
Computer Networks 106 (2016) 134–150

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Network assisted latency reduction for mobile web browsing

�

Ali Sehati ∗, Majid Ghaderi

Department of Computer Science, University of Calgary, Calgary, AB, Canada T2N 1N4

a r t i c l e i n f o

Article history:

Received 15 January 2016

Revised 24 May 2016

Accepted 21 June 2016

Available online 23 June 2016

Keywords:

Web browsing

Mobile devices

Browsing delay

a b s t r a c t

To load a webpage, a web browser first downloads the base HTML file of the page in order to discover

the list of objects referenced in the page. This process takes roughly one round-trip time and consti-

tutes a significant portion of the web browsing delay on mobile devices as wireless networks suffer from

longer transmission and access delays compared to wired networks. In this work, we propose a solu-

tion for eliminating this initial delay, which is transparent to end systems, does not require modifying

HTTP, and is well suited for web browsing on mobile devices. Our solution, called WebPro, relies on a

network proxy that builds an up-to-date database of resource lists for the websites visited frequently by

network users. The proxy resides in the wired part of the network, and hence can afford to pro-actively

build and refresh the resource list database periodically. When a request for a webpage comes to the

proxy, it simultaneously fetches the base HTML and all referenced objects required to render the web-

page using the corresponding resource list stored in the local database. We also show that the benefits

of WebPro become more significant by increasing the complexity of webpages as it is able to circumvent

the inter-object dependencies in a webpage. We have built a working prototype of WebPro and have

used real-world traffic traces along with live experiments over Wi-Fi and LTE networks to assess its per-

formance. Our results show an average of 26% reduction in page load time for a mix of popular web

sites chosen from categories such as news, sports and shopping. Moreover, in comparison to another best

known proxy-based solution, WebPro provides delay reductions ranging from 5% to 51% for a variety of

web sites.

© 2016 Elsevier B.V. All rights reserved.

p

m

r

w

1. Introduction

1.1. Motivation

Recent advances in cellular technology have given rise to the

widespread adoption of mobile devices such as smartphones and

tablets. Among numerous mobile apps, web browsing is still one

of the most popular applications on mobile devices. Due to limited

bandwidth and longer access delays in wireless networks (more

specifically, cellular networks), however, web browsing is generally

slower on mobile devices, which could frustrate users and lead to

lost online business opportunities. For example, it is estimated that

a 2 s econd increase in the load time of Bing’s home page can re-

duce revenue per user by 4.3% [2] .

Prior work [3,4] has shown that different from desktop comput-

ers, there is a new set of factors causing the slow browsing expe-
� A preliminary version of this work appeared in the IEEE/ACM International Sym-

osium on Quality of Service (IWQoS) 2015 [1]
∗ Corresponding author.

E-mail addresses: asehati@ucalgary.ca , a.sehati@gmail.com (A. Sehati),

ghaderi@ucalgary.ca (M. Ghaderi).

d

e

S

http://dx.doi.org/10.1016/j.comnet.2016.06.026

1389-1286/© 2016 Elsevier B.V. All rights reserved.
ience on smartphones, which calls for solutions tailored to mobile

eb browsing. Some of these factors are:

1. Compared to the enterprise Ethernet typically used by desktop

computers, wireless hop has longer access delays which domi-

nate the end-to-end round trip time (RTT) and consequently re-

sult in longer RTTs. The long network RTT makes resource load-

ing the bottleneck of web browsing on smartphones. On the

contrary, compute intensive operations such as scripting, style

formatting and layout are the bottleneck in desktop browsers.

2. Limited processing power of smartphones affects the resource

loading process as it is associated with network stack and OS

services.

3. Many webpages are not designed specifically for web brows-

ing on mobile devices. For example, analysis of the traces of 25

iPhone users in [4] shows that over half of the webpages vis-

ited by smartphone users are not optimized for mobile devices

or are non-mobile webpages.

Recently, there has been a significant amount of work on re-

ucing the latency of mobile web browsing [5–12] . Some of these

ffort s rely on modifying the web access protocol. For example,

PDY [9] , a new protocol designed by Google, aims to minimize

http://dx.doi.org/10.1016/j.comnet.2016.06.026
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.06.026&domain=pdf
mailto:asehati@ucalgary.ca
mailto:a.sehati@gmail.com
mailto:mghaderi@ucalgary.ca
http://dx.doi.org/10.1016/j.comnet.2016.06.026

A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150 135

t

p

H

s

a

c

i

u

j

s

s

w

t

i

T

e

v

a

e

f

b

p

O

o

s

m

T

o

d

t

i

t

c

p

d

r

o

a

b

d

i

a

r

o

m

fi

b

c

i

o

a

t

1

p

e

H

c

a

p

Fig. 1. CDF of the time to fetch the base HTML file for Canada’s top 100 websites.

In the median case, it takes 430 ms to download the base HTML file. However, this

time can go beyond 1 s econd in some cases.

Fig. 2. Resource list for an example webpage. This webpage contains a CSS, a

JavaScript, two images and an HTML iframe. Notice that the embedded JavaScript

file itself refers to another image file which can be identified only after the

JavaScript file is fetched and processed.

w

o

o

t

t

r

p

t

j

p

b

p

a

p

w

o

s

m

a

l

j

r

t

he latency of web browsing by adding request multiplexing, sup-

ort for prioritization and a number of other advanced features.

owever, this solution requires changing the client and server side

oftware which limits its widespread adoption. There are also prior

ttempts that rely on client side optimizations. This category in-

ludes solutions based on client side caching [13] and prefetch-

ng [5,6] along with a recently proposed technique called spec-

lative loading [7] . The short expiration times of most web ob-

ects limit the efficiency of caching techniques, while prefetching

olutions suffer from wasted wireless bandwidth and battery re-

ources that result from incorrect predictions (not a problem on

ired desktop browsing). On the other hand, speculative loading

echnique relies on extensive changes to the mobile browser which

s a hurdle to its adoption.

Other noticeable solutions are those based on network proxies.

hese solutions mostly try to reduce the computation time or en-

rgy consumption of web browsing by delegating some tasks in-

olved in opening a page to a powerful entity in the network such

s a cloud-based proxy [8,14,15] . One of the major advantages of

mploying a network-based proxy solution is that a proxy can of-

er a better improvement by learning and exploiting the aggregate

rowsing behaviour of a diverse mix of mobile users which is not

ossible in client-only solutions.

Specifically, some network-based solutions such as VMP [8] and

pera Mini [15] aim at offloading compute-intensive operations

f the page loading process to a proxy. However, it has been

hown that optimizing compute-intensive operations leads to only

arginal improvements in the overall page load performance [4] .

hus, other solutions such as EEP [16,17] and PARCEL [18] try to

ffload resource loading operations to a network-based proxy in or-

er to improve page load performance. Specifically, in these solu-

ions, proxy retrieves the base HTML file of the page and parses

t to discover referenced objects, which could be then fetched and

ransmitted to the client in a bundle (in order to reduce energy

onsumption of the mobile device).

One essential aspect of such proxy-based solutions is that the

roxy can build and transmit the bundle only after it has finished

ownloading all the embedded objects of a page. Considering the

equest-response nature of the HTTP protocol, discovering the list

f the referenced objects requires at least one RTT in order to fetch

nd parse the base HTML file. Also, one or more redirections might

e involved before arriving at the base HTML file which can further

elay the realization of the web objects.

To gain a better insight, we measured the latency of download-

ng the base HTML file for the top 100 Canadian websites [19] from

 desktop computer connected to campus Ethernet. Because of the

edirections, this time might be different from the RTT between

ur device and the corresponding web server. Fig. 1 shows the cu-

ulative distribution function of the time to fetch the base HTML

le of each site. In the median case, it takes 430 ms to fetch the

ase HTML file. However, over 6% of the cases experience laten-

ies beyond 1 second. Also according to the measurement results

n [20] , the base HTML fetch time constitutes the largest fraction

f the network time for loading a page. This implies that there is

 potential for optimizing mobile browser performance by eliminating

he initial fetch time .

.2. Our work

In an effort to reduce the latency of mobile web browsing, we

ropose the design and implementation of a system that aims at

liminating the initial round-trip time required to fetch the base

TML file of a page. Our solution, called WebPro, is built on two

ooperating proxies, one of which resides in the mobile device

nd the other one, remote proxy, is deployed inside the network,

referably as close to the user as possible (see Fig. 3). When a user
ants to visit a page, the remote proxy will fetch all the required

bjects on behalf of the mobile device. After downloading all the

bjects, the remote proxy packs them in a bundle and pushes it to

he local proxy, which will serve all browser’s requests locally. In

his dual proxy architecture, not only we are able to significantly

educe page load time but also reduce energy consumption by im-

lementing bundling to eliminate unnecessary power state promo-

ions and demotions in mobile’s radio for each of the small ob-

ects [16,21] .

In order to fetch all the required objects of a page, the remote

roxy employs the speculative loading technique [7] . The main idea

ehind this approach is to bypass the extra time for fetching and

arsing the base HTML file, by using a previously recorded list of

ll the required objects for a webpage, hereafter called the web-

age “resource list”. Fig. 2 presents the resource list for an example

ebpage. We observed that the amount of change in the structure

f the webpages within a few hours is relatively low and hence it

hould be feasible for a proxy to keep track of such changes and

aintain an updated resource list of the popular pages (pages that

re popular among its users). Note that maintaining the resource

ists of the webpages is different from caching the actual web ob-

ects, the majority of which can not be cached or have a short expi-

ation time [7] . Nevertheless, such legacy caching and prefetching

echniques can be added to our system if desired.

136 A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150

Fig. 3. High level architecture of WebPro.

c

h

t

o

n

i

u

w

a

c

P

p

m

a

I

S

w

p

p

i

p

1

d

S

t

n

2

2

w

s

k

p

e

a

a

o

o

f

t

d

i

r

o

r

s

l

a

a

p

d

fl

r

p

1 The difference between EEP and PARCEL solutions is discussed in the related

work section of this paper.
Maintaining an updated set of resource lists is achieved by en-

hancing the remote proxy with a profiler that periodically visits

popular websites and records their resource lists in a metadata

repository. Considering that the proxy resides in the wired part

of the network, it can afford to pro-actively fetch webpages and

construct their resource lists for the most popular websites in the

network. Such a profiling module can be easily integrated with the

operational activities of high-performance dedicated middle-boxes

that are already deployed by most mobile operators for caching,

traffic monitoring and optimization purposes [22] .

