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With the fast development of the Internet, the size of Forwarding Information Base (FIB) maintained at 

backbone routers is experiencing an exponential growth, making the storage support and lookup process 

of FIBs a severe challenge. One effective way to address the challenge is FIB compression, and various 

solutions have been proposed in the literature. The main shortcoming of FIB compression is the overhead 

of updating the compressed FIB when routing update messages arrive. Only when the update time of 

FIB compression algorithms is small bounded can the probability of packet loss incurred by FIB compres- 

sion operations during update be completely avoided. However, no prior FIB compression algorithm can 

achieve small bounded worst case update time, and hence a mature solution with complete avoidance of 

packet loss is still yet to be identified. To address this issue, we propose the Unite and Split (US) com- 

pression algorithm to enable fast update with controlled worst case update time. Further, we use the US 

algorithm to improve the performance of a number of classic software and hardware lookup algorithms. 

Simulation results show that the average update speed of the US algorithm is a little faster than that 

of the binary trie without any compression, while prior compression algorithms inevitably seriously de- 

grade the update performance. After applying the US algorithm, the evaluated lookup algorithms exhibit 

significantly smaller on-chip memory consumption with little additional update overhead. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

.1. Background and motivation 

The size of Forwarding Information Bases (FIBs) of backbone

outers in the Internet has been increasing by around 15% every

ear [1] . The FIB (DFZ entries) size exceeded 512K on August 13th

n 2014, exceeding the hardware capacity of many legacy Cisco

outers [2] . In addition, there were VPN routes which could be as

any as the DFZ entries. As a result, it took about a week for these

outers to upgrade their hardware capacity, and it has already been

bserved that the web browsing and content downloading speed

as slowed down during the period. In the literature, technical

chemes have already been proposed to solve such a problem, and

mong them FIB compression is a promising way to alleviate the

rowth pressure of FIBs in the Internet. 

In fact, even if the FIB size does not exceed the capacity of

outers, FIB compression is still beneficial for IP lookup. Gener-
∗ Corresponding author. 
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u). 

c  

g  

u

ttp://dx.doi.org/10.1016/j.comnet.2016.06.015 

389-1286/© 2016 Elsevier B.V. All rights reserved. 
lly, there are two kinds of IP lookup solutions. The first kind is

ardware-based solutions, such as TCAM-based solutions [3–6] and

PGA-based solutions [7–10] . For this kind of IP lookup solutions,

ompressing the FIBs can significantly save hardware cost and

ower consumption. The second kind is software-based solutions,

uch as [11–14] . For this kind of IP lookup solutions, compress-

ng the FIBs reduces the probability of cache misses, and thereby

chieves faster lookup speed. 

As mentioned in BS [15] , EAR [16] , and FIFA [17] , packet loss

ay happen when the compression or update algorithm is too

low. The FIB after compression is stored and looked up in the data

lane of a router. When a FIB update message arrives, the router

as to suspend the lookup process and buffer the incoming pack-

ts in a queue. The queue can only buffer finite packets, thus the

pdate of the compressed FIB should be as fast as possible. If the

pdate time is not small enough in the worst case, the buffer in

he data plane may overflow and packet loss may happen. This is

he main reason why vendors and ISPs are not willing to adopt FIB

ompression algorithms in real routers. Therefore, this paper tar-

ets at a practical FIB compression algorithm with small bounded

pdate time. 

http://dx.doi.org/10.1016/j.comnet.2016.06.015
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.06.015&domain=pdf
mailto:zhyyuan1019@gmail.com
mailto:xmw@cernet.edu.cn
http://dx.doi.org/10.1016/j.comnet.2016.06.015
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Fig. 1. Router architecture. 
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1.2. State-of-the-art and their limitations 

Due to the significance of FIB compression, various compression

solutions have been proposed, such as ORTC [18] and its successors

[17,19,20] , auto aggregation [21] , 4-level [22] , entropy compression

[23] , EAR [16] , and NSFIB compression [24] , etc . Among them, ORTC

constructs the optimal FIBs in terms of the number of prefixes. En-

tropy compression pursues the optimal compression algorithm in

terms of information entropy, but the compression results are no

longer in the prefix format, thus cannot cooperate with existing

IP lookup algorithms. NSFIB is an aggressive compression method

which can exceed the optimal compression ratio of ORTC at the

cost of changing the forwarding behavior. Although some classic

compression algorithms (such as SMALTA [19] , EAR, 4-level, auto

aggregation, etc .) claimed to support fast update, no prior algo-

rithm is able to achieve small bounded worst case update time.

Only when the worst case of update time is small bounded, the risk

of packet loss during update can be fundamentally avoided. 

1.3. Proposed solution overview 

In this paper, we propose the Unite and Split (US) com-

pression algorithm. The top level strategy of conventional FIB com-

pression algorithms is to either make the best effort for compression

ratio or to identify a trade-off between compression ratio and update

speed , but it should be noted that no prior compression algorithm

has a reasonable worst case bound of update time. In contrast, the

objective of our US algorithm is to make the best effort f or compr es-

sion ratio in the premise of small bounded update time . 

We use a trie 1 structure to illustrate the key compression tech-

nique of our proposed US algorithm. As shown in the first trie of

Fig. 2 (a), it has three nodes with non-empty next hops: q and its

two child nodes q 1 and q 2 . According to the longest prefix matching

rule, an IP address either matches q 1 or q 2 . In other words, there

are at most two lookup results for any incoming IP packet. There-

fore, we can replace this trie by one node with two next hops. In

other words, the two child nodes q 1 and q 2 can be compressed

( united ) into their parent node q with two next hops, where the

left next hop belongs to q 1 , and the right next hop belongs to q 2 .

Similarly, when two of the three nodes have non-empty next hops

(the middle three tries in Fig. 2 (a)), they can be compressed into

one node with two next hops. However, we do not always perform
1 Trie is a classic data structure to represent a FIB. 
uch compression because when only one of the three nodes has

 next hop (such as the three tries in Fig. 2 (b)), such compression

oes not reduce the number of prefix nodes 2 , but brings additional

pdate overhead. In this case, we split the prefix node to guar-

ntee that every node has either two next hops or none for the

ake of storage and lookup efficiency. For each trie node, we use

he variable oldport to store the next hop before compression for

he sake of correct update, and use variables leftport and rightport

o store the left next hop and right next hop after compression re-

pectively. 

The US algorithm consists of two kinds of operations: unite and

plit, and it traverses the trie twice. In the first postorder traversal

f the trie, we conduct the unite operations to reduce the number

f prefix nodes. In the second postorder traversal of the trie, we

onduct split operations on those nodes which do not participate

n the unite operations. To bound the update time, it is guaranteed

hat every trie node participates in at most one unite operation,

nd the nodes modified by each unite operation are confined in

wo adjacent levels. In this way, at most 3 trie nodes need to be up-

ated by any update message. The main advantage of our algorithm

s that the update speed is fast and the worst case of update time

s small bounded. Simulations using real-world FIBs (around 512K

ntries) and updates on CPU platform with Intel(R) Core i7-3517U

.9GHz & 2.4GHz and 8GB RAM show that the update speed of

S ranges from 2.16 Mups (Million updates per second) to 107.75

ups with a mean of 18.64 Mups, while the industry standard is

nly 100 Kups. 

