors use the

Kolmogorov-Smirnov or KS statistic to quantify the difference be-

tween the observed degree distribution and the power-law. The

smaller is the KS statistic, the closer is the observed degree dis-

tribution to the power-law. 

In Table 2 , the degree of removed nodes is denoted as d . When

d ≥ 6, only nodes with degree at least 6 are randomly removed

from the topology. As seen in Table 2 , E-SRA produces topologies
 N  
ith a good fit to the scale-free property. The estimated scaling pa-

ameters are close to the predefined value γ = 2 . 5 . In the topolo-

ies maintained by HAPA and Gaian algorithms, however, the esti-

ated scaling parameters deviate from the scaling parameter, 3.0

nd 2.5, respectively. In the topologies constructed by subPA in

resence of frequent removals, the estimated scaling parameter is

arger than 3. In the cases where removals are not involved, the

stimated scaling parameter of subPA is in the range (2,3). In all

ases, the KS statistics of HAPA, Gaian and subPA are larger than

hose of E-SRA. 

.3. Search efficiency 

We evaluate the search efficiency over the topologies produced

y E-SRA, HAPA, Gaian and subPA algorithms. We consider two

earch algorithms commonly used in unstructured P2P networks:

) Flooding (FL), in which every node forwards a query to all the

eighbors until the query hits the target. 2) Normalized Flood-

ng (NF), in which every forwarder randomly chooses k (i.e. the

inimum degree) neighbors and sends them the query. Thus, the

ormalized Flooding algorithm sets constraints on the number of
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(a) E-SRA γ = 2.5 (b) E-SRA γ = 2.7

(c) E-SRA γ = 3 (d) Gaian

(e) HAPA (f) subPA

Fig. 3. Degree distribution of the topologies where only nodes with degree smaller than 2 k are randomly removed. n ≈ 50, 0 0 0, p = 1 / 3 . 

Table 2 

Results of fitness analysis. 

Parameters Method E-SRA ( γ = 2 . 5 ) HAPA Gaian subPA 

m = 20 , d ≥ 6 γ 2 .505169 3 .820267 3 .574570 3 .885132 

KS statistic 0 .002982 0 .102532 0 .082440 0 .152262 

m = 50 , d ≥ 6 γ 2 .496524 2 .672919 2 .667210 3 .885132 

KS statistic 0 .004415 0 .117416 0 .078553 0 .099203 

m = 20 , d < 4 γ 2 .502646 2 .283350 2 .397095 3 .967446 

KS statistic 0 .002524 0 .082762 0 .023171 0 .085813 

m = 50 , d < 4 γ 2 .488510 2 .269304 2 .387625 3 .967446 

KS statistic 0 .004728 0 .075127 0 .010877 0 .036065 

t  

a  

s  

m  

m  

(  

v  

s  

s

 

m  

W  

F  

q  

t  

n  

n  

i  
he messages forwarded by each node. The FL algorithm delivers

 query to the destination faster than the NL algorithm in an un-

tructured P2P network but incurs higher message cost. The Nor-

alized Flooding algorithm sets constraints on the number of the

essages forwarded by each node. Both algorithms set time to live

TTL), which is the maximum number of hops a message can tra-

erse, is set up to limit the lifetime of a query in a network. More

ophisticated search algorithms in the power-law graphs have been

tudied in [16] . 
In order to study the performance of the search algorithms,

ultiple searching processes are simulated on the same topology.

ith the same parameters, 10 network topologies are constructed.

or each topology, 100 nodes are randomly chosen to broadcast a

uery, whose the average hit ratio is calculated. Since the destina-

ions of the queries are assumed to be uniformly distributed in the

etwork, the expected hit ratio of a query is proportional to the

umber of nodes it reaches before the TTL expires. In these exper-

ments, the degrees of removed nodes are uniformly distributed in
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(a) FL (b) NF

Fig. 4. Search efficiency in networks produced by different approaches and parameters. n ≈ 5 × 10 4 , p = 1 / 3 , k = 2 . (For interpretation of the references to colour in this 

figure legend, the reader is referred to the web version of this article.) 
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[ k, m ], and the minimum degree is k = 2 . The results are shown in

Fig. 4 . 

Fig. 4 a shows that a query reaches more than 95% of the net-

work within 7 hops over the topologies produced by E-SRA with

m = 50 (the red lines); it takes 8 hops for a query to reach 95%

nodes in the topologies with m = 10 (the blue lines). It shows

hit ratio grows fast in the topology constructed by subPA and

the query reaches the majority of the network in 10 hops. In the

topologies generated by Gaian algorithm, it takes approximately 10

hops for a query to reach 80% but the spreading process becomes

much slower after 12 hops. In HAPA, the hit ratio increases very

slowly within the first 10 hops and then increases rapidly. Because

the topologies produced by E-SRA highly adhere to the scale-free

property, the FL algorithm achieves better performance over these

topologies. 