This way, the first step in loading a page at the remote proxy

will become checking the metadata repository. In the case the

repository contains the resource list of the page, multiple paral-

lel connections will be used to fetch all the objects of the page

from possibly different web servers. Otherwise, the remote proxy

will employ a web engine to load the page by first fetching the

base HTML file and then loading the discovered objects. WebPro’s

profiler employs a web engine to perform all the steps involved in

loading a page except rendering. This way, profiler will be able to

record all the requests that result from parsing as well as script

evaluations. We also implemented a filtering module to prevent

profiler from recording changing URLs that result from third party

advertisements and tracking systems.

In order for the metadata repository to contain the resource

lists of the majority of the requests, profiler should employ an ef-

fective mechanism to identify popular URLs in the network. Con-

sidering the flow of URLs into the proxy as a data stream, we

exploit a well-known algorithm in data mining community, space

saving , for identifying the popular URLs at the proxy. Our experi-

ments using traffic traces collected from University of Calgary’s In-

ternet link shows that maintaining a metadata repository for the

top-10 0 0 URLs in the network, allows a timely update of their re-

source lists by the profiler while providing a high hit ratio to the

user requests.

Using resource lists at the proxy also enables WebPro to avoid

going through the iterative process of exploring objects in a web-

page. In other words, it enables WebPro to break the inter-object

dependencies in a webpage. The most common form of such de-

pendencies happens when an embedded object itself refers to an-

other object, similar to the example in Fig. 2 . Accordingly, our ex-

periments using carefully designed synthetic webpages reveals that

the benefits of WebPro will extend as the number of dependencies

in a webpage increases.

We emphasize that in contrast to client-based approaches

(e.g., [7]), WebPro is transparent to the end-points and does not re-

quire any changes to the client’s browser. As a proxy, it exploits the
ommon browsing activity across a diverse set of mobile users and

ence provides a faster browsing experience. Moreover, in WebPro,

he penalty of downloading wrong and unusable objects (in terms

f wireless bandwidth usage and mobile battery consumption) is

egligible compared to that of client-based approaches as it resides

n the wired part of the network. Thus, it can afford to pro-actively

pdate the resource lists, which is very costly to implement on

ireless clients.

We have implemented WebPro on Linux and have conducted

n extensive set of measurement experiments. We believe that the

ommon approach taken by proxy-based solutions EEP [16,17] and

ARCEL [18] is the state of the art and one of the most complete

roxy-based solutions for improving web browsing performance on

obile devices. 1 We call this approach PBB (P roxy B ased B rowsing)

nd use it as benchmark to evaluate the performance of WebPro.

n comparison to PBB, our scheme achieves lower page load times.

pecifically in the case of a workload consisting of the 20 popular

ebpages from different categories, our approach loads 73% of the

ages in less than two seconds while under PBB, only 28% of the

ages load in that time. To the best of our knowledge, this paper

s the first work to use the speculative loading approach in a dual

roxy architecture for improving mobile user experience.

.3. Paper organization

The rest of the paper is organized as follows. Section 2 intro-

uces our proposed solution and discusses different aspects of it.

ection 3 offers results on the performance evaluation of the sys-

em. Section 5 presents a detailed review of the related work. Fi-

ally, the paper is concluded in Section 6 .

. WebPro: Proxy-based speculative loading

.1. System architecture

In order to eliminate the initial fetch time at the remote proxy,

e take advantage of the speculative loading approach. The ba-

ic idea of speculative loading is to use the previously recorded

nowledge about the structure of a website during the page load

rocess. Our system, called WebPro , is depicted in Fig. 3 . WebPro

quips the remote proxy with a profiling module that pro-actively

nd periodically loads webpages from a set of top visited websites

nd records their resource lists in a metadata repository. The list

f top websites can be inferred from the web browsing behaviour

f the users of the system. As will be discussed later, the memory

ootprint of keeping resource lists is very low, which means that

he proxy can easily keep metadata for a large number (on the or-

er of thousands) of websites.

After receiving a request to load a webpage at the remote proxy,

f the resource list of that page already exists in the metadata

epository, multiple parallel connections will be used to fetch the

bjects in the resource list. In case the remote proxy receives a

equest for the first time and notices the absence of the corre-

ponding resource list, it will use the legacy approach of PBB by

oading the page in a web engine. Once all the required objects of

 webpage are fetched, the remote proxy packs them in a bundle

nd sends the bundle to the local proxy. Fig. 4 shows the download

attern of WebPro and PBB. Notice that both WebPro and PBB bun-

le objects when transferring them from proxy to the client. The

ow chart in Fig. 5 shows the operations performed at WebPro’s

emote proxy for serving a user request.

A defining feature of WebPro is that the profiler on the remote

roxy can always keep a fairly recent version of the resource lists

A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150 137

Fig. 4. Downloading a Webpage with WebPro (a) and PBB (b).

Fig. 5. Flow chart of operations performed at remote proxy.

f

t

s

s

c

a

t

t

m

t

t

o

l

(

t

u

fi

i

p

d

d

t

m

t

o

i

c

o

p

2

o

p

v

c

b

d

a

d

e

c

u

o

o

2

o

U

o

a

r

t

u

h
or user requested webpages. However, the freshness of the main-

ained resource lists will depend on the frequency of change in the

tructure of the webpages. In Section 3.4.1 , we will present mea-

urement results indicating that on average the amount of such

hange within a few hours is relatively small . Therefore, given the

bundance of the computation and communication resources at

he remote proxy, it should be feasible for the profiler to cap-

ure the temporal changes in resource structures by updating its

etadata repository in a timely manner. Notice that doing so on

he mobile device using a client-based approach is not feasible due

o bandwidth and battery limitations . Also it is noteworthy that an

ptimized implementation of the proxy will not penalize the page

oad times in the case of websites with rapidly changing structures

such as social media news feed sites), but it may not improve

hem either.

In order to learn and utilize the aggregate browsing activity of

sers in WebPro, whenever the remote proxy loads a page for the
rst time through the web engine, it also adds the correspond-

ng resource list to the metadata repository. This way, the remote

roxy will be able to exploit the common browsing activity across

ifferent users.

It is important to note the difference between WebPro and tra-

itional proxy-based caching systems [23] . Those systems cache

he actual content of web objects, which limits their efficiency as

ost web objects can not be cached or have a short expiration

ime [7] . However, with WebPro, the remote proxy just keeps a list

f the referenced URLs and fetches a fresh copy of the correspond-

ng objects at each page request. Despite this difference, WebPro

ould be augmented with traditional caching as well in case some

bjects are usable because there is plenty of storage/processing ca-

acity available at the remote proxy.

.2. Circumventing webpage dependencies

In addition to eliminating the initial HTML fetch time, there are

ther reasons that lead to a reduced page load time in our ap-

roach. Those reasons are based on the fact that the activities in-

olved in the process of loading a page are inter-dependent and

an block each other [20] . For example, some of the objects may

e referenced by a JavaScript or CSS file and loading those objects

epends on evaluating the referencing scripts. Also, downloading

nd evaluating a synchronous JavaScript file blocks HTML parsing

uring the page load process.

The immediate implication of such dependencies is that a web

ngine’s resource loading operations are not fully parallel and dis-

overing web objects can be further delayed because of script eval-

ations and other dependencies. However, WebPro can use a previ-

usly recorded resource list and hence load all the required objects

f a page without going through such dependent operations.

.3. Identifying popular websites

As implied in previous sections, WebPro’s profiler keeps a list

f popular URLs in the network and by periodically loading those

RLs, updates its metadata repository. It is clear that the benefits

f WebPro will increase if the profiler maintains a URL list that

chieves higher hit ratios for page requests in the network. The

eason is that the presence of a user requested URL in the list of

op URLs (hit occurrence) means that the proxy already has the

pdated resource list of that page in its metadata repository and

ence can load the page faster. A simple approach for constructing

138 A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150

Table 1

Hit ratio and top URL set size that result from run-

ning the simple algorithm over University of Cal-

gary’s HTTP traces collected between May 1, 2015

and May 6, 2015.

Day number Hit ratio # of Distinct URLs

1 93 .4% 18 ,482

2 95% 24 ,725

3 97% 28 ,156

4 94 .6% 38 ,235

5 95 .3% 46 ,565

6 96% 54 ,040

2

s

t

r

a

U

a

w

n

t

e

c

O

2

v

s

d

o

w

t

m

w

m

r

i

i

a

t

a

b

w

a

W

t

C

l

t

w

(

t

u

m

d

c

t

l

p

s

o

t

s

p

b

m
such a list of URLs would be keeping a SET data structure and

adding all the URLs to the SET upon their arrival at the proxy.

To gain a better insight, we applied this approach to network

traffic traces that were collected from University of Calgary’s Inter-

net link. These traces contain summary information of all the HTTP

transactions and are recorded by Bro [24] , an open source Net-

work Intrusion Detection System. We wrote an AWK script to ex-

tract the URLs of the landing pages from HTTP traces of six consec-

utive days (May 1, 2015 to May 6, 2015). We ran an offline analysis

on the extracted traces and constructed the URL set by adding el-

ements to it using the set union operation. Before adding a URL to

the list, a dictionary lookup operation is performed to test whether

it already exists in the list, and if so, a hit counter is incremented.

In this experiment, we kept adding URLs to the same list for the

entire six day period. For each day, we compute the hit ratio as the

number of hits on that day divided by the total number of requests

during that day. We also record the size of the SET at the end of

each day which is the number of distinct URLs observed by that

time. The results are presented in Table 1 . It can be seen that in

all days a high hit ratio of at least 93% is achieved. Also notice that

the number of distinct URLs is ∼ 18 K in the first day and reaches

∼ 54 K by the end of the sixth day.

Notice that storing the resource lists of such a large number of

URLs is feasible because of small size of resource lists (on average

11.7 KB for a page in our top 20 page selection) and abundance

of storage space in the remote proxy. However, considering that

on average a page can take about 6 seconds to load on a Desktop

computer [25] , it would take about 33 h ours to visit 20 , 0 0 0 pages

back to back and update their resource lists in metadata reposi-

tory. Such a long update interval can compromise the freshness of

resource lists for some of the fast changing websites.