The cost of US is an additional step for the lookup. After looking

p the FIB compressed by US, suppose the length of the matched

refix is n , we check the n + 1 th bit in the incoming IP address: if

t is 0, we report the leftport ; if it is 1, we report the rightport . 

US can work perfectly with existing FIB compression algorithms

nd IP lookup algorithms. Simulation results show that about 7%

f prefixes can be reduced when applying US to the optimal com-

ression algorithm ORTC. US alone can not compete with ORTC in

erms of compression, but the combination of US and ORTC can

eat ORTC in compression (but the combination of US and ORTC

an not be updated easily). Around 35% on-chip memory can be

aved when applying US to existing well-known IP lookup algo-

ithms. Although some conventional compression algorithms can

lso be applied to existing IP lookup algorithms, the negative ef-

ect is that the update overhead will be aggravated significantly
2 Prefix nodes refer to the trie nodes with next hops. 
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Fig. 2. The models of the US algorithm. 
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3 Next hop similarity means that in a small sub-trie, many prefix nodes share the 

same next hops. 
fter compression. In contrast, since the worst case of US update is

mall bounded, the update complexity after US compression stays

he same as that before US compression. 

.4. Key novelties 

FIB compression is a well studied field, and there have been

arious solutions in the literature. It seems there is very limited

oom for further improvements. Conventional FIB compression al-

orithms compress the prefix nodes with the same next hops, and

ach prefix node is still related to one next hop after compression.

n contrast, we find a new way to compress the number of pre-

xes by allowing that each prefix node is related to two next hops.

pecifically, we change the conventional “one next hop per prefix

ode” structure into a “two next hops per prefix node” structure.

n other words, in our algorithm, the prefix and next hop informa-

ion of child nodes are united to their parent node. 

With regard to update, given an update message, conventional

ompression algorithms often compress the sub-trie rooted at the

pdating node, and the worst case is to re-compress the whole

rie. In the US algorithm, we constrain the unite operations in two

djacent levels of the trie. Thus, given any update message, the

orst case is to update three nodes. 

Paper organization: the rest of the paper is organized as follows.

ection 2 introduces our proposed US algorithm. Section 3 de-

cribes the update and lookup algorithm of US. Section 4 shows

he application of US to FIB compression and IP lookup algorithms.

ection 5 evaluates the performance of US. Section 6 discusses the

elated work. Finally, Section 7 concludes the paper. 

. Proposed solution 

.1. Background 

FIB, trie and nodes: Given an incoming packet, the Forwarding

nformation Base (FIB) is searched to decide which egress port ( i.e. ,

ext hop) the packet should be forwarded to. Each FIB entry in-

ludes at least two fields: prefix and next hop. Binary trie [25] is a

lassic data structure to store a FIB. Each FIB entry is represented

y a prefix node in the trie. The path from the root node to

he prefix node corresponds to the prefix, and the corresponding

ext hop is stored in the prefix node. We call a node without a

ext hop an empty node . We define the level of a node as its
op-count distance to the root node whose level is 0. The level of

 prefix node is equal to the length of the corresponding prefix.

he nodes without child nodes are called leaf nodes , while others

re called internal nodes . 

.2. Rationale 

There are mainly three metrics for FIB compression algorithms:

ompression time, update cost, and memory usage. ORTC achieves

he optimal compression ratio in terms of number of prefix nodes

t the cost of complicated update and long compression time. As

entioned above, when handling the updates, the lookup process

s forced to be suspended, and the incoming packets are buffered.

nly if the worst case of update time is small bounded, the risk

f packet loss can be eliminated fundamentally. Towards this goal,

his paper manages to strike a good trade-off among compression

ime, update cost, and memory usage. 

Conventional FIB compression algorithms are based on the fol-

owing principle: when two sibling nodes have the same next hop

 , they can be represented and replaced by their parent node with

ext hop h . If all the prefix nodes in the trie have different next

ops, conventional algorithms can hardly achieve any compression

ffect. 

In contrast to conventional compression algorithms, our US al-

orithm strives to make compression even if all the prefix nodes

ave different next hops. Specifically, given three nodes: q and

 ’s two child nodes (namely q 1 and q 2 ), we unite q 1 and q 2 into

heir parent node q with two next hops. In this way, the number

f prefixes is reduced to one. However, we do not perform such

ompression when only one of the three nodes has a next hop,

ecause the unite operation only brings additional update over-

ead in this case. The essential difference between US and conven-

ional FIB compression algorithms is that the compression effective-

ess of US no longer depends on the next hop similarity 3 . If all the

refixes have different next hops, compression algorithms such as

RTC can hardly lead to any compression, while US can still com-

ress the prefixes a lot. This is a distinct feature which cannot be

upported by any conventional approaches. Note that US can also

e combined with various pre-processors to achieve better com-

ression performance (detailed in Section 4.1 ). In this situation, if
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the pre-pocessor depends on next hop similarity, the compression

performance will vary in different scenarios ( i.e. , higher next hop

similarity leads to better compression ratio). 

2.3. Router architecture 

Before going to the details of the US algorithm, we first show

how it operates in a real router. Fig. 1 shows the architecture of a

router. It consists of the control plane and the data plane. The con-

trol plane stores the RIB (Routing Information Base) containing all

IP routing information. The prefixes and their selected next hops

(a subset of the RIB) constitute the original FIB. Then the original

FIB is compressed by US into a compressed FIB which is stored

in the control plane. For the sake of fast update, the compressed

FIB contains full information ( i.e., oldports, leftports , and rightports ).

In the data plane, each line card has one copy of the compressed

FIB which only contains leftports and rightports . Given an incom-

ing packet, the line card looks up the FIB, gets a next hop, and

then forwards it through the switch network. Each line card has a

queue to buffer the incoming data packets. 

As shown in Fig. 1 , when an update message arrives, first the

RIB stored in the control plane will be updated by the routing

protocol. If this leads to any FIB update, the update algorithm of

US will be applied to the compressed FIB containing full informa-

tion stored in the control plane. This will result in changes of sev-

eral prefix trie nodes. These changes are installed in the FIBs (only

with necessary information for lookup) stored in the line cards

of the data plane. During the installation process, the incoming

data packets are buffered in the queue and cannot be forwarded.

If there are too many prefix changes to handle per routing update,

the FIBs in the line cards cannot be updated fast enough. In this

case, the queues may overflow and packet loss may happen. The

superiority of US lies in that: it can make the FIB in the line card

as small as possible, while ensures fast update speed with con-

trolled worst case update time. 

2.4. Unite and split algorithm 

The US algorithm traverses the trie two times. First US traverses

the trie in postorder and performs unite operations according to

four unite models. After the first traversal, there are two kinds of

prefix nodes: the nodes with two next hops and the nodes with

only one next hop. The nodes with one next hop will be split in

the second traversal. We present the details of the four unite mod-

els and the split operation as follows. 

2.4.1. Unite models 

As shown in Fig. 2 (a), given a node q , its left child node q 1 and

its right child node q 2 , there are four unite models. First, q, q 1 and

q 2 all have next hops. Second, only q and q 1 have next hops. Third,

only q and q 2 have next hops. Fourth, only q 1 and q 2 have next

hops. These four models are united into the same result: q 1 and

q 2 have no next hops, and q has two next hops: 1|2, where “1” is

the next hop of q 1 (or q ), and “2” is the next hop of q 2 (or q ). Af-

ter the unite operations, the nodes with two next hops are called

united nodes , and the nodes that participate in the unite oper-

ations other than the united nodes are called participator nodes . In

Fig. 2 (a), the nodes marked with dashed circles are united nodes,

and the nodes marked with squares are participator nodes. To con-

trol the update time, every trie node can participate in at most one

unite operation, and the nodes modified by each unite operation

are confined in two adjacent levels. 