The search efficiency of the Normalized Flooding algorithm is

shown in Fig. 4 b. One interesting phenomenon is that NF algorithm

achieves a higher search efficiency on top of the topologies pro-

duced by E-SRA with a small maximum degree m . This is because

NF only forwards a query to k neighbors, the nodes with high de-

grees do not have significant advantages over the nodes with low

degrees in forwarding queries. In the first 10 hops, the spreading

speed is very slow in the topologies constructed by all four ap-

proaches. After 10 hops, the spreading speed becomes much faster.

The hit ratio of E-SRA is approximately at least 6% higher than

other approaches with the same TTL in the range [14, 18]. And NF

algorithm achieves a lower search efficiency in the topologies con-

structed by subPA than by other models. 

It is worth noting that E-SRA can produce the topologies with

the user-defined parameters. Therefore, any proper value of the

scaling parameter γ could be adopted to produce the best over-

lay topology according to simulation results. For example, the FL

algorithm achieves the best search efficiency on top of the topolo-

gies constructed with m = 50 and γ = 3 . 5 , and the NF algorithm

achieves the best search efficiency on top of the topologies con-

structed with m = 10 , γ = 2 . 5 . E-SRA can use these parameters to

construct the desired overlay topologies. 

5. Discussion 

In E-SRA, we assume nodes crash incrementally, one after the

other. It guarantees that all neighbors of the node R are alive when

R quits and are able to connect to the remaining nodes. However,

in realistic situations, a group of connected nodes may crash at the

same time. It is possible that R and a neighbor of it fail simulta-

neously and its neighbor could not PUSH or SHUFFLE correctly as

requested by R. In such cases, restoration with global knowledge

on the network might be needed. 
It is worth noting that as long as at least one neighbor of the

rashed node R is alive, R can be correctly removed from net-

ork to preserve the power-law topology. This is because the alive

eighbor of R could serve as a coordinator for the crashed neigh-

ors to finish their PUSH/SHUFFLE operations. The nodes, which

ave the desired degree of those missing PUSH/SHUFFLE opera-

ions, need to confirm with this coordinator to finish the corre-

ponding operations. Details of a distributed algorithm for this pur-

ose is beyond the scope of this paper. 

In a network where nodes fail with low probability or are guar-

nteed to recover from failures, a node can only send the update

essage s to its neighbor before it quits. In this way, the message

ost is reduced. 

It is challenging to preserve the power-law topology while a

roup of connected nodes fail simultaneously. This is because all

he neighbors of a failing node may also crash, thus, the remain-

ng nodes in the network do not know the existence of this failing

ode nor the degree of it. Consequently, they can not rewire ap-

ropriately to preserve the original degree distribution. However,

f the knowledge of the nodes about the entire topology increases

hile the associated cost can be handled, this could be achieved

ith similar fashion as in our algorithm. 

In general, the protocols maintaining topologies with the strict

nd precise adherence to the power law require higher commu-

ication cost than those producing approximate topologies. And

imultaneous failures of a group of nodes can make the prob-

em more difficult compared with individual random failures. Thus,

ome protocols trade such precise adherence to the power law for

ncreased resilience in the face of highly frequent and simultane-

us join and leave events. In order to choose appropriate protocols

n realistic applications, the trade-off between the benefits of pre-

ise and strict adherence to the limited power-law topology and

he risk of high communication cost for maintenance should be

aken into consideration. 

. Conclusion 

E-SRA, an efficient algorithm for maintaining the limited scale-

ree topology with dynamic peer participation, is proposed. It pro-

uces the overlay topology which improves the P2P network per-

ormance. The user can define scaling and cut-off parameters of

he overlay network to achieve the best performance. Nodes with

ny degrees, including hubs, are allowed to be removed from the

etwork freely. Our approach is tolerant to the removal of nodes in

ny patterns and partially tolerant to node failures by having the

eighbors of the failing nodes connecting to the remaining nodes

martly. Simulations have shown that E-SRA outperforms previous

rowth models by producing overlay topologies with higher ad-

erence to the scale-free property. And search algorithms, includ-
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ng the Flooding algorithm and the Normalized Flooding algorithm,

chieve better search efficiency over the topologies produced by

-SRA than by previous growth models. In the future, we plan to

tudy the approach to preserve the power-law distribution under

imultaneous failures of a group of nodes. And we are also inter-

sted in creating growth models which take user behaviors of P2P

etworks, such as biased access, into consideration. 
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ppendix A. Upper bound derivation of message cost 