Notice that the above problem stems from a large number of

page requests constantly flowing into the proxy. As a result, we

can cast it as an instance of identifying most popular k items in

a data stream. Rather than storing all the distinct URLs in a set,

in this setting we are interested in an online algorithm that ac-

curately reports top-k elements of a data stream by taking only a

single pass over data. This is one of the well-studied problems in

data mining community. For instance, authors of [26] presented a

survey of some of the most popular algorithms in this area and

conducted experiments to compare the performance of these al-

gorithms. Their findings indicate that for insert-only streams, 2 the

space saving algorithm [27] performs better in terms of precision, 3

recall, 4 used space and update speed. As a result, we select this al-

gorithm for identifying top-k URLs in the stream of URLs arriving

at the proxy.
2 As opposed to streams where elements can be both inserted and deleted
3 Proportion of the items reported by the algorithm that are true frequent items
4 Proportion of the true frequent items that are reported by the algorithm

o

t

W

o

o

d
.3.1. Space saving algorithm

In order to identify top- k elements of a data stream, the space

aving algorithm maintains k elements with their associated coun-

ers. Upon arrival of a new URL at the proxy, in case it is al-

eady monitored (exists in the list), we just increment its associ-

ted counter. Otherwise, if the URL list is not full, we insert the

RL into the list and set its counter to 1. If the URL list is full

nd the URL does not match a monitored item, we find the URL

ith the least count, min , and replace it with the new URL. Fi-

ally, min +1 is assigned to the count of the new URL. The au-

hors of [27] proposed a data structure called Stream-Summary that

nsures constant time for finding the minimum element. Also in-

rementing counters in Stream–Summary can be performed using

 (1) pointer operations.

.4. Practical considerations

Webpage customization: A growing number of websites pro-

ide a mobile version of their content which contains fewer and

maller images and short and concise text [3] . Also browser-

ependent code in some webpages can download different set of

bjects for different browsers [18] . Therefore in order to comply

ith users’ actual needs, the remote proxy needs to be aware of

he client attributes such as user-agent and device’s screen infor-

ation. To this end, client provides this information to the proxy

hen it sends the initial request for the page. By using such infor-

ation, the proxy will be able to imitate the client device when

equesting objects from web servers. This way, the proxy can also

ncorporate the resource list of the corresponding mobile website

n its metadata repository.

Incremental rendering: The bundling feature in WebPro en-

bles the mobile device to stay in low power state during the en-

ire time that the remote proxy fetches the embedded objects of

 page. While this can reduce energy consumption of mobile web

rowsing, it delays receiving the first set of objects by the browser

hich is required for the partial rendering of the page. To en-

ble drawing intermediate displays in a browser, we can envision

ebPro without bundling in which the proxy forwards each object

o the client as soon as it receives the object from a web server.

learly, such a scheme has the potential to further reduce page

oad times at the cost of increased energy consumption (compared

o WebPro with bundling). We note that implementing WebPro

ithout bundling can benefit from native Virtual Private Network

VPN) support in vast majority of modern mobile devices. Similar

o Meddle proposed in [28] , in this setting, a VPN tunnel can be

sed to direct all the Internet traffic of mobile device to the re-

ote proxy. Such a VPN-based approach will eliminate the need to

eploy a local proxy component on the mobile device.

Cost of stale records in resource list: A webpage’s structure

an change since the last visit by the profiler which can lead

o staleness of some of the records in its corresponding resource

ist. Considering the superior network connectivity and processing

ower of the remote proxy, we can ignore the overhead of fetching

uch stale objects on the proxy. On the other hand, a recent study

f object sizes in the top 500 Alexa websites reveals that most of

he web objects are typically small to moderate, with the median

ize being 18 KB [18] . Also because of selective compression com-

onent in WebPro, some of those small objects will be compressed

efore being included in the batch which is usually around a few

egabytes for popular webpages. As a result, the overhead of stale

bjects for mobile device appears as a few extra kilobytes added

o the size of a typically large batch file. However, the benefits of

ebPro, and specifically elimination of base HTML fetch time, far

utweighs such a negligible overhead. On the contrary, a client-

nly solution may incur significant costs in terms of energy and

elay as fetching each of those stale objects can cause state pro-

A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150 139

m

k

p

u

i

i

w

t

o

w

i

l

s

t

T

p

p

f

t

2

s

o

n

w

p

t

2

r

p

l

fi

T

r

t

r

w

t

a

i

d

I

g

p

s

w

l

t

2

p

t

m

e

a

l

Fig. 6. Bundling performance.

o

n

a

f

c

t

a

u

r

e

a

p

c

2

i

n

a

h

g

a

t

W

w

2

v

g

w

s

c

e

w

o

t

i

U

c

l

w

fi

p
otion and demotion in the radio of the device, which is a well-

nown cause of battery drainage on wireless devices.

Profiling overhead: In WebPro, it is expected that usually the

rofiler’s visit to a page will occur at an earlier time than serving a

ser request for that page. However in PBB (the solution proposed

n [16–18]), each page request triggers a new process of identify-

ng page resources at the proxy. Therefore, in a setting that most

ebpages already have a corresponding resource list at the proxy,

he majority of user requests can be served without incurring any

verhead due to profiling.

Handling Asynchronous JavaScript requests: Most modern

ebpages use Asynchronous JavaScript requests (AJAX) to dynam-

cally load contents such as advertisements even after the page is

oaded (i.e., after the onload event). Usually such requests are for

ession dependent content and hence it would be better to fetch

hose objects directly from the web servers rather than the proxy.

o accomplish this, the local proxy adopts a selective forwarding ap-

roach in which it forwards the initial page request to the remote

roxy and after receiving the page batch from the remote proxy,

orwards all subsequent requests to objects not present in its cache

o the corresponding web servers.

.5. Prototype implementation

Our current implementation of WebPro uses the Qt SDK ver-

ion 5.3. Specifically, QWebKit class which is a result of integration

f WebKit into Qt enabled us to develop the web engine compo-

ent of the system. Also considering that for evaluating WebPro,

e compare its performance with PBB, both approaches were im-

lemented using the same Qt libraries. Here we briefly introduce

he important parts of our implementation.

.5.1. Resource profiler

Profiler is responsible for constructing and updating webpage

esource lists and storing the metadata information on the remote

roxy. The Profiler is basically a WebKit-based web engine which

oads webpages on demand. Note that loading a page in the pro-

ler involves all the steps of opening a webpage except rendering.

his way, we can obtain the list of all the objects whether they are

esulted from parsing or from JavaScript/CSS evaluations. In par-

icular, we intercept the network activity of this web engine and

ecord the corresponding URLs of all the HTTP requests.

As mentioned in Section 2 , webpages from the set of popular

ebsites should be loaded periodically in order to keep an up-

o-date repository of resource lists on the remote proxy. This is

chieved by a bash script that wakes up periodically and iteratively

nvokes profiler with a URL from a list of top visited websites.

A hash function of the URL determines the unique name and

irectory of the file that stores its resource list in the repository.

n contrast to caching, storage overhead of this approach is negli-

ible because instead of storing actual content of the objects, the

roxy stores URLs of those objects. In our experiments, the total

pace required to store the resource lists of 20 popular websites

as about 234 KB. As a result, the entire repository of resource

ists can be loaded in the main memory during the operation of

he proxy. Disk access is required only for backup purposes.

.5.2. Object bundling

We use libtar library to implement bundling in the remote

roxy and unbundling in the client proxy. In our experiments, the

ime spent in bundling and unbundling is negligible and has a

inimal effect on page load times. For example, in the case of an

xperiment with www.cnn.com which contained 139 objects with

 total size of 2.6 MB, the time spent in bundling was only 32 mil-

iseconds.
To study the effect of the number of objects on the performance

f bundling, we measured the time spent in bundling for different

umbers of objects, all with size 20KB (the average object size in

 modern webpage). Fig. 6 depicts the bundling performance as a

unction of object numbers. It can be observed that even for the

ase of 200 objects, the bundling time is negligible compared to

he overall page load time (in the order of tens of seconds). It is

lso noteworthy that the timing values reported here are obtained

sing a typical machine in our lab, while it is expected that in a

eal-world deployment, the proxy will be hosted on a more pow-

rful computer(s) with dedicated hardware. With the widespread

doption of cloud computing, we can also envision hosting remote

roxy in a cloud platform which automatically scales up its pro-

essing power to handle an increase in workload.

.5.3. Selective compression

According to the results reported in [29] , objects that have an

mage or video content-type and also most objects with bi-

ary data (e.g. app/octet-stream) already are in compressed form

nd there is very little room for additional saving. On the other

and, text files such as HTML, XML, JavaScript, and CSS can benefit

reatly from compression. In line with this, the remote proxy has

 selective compression component that uses the zlib [30] library

o compress the body of HTTP responses with the text MIME type.

e implemented bundling and selective compression in the same

ay for PBB as well.

.5.4. Filtering dynamic URLs

Many websites these days contain references to third party ad-

ertisement networks and web tracking systems. Tracking or tar-

eted advertising is done by inclusion of a JavaScript code in a

ebpage that is executed when a user visits that page. Usually

uch JavaScript codes use random numbers or date information to

reate requests with dynamic URLs (i.e., different URLs over differ-

nt visits). As a result, the URL generated at the client’s browser

ill be different from the recorded URL at the remote proxy. In

ther words, these URLs will change at every request and hence

he Profiler should avoid recording them. To this end, we have

mplemented a module in our profiler that filters those changing

RLs during the profiling period. In particular, this module detects

hanging URLs based on the prefixes in URLs and also URLs be-

onging to a blacklist [31] . To ensure a fair comparison with PBB,

e also equipped PBB’s web engine in the remote proxy with our

ltering module.

Given that the advertisements fetched at different visits to a

age can be of varying sizes and/or belong to different domains,

http://www.cnn.com

140 A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150

Fig. 7. Experimental setup with the remote proxy.

w

t

r

c

A

3

o

w

u

c

s

w

b

J

3

d

l

t

l

t

e

s

p

w

r

c

I

a

i

t

3

3

t

o

a

v

t

c

e

S

t

i

c

a

e

s
we also incorporated the filtering module in our client side proxy

to eliminate such variabilities in object load times.