2.4.2. Split operation 

As aforementioned, there are two kinds of prefix nodes after

the first traversal: united nodes and nodes with only one next hop.
n the second traversal, we conduct split operations on the nodes

ith only one next hop. The split operation is very simple: just

hange the next hop h into two next hops h | h . The prefix nodes

hat are split are called split nodes . In Fig. 2 (b), we show three

ases of the split operations. Node A, B, and C are split nodes. 

In summary, US performs unite operations in the first traver-

al, and performs split operations in the second traversal. The

seudo codes of the unite and split operations are shown in

lgorithm 1 and Algorithm 2 , respectively. 

Algorithm 1: Unite(TrieNode ∗ q) 

1 if q is NULL then 

2 return ; 

3 q 1 = q → left; 

4 q 2 = q → right; 

5 Unite( q 1 ); 

6 Unite( q 2 ); 

7 if two or three nodes of q , q 1 , q 2 have next hops and are not 

united nodes then 

8 perform the unite operation according to the four unite 

models; 

Algorithm 2: Split(TrieNode ∗ q ) 

1 if q is NULL then 

2 return ; 

3 Split( q → left); 

4 Split( q → right); 

5 if q is a prefix node with only one next hop then 

6 split the next hop of q ; 

.4.3. Example 

We now give an example of the US algorithm in Fig. 3 . It shows

he original trie and the trie after US compression. Specifically, dur-

ng the first traversal, node F and G are united into node D with

wo next hops 1|4; node H and I are united into node E with two

ext hops 5|6; node A and B are united into node A with two next

ops 2|1. After the first traversal, node K with next hop 1 is left be-

ind. During the second traversal, the next hop of node K is split.

s a result, node K has two next hops 1|1. In this example, the

umber of prefixes is reduced from 8 to 4 after US compression. 

Note that in this example, the empty leaf nodes (F, G, H, and

) are not deleted in the control plane after compression for the

ake of fast update, as their oldport s are not empty. The whole trie

tructure with oldports is kept in the control plane so that we can

now exactly what the trie before compression looks like when

andling an update message. In the data plane, we only store the

refixes with leftports and rightports, while do not store the empty

eaf nodes. In other words, we reduce the usage of fast memory in

he data plane at the cost of more usage of slow memory in the

ontrol plane. 

Actually, our US algorithm can compress the FIBs without tries.

ne straightforward way is to sort the prefixes, and then do com-

ression for the adjacent prefixes. However, this method will incur

omplicated update. 
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Fig. 3. An example of US. 
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. Update and lookup algorithm of US 

.1. Update algorithm of US 

There are two kinds of update messages: announcement and

ithdrawal. Given an announcement message: [announce p: h ], it

eans that we should either insert a new prefix p with next hop

 or change the next hop of the existing prefix p to h . Given a

ithdrawal message: [withdraw p ], it means we should delete the

refix p and its corresponding next hop. In practice, the update

perations are usually performed in the trie. In the following, we

iscuss the incremental update algorithm of US for the announce-

ent and withdrawal messages separately. 

.1.1. Announcement handling 

To support update, we define three kinds of ports for every

rie node: oldport, leftport, and rightport , where oldport refers to

he next hop before compression, leftport and rightport are the

wo next hops after compression. The update algorithm for an an-

ouncement message [announce p: h ] proceeds in two steps:

rst, we set the oldport of n p to h , where n p refers to the cor-

esponding trie node of prefix p ; second, we update the leftport

nd rightport fields according to the node type (united nodes, split

odes, etc.) of n p . Specifically, there are four cases as follows. 

• Case I: n p is a united node. There are three situations: 1) when

the two child nodes of n p are both participator nodes, the left-

port and rightport of n p keep unchanged; 2) when only the left

child of n p is a participator node, the rightport of n p is changed

to h ; 3) when only the right child of n p is a participator node,

the leftport of n p is changed to h . 

• Case II: n p is a participator node. Assume the parent node of n p 
is pa ( n p ). If n p is the left child of pa ( n p ), the leftport of pa ( n p ) is

set to h . If n p is the right child of pa ( n p ), the rightport of pa ( n p )

is set to h . 

• Case III: n p is a split node. In this case, both the leftport and

rightport of n p are set to h . 

• Case IV: n p is an empty node or a new node. First, we need to

check whether n p can be united with its sibling or parent node.

If n p can be united, the leftport and rightport of pa ( n p ) are up-

dated. In this situation, pa ( n p ) becomes a united node, and n p 
becomes a participator node. Otherwise, n p should be split, and

both the leftport and rightport of n p are set to h . 

Examples: In Fig. 4 , we show four examples which correspond

o the above four announcement cases, respectively. Example 1 :
announce 01 ∗:1]. It means to change the next hop of united node

 to 1. First we change E’s oldport to 1. Since only the right child

f E is a participate node, we just need to set E’s leftport to 1.

xample 2 : [announce 0 0 0 ∗:1]. It means to change the next hop

f participator node G to 1. We set G’s oldport to 1. Since G is the
eft child of D, we set D’s leftport to 1. Example 3 : [announce

 

∗:1]. It means to change the next hop of split node C to 1. In this

ase, we just set C’s oldport, leftport and rightport to 1. Example
 : [announce 0 ∗:1]. It means to change the next hop of empty

ode B to 1. In this case, first we set B’s oldport to 1. Then we find

hat B’s sibling node is a split node, thus B and C can be united:

rst set the leftport and rightport of both B and C to 0, then set A’s

eftport to 1, and set A’s rightport to 2. 

.1.2. Withdrawal handling 

Given a withdrawal message: [withdraw p ] , the node n p cor-

esponding to p must be a prefix node and should be deleted from

he trie. First, the oldport of n p is set to be empty. Then the leftport

nd rightport fields are updated according to the node type of n p .

pecifically, there are three cases as follows. 

• Case I: n p is a united node. If both the two child nodes of n p 
are participator nodes, the leftport and rightport of n p keep un-

changed. In this situation, n p is still a united node. If only one

of the child of n p is a participator node, it can no longer be

united to n p . Thus, the child node needs to be split, and n p be-

comes an empty node: the leftport and rightport of n p are set to

be empty. Note that it is possible that the split child node can

be united with its child nodes, this unite operation is not per-

formed in our incremental update algorithm in order to guar-

antee that at most 3 nodes are changed for any update. In this

way, the number of prefixes cannot always stay optimal dur-

ing the update, but the sacrificed compression ratio is negligi-

ble. This conclusion is testified by Fig. 11 , in which the size of

the compressed FIB almost keeps unchanged during the one-

day update. 

• Case II: n p is a participator node. There are two situations: 1)

the sibling of n p is also a participator node; 2) the sibling of

n p is not a participator node. In the first situation, if the old-

port of the parent node pa ( n p ) is not empty, the sibling node

can be united into pa ( n p ); otherwise, the sibling node must be

split, and pa ( n p ) becomes an empty node. In the second situ-

ation, the parent node pa ( n p ) must be split. In both situations,

n p becomes an empty node. 

• Case III: n p is a split node. In this case, both the leftport and

rightport of n p are set to be empty, and n p becomes an empty

node. 