According to the growth model proposed in previous work

8] , when a new node joins the network, it connects to k exist-

ng nodes. Among these k nodes, each of the (1 − ∑ i 
j= k f j ) nodes

eeds to send the update message s to i neighbors. Thus, if a node

oins, the average number of update message s sent is, 

 join = 

m −1 ∑ 

i = k 

( 

1 −
i ∑ 

j= k 
f j 

) 

i (21) 

f a node with degree b quits, then (b − k ) PUSH operations and k

HUFFLE operations are required. Due to the SHUFFLE operations,

he degrees of (1 − ∑ i 
j= k f j ) nodes decrease from (i + 1) to i . This

esults in M sh update message s. 

 sh = 

m −1 ∑ 

i = k 

( 

1 −
i ∑ 

j= k 
f j 

) 

i (22) 

he (b − k ) PUSH operations change the degrees of (b − k ) nodes,

hich leads to a total of ( 
∑ b−1 

i = k i ) update message s. If nodes are

andomly removed from the scale-free topology, the average num-

er of update message s caused by the PUSH operations is, 

 push = 

m ∑ 

b= k +1 

( 

f b 

b−1 ∑ 

i = k 
i 

) 

(23) 

ince 
∑ m 

j= k f j = 1 , we have, 

 −1 ∑ 

i = k 

( 

1 −
i ∑ 

j= k 
f j 

) 

i = 

m −1 ∑ 

i = k 

( 

m ∑ 

j= i +1 

f j 

) 

i = 

m ∑ 

b= k +1 

( 

f b 

b−1 ∑ 

i = k 
i 

) 

(24) 

hus, 

 push = M sh = M join = 

m ∑ 

b= k +1 

( 

f b 

b−1 ∑ 

i = k 
i 

) 

(25)

sing Eq. (3) , the rightmost part of the above equation can be sim-

lified as, 

m ∑ 

= k +1 

( 

f b 

b−1 ∑ 

i = k 
i 

) 

= 

m −1 ∑ 

b= k +1 

( 

f b 

b−1 ∑ 

i = k 
i 

) 

+ (1 −
m −1 ∑ 

b= k 
f b ) 

m −1 ∑ 

i = k 
i 

= 

m −1 ∑ 

i = k 
i + 

m −1 ∑ 

b= k 

[ 

f b 

( 

b−1 ∑ 

i = k 
i −

m −1 ∑ 

i = k 
i 

) ] 

= 

m −1 ∑ 

i = k 
i −

m −1 ∑ 

b= k 

[ 

f b 

( 

m −1 ∑ 

i = b 
i 

) ] 

(26) 
Using the definition of f i in Eq. (2) , the rightmost part of the

bove equation can be rewritten as, 

m −1 ∑ 

i = k 
i −

m −1 ∑ 

b= k 

[ 
m − 2 k 

b γ
∑ m −1 

j= k 
m − j 

j γ

( m −1 ∑ 

i = b 
i 
)] 

= 

(m − 1 + k )(m − k ) 

2 

− m − 2 k 

2 

∑ m −1 
b= k 

(m −1+ b)(m −b) 
b γ∑ m −1 

j= k 
m − j 

j γ

≤ (m − 1 + k )(m − k ) 

2 

− m − 2 k 

2 

(m − 1 + k ) 
∑ m −1 

b= k 
(m −b) 

b γ∑ m −1 
j= k 

m − j 
j γ

(27) 

= 

(m − 1 + k )(m − k ) 

2 

− (m − 2 k )(m − 1 + k ) 

2 

= 

(m − 1 + k ) k 

2 

Consider a network with n nodes, where N nodes have been

dded to the network ( N � n ). A total of (N − n ) nodes have been

emoved from the network. Every removal results in (M push + M sh )

pdate message s and every joining results in M join update message s.

f nodes are randomly added and removed over a long period, the

verage number of update message s sent by a single node is, 

 a v e = lim 

N→∞ 

NM join + (N − n )(M push + M sh ) 

N 

= 6 

m ∑ 

b= k +1 

(
f b 

b−1 ∑ 

i = k 
i 

)
≤ 3(m − 1 + k ) k (28) 

ince the minimum degree k is a constant value, the average num-

er of P2P update message s is linear to the hard degree cut-off m .

pecifically, when k = 2 , the average number of update message s

ent by a single node is at most 6(m + 1) . 
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