2.5.5. Local proxy

The local proxy is developed using QT’s networking API (QTcp-

Socket and QTcpServer) and acts as a server to the mobile browser

while acting as a client to the remote proxy. It also uses the

same libraries discussed above for unbundling and decompression.

Specifically, local proxy passes the first request of a page to the re-

mote proxy and after receiving the page bundle, responds to the

browser with the appropriate object while caching the rest of the

objects in the bundle. For all the subsequent requests, local proxy

will try to load the object from its cache if available, otherwise will

forward the request to the corresponding web server.

3. Performance evaluation

In this section, we use our prototype implementation to

demonstrate the effectiveness of WebPro. Notice that we compare

WebPro to benchmark system PBB as opposed to conventional web

browsers, because the previous work [16,18] has already shown the

superior performance of PBB in comparison to traditional browsers.

3.1. Experimental setup

Client setup: Fig. 7 depicts our experimental setup. We chose

an ASUS UX31A laptop running Ubuntu 14.04 with built-in WiFi

adapter as our mobile terminal. For cellular measurements, we

equipped the laptop device with an LTE USB modem so that it can

access the LTE network provided by a major Canadian cellular car-

rier. As mentioned in [10] , the rationale for using laptops instead

of smartphones is that slower processors of smartphones can in-

fluence our results on page load times. Also, by using laptops, we

don’t have to restrict our experiments to those websites that pro-

vide a mobile version of their site.

On the client side, we developed our own browser using QWe-

bKit library. This way we can log detailed timing information and

also clear browser’s cache programmatically before each experi-

ment. In practice, any browser can benefit from our proxy-based

solution without any modifications. It only requires configuring the

browser to use the local proxy.

Infrastructure setup: We performed WLAN measurements us-

ing a Cisco Linksys EA2700 wireless router. The router was con-

nected to the proxy server through the campus LAN (100 Mbps

Ethernet). We also conducted cellular experiments over the LTE

network at a location with good signal strength. In the cellular

setting, the proxy was configured with a public IP address. The

average TCP throughput between the mobile device and the re-

mote proxy, measured by iperf tool, was about 52.5 Mbps and

2.5 Mbps in WiFi and Cellular settings, respectively. Also the av-

erage ping RTT between the mobile device and the remote proxy
as about 10 ms and 117 ms in WiFi and Cellular settings, respec-

ively. The remote proxy was hosted on a fairly typical machine

unning Ubuntu 14.04 with no special server capability. This ma-

hine is connected to Internet using a 100 Mbps LAN connection.

ll experiments were conducted in a lab environment.

.2. Workload characterization

We selected 20 webpages from the top Canadian websites listed

n Alexa [19] . Similar to [10] , we used desktop versions of these

ebsites instead of their mobile versions because of widespread

se of tablets and large screen smartphones. These webpages were

hosen from different categories such as news, auction, sports,

hopping, etc. Table 2 shows the detailed properties of our selected

ebpages. The average page size is 2521.05 KB and the total num-

er of objects ranges from 33 to 148. Anything other than image,

avaScript and CSS is counted as other .

.3. Performance metrics used

Page load time: We use page load time (PLT) as the primary in-

icator of user-perceived performance. In our measurements, page

oad time is the time elapsed between the initial page request and

he time when all associated objects of a page have been down-

oaded and processed. This time is identified by the occurrence of

he onload event at the browser and includes the time spent in

xecuting CSS and synchronous JavaScript files. In the proxy-based

ystems discussed here, PLT consists of the following components:

1. Time to request the page from the remote proxy,

2. Time to download all the objects in the resource list (in

WebPro) or the time it takes for the remote proxy’s web en-

gine to load the page (in PBB),

3. Time to receive the bundle from the remote proxy, and,

4. Time to download all the objects that are missing in the bundle

until the entire webpage is loaded.

Hit ratio: In order to capture the amount of change in web-

age structures, we use the hit ratio metric. The hit ratio associated

ith a webpage’s resource list is the number of objects from the

esource list that are actually requested during the page load pro-

ess, divided by the total number of objects in that resource list.

t represents the fraction of the resource list that is still valid and

ccurate. A high hit ratio means that there has been little change

n webpage’s structure since the last time that the profiler visited

he page.

.4. Measurement results

.4.1. Change in webpage structures

The underlying hypothesis in WebPro is that the resource struc-

ure of a website changes less frequently than the actual content

f the objects and webpages. We note that web publishers usu-

lly choose a short expiration time for web objects and also pre-

ent web resources from being cached by using “no-store ” in

he cache-control HTTP header field.

In line with this, our first experiment studies the temporal

hanges in webpage structures. In particular, it monitors the av-

rage hit ratio of the resource lists of the websites presented in

ection 3.2 . As mentioned in Section 3.3 , a decline in the value of

he hit ratio associated with a resource list corresponds to change

n that page’s structure. Note that our selected webpages are a

ombination of fast changing pages such as news websites as well

s stable homepages of large companies such as Apple.

We conducted five experiments over the span of five weeks,

ach separated by one week. In each experiment, we first con-

tructed the resource list of the webpages and then used them to

A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150 141

Table 2

Characteristics of the websites used in the experiments.

Webpage Size (KB) # of images # of JS # of CSS # of other Total # of objects

cnn.com 2712 90 36 1 12 139

espn.go.com 2404 76 13 3 5 97

mozilla.org 957 18 5 3 7 33

walmart.ca 3239 51 12 3 4 70

bbc.com 1599 43 24 3 3 73

ebay.ca 4078 132 4 3 9 148

shaw.ca/store 1944 26 20 2 10 58

go.com 3224 22 30 8 16 76

nytimes.com 2974 84 40 8 9 141

deviantart.com 2102 68 14 4 2 88

apple.com 1254 25 18 6 1 50

ikea.com/ca/en 2923 56 13 5 3 77

flickr.com 6736 24 4 2 8 38

ca.ign.com 2473 62 24 13 6 105

microsoft.com 1208 35 10 1 7 53

homedepot.ca 2180 32 12 5 11 60

Wikipedia Article 1932 80 9 2 1 92

cbssports.com 1535 37 26 2 5 70

tripadvisor.ca 3510 78 5 1 4 88

about.com 1437 43 5 2 3 53

Fig. 8. Temporal change in webpage structures. Drop in the value of the average

hit ratio over time is an indication of the change in the structure of the webpages.

However, the amount of such change is relatively low over an eight hour period.

l

t

a

l

o

s

e

e

t

r

m

b

e

h

p

w

3

m

o

w

Table 3

Improvement in average page load time.

Webpage Page load time (ms) Improvement

PBB WebPro

www.tripadvisor.ca 3835 3623 5 .5%

www.deviantart.com 10 ,675 10 ,070 5 .7%

www.flickr.com 6717 3278 51 .2%

www.about.com 4456 2166 51 .4%

e

c

u

w

p

b

t

t

p

i

p

l

t

l

h

w

S

W

d

g

c

r

F

p

o

i

a

s

t

f

oad the same pages every hour over an 8 hour period. Fig. 8 plots

he average hit ratio and 95% confidence intervals of the webpages

mong all the experiments as a function of the hours passed since

oading the page for the first time. We see that the highest amount

f hit ratio is achieved in the first hour, as expected. It can be ob-

erved that the amount of change in webpage structures over an

ight hour period is relatively low. The difference between the av-

rage hit ratio in the first and eighth hours is less than 0.1 and

he maximum amount of hour to hour change in the average hit

atio is about 0.02. As a result, it should be feasible for the re-

ote proxy to capture the temporal changes in webpage structures

y updating its resource list repository in a timely manner (ev-

ry three hours in our experiments). Notice that our selected three

our update interval is even less than the 4 hour update interval

roposed by [32] for capturing the flux in dependency structure of

ebpages.

.4.2. Comparison with benchmark

Next, we compare the performance of WebPro and the bench-

ark PBB, using the webpages presented in Section 3.2 . Because

f the variability in load times between consecutive page visits,

e performed ten back to back experiments with each page. Our
xperiments were conducted during quiet times and the browser’s

ache was cleared programmatically before each experiment. Spec-

lative loading at the proxy involves using resource lists associated

ith user-requested webpages and in our experiments, the remote

roxy used the resource lists that were constructed three hours

efore the actual measurements. Given the abundance of compu-

ation and communication resources at the proxy, it is feasible for

he proxy to update its resource list repository of top visited web-

ages every three hours. Moreover, the results of our experiment

n the previous section show that the amount of change in web-

age structures within three hours is negligible.

Fig. 9 represents the cumulative distribution function of page

oad time under these two approaches in WLAN and cellular set-

ings. It can be seen that WebPro performs better in terms of page

oad time. Fig. 9 (a) shows that in the WLAN environment, WebPro

elps up to 73% of the pages to load in less than 2 seconds, while

ith PBB only 28% of the instances complete loading in that time.

imilarly Fig. 9 (b) shows that in the cellular environment, under

ebPro, 78% of the pages finish loading within 6 seconds, but un-

er PBB, only 55% of the instances finish loading in that time. In

eneral, across all the experiments performed in the WLAN and

ellular environments, our results indicate that an average of 26%

eduction in page load times can be achieved by using WebPro.

ig. 9 (b) also confirms that in cellular networks, the same web-

ages experience longer load times underscoring the importance

f page load time reduction in such networks.

Table 3 zooms into the details of these measurements by list-

ng two of the webpages with the lowest amount of improvement

nd two of the pages with the highest reduction in load time. It

hows that the improvements can range from 5% to 51%. Note that

he variability in improvement across websites results from several

actors, of which we mention only a few:

http://www.tripadvisor.ca
http://www.deviantart.com
http://www.flickr.com
http://www.about.com

142 A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150

Fig. 9. Cumulative distribution function of page load time. WebPro outperforms benchmark PBB. In the WLAN setting, under WebPro, 73% of the pages load in less than 2

seconds. However, in the PBB approach, 28% of the instances complete loading within 2 s econds. In the cellular environment, under WebPro, 78% of the page loads complete

within 6 seconds while under PBB, only 55% of the pages complete loading in that time.

g

o

U

H

e

t

r

u

t

r

f

p

t

t

o

s

w

w

m

c

t

c

i

t

p

o

l

r

t

t

a

e

d

o

t

w

t

p

a

• The number of domains that web objects are spread across

which affects the number of unique connections required to

fetch all the objects.