Example: In Fig. 4 , we show three examples which correspond

o the above three withdrawal cases, respectively. Example 1 :
withdraw 01 ∗]. It means to delete the united node E. Because E

as only one child node I which is a participator node, I can no

onger be united to E. Therefore, node I should be split. Specifi-

ally, we set E’s oldport, leftport , and rightport to 0, and set I’s left-

ort and rightport to 7. Example 2 : [withdraw 0 0 0 ∗]. It means to

elete the participator node G. Note that for G’s parent node D, we
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Fig. 4. An example for US update. G and H are united into D, I is united into E, J and K are united into F, C is split. For the sake of fast update, we do not delete G, H, 

I, J, and K. For the sake of fast lookup, we mark node D, E and F as leaf nodes. For each update message, we do not show the whole trie after update, but only show the 

changed part in the right table. 

Table 1 

Comparison on time complexities of update. 

Solution Time complexity 

Binary trie without compression O ( W ) 

ORTC O (c ∗ (m + n )) 

EAR O (m + n ) , O (n ) 

4-level O ( n ) 

SMALTA O (m + n ) 

US O ( W ) 
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A  
keep its next hop before compression in the variable oldport . Since

G’s sibling H can still be united into D, we set G’s oldport to 0, and

set D’s leftport to D’s oldport 3. Example 3 : [withdraw 111 ∗]. It

means to delete the split node C. In this case, we set C’s oldport,

leftport , and rightport to 0. 

3.2. Update performance analysis 

For US, when updating a node, at most three nodes need to be

changed, while other nodes are not affected. Therefore, the worst

case of update time is small bounded. It can be concluded that

the update time complexity of US is O ( W ), where W is the max-

imum depth of the trie. We compare the update complexity of

US with several classic compression algorithms in Table 1 . In the

sub-trie rooted at the updating node, we use n to represent the

number of prefix nodes, use m to represent the number of delet-

ing nodes 4 , and use c to represent the number of distinct next

hops. W is 32 for IPv4 FIBs, while n can be pretty large. In the

worst case, n is the number of the prefix nodes in the whole trie

when the root node is updated. A detailed analysis of update com-

plexity of EAR and ORTC can be found in [16] . The 4-level algo-

rithm needs to rebuild the sub-trie rooted at the updating node,

thus its time complexity is O(n). The SMALTA [19] algorithm uses

ORTC to take snapshots, thus it has the same compression com-

plexity as ORTC. When inserting or deleting a prefix N , SMALTA

restores all the compressed nodes in the sub-trie T N rooted at node

N , so as to correctly perform update. Therefore, many prefix nodes

in the sub-trie T N are decompressed, incurring the trie to be not

optimal. Although SMALTA only needs to restore the compressed

nodes, it needs to judge whether each node in the sub-trie T N is

compressed or not. Therefore, it often needs to check all the nodes

in the sub-trie T N when updating node N . Furthermore, some pre-

fix nodes in the sub-trie T N are deleted during compression, thus

these deleting nodes need to be re-created during update pro-

cess. Therefore, the update complexity of SMALTA is O (m + n ) . We
4 During the compression process of EAR, ORTC and SMALTA, some leaf nodes are 

deleted, and they need to be restored during decompression. We call these nodes 

deleting nodes . 

t  

a  
onclude that the update performance of US is the same as that of

he original binary trie, and significantly outperforms other com-

ression algorithms. 

.3. US lookup algorithm and complexity analysis 

The lookup of US abides by the Longest Prefix Matching (LPM)

ule [25] . Different from the lookup of the original binary trie, US

ookup needs to choose one of the two next hops for each prefix

ode. Specifically, the lookup of US proceeds in the following steps.

Step I, initialization. Given an incoming IP address s , we define

a variable h to store the next hop. Initially, we assign the

oldport of the root node to h . 
Step II, we obtain the first bit of s , 1) if it is 1, we judge whether

the rightport of the root node is not empty: if yes, we assign

the rightport to h ; otherwise, go to step III. 2) if it is 0, we

judge whether the leftport of the root node is not empty: if

yes, we assign the leftport to h ; otherwise, go to step IV. 

Step III, go to the right child node, then obtain the next bit of s ,

and perform the procedure which is similar to step II. If the

current node is a leaf node, the algorithm ends. 

Step IV, go to the left child node, then obtain the next bit of s ,

and perform the similar procedure of step II. If the current

node is a leaf node, the algorithm ends. 

The pseudo codes of the lookup algorithm of US are shown in

lgorithm 3 . In the pseudo codes, root means the root node of

Algorithm 3: US_Lookup (root, IP) 

1 p = root; 

2 i = 0; 

3 while p � = NULL and p.flag is not LEAF do 

4 if IP << i >> 31 then 

5 if p → rightport > 0 then 

6 h = p → rightport; 

7 p = p → rchild; 

8 else 

9 if p → leftport > 0 then 

10 h = p → leftport; 

11 p = p → lchild; 

12 i++; 

13 return h ; 

he trie, IP means the decimal value of the incoming IP address,

nd the lookup result is stored in h . Obviously, the time complexity



Y. Zhang et al. / Computer Networks 106 (2016) 77–90 83 

o  

o  

t  

m  

o  

r

4

4

 

s  

m  

t  

a  

t  

a  

A  

O  

p  

t  

l  

s  

c  

t  

c  

n  

S

 

b  

h  

p  

o  

h  

a  

n  

I

4

 

o  

h  

t  

t  

s  

t  

c  

H  

[  

a  

(  

w  

h  

c  

t

 

t  

a  

w  

a  

b  

t  

o  

A  

Table 2 

On-chip memory usage comparison. 

SAIL_B SAIL_U SAIL_L SAIL_M 

before using US = 4MB ≤ 2 .03MB ≤ 2 .13MB ≤ 2 .13MB 

after using US = 2MB ≤ 1 .016MB ≤ 1 .07MB ≤ 1 .07MB 
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f US lookup in the worst case is O ( W ), which is the same as that

f the original binary trie lookup. Many prefix nodes are united

o their parent nodes after US compression, which leads to fewer

emory accesses during lookup. Thus, the average lookup speed

f US is faster than that of the original binary trie. The simulation

esults are shown in Section 5.4 . 

. Applications of US 

.1. Application to existing FIB compression algorithms 

In practice, US can be combined with many other FIB compres-

ion algorithms to achieve further enhanced compression perfor-

ances. As analyzed above, the update speed of US is fast and

he worst case update time is small bounded. Thus, applying US

fter other compression algorithms will bring little and fixed ex-

ra update overhead. Among ORTC, 4_level [22] , EAR [16] , and auto

ggregation [21] , ORTC [18] achieves the best compression ratio.

lthough NSFIB [24] can achieve a better compression ratio than

RTC, the cost is changing the forwarding behavior. Entropy com-

ression [23] pursues to achieve the lower bound of the informa-

ion entropy, but the compressed result cannot work with prior IP

ookup algorithms. US can be applied to the above FIB compres-

ion algorithms. Here we apply US to ORTC for the sake of effi-

iency and practicality. Given a FIB, we first construct a trie, and

hen compress it using ORTC and get the resulting trie. We further

ompress the resulting trie using the US algorithm, and get the fi-

al compression result. The related simulation results are shown in

ection 5.2 . 

Here we need to clarify why the compression ratio of ORTC can

e further improved. Given the premise that one prefix can only

ave one next hop and no changes of forwarding behavior hap-

en during compression, ORTC compression is optimal in terms

f number of prefix nodes. Given the premise that one prefix can

ave two next hops, the combination of ORTC and US can achieve

 better compression ratio in term of number of prefix nodes. The

umber of prefixes determines the on-chip memory usage of many

P lookup algorithms, thus we use it as the metric. 

.2. Application to classical IP lookup solutions 

The US algorithm can also be used to reduce the on-chip mem-

ry usage of IP lookup solutions with little additional update over-

ead. The on-chip memory is usually small, fast and expensive,

hus reducing the on-chip memory usage can significantly reduce

he cost and improve the system efficiency. Generally, IP lookup

olutions can be divided into two categories: software based solu-

ions and hardware based solutions. Software based solutions in-

lude Lulea [14] , LC-trie [26] , Tree Bitmap [27] , and SAIL [11] , etc .

ardware based solutions include using TCAM (such as coolcam

3] , parallel TCAMs [5] ), using FPGA (such as [7] ), using both TCAM

nd FPGA (such as hybrid lookup [28] ), and using Bloom filters

such as PBF [29] , BF for IPv6 lookups [30] ). Among these solutions,

e apply the US algorithm to three representative ones: PBF [29] ,

ybrid lookup [28] , and SAIL [11] . After applying US, the lookup

omplexity of these fast lookup algorithms keeps unchanged, while

he on-chip memory usage is significantly reduced. 

Applying US to PBF: for the prefix nodes at each level of the

rie, PBF builds one Bloom filter (BF) and one hash table. The BFs

re small enough to be stored in the on-chip memory of FPGA [31] ,

hile the hash tables are stored in the off-chip memory. Under

 certain false positive probability, there is a positive correlation

etween the size of a BF and the number of prefixes inserted into

he BF. By applying US compression, the on-chip memory usage

f BFs can be reduced because the number of prefixes is reduced.

s for the off-chip hash tables, after US compression, each hash
ucket stores one prefix and two next hops. Since the number of

ash buckets is reduced, the total size of the off-chip hash tables

s reduced. The related simulation results are shown in Section 5.5 .

Applying US to hybrid lookup: A trie can be partitioned into

wo parts - the leaf nodes and the trimmed trie. The prefixes of

he leaf nodes are stored in TCAM. The trimmed trie is stored in

he SRAM-based pipeline of FPGA. After compressing the trie using

S, both the number of leaf nodes and the size of the trimmed trie

re significantly reduced, thus lead to less memory consumption in

oth TCAM and FPGA. The related simulation results are shown in

ection 5.6 . 

Applying US to SAIL: SAIL includes four algorithms. SAIL_B is

he basic lookup algorithm. For level i of the trie (0 ≤ i ≤ 24),

AIL_B builds a bit map with the length of 2 i , and each prefix node

t level i corresponds to a “1” bit in the bit map. SAIL_B stores the

itmaps at level 0 ∼ 24 in the on-chip memory, and thus the upper

ound of the on-chip memory usage is 
∑ 24 

i =0 2 
i = 2 25 bit = 4 MByte.

hree optimizations based on SAIL_B in terms of update, lookup,

nd handling multiple FIBs are SAIL_U, SAIL_L, and SAIL_M, respec-

ively. After using US, most prefix nodes at level 24 are united to

evel 23, thus we just need to store the bitmaps at level 0 ∼ 23 in

he on-chip memory, thus the on-chip memory usage is reduced

o a half. The worst case of on-chip memory usage of the four al-

orithms before and after using US is shown in Table 2 . 

Our algorithm can enhance the cache behavior during IP

ookups. For example, assume there are two prefix nodes A and

. As node A and B are often stored separately, the traffic which

its prefix A or B probably does not have good cache behavior. Af-

er using our US compression algorithm, node A and B are com-

ressed into one node, and the next hops of A and B are stored

djacently. Therefore, the traffic which hits A or B will have better

ache behavior. 

.3. Feasibility analysis 

Legacy routers usually use old TCAMs with small capacity.

hen the FIB size is close to the TCAM capacity, the TCAM needs

o be upgraded when using no compression algorithm. Fortunately,

ur US algorithm can be used to reduce the memory usage of

CAM. After using our US algorithm, the number of prefixes is

ompressed to about 65% of that of the original FIB. In other words,

here will be 35% available memory in the TCAM, and the lifetime

f legacy routers can be significantly extended. 

The cost of the US algorithm is that during lookup a second

tep is needed to obtain the exact next hop for a particular packet,

ince one prefix is shared by two next hops now. When the US

lgorithm is applied to hardware routers using TCAMs, we can

ust use a TCAM chip to output the longest matched prefix and a

ointer to the corresponding next hop pair, and use FPGA to con-

uct the extra logic to choose one next hop. Since FPGA is often

sed in real routers [32] , there is no need to add new hardware for

ackets lookup. Specifically, we store all the next hop pairs in the

RAM of the FPGA. The output pointer of TCAM points to the cor-

esponding next hop pair in FPGA. FPGA chooses the correct next

op by reading an additional bit of the IP address. The extra logic

n FPGA only needs one memory access of the SRAM. The lookup

peed of TCAM is slower than that of SRAM [29,33,34] . As men-

ioned in [33] , the maximum clock rates of SRAM and TCAM are
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Table 3 

FIBs used in the simulations. 

Router ID Location # IPv4 prefixes 

rrc00 RIPE NCC, Amsterdam 532 ,766 

rrc01 LINX, London 508 ,889 

rrc03 AMS-IX, Amsterdam 510 ,680 

rrc04 CIXP, Geneva 512 ,893 

rrc05 VIX, Vienna 507 ,622 

rrc10 Milan, Italy 507 ,894 

rrc11 New York, USA 509 ,738 

rrc12 Frankfurt, Germany 518 ,739 

rrc13 Moscow, Russia 552 ,684 

rrc14 Palo Alto, USA 514 ,408 

rrc15 Sao Paulo, Brazil 516 ,721 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 5. Compression ratios of US and ORTC over the last 12 years. 

Fig. 6. Compression ratios of US and ORTC for 11 FIBs in 2014. 
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400 MHz and 266 MHz, respectively. That’s to say, one mem-

ory access in SRAM only needs 2.5 ns, while one clock cycle of

TCAM needs 3.76 ns. With pipeline, adding the second step will

increase the lookup latency. However, as the second step is faster

than looking up TCAM, the bottleneck of system throughput lies in

the lookup of TCAM. In other words, adding the second step in-

creases the system latency, but do not affect the system through-

put. 

As TCAMs are expensive and power-hungry, recent significant

work, such as SAIL [11] , DXR [35] , and Poptrie [12] prefer to use

software methods to conduct IP lookup. For the software solu-

tions, it is fairly easy and fast to implement the second step: read

one additional bit, and then choose one of the two next hops.

Section 5.4 shows that the lookup speed of the compressed trie

is faster than that of the original trie, since compression leads to

shorter lookup path and better cache performance. Therefore, the

US algorithm can be easily applied to software routers, and can

also be applied to hardware routers. 

5. Evaluation 

In this section, we first evaluate the compression performance

of US and its application to ORTC. Second, we compare the update

performance of US with that of the original binary trie. Third, we

evaluate the IP lookup speed of the binary trie before and after US

compression. Fourth, we show the on-chip memory usage of PBF

and hybrid lookup before and after applying the US algorithm. As

for SAIL, since there are four SAIL algorithms, we only show the

theoretical memory upper bounds in Table 2 . 