• The size of the website as indicated by the total number of

bytes and also the number of objects.

• Website design which creates different set of dependencies be-

tween operations of the page load process [20] . This can impose

different orders for retrieving web objects.

• Topological proximity between the client and original web

server or an edge server from content distribution networks

(CDNs).

3.4.3. Effect of page hit ratio

In a real deployment, it is possible that the remote proxy will

not have the resource lists associated with all the user requests.

In that case, it will load the page in a web engine and will send

the whole page in a bundle to the client. That is, the remote proxy

will employ a combination of the web engine-based and specula-

tive loading approaches to satisfy user requests.

In light of this, our next experiment evaluates the improve-

ments in page load time in a more realistic scenario. Here we grad-

ually increase the hit ratio for the test webpages, that is we in-

crease the fraction of user requests with a corresponding resource

list at the proxy. To distinguish this fraction from the hit ratio met-

ric introduced in Section 3.3 , we call it page hit ratio . Using the

same webpages presented in Section 3.2 , we conducted five exper-

iment runs associated with each page hit ratio. At each run, the

remote proxy uses resource lists for a random set of pages that are

determined based on the page hit ratio, and employs ordinary page

loading for the rest of the pages. As a clarifying example, assume

that the remote proxy is going to serve 20 distinct page requests.

In the case of 40% page hit ratio, for each run, proxy randomly se-

lects 8 out of the 20 pages to load using resource lists and employs

web engine for loading the remaining 12 pages.

Fig. 10 shows the average value for the total time to visit all 20

webpages back to back as a function of the page hit ratio. The re-

sults are represented with 95 percent confidence intervals. It can

be seen that a higher page hit ratio leads to a greater improve-

ment in user’s browsing experience. The upper bound of reduction

in back to back page load time is 28% and 39% in the case of WLAN

and cellular measurements, respectively. These upper bounds cor-

respond to a 100% page hit ratio in both experiments.
From Fig. 10 we can see that the amount of improvement

ained from using resource lists depends on the page hit ratio. We

bserved in Section 2.3 that adding all the new URLs to profiler’s

RL list can result in high page hit ratios that are close to 100%.

owever, this may lead to a long update interval in profiler and

ndanger freshness of resource lists. The immediate alternative is

o keep a relatively small summary of data stream (stream of URLs)

ather than storing all of them. As discussed before, we propose

sing the space saving algorithm to identify top-k popular URLs of

he stream.

To study the effectiveness of this approach in a real setting, we

an the space saving algorithm over network traffic traces collected

rom the University of Calgary’s Internet link. Similar to the ex-

eriment explained in Section 2.3 , we used an AWK script to ex-

ract URLs of the landing pages from HTTP traces and fed them

o the space saving algorithm. We performed four experiments

ver four different six-day intervals. At each experiment, we con-

tructed the top-k list for the URL stream of six consecutive days

hile measuring page hit ratio separately for each day. Specifically,

ith each URL in the stream, we first check the top-k list to deter-

ine whether it is among the current popular elements (hit oc-

urrence), and if so, we increment both its associated counter in

he list and a hit counter. Otherwise, we add the URL and its asso-

iated counter to the top-k list in accordance with the space sav-

ng algorithm. Finally, page hit ratio of each day is calculated as

he number of hits during that day divided by the total number of

age requests received on that day.

Fig. 11 shows the page hit ratios achieved for different values

f k . It can be seen that by increasing the size of the popular URLs

ist, k , the page hit ratio increases. For example, in May 25–30 pe-

iod, by increasing k from 100 to 10 0 0, the average page hit ra-

io increases from 67% to 83%. Fig. 11 also shows that in all four

ime periods, by keeping a popular URL list with only 10 0 0 items,

 page hit ratio of above 80% can be achieved. By assuming an av-

rage 6 seconds page load time on a Desktop computer [25] , up-

ating the resource lists of 10 0 0 websites at the proxy will take

nly one hour and forty minutes. Comparing such a short update

ime to our results in Section 3.4.1 on the frequency of change in

ebpage structures implies that the profiler would be able to cap-

ure temporal changes in the structure of top-10 0 0 popular web-

ages (a subset of all the requests in the network) and still provide

 high page hit ratio to its users.

A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150 143

Fig. 10. Back to back load time for 20 popular webpages as a function of page hit ratio. An increase in the page hit ratio reduces the total browsing time. In the case of

WLAN and cellular measurements, there is a maximum reduction of 28% and 39%, respectively. The maximum improvements are achieved at 100% page hit ratio.

Fig. 11. Page hit ratios achieved by applying the space saving algorithm to the HTTP traces collected from the University of Calgary’s Internet link over four different six day

intervals. Increasing the size of the popular URLs list leads to higher page hit ratios. Also, on average, keeping just the top-10 0 0 popular URLs in the stream of URLs that

arrive at the proxy, results in over 80% page hit ratios.

144 A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150

Fig. 12. Average page load time for a Wikipedia article page as a function of the

number of parallel connections. We see that increasing the concurrency reduces

the page load time. The benefits are greater for WebPro as it can fetch more subre-

sources concurrently.

Fig. 13. Average page load time for a Wikipedia article page as a function of net-

work delay. We see that higher RTT values lead to higher page load times. By in-

creasing RTT, PBB incurs higher latencies compared to WebPro.

u

p

3

o

f

v

w

a

v

s

t

t

d

a

t

e

l

l

9

n

p

1

a

a

t

d

l

t

i

t

p

p

p

l

l

3

c

t
3.4.4. Effect of concurrent connections

As mentioned in Section 2 , WebPro uses multiple concurrent

connections to fetch all objects in the resource list associated with

a webpage. Similarly, typical web engines use concurrent TCP con-

nections to avoid the head-of-line blocking problem and reduce

page load time [33] . However, in modern web engines there is a

limit on the number of concurrent connections per domain. For

example, the Chrome browser on Android mobile operating sys-

tem limits the number of simultaneous connections per domain

to 6. The WebKit-based web engine used in our implementation

also caps the number of parallel connections per host/port com-

bination to 6. This limitation is imposed by Qt’s network access

manager class and hence it is also applied to our implementation

of WebPro, which uses the same class for network operations.

Our next experiment studies the effect of the number of con-

current connections on the performance of WebPro and PBB.

Fig. 12 shows the average page load time for a Wikipedia arti-

cle page under a varying number of maximum concurrent connec-

tions. The results are averaged over 10 runs and error bars rep-

resent 95% confidence intervals. We observe a significant perfor-

mance improvement in both approaches by increasing the number

of concurrent connections. Specifically, increasing the concurrency

limit from 2 to 8 results in 48% and 23% faster page load time in

the case of WebPro and PBB, respectively. The justification for bet-

ter performance of WebPro is that an increased number of concur-

rent connections allows more subresources to be fetched in paral-

lel.

We also found that increasing the concurrency limit beyond 6

leads to marginal improvements in page load times. This can be

due to several factors creating a bottleneck for browsing perfor-

mance. For example, by increasing the concurrency beyond a limit,

each connection obtains less bandwidth, which results in longer

delays when downloading objects. On the other hand, high con-

currency requires more TCP connection states and buffers to be

maintained at the remote proxy and hence increases the process-

ing overhead on the proxy.

Fig. 12 also shows that WebPro benefits more from increased

concurrency, compared to the PBB approach. In particular, a 4% dif-

ference in page load time between two approaches reaches 36%,

by increasing the concurrency restriction from 2 to 8. This is due

to the fact that processing tasks such as JavaScript evaluation can

serialize the page load process in PBB’s web engine. However, by
sing the resource list of a webpage, WebPro can utilize the full

otential of concurrent connections.

.4.5. Effect of network delay

As mentioned in Section 2 , WebPro improves the performance

f mobile web browsing by eliminating the initial RTT required to

etch the base HTML file of a webpage. The length of this time

aries depending on the distance between the remote proxy and

eb servers, and the type of networks involved. Other factors such

s queuing delays or congested links can also contribute to the

ariability in the end-to-end delay between the proxy and web

ervers. In order to study the impact of network delay on page load

ime, we conducted a set of experiments by artificially controlling

he amount of packet delay in our tests.

We used the dummynet network emulator [34] to inject extra

elay between the remote proxy and web servers. Specifically, we

dded 10 0, 20 0, 30 0 and 400 ms extra delay to the round trip

ime between our device and the servers hosting the objects refer-

nced in a Wikipedia article page. Fig. 13 shows the average page

oad time under WebPro and PBB as a function of the network de-

ay. The results represent the average of ten runs along with the

5% confidence intervals. It is observed that increasing RTT (i.e.,

etwork delay) leads to a slower browsing experience in both ap-

roaches. In particular, raising the amount of injected delay from

00 ms to 400 ms increases the average page load time by 136%

nd 164% in WebPro and PBB, respectively.

Fig. 13 also shows that with larger RTTs, the amount of savings

chieved by WebPro increases. This can be explained by the no-

ions of dependency graph and critical path , introduced in [20] . The

ependency graph of a webpage is a directed acyclic graph with

oad process activities as nodes. The edges of this graph represent

he dependencies between those activities. Given that each node

s associated with the duration of completing its corresponding ac-

ivity, the simplest form of critical path is defined as the longest

ath in the dependency graph. Since in PBB, the extra delay im-

acts all the resource loading nodes of a critical path, the overall

age load time will be affected by the aggregate of those extra de-

ays. However, WebPro avoids traversing the critical path by down-

oading the objects in the resource list of a page.