5.1. Simulation setup 

FIBs and Updates: We downloaded 11 BGP FIBs from the RIPE

RIS Project [36] at 8:00 AM on September 1st 2014. We name these

FIBs as FIBs 2014 . We downloaded 12-year FIBs of rrc00 at 8:00 5 

AM on September 1st from 2003 to 2014, and name these FIBs

as FIBs 12 years . We also downloaded one-day update messages for

rrc00, rrc01, and rrc03 starting from 8:00 AM September 1st 2014.

Table 3 shows the collecting locations and the sizes of FIBs 2014 . 

Synthetic traffic traces: To evaluate the lookup speed of the bi-

nary trie before and after US compression, we generate 10M traffic

traces based on the simulation FIBs, and guarantee that each prefix

is matched with the same probability by the synthetic trace. 

Correctness test: We verify the correctness of US by comparing

the lookup results of the original FIB and the FIB after US compres-

sion using the 4G IPv4 address space. The results are exactly the

same, hence our US algorithm passed this correctness test. The ap-
5 There is no available FIB of rrc00 at 8:00 on September 1st 2004 on the web- 

site, thus we use the FIB at 16:00 instead. 

p  

t  

s  

t

endix contains a proof of the correctness of US using the method

roposed in [37] . 

Computer configuration: We conducted the simulations on a

omputer with two Intel(R) Core i7-3517U 1.9GHz & 2.4GHz and

GB RAM running Windows 7 operation system. 

.2. Simulations on FIB compression 

We evaluate the compression performance using two metrics:

ompression ratio and compression time . Compression

atio is the ratio between the number of prefixes after compression

nd that before compression. Smaller compression ratio means

ore reduction of the FIB size. Compression time is the time used

o compress the original FIB. Since ORTC achieves the optimal com-

ression ratio, here we evaluate the compression performance of

S using ORTC as a baseline. 

.2.1. Compression ratio 

Our simulation results show that US compresses the test FIBs by

bout 35%, and improves the compression ratio of ORTC by about 7%

hen applied to ORTC. Fig. 5 shows the compression ratio changes

f US and ORTC on FIB rrc00 over the last 12 years. As time goes

y, the FIB size increases rapidly, and the compression ratio of

S gets better steadily. In contrast, ORTC shows an unstable com-

ression ratio. Fig. 6 compares the compression ratio of US and

RTC on FIBs 2014 . US achieves an average compression ratio of 0.65,

hich means the compressed FIB size is about 65% of the origi-

al FIB size. The average compression ratio of ORTC is 0.36. Fig. 7

ompares the compression ratio of ORTC and ORTC+US on FIBs 2014 .

esults show that combining US and ORTC can reduce the com-

ression ratio of ORTC by about 7%. This does not mean the opti-

al compression ratio of ORTC is incorrect. It means that the com-

ression ratio can be further improved when one prefix node stores

wo next hops . In sum, although ORTC achieves smaller compres-

ion ratios than US, the compression ratio of ORTC+US is smaller

han that of ORTC. 
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Fig. 7. Compression ratios of ORTC and ORTC+US for 11 FIBs in 2014. 

Fig. 8. Compression time of US and ORTC over the last 12 years. 

Fig. 9. Compression time of US and ORTC for 11 FIBs in 2014. 
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Fig. 10. Compression time of ORTC and ORTC+US for 11 FIBs in 2014. 

Fig. 11. The growth of prefixes for one-day updates. 
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.2.2. Compression time 

Our simulation results show that US reduces the compression time

y 72 % ∼ 77% comparing to ORTC, and the combination of US and

RTC adds little extra compression time overhead. First, as shown in

ig. 8 , when using FIBs 12 years , the compression time of US is 23%

27% of that of ORTC. As time goes by, the compression time in-

reases with the growing size of FIB, and the increase of the com-

ression time of US is much slower than that of ORTC. Second, as

hown in Fig. 9 , when using FIBs 2014 , the compression time of US

s 25% ∼ 28% of that of ORTC. Third, as shown in Fig. 10 , when us-

ng FIBs 2014 , the compression time of ORTC+US is only 1.13 ∼ 1.16

imes of that of ORTC. Note that the compression time of ORTC+US

s much less than the sum of ORTC compression time and US com-

ression time. This is because after compressed by ORTC, the trie

ize is much smaller so that the compression speed of US is faster.

For every trie node, ORTC needs to compute the intersection

r union of two next hop sets, and to judge whether a next hop

et is a subset of another next hop set. These operations are time-

onsuming, especially for large FIBs. In contrast, there are only

imple assignment and judgment operations in the US compression

rocess. Therefore, the compression speed of US is much faster

han that of ORTC. 
The US algorithm can be applied to two scenarios. First, for

outers with frequent FIB updates, we can use only US algorithm

o achieve a good compression ratio with fast update. Second, for

ome routers with infrequent FIB updates and limited fast mem-

ry, we can use ORTC+US to achieve better compression ratio at

he cost of slow update. 

.3. Simulations on update 

One key advantage of the US algorithm is the fast update with

ontrolled worst case update time. To evaluate the incremental up-

ate algorithm of US, we compare the update performance of US

ith that of the original binary trie, because the update speed of

he binary trie without compression is much faster than that of

he trie after applying FIB compression algorithms (see Table 1 ).

o evaluate the update overhead of applying US to ORTC, We also

ompare the update speed of ORTC+US and ORTC in this section.

e only show the simulation results for the one-day update of

rc00 which contains 4,90 6,0 67 update messages. The simulation

esults for rrc01 and rrc03 are similar, thus are omitted due to

pace limitation. 

The update algorithm of ORTC+US works as follows. Given a FIB

ompressed by ORTC+US and an update message, first we locate

he updating node. Then the sub-trie T rooted at the updating node

ill be de-compressed and updated. Next, we compress the sub-

rie T first by ORTC and then by US. 

Our simulation results show that the incremental update of US

roduces 0.08% redundant prefix nodes in one day. Fig. 11 shows how

he number of prefixes grows for one-day updates. The x-axes rep-

esents the passed minutes in a day. The number of prefixes in the

riginal FIB increases from 532,766 to 532,835 over one-day up-

ates, and the number of prefixes in the compressed FIB increases

rom 346,464 to 346,757. Both exhibit a very slow increase. Thus

e do not need to re-compress the FIB for a very long period of

ime. 

Our simulation results show that the update overhead of the bi-

ary trie is lower after US compression. Fig. 12 shows the distribu-
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Fig. 12. The distribution of the number of memory accesses per update for one-day 

updates. 

Fig. 13. The update speed for one-day updates. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 14. The lookup speed for rrc00 over the last 12 years. 

Fig. 15. The lookup speed for 11 FIBs in 2014. 

Fig. 16. On-chip memory usage of rrc00 over the last 12 years. 
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tion of the number of memory accesses per update for one-day

updates. For the original binary trie, results show that 53% updates

need 25 memory accesses, because the length of most updating

prefixes is 24 and accessing the root node also requires one mem-

ory access. After US compression, 44% updates need 24 memory

accesses. This is because many prefix nodes at level 24 are united

into their parent nodes at level 23. 

Our simulation results show that the update speed of US is a lit-

tle faster than that of the original binary trie, and much faster than

that of ORTC. Fig. 13 shows the update speed of the original binary

trie, US, ORTC and ORTC+US on one-day update messages. Assume

x Mups means x million updates are processed per second. The

update speed of the original binary trie ranges from 2.06 Mups to

94.17 Mups with a mean of 18.59 Mups. The update speed of US

ranges from 2.16 Mups to 107.75 Mups with a mean of 18.64 Mups.

The update speed of ORTC ranges from 0.35 ∼ 1.63 Mups with a

mean of 1.08 Mups, while the update speed of ORTC+US ranges

from 0.33 Mups to 1.60 Mups with a mean of 1.01 Mups. This in-

dicates that when applying US to ORTC, the update speed remains

almost unchanged comparing to that of ORTC. In other words, ap-

plying US to ORTC can improve the compression ratio with little

additional update overhead. 

5.4. Simulations on IP lookup 

The worst case lookup complexities of the binary trie before

and after US compression are both O(W), where W is the max-

imum depth of the binary trie. In practice, after using US, the

lookup speed is faster because the average number of memory ac-

cesses per lookup is reduced after compression. To verify this con-

clusion, we conduct simulations to evaluate the lookup speed of

the binary trie before and after using US. 

Our simulation results show that the lookup speed of the binary

trie is faster after US compression. First, we lookup FIB 12 years us-

ing the corresponding synthetic traffic traces, and the results are

shown in Fig. 14 . The lookup speed after using US ranges from

13.9 to 14.8 Mpps (Million packets per second), which is 1.17 ∼
.22 times faster than the lookup speed of the original binary trie.

econd, we conduct similar simulations on FIB 2014 , and the results

re shown in Fig. 15 . It shows that the lookup speed after US com-

ression is 1.18 ∼ 1.21 times faster than that of the original binary

rie. 

.5. Simulations on PBF 

In this section, we evaluate the memory usage of PBF before

nd after using US. We set the number of hash functions of all the

loom filters to 8, and the sum of the sizes of all the Bloom filters

s the on-chip memory usage. 

.5.1. On-chip memory usage 

Our simulation results show that the on-chip memory usage of PBF

s reduced by about 35% after US compression. The on-chip memory

sage for FIBs 12 years is shown in Fig. 16 . The on-chip memory us-

ge grows year by year because the number of prefixes increases.

he on-chip memory usage of PBF before US compression ranges

rom 1.5 Mb to 6.2 Mb. When using US, the on-chip memory us-

ge of PBF is reduced to 1.1 ∼ 4.0 Mb, which is 64.5% ∼ 73.3%

f the on-chip memory usage before using US. We conduct simi-

ar simulations using FIBs 2014 , and the results are shown in Fig. 17 .

he on-chip memory usage of PBF after using US ranges from 3.81
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Fig. 17. On-chip memory usage for 11 FIBs in 2014. 

Fig. 18. # prefixes stored in TCAM for rrc00 over the last 12 years. 
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Fig. 19. # prefixes stored in TCAM for 11 FIBs in 2014. 

Fig. 20. # trimmed trie nodes stored in FPGA for rrc00 over the last 12 years. 

Fig. 21. # trimmed trie nodes stored in FPGA for 11 FIBs in 2014. 
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b to 4.16 Mb, and is 64.8% ∼ 65.2% of the on-chip memory usage

efore using US. 

.5.2. Off-chip memory usage 

Our simulation results show that the off-chip memory usage of PBF

s reduced by 21.8% ∼ 22.2% after US compression. PBF uses hash ta-

les in the off-chip memory. The size of a hash table is propor-

ional to the number of prefixes stored in it. After using US, each

ash bucket stores one prefix and two next hops, and the total

umber of prefixes is reduced. We compare the total size of hash

ables before and after US compression using FIBs 2014 . 

.6. Simulations on hybrid lookup 

In this section, we evaluate the memory usage of hybrid lookup

efore and after using US. The update of hybrid lookup includes

wo parts: updating the trie structure, and updating TCAM or

PGA. The main advantage of hybrid lookup is the O (1) update

omplexity when the update of the trie is not considered, because

pdating the trie do not interrupt lookup. The update complexity

s still O (1) when applying US to hybrid lookup, because at most

hree nodes need to be changed for any update of US. The cost

nd power consumption of the hybrid lookup algorithm increases

inearly with the growth of the number of prefixes stored in FGPA

nd TCAM. Therefore, we can use US to reduce the number of pre-

xes while keeping the O (1) update performance. 

.6.1. TCAM usage 

Our simulation results show that the number of TCAM entries is

educed by about 35% after US compression. We evaluate the TCAM

sage (the number of prefixes stored in TCAM), which is also the

umber of leaf nodes in a trie. Fig. 18 shows the simulation results

n FIBs 12 years . It can be observed that the number of TCAM entries

s reduced to 65% ∼ 74% after using US. We conduct similar simu-

ations on FIB 2014 , and the results are shown in Fig. 19 . The num-

er of TCAM entries is reduced to 65% ∼ 66% after using US. Note

hat each prefix ( i.e. , TCAM entry) corresponds to two next hops,

nd the next hops are stored in the associated SRAM. Simulation
esults show that the SRAM usage is 0.45 ∼ 0.49 MB before US

ompression, and becomes 0.64 ∼ 0.66 MB after US compression.

uch small overhead is negligible. 

.6.2. FPGA usage 

Our simulation results show that the memory usage of FPGA (FPGA

sage) is reduced to 71.0% ∼ 72.0% after US compression. We evalu-

te the number of the trimmed trie nodes stored in FPGA. When

sing FIBs 12 years , as shown in Fig. 20 , the number of trimmed trie

odes is reduced to 64% ∼ 74% after using US. When using FIBs 2014 ,

s shown in Fig. 21 , the number of trimmed trie nodes is reduced

o 63.9% ∼ 64.8%. We also evaluate the on-chip memory usage of

PGA for FIBs 2014 . Simulation results show that the memory usage

f the trimmed trie after US compression is reduced to 71.0% ∼
2.0%. 

. Related work 

FIB compression is a well studied and important issue due to

he significance of FIBs in router design. In this paper, we classify

IB compression algorithms into four categories. 

The first category compresses a FIB into a smaller one and does

ot change the forwarding behavior, such as auto aggregation [21] ,

RTC [18] , EAR [16] , and wild-card compression [38] . The auto ag-

regation algorithm [21] only compresses the sibling prefix nodes
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with the same next hop. This compression algorithm is simple

and fast, but its compression ratio is not attractive and the up-

date time is not small bounded. ORTC [18] achieves the theoretical

optimal compression ratio in terms of the number of prefixes. It

traverses the trie three passes to complete the compression. Gen-

erally speaking, the update of one prefix can be implemented by

re-constructing the sub-trie rooted at the updating trie node us-

ing the same compression algorithm. However, optimal compres-

sion is complicated and slow, thus leads to complicated and slow

update. The authors in [18] did not present the update algorithm

of ORTC. To address the update problem, Liu et al. proposed two

incremental update algorithms in [20] for ORTC, and also proposed

FIFA-S, FIFA-A and FIFA-H in [17] to further improve the update

performance. Uzmi et al. [19] also proposed an update algorithm

for ORTC. The main idea is to only update the nodes which are

affected, so as to accelerate the update speed. The key reason of

slow update is due to optimal compression. Thus sub-optimal com-

pression with fast update becomes an appealing alternative choice.