.4.6. Effect of webpage complexity

As mentioned in Section 2.2 , there are inter-object dependen-

ies in today’s webpages that lead to the serialization of network

ransfers required for loading a page. One of the common cases of

A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150 145

Fig. 14. Dependency graphs for four carefully designed test pages with the same set of embedded objects. In the first test page (a), all the objects can be discovered after

fetching and parsing the base HTML file, giving it a critical path of length 1. The second page (b) has a critical path of length 2, because the image object can be revealed

after fetching and evaluating the JavaScript object sc1.js. In the third page (c) with critical path length 3, fetching and evaluating JavaScript object sc2.js, reveals another

JavaScript object, sc1.js, the fetching and evaluation of which reveals the image object. Finally, in the last page (d) with critical path length 4, evaluating sc3.js reveals sc2.js,

evaluating sc2.js reveals sc1.js and evaluating sc1.js reveals the image object.

s

b

k

c

o

s

a

t

a

a

r

o

l

d

s

s

i

s

b

t

l

i

d

h

o

d

m

s

W

W

r

p

s

s

t

p

s

e

o

w

Fig. 15. Speedup of WebPro relative to PBB as a function of critical path length. As

the critical path becomes longer, the speedup with WebPro increases. Also, for a

given webpage, speedups with WebPro are higher under the setting that does not

support persistent connections.

e

t

o

fi

s

c

g

t

4

T

n

c

p

s
uch dependencies is created when an embedded object itself em-

eds other objects. For example a JavaScript object can embed any

ind of object and a CSS file can embed background images. In this

ase, discovering the object referenced in a script file, requires an-

ther RTT between the browser and the origin server. Because of

uch dependencies, a browser (or a web engine) cannot discover

ll the embedded objects of a page right after fetching and parsing

he base HTML file. On the contrary, resource exploration becomes

n iterative process in which local computations such as parsing

nd script executions are interleaved with network transfers [12] .

Other than eliminating the base HTML fetch time, one other

eason for WebPro’s superior performance is that it breaks such

bject level dependencies by using a previously recorded resource

ist. To study the benefits that come from eliminating inter-object

ependencies, we carefully designed 4 webpages, all with the same

et of embedded objects. The base HTML files of these pages have

light differences but all are of the same sizes (174 Bytes). 5 Also

n all the 4 pages, the final rendered page is the same which con-

ists of just a pigeon image on the screen. The major difference

etween these pages is in the amount of dependency between

heir objects. Specifically, from the first page (test1.html) to the

ast page (test4.html), we gradually increase the length of the crit-

cal path in their dependency graphs. Fig. 14 depicts the depen-

ency graphs for these 4 pages. Test webpages are available at

ttp://pages.cpsc.ucalgary.ca/ ∼asehati/webpro/ .

We hosted our test pages on an Apache web server running

n a Linux machine in our lab. Similar to the previous section,

ummynet was used to inject 200 ms emulated delay between re-

ote proxy and the web server. Using the same WiFi setting de-

cribed in Section 3.1 , we loaded each test page ten times with

ebPro and PBB and computed the average speedup achieved with

ebPro. 6 Borrowing the definition from [35] , WebPro’s speedup

elative to PBB, is the ratio of page load time using PBB to the

age load time under WebPro. Given that all the 4 pages have the

ame set of embedded objects and their base HTML files are of the

ame size, WebPro results in the same page load times for all of

he test pages. The reason is that the resource list files of all the

ages point to the same set of embedded objects hosted on the

ame server and also base HTML fetch times are the same. How-

ver, different levels of complexity in these pages lead to differ-
5 The size of the HTML files were made equal by inserting the required number

f blank spaces after the < /html > tag.
6 95% confidence intervals were also computed but are not presented since they

ere very small.

j

c

s

w

t

i

a

nt page load times under PBB which by using a web engine goes

hrough an iterative process of discovering embedded objects.

Fig. 15 depicts WebPro’s speedup relative to PBB as a function

f critical path length under two settings. In one setting (called

rst setting), persistent connections were supported by the web

erver and in the other setting (called second setting), persistent

onnections were disabled in the web server. Notice that for a

iven test page, WebPro achieves the same load times under these

wo settings, but in three out of the four test pages (test 2 through

), PBB achieves higher page load times under the second setting.

he reason is that WebPro’s proxy establishes 5 parallel TCP con-

ections to the server right at the beginning and by using each

onnection only once, does not get affected by the lack of sup-

ort for persistent connections. However in PBB under the second

etting, every time that evaluating one object reveals another ob-

ect, the proxy will incur one extra RTT to establish a new TCP

onnection for fetching the newly discovered object. For these rea-

ons, we can see in Fig. 15 that for a given webpage, speedups

ith WebPro are higher if persistent connections are not used be-

ween the proxy and the web server. The only exception is page 1

n which all the objects are referenced in the base HTML and there

re no inter-object dependencies.

http://pages.cpsc.ucalgary.ca/asehati/webpro/

146 A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150

Fig. 16. Waterfall of loading (a) the first and (b) the second test page using PBB with persistent connections enabled. In (a), test1.js, sc1.js and img.jpg and in (b) test2.html,

sc1.js and sc3.js are downloaded over the same connection.

Table 4

Improvement in average radio-on time with bundling.

Webpage Radio-on time (ms) Improvement

WebPro w/ WebPro w/o

bundling bundling

business.gov.au 2333 3395 31 .3%

spark.co.nz 3229 3881 16 .8%

mashreghnews.ir 3042 5225 41 .8%

zju.edu.cn 3374 4521 25 .4%

m

i

3

q

a

d

c

m

a

w

b

T

S

e

u

t

t

c

t

c

l

s

S

t

r

a

s

d

t

m

T

o
From Fig. 15 , it can also be observed that speedups with

WebPro increase as the critical path becomes longer. By increas-

ing the critical path length from one to four, the speedup of 1.9

reaches 2.79 and 4.56 in the first and second settings, respectively.

Given that WebPro achieves the same page load times for all pages,

higher speedup comes from higher page load times under PBB.

Specifically, in the first setting, increasing the critical path length

by one adds one RTT to the page load time of PBB which is the

time required to fetch and evaluate the new referencing object in-

serted in the critical path. In the second setting, extending the crit-

ical path by one edge adds two RTTs to the page load time of PBB.

One RTT is incurred for establishing a new TCP connection to the

server and another RTT is incurred for fetching and evaluating the

new referencing object.

We observe that in Fig. 15 , under the first setting, WebPro

achieves the same speedups for page 1 and 2 which again is due

to the fact that same page load times are achieved with PBB for

these two pages. Fig. 16 shows the waterfall of loading these two

pages using PBB under the first setting. To load test1.html, Web

engine first establishes a connection to the server (we call it con-

nection 1) to fetch the base HTML file of the page. After fetching

and parsing the base HTML file, the web engine finds links to four

new objects (img.jpg, sc1.js, sc2.js, and sc3.js). Because of persis-

tent connections, connection 1 is still available and can be used

for fetching one of the four newly discovered objects. Specifically,

web engine issues the request for sc1.js over connection 1 and

at the same time initiates three new parallel connections to the

server (we call them connections 2, 3 and 4). Notice that initiating

a connection means the exchange of SYN and SYNACK segments

between the proxy and the server which takes one RTT. On the

other hand, considering the small size of sc1.js (65 bytes), it takes

one RTT to request and receive this file at the proxy. As a result,

by the time that those three connections are established, sc1.js has

arrived at the proxy and connection 1 has become available again.

Therefore, at this point in time (marked as 400 ms in Fig. 16 (a)),

the proxy has 4 available connections to the server (connections 1,

2, 3 and 4) but there are just 3 objects remaining from the page

(img.jpg, sc2.js and sc3.js). The proxy proceeds by using connec-

tion 1 for fetching img.jpg and at the same time issues requests for

sc2.js and sc3.js over two of the three newly opened connections

(connections 3 and 4). Finally, the proxy is able to fetch all the re-

quired objects of the page without using connection 2. A similar

explanation can be used to describe waterfall of page test2.html

which is downloaded at the proxy after four RTTs.

We note that the last three experiments study the behaviour

of WebPro and PBB under different system conditions, i.e. con-

currency limit, network delay and webpage complexity. Given that

these conditions only affect the wired part of the network between

the remote proxy and web servers, we only presented the experi-
 t
ental results under WLAN setting. Similar behaviour is expected

n the cellular environment.

.4.7. Energy impact of bundling

As mentioned in Section 2 , the remote proxy sends all the re-

uired objects of a page in a bundle to the client. Transmitting

 batch instead of a sequence of small objects prevents the ra-

io of the device from constant promotions and demotions which

an quickly drain the battery of the device. On the other hand, as

entioned in Section 2.4 (Incremental Rendering), bundling is not

n indispensable feature of WebPro and we can envision WebPro

ithout bundling.

However, to verify the energy efficiency of WebPro with

undling, we performed a set of experiments using real webpages.

o do so, we used most of the experimental setup described in

ections 3.1 and 3.2 of the paper. The only difference was that we

mulated LTE network conditions using dummynet network em-

lator. Specifically, dummynet was used to inject extra delay and

hrottle bandwidth so that the RTT and throughput of our emula-

ion would be consistent with real-world settings reported in re-

ent measurement studies [36] . In our experiments we measure

he radio-on time which starts from the time that the client re-

eives the first set of bytes and ends with the reception of the

ast byte. In order to consider LTE’s Radio Resource Control (RRC)

tate machine, we also incorporated tail time effect in our analysis.

pecifically, idle gaps between consecutive objects that are greater

han the tail time, only contribute the amount of tail time to the

adio-on time.

Table 4 presents our results for 4 different webpages that are

mong popular sites in 4 different countries. All measurement re-

ults are averaged over 10 runs. It can be seen that bundling re-

uces radio-on time which implies reduction in energy consump-

ion of mobile web browsing. However, the amount of improve-

ent achieved with bundling varies between different webpages.

his is due to a set of reasons such as different amounts of inter-

bject idle gaps, different number of objects and differences in

opological distance between the proxy and the web servers.

A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150 147

4

l

m

b

c

i

e

a

b

a

t

w

W

t

i

v

T

p

i

e

b

5

e

m

o

s

t

t

c

s

t

p

M

a

fi

o

n

g

U

p

W

u

a

c

b

c

r

H

t

i

m

t

l

p

a

s

p

o

t

a

h

c

w

g

o

i

t

d

g

s

t

f

e

e

2

t

a

a

w

i

t

m

a

e

q

t

t

r

c

p

q

w

s

t

w

s

c

a

t

t

t

s

Z

w

t

p

c

l

s

P

i

c

i

g

b

w

A

t
. Discussion

User mobility: While we addressed the challenges arising from

ong access delays of wireless networks, it should be noted that the

obility of users while surfing the web can make accelerating mo-

ile web even more challenging. Specifically, mobility of users can

ause unpredictable network conditions, rate variability and signal-

ng overheads, all of which can contribute to the poor browsing

xperience of mobile users. Considering the recent effort s on the

pplication of Multi-Path TCP (MPTCP) to mobile devices [37] , mo-

ility of users can be facilitated by using multiple interfaces (WiFi

nd cellular) available in most of the mobile devices. In such a set-

ing, MPTCP’s backup mode [38] will be used to provide the user

ith a seamless transition experience as he/she walks between

iFi APs or walks out of the WiFi coverage.

WebPro in error-prone wireless networks: In WebPro, the

ransmission of bundles between the client and the remote proxy

s performed over TCP. This implies that the TCP protocol will pro-

ide a reliable channel service to our system, WebPro. Specifically,

CP will react to any packet loss by retransmitting the missing

ackets. In other words, the granularity of TCP’s retransmission is

n the packet level and from this perspective, there is no differ-

nce between transmitting individual objects versus transmitting

undles over the wireless link.

. Related work

There is a large body of work on improving the performance,

nergy usage and wireless data consumption of web browsing on

obile devices. Here, we classify the work that is most relevant to

urs.

Client-based solutions. Traditional solutions based on client-

ide caching and prefetching fall in this category. As an example,

he authors of [6] used a machine learning approach to model

he web browsing signature for each individual user. This model

an predict the future web access patterns, enabling a prefetching

cheme to download web content before the actual user request.

Recently, there have been measurement studies to assess

he effectiveness of client-side caching and prefetching in im-

roving the performance of mobile web browsing. For instance,

a et al. [39] conducted comprehensive measurements to char-

cterize the performance of mobile web caching. They identi-

ed redundant transfers and miscached resources (providing out-

f-date resources from cache) as the two main problems that

egatively affect mobile web caching performance. Their investi-

ations revealed Same Content (same resources having different

RLs at different times), Heuristic Expiration and Conservative Ex-

iration as the root causes of unsatisfactory cache performance.

ang et al. [7] used a web dataset collected from 24 iPhone

sers over a year to quantitatively evaluate client-only caching

nd prefetching. Their results indicate that there is a limited effi-

iency gain due to caching and prefetching when it comes to mo-

ile web browsing. Consequently, they proposed a new technique

alled speculative loading which predicts and loads the required

esources of a page in parallel with the base HTML file of the page.

owever, their approach requires changing the mobile browser ex-

ensively, which limits its practical feasibility.

One major drawback of the client-only solutions is that any

ncorrect prediction can lead to downloading data that the user

ay never use. While not a significant problem in wired networks,

his can waste the scarce resources of mobile battery and wire-

ess bandwidth and hence harm user’s experience rather than im-

roving it in wireless networks. In order to accurately balance costs

nd benefits of prefetching, authors of [5] proposed a system level

olution that provides explicit prefetching support to mobile ap-

lications. However, their solution requires extensive modifications
f the existing applications. Another drawback of client-only solu-

ions is that they cannot observe the aggregate behaviour of users

nd benefit from their common browsing activities which is at the

eart of traditional caching techniques.

Protocol-based solutions. SPDY by Google [9] is a new appli-

ation layer protocol primarily designed for reducing latency of

eb browsing. SPDY multiplexes multiple data streams over a sin-

le TCP connection. It also enables unsolicited push of embedded

bjects by web servers which can speed up the resource load-

ng process in the browser. Combined with other advanced fea-

ures, SPDY can be very effective in reducing the web browsing

elay [9] . However this protocol relies on web server support and

iven that only 6.3% of all websites support SPDY [40] , its impact

o far has been rather limited. Also the next generation HTTP pro-

ocol, HTTP/2, which was standardized on February 2015, evolved

rom SPDY [41] and therefore inherits most of its features. How-

ver, there are a few differences between SPDY and HTTP/2.0 for

xample in their header compression algorithms [42] .

With server push being one of the main novelties in SPDY/HTTP

.0, there have been several proposals to resolve some of its limi-

ations or to further improve the efficiency of this feature. For ex-

mple, notice that the server is oblivious of client’s cache status

nd by pushing content that already exists in client’s cache, it can

aste bandwidth and battery of the mobile device. To address this

ssue, Khalid et al. [11] proposed sending cache hints from client

o server in the form of bloom filters. To further adjust the perfor-

ance of server push, they also proposed the ideas of half-push

nd half-pull . In half-push, the server pushes the content to an

dge proxy rather than the client and in half-pull the client re-

uests the content to be brought to the proxy without traversing

he last mile. Finally, authors of [12] proposed a novel framework

hat uses the server push feature in HTTP/2 to preemptively push

esource lists of the requested page and all its subpages, to the

lient. By using these cached meta files, a future request for a sub-

age can be issued in parallel with the subresource fetching re-

uests of that page. In this scheme, client incurs little extra band-

idth overhead due to meta data transfers but can benefit from

peedup in downloading subpages.

Infrastructure-based solutions. Some of the previous work in

his category has tried to improve the energy efficiency of mobile

eb browsing. Aggrawal et al. [43] proposed a cloud-based proxy

ystem to reduce the energy consumption of the smartphone’s data

ommunication by employing aggregation, redundancy elimination

nd opportunistic scheduling when downloading web objects from

he network. Wang et al. [16,17] presented a dual-proxy architec-

ure called EEP that utilizes bundling and compression to reduce

he energy consumption of web browsing in 3G/WLAN networks.

There are also studies that try to reduce both power con-

umption and delay of mobile web browsing. For example,

hao et al. [8] proposed a Virtual-Machine based architecture in

hich a VM-hosted proxy performs all the computation expensive

asks of mobile browsing and sends a screen copy of the rendered

age to the smartphone. However, as mentioned in [4] , offloading

ompute-intensive operations when loading a webpage has neg-

igible benefits compared to the improvements resulting from re-

ource loading optimizations. Also Sivakumar et al. [18] proposed

ARCEL which uses the same architecture as in EEP while provid-

ng the proxy with the flexibility to optimize the bundle size in a

ellular friendly manner.

Finally, this category includes studies with the goal of reduc-

ng latency of mobile web browsing. Some of them achieve this

oal by reducing the amount of data transmitted because of web

rowsing [15,44] , while others employ solutions that directly deal

ith network access delay [45] . For example, Opera Mini [15] and

mazon Silk [44] are cloud-based browsers that offload portions of

he page load process to cloud-based proxies. These browsers are

148 A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150

widely used today based on the common belief that using com-

pression proxies reduces data usage of mobile web and thus, re-

duces latency. However, the results of a recent measurement study

in [46] reveals that using compression proxies in good network

conditions can increase page load time rather than improving it.

As a result, they design and implement a framework called Flexi-

Web that decides whether to fetch a resource from middle box or

the original server based on the object size and the network con-

ditions. In line with the findings of [46] , a recent study by Sivaku-

mar et al. [47] also shows that cloud-based browsers are not al-

ways superior in terms of responsiveness and energy consumption,

especially in dealing with client interactions.

Instead of directly reducing page load time in mobile web

browsing, authors of [32] proposed KLOTSKI that aims at improv-

ing mobile user’s quality of experience by delivering as many

high utility resources as possible within tolerance limits of mobile

users (3 − 5 s econds). To this end, KLOTSKI employs a cloud-based

proxy to capture and update different properties of websites such

as dependency structure, resource sizes and positions on rendered

displays and stores them in the form of a compact fingerprint.

When loading a page, those fingerprints are used to dynamically

reprioritize delivery of different resources.

The closest work to ours is EEP by Wang et al. [16,17] and PAR-

CEL by Sivakumar et al. [18] . While their focus is on reducing en-

ergy consumption by batching and compression [16–18] , our main

goal is latency reduction using the speculative loading technique.

These solutions are orthogonal to each other and can be used in

combination to create a solution that is both energy efficient and

low latency.

6. Conclusion

In this paper, we proposed a system called WebPro for reduc-

ing the latency of mobile web browsing. WebPro is designed to

eliminate the initial round-trip time required to discover the list

of objects referenced in a webpage by using a previously recorded

resource list of the webpage. Using measurements involving real

world websites, we showed that within a few hours, the amount

of change in the structure of webpages is relatively low, and hence

it is feasible for WebPro to maintain an updated resource list of

popular websites. We performed a detailed set of experiments to

assess the efficiency of a prototype implementation of the system.

Our results indicate that WebPro outperforms state-of-the-art in

terms of the page load time, though the amount of improvement

varies between webpages. This work is a step toward optimizing

the existing wireless infrastructure and mobile applications for an

improved quality of experience. In the future, we plan to incor-

porate opportunistic scheduling in WebPro to further reduce the

transmission energy consumption on the mobile device during web

browsing. We also intend to build an analysis model of WebPro in

an attempt to capture the relationship between different parame-

ters of the system.

References

[1] A. Sehati , M. Ghaderi , WebPro: A proxy-based approach for low latency
web browsing on mobile devices, in: Proceedings of IEEE/ACM IWQoS, 2015,

pp. 319–328 .
[2] S. Souders. Velocity and the bottom line, accessed December 14, 2015. http:

//radar.oreilly.com/2009/07/velocity- making- your- site- fast.html .
[3] J. Huang , et al. , Anatomizing application performance differences on smart-

phones, in: Proceedings of ACM MobiSys, 2010, pp. 165–178 .
[4] Z. Wang , F.X. Lin , L. Zhong , M. Chishtie , Why are web browsers slow on smart-

phones? in: Proceedings of ACM HotMobile, 2011, pp. 91–96 .

[5] B.D. Higgins , J. Flinn , T.J. Giuli , B. Noble , C. Peplin , D. Watson , Informed mobile
prefetching, in: Proceedings of ACM MobiSys, 2012, pp. 155–168 .

[6] D. Lymberopoulos , O. Riva , K. Strauss , A. Mittal , A. Ntoulas , Pocketweb: In-
stant web browsing for mobile devices, in: Proceedings of ACM ASPLOS, 2012,

pp. 1–12 .
[7] Z. Wang , F.X. Lin , L. Zhong , M. Chishtie , How far can client-only solutions go
for mobile browser speed? in: Proceedings of ACM WWW, 2012, pp. 31–40 .