Yang et al. proposed two sub-optimal compression algorithms,

EAR_slow and EAR_fast [16] . Compared with ORTC, EAR_fast can

reduce the compression time to around 1/10 at the cost of a little

compression ratio loss. Although EAR_fast can achieve fast update

speed, the worst case update time is still not small bounded. LFA

[39] and BLOCK [40] optimize the update performance by lever-

aging the temporal and spatial locality of udpates. The basic idea

of these two algorithms is similar: only the sub-tries which are

not updated for a preset period of time are compressed. If an up-

date occurs in a compressed sub-trie, the compressed sub-trie will

be forced to be de-compressed/split and then be updated. For the

update complexity, the best case of these two algorithms is O ( W ),

and the worst case is O ( n ), where W is the maximum depth of the

trie, and n is the number of nodes in the sub-trie. Different from

above compression methods based on binary trie, wild-card com-

pression [38] compresses the prefixes into new ones, and each bit

has three states: 0, 1, and don’t care. Thus it can only be applied

to TCAM-based IP lookup solutions. What is more, its update is re-

ally complicated and slow. In summary, the worst case update of

all the above FIB compression and update algorithms is to update

the whole sub-trie rooted at the updating node. US also belongs to

this category, but only needs to change at most three nodes in the

worst case of update. The update complexity of US is always O ( W ).

The second category aims at achieving a better compression ra-

tio at the cost of changing the forwarding behavior, such as NSFIB

[24] and 4-level [22] . NSFIB can achieve a much better compres-

sion ratio than ORTC by taking advantage of multiple next hops.

The 4-level algorithm defines four levels of FIB compression. The

first two levels are simple, but the compression is not sufficient.

The last two levels achieve better compression ratios at the cost of

forwarding some packets which should have been dropped. 

The third category focuses on compressing the FIB towards the

information entropy bounds, and the compressed result is rep-

resented by bits rather than prefixes. Rétvári et al. [23] intro-

duced the information entropy of tries for the first time, and there

are two successors. Rottenstreich et al. [41] proposed an encoding

scheme to achieve sub-optimal memory requirement, and Korosi

et al. [42] focused on improving the lookup speed. The common

disadvantage of this category is the complicated and slow update

performance. 

The above three categories are purely local solutions, and do

not affect neighboring routers. The fourth category requires the co-

ordination between routers or between switches and controllers. In

[43] , three route aggregation strategies are proposed to compress

the FIBs. These strategies either require coordination between the

ASes or need to change the way routers build their FIBs. A recent

work [44] focuses on minimizing the number of updates sent from

the controller to the compressed FIBs stored in switches. 
. Conclusion 

With the rapid growth of FIB size in backbone routers, FIB com-

ression becomes a hot topic in recent years, and various FIB com-

ression algorithms have been proposed. The update performance

ill inevitably be degraded if a FIB is compressed. Only when the

orst case of update time is small bounded, the risk of packet

oss during updates can ultimately be avoided. Towards this goal,

e propose the Unite and Split (US) compression algorithm in this

aper to achieve fast update with small bounded worst case ( i.e. ,

t most three nodes need to be changed per update). Further, we

se the US algorithm to improve the performance of several clas-

ic software and hardware lookup algorithms. Simulation results

n real-world FIBs show that the compression ratio of US is about

5% with fast compression time (only about 28.5 ms), and the up-

ate speed of US is fast. In addition, the on-chip memory usage

f several classic lookup algorithms is significantly reduced after

pplying US. To enable others to replicate the simulations, we re-

eased the source code of our US algorithm and related data set at

ithub [45] . 
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ppendix 

The authors of [37] proposed a universal method to prove the

orrectness of FIB compression algorithms. We use this method to

rove the correctness of the US algorithm below. First, as men-

ioned in [37] , the prefixes are represented by regular expression

yntax, and the symbols used are defined as follows. 

• q is a node in the trie, and ( q ) represents the corresponding

prefix of node q . Prefix nodes have next-hops, while empty

nodes don’t. 

• ( q 1 q 2 ) represents the bit string of the path between prefix

nodes q 1 and q 2 , where no prefix nodes appear in the path. 

• L ( q ) represents the prefix length of node q . 

• P represents a trie and ( q ) represents a prefix, then P ( q ) means

the next-hop of prefix ( q ) in trie P . 

• ( q ) represents a prefix with the same length of ( q ), but it is

different from ( q ). P ( q ) means the next hop of prefix ( q ) in trie

P . 

• ( a | b ) represents a prefix with two next hops. Its leftport is a ,

and rightport is b . Given one more bit 0 or 1, there is (a | b) 0 = a

and (a | b) 1 = b. 

The operation of XOR is defined as follows: 

 x, y ∈ G 

 � y = 

⎧ ⎨ 

⎩ 

x + y, xy (x + y ) = 0 

y, x > 0 , y > 0 

meaningless, otherwise 

∀ IP address R, R = [0,1]{32}, suppose the match result of the

ost significant i bits is S i , then the next-hop of R is P (R ) = S 1 �

 2 � . . . S 32 = �
32 
i =1 

S i . 

Due to space limitation, we only show the proof of the first

odel (see Fig. A.22 ) of our US algorithm. The proof of other mod-

ls is similar. 

http://dx.doi.org/10.13039/501100001809


Y. Zhang et al. / Computer Networks 106 (2016) 77–90 89 

Fig. A.22. The first model of US. 
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roof. ∀ IP address R, obviously, L (R ) = K, R = [0 , 1] K. Suppose R =
0 , 1] L (q ) [0 , 1][0 , 1] { K − L (q ) − 1 } . 

Step1: matching [0, 1]{ L ( q )} 

[0 , 1] { L (q ) } = (q ) ⇒ 

{
P 1([0 , 1] { L (q ) } ) = 3 

P 2([0 , 1] { L (q ) } ) = (1 | 2) 

[0 , 1] { L (q ) } � = (q ) ⇒ P 1 = P 2 

P 1( q ) = P 2( q ) 

⎫ ⎪ ⎬ 

⎪ ⎭ 

⇒ Only considering [0 , 1] { L (q ) } = (q ) 

Step2: when [0,1]{L(q)} = (q), matching [0, 1] 

[0 , 1] = 0 , or1 ⇒ 

⎧ ⎨ 

⎩ 

P 1(0) = P 1(q 1 ) = 3 � 1 = 1 

P 1(1) = P 1(q 2 ) = 3 � 2 = 2 

P 2(0) = (1 | 2) 0 = 1 

P 2(1) = (1 | 2) 1 = 2 

⎫ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎬ 

⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎪ ⎭ 

⇒ P 1([0 , 1]) = P 2([0 , 1]) 

At this stage, 

P 1([0 , 1] { L (q ) } )[0 , 1]) = P 1([0 , 1] { L (q ) } )) � P 1([0 , 1]) = 

 1([0 , 1]) 

P 2([0 , 1] { L (q ) } )[0 , 1]) = P 2([0 , 1] { L (q ) } )) � P 2([0 , 1]) = 

 2([0 , 1]) 

Thus, P 1([0 , 1] { L (q ) } )[0 , 1]) = P 2([0 , 1] { L (q ) } )[0 , 1]) . 

For P1 and P2, they have the same rest parts. In other words,

hen matching [0 , 1] { K − L (q ) − 1 } , P1 and P2 will report the

ame results. 

According to step1 and step2, P 1 ⇔ P 2. �
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