[8] B. Zhao , B.C. Tak , G. Cao , Reducing the delay and power consumption of web
browsing on smartphones in 3G networks, in: Proceedings of IEEE ICDCS, 2011,

pp. 413–422 .
[9] SPDY: An experimental protocol for a faster web, accessed December 14, 2015.

http://www.chromium.org/spdy/spdy-whitepaper .
[10] J. Erman , V. Gopalakrishnan , R. Jana , K. Ramakrishnan , Towards a SPDY’ier mo-

bile web, in: Proceedings of ACM CoNEXT, 2013, pp. 303–314 .

[11] J. Khalid , S. Agarwal , A. Akella , J. Padhye , Improving the performance of SPDY
for mobile devices, Proceeedings of ACM HotMobile (Poster Session), 2015 .

[12] B. Han , S. Hao , F. Qian , Metapush: Cellular-friendly server push for HTTP/2, in:
Proceedings of ACM Workshop on All Things Cellular, 2015, pp. 57–62 .

[13] F. Qian , et al. , Web caching on smartphones: ideal vs. reality, in: Proceedings
of ACM MobiSys, 2012, pp. 127–140 .

[14] H. Shen , Z. Pan , H. Sun , Y. Lu , S. Li , A proxy-based mobile web browser, in:

Proceedings of ACM Multimedia, 2010, pp. 763–766 .
[15] Opera mini browser, accessed December 14, 2015. http://www.opera.com/

mobile .
[16] L. Wang , J. Manner , Energy-efficient mobile web in a bundle, Comput. Netw.

57 (17) (2013) 3581–3600 .
[17] L. Wang , B. Yu , J. Manner , Proxies for energy-efficient web access revisited, in:

Proceedings of ACM e-Energy, 2011, pp. 55–58 .

[18] A. Sivakumar , S. Puzhavakath Narayanan , V. Gopalakrishnan , S. Lee , S. Rao ,
S. Sen , PARCEL: Proxy assisted browsing in cellular networks for energy and

latency reduction, in: Proceedings of ACM CoNEXT, 2014, pp. 325–336 .
[19] Alexa Internet Inc. “Top Sites in Canada”, accessed December 14, 2015. http:

//www.alexa.com/topsites/countries/CA .
[20] X.S. Wang , A. Balasubramanian , A. Krishnamurthy , D. Wetherall , Demystifying

page load performance with wprof, in: Proceedings of USENIX NSDI, 2013 .

[21] A. Gerber , S. Sen , O. Spatscheck , A call for more energy-efficient apps, AT&T
Labs Res. (2011) .

[22] R. Mahindra , H. Viswanathan , K. Sundaresan , M.Y. Arslan , S. Rangarajan , A
practical traffic management system for integrated LTE-WiFi networks, in: Pro-

ceedings of ACM MobiCom, 2014, pp. 189–200 .
[23] G. Barish , K. Obraczka , World wide web caching: Trends and techniques, IEEE

Commun. Mag. 38 (20 0 0) 178–184 .

[24] V. Paxson , Bro: a system for detecting network intruders in real-time, Comput.
Netw. 31 (23) (1999) 2435–2463 .

[25] Is the web getting faster?, accessed August 19, 2015. http://analytics.blogspot.
ca/2013/04/is- web- getting- faster.html .

[26] G. Cormode , M. Hadjieleftheriou , Finding the frequent items in streams of data,
Commun. ACM 52 (10) (2009) 97–105 .

[27] A. Metwally , D. Agrawal , A. El Abbadi , Efficient computation of frequent and

top-k elements in data streams, in: Database Theory-ICDT 2005, Springer,
2005, pp. 398–412 .

[28] A. Rao , A.M. Kakhki , A. Razaghpanah , A. Tang , S. Wang , J. Sherry , P. Gill , A. Kr-
ishnamurthy , A. Legout , A. Mislove , et al. , Using the middle to meddle with

mobile, Technical Report on NEU-CCS-2013-12-10, CCIS, Northeastern Univer-
sity, 2013 .

[29] F. Qian , J. Huang , J. Erman , Z.M. Mao , S. Sen , O. Spatscheck , How to reduce
smartphone traffic volume by 30%? in: Proceedings of PAM, 2013, pp. 42–52 .

[30] L. Deutsch , J. Gailly , Rfc 1950: Zlib compressed data format specification ver-

sion 3.3, IETF (May 1996) .
[31] J. van den Brande , A. Pras , The costs of web advertisements while mobile

browsing, in: Information and Communication Technologies, Springer, 2012,
pp. 412–422 .

[32] M. Butkiewicz , D. Wang , Z. Wu , H.V. Madhyastha , V. Sekar , Klotski: Reprioritiz-
ing web content to improve user experience on mobile devices, in: Proceed-

ings of USENIX NSDI, 2015, pp. 439–453 .

[33] B. Thomas , R. Jurdak , I. Atkinson , SPDYing up the web, Commun. ACM 55 (12)
(2012) 64–73 .

[34] M. Carbone , L. Rizzo , Dummynet revisited, ACM SIGCOMM Comput. Commun.
Rev. 40 (2) (2010) 12–20 .

[35] R. Netravali , A. Sivaraman , S. Das , A. Goyal , K. Winstein , J. Mickens , H. Bal-
akrishnan , Mahimahi: accurate record-and-replay for http, in: Proceedings of

USENIX Annual Technical Conference, 2015, pp. 417–429 .

[36] J. Huang , F. Qian , Y. Guo , Y. Zhou , Q. Xu , Z.M. Mao , S. Sen , O. Spatscheck , An
in-depth study of lte: effect of network protocol and application behavior on

performance, in: ACM SIGCOMM Computer Communication Review, volume43,
2013, pp. 363–374 .

[37] B. Han , F. Qian , S. Hao , L. Ji , N. Bedminster , An anatomy of mobile web perfor-
mance over multipath TCP, in: Proceedings of ACM CoNEXT, 2015 .

[38] S. Deng , R. Netravali , A. Sivaraman , H. Balakrishnan , WiFi, LTE, or both?: Mea-

suring multi-homed wireless internet performance, in: Procedings of ACM
IMC, 2014, pp. 181–194 .

[39] Y. Ma , X. Liu , S. Zhang , R. Xiang , Y. Liu , T. Xie , Measurement and analy-
sis of mobile web cache performance, in: Proceedings of ACM WWW, 2015,

pp. 691–701 .
[40] Usage Statistics of SPDY for Websites, accessed September 26, 2015. http://

w3techs.com/technologies/details/ce-spdy/all/all .

[41] D. Stenberg , HTTP2 explained, ACM SIGCOMM Comput. Commun. Rev. 44 (3)
(2014) 120–128 .

[42] M. Varvello , K. Schomp , D. Naylor , J. Blackburn , A. Finamore , K. Papagiannaki ,
To HTTP/2, or not to HTTP/2, that is the question, in: Proceedings of PAM, 2016 .

http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0001
http://radar.oreilly.com/2009/07/velocity-making-your-site-fast.html
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0007
http://www.chromium.org/spdy/spdy-whitepaper
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0012
http://www.opera.com/mobile
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0015
http://www.alexa.com/topsites/countries/CA
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0020
http://analytics.blogspot.ca/2013/04/is-web-getting-faster.html
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0034
http://w3techs.com/technologies/details/ce-spdy/all/all
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0036

A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150 149

[

[

[

[

43] B. Aggarwal , P. Chitnis , A. Dey , K. Jain , V. Navda , V.N. Padmanabhan , R. Ramjee ,
A. Schulman , N. Spring , Stratus: energy-efficient mobile communication using

cloud support, ACM SIGCOMM Comput. Commun. Rev. 40 (4) (2010) 477–478 .
44] Amazon silk browser, accessed December 14, 2015. http://amazonsilk.

wordpress.com/ .
45] R. Chakravorty , A. Clark , I. Pratt , Optimizing web delivery over wireless links:

design, implementation, and experiences, Selected Areas Commun. IEEE J. 23
(2) (2005) 402–416 .
46] S. Singh , H.V. Madhyastha , V. Srikanth , R. Govindan , Flexiweb: Network-aware
compaction for accelerating mobile web transfers, in: Proceedings of ACM Mo-

biCom, 2015 .
[47] A. Sivakumar , V. Gopalakrishnan , S. Lee , S. Rao , S. Sen , O. Spatscheck , Cloud is

not a silver bullet: a case study of cloud-based mobile browsing, in: Proceed-
ings of ACM HotMobile, 2014 .

http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0037
http://amazonsilk.wordpress.com/
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0040
http://refhub.elsevier.com/S1389-1286(16)30206-7/sbref0040

150 A. Sehati, M. Ghaderi / Computer Networks 106 (2016) 134–150

ter engineering from the University of Tehran, Iran in 2009 and 2012, respectively. He

e University of Calgary, Canada. His current research focuses on energy efficient mobile

Science Department at the University of Calgary. Before joining the University of Calgary,

 Science Department at the University of Massachusetts at Amherst. Dr. Ghaderi received
logy, and a Ph.D. degree from the University of Waterloo, all in computer science. His

 computing with emphasis on modeling and performance analysis of wireless networks.
Ali Sehati received his B.Sc. and M.Sc. degrees in compu

is currently pursuing his Ph.D. in computer science at th
computing and mobile web performance.

Majid Ghaderi is an Associate Professor in the Computer

he was a Postdoctoral Research Associate in the Computer
B.Sc. and M.Sc. degrees from Sharif University of Techno

research interests include wireless networking and mobile

	Network assisted latency reduction for mobile web browsing
	1 Introduction
	1.1 Motivation
	1.2 Our work
	1.3 Paper organization

	2 WebPro: Proxy-based speculative loading
	2.1 System architecture
	2.2 Circumventing webpage dependencies
	2.3 Identifying popular websites
	2.3.1 Space saving algorithm

	2.4 Practical considerations
	2.5 Prototype implementation
	2.5.1 Resource profiler
	2.5.2 Object bundling
	2.5.3 Selective compression
	2.5.4 Filtering dynamic URLs
	2.5.5 Local proxy

	3 Performance evaluation
	3.1 Experimental setup
	3.2 Workload characterization
	3.3 Performance metrics used
	3.4 Measurement results
	3.4.1 Change in webpage structures
	3.4.2 Comparison with benchmark
	3.4.3 Effect of page hit ratio
	3.4.4 Effect of concurrent connections
	3.4.5 Effect of network delay
	3.4.6 Effect of webpage complexity
	3.4.7 Energy impact of bundling

	4 Discussion
	5 Related work
	6 Conclusion
	 References

