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a b s t r a c t 

Scheduling of wireless transmissions is a core component of performance optimization of wireless ad-hoc 

networks. Current radio technologies offer multi-rate transmission capability, which allows to increase the 

network’s throughput. Nevertheless, most approximability results of scheduling algorithms have focused 

on single-rate radios. In this paper, we propose two formulations for the problem of scheduling wire- 

less requests with multiple data-rates, considering the physical interference model with uniform power 

assignment. The objective of both problems is to select a subset of communication requests to transmit 

simultaneously, such that the sum of their data rates is maximized and no collisions occur. In the first 

formulation, data-rates are given as part of the input. In the second formulation, the data-rate assign- 

ment is part of the solution. We show that, under certain constraints on the input, these problems can 

be approximated by a disk graph model. This means that, despite the global nature of the physical in- 

terference model, conflicts between simultaneous requests can be restricted to the local neighborhood of 

the transmitting nodes. We show how to build the corresponding disk graph instances and prove that a 

weighted maximum independent set in this graph-based model provides a constant-factor approximation 

in the physical interference model. Moreover, we implement a polynomial-time approximation scheme, 

as well as a parallel implementation of the algorithm, to obtain solutions that are within an arbitrarily 

small factor of being optimal in the disk graph model. 

© 2016 Published by Elsevier B.V. 
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1. Introduction 

Scheduling of wireless communication requests lies in the heart

of performance optimization of wireless ad-hoc networks. Current

wireless communication technologies, such as IEEE 802.11a/b/g/n

and IEEE 802.16, allow data to be transmitted at multiple data

rates. The higher the requested rate, the higher must be the

signal-to-interference-plus-noise ratio at the receiver, which can be

achieved either by increasing the transmitting power of the sender

or by decreasing the interference of concurrent transmissions. Ei-

ther way, the multi-rate functionality alters the spatial reuse con-

straints of the wireless channel, which in turn modifies the struc-

ture of the scheduling process of communication requests. 

In this work we are interested in modelling and analyzing al-

gorithms to solve the following problem. Given a set of wireless

links that can transmit with multiple data rates, we want to se-

lect a subset of theses links, such that all of the selected receivers
� This work is based on preliminary conference versions [1] and [2] 
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an successfully decode their messages and the overall data rate is

rovably close to the maximum possible, i.e., provide approxima-

ion guarantees for the obtained solutions. We propose two for-

ulations for this problem. In the first formulation, referred to

s the Multi-Rate Scheduling Problem , the data-rates are given as

art of the input. In the second formulation, referred to as the

ariable-Rate Scheduling Problem , the assignment of a data-rate to

ach link selected to transmit is part of the solution. Note that

here is a trade-off between the total communication data-rate and

he number of scheduled requests. Setting a communication re-

uest to a higher data-rate requires lower interference coefficient,

hich results in fewer number of concurrent transmissions. Setting

 communication request to a lower data-rate results in fewer bits

ransmitted. 

In this work we use two different interference models to ana-

yze and solve these problems. On the one hand, we want to pro-

ide provably feasible solutions in a model as realistic as possi-

le. On the other hand, we would like to be able to use a simple

nough model to be able to derive concise theoretical bounds for

ur results. We start by defining the problems in the physical in-

erference model . In this model, a transmission is considered suc-

essful iff the signal-to-interference-plus-noise ratio (SINR) at each

http://dx.doi.org/10.1016/j.comnet.2016.06.016
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
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eceiver is above a certain threshold, which depends on the ra-

io hardware and the data-rate at which the transmission must

e scheduled. This model is among the most realistic ones used in

heoretical studies, but is also quite complex, making the process

f designing algorithms quite challenging and does not allow the

pplication of many existing analytical tools, such as, for example,

raph-theoretic techniques. 

Recently, it has been shown that some wireless link schedul-

ng problems in the physical model can be approximated, to within

onstant factors, by graph-based models, provided that some input

arameters are restricted. For example, in [3] , it was shown that

ingle-rate transmission conflicts in the physical model can be ap-

roximated by a unit disk graph , as long as constant transmission

ower is used and link lengths differ at most by a factor of 2. Such

odel transformation allows one to simplify the global and cumu-

ative nature of wireless interference, as captured by the physical

odel, by using local, distance-based relations/edges of a geomet-

ic graph. 

In this work, we build upon these results and use the

physical-to-graph model approximation” technique to solve wire-

ess scheduling problems. By constructing a disk graph representa-

ion of each problem instance, we show that if a maximum weight

ndependent set (MWIS) is computed on the disk graph, it pro-

ides a constant approximation to each problem in the physical

nterference model. We solve the problems by implementing a

olynomial-time approximation scheme (PTAS) (as well as a par-

llel version of it). As opposed to many previous results in wire-

ess networks that use graph-based models, this approach allows

he application of graph-theoretic algorithmic tools, while guaran-

eeing feasible solutions and approximation bounds in the physical

nterference model, which is closer to reality. 

The contributions of this work can be summarized as follows.

irstly, we present the model transformation process, showing how

 graph-based problem instance can be built for the Multi-Rate

nd the Variable-Rate Scheduling Problems , keeping the desired SINR

roperties of the original model. Next, we prove that a solution

o the MWIS problem on the graph instance provides a constant

pproximation to the original problem. This is an important step,

ince it allows to apply many existing graph-based algorithmic

ools to the physical interference model, preserving approximation

uarantees. Finally, we describe a PTAS solution for both problems,

nd show that good-quality solutions can be obtained. 

This paper is structured in the following way. In Section 2 we

escribe some related work. In Section 3 we present the details

f the modelling process and problem definitions. In Section 4 we

how how to build a problem instance of the Multi-Rate Schedul-

ng Problem in the disk graph model and prove that this model re-

uction is correct and guarantees a constant-factor approximation.

n Section 5 we describe the model transformation process for the

ariable-Rate Scheduling Problem . In Section 6 we describe the PTAS

mplementation. Finally, in Section 7 we present extensive simula-

ion results. 

. Related work 

Studying wireless networks in graph-based models usually in-

olves studying the problems of coloring and independent set. Col-

ring a general graph is not only an NP-complete problem, but is

lso hard to approximate to within factor of n 1 −ε, for any con-

tant ε > 0 [4] . Wireless networks, however, can usually be bet-

er modeled by more restricted classes of graphs, such as geo-

etric graphs. In [5] , Clark et al. proved that a series of closely

elated problems to scheduling of wireless links, such as color-

ng in graphs, independent set, domination, independent domi-

ation, and connected domination, are NP-complete in unit disk

raphs (UDGs). The maximum independent set problem can be
pproximated to within factor 5 using an online greedy algo-

ithm [6] (which is optimum for an online deterministic algorithm)

nd factor 3 by a greedy offline algorithm [7] . In the case of disk

raphs, the online greedy approach yields a (n − 1) -approximation,

hereas the greedy offline algorithm that processes disks in non-

ecreasing size order achieves a 5-approximation. Finally, the prob-

em of maximum independent set in (unit) disk graphs can be ap-

roximated to within a factor (1 − ε) , for any fixed ε > 0 using a

olynomial-time approximation scheme (PTAS) [8,9] . In particular,

rlebach et al. [9] provide a PTAS for the weighted independent

et problem in disk graphs. A short survey on disk graphs can be

ound in [10] . 

Analytical results in more realistic models, such as the phys-

cal interference model, are more recent. In [11] it was shown

hat the problem of scheduling wireless transmissions with uni-

orm power assignment is NP-complete in the physical interfer-

nce model. In [12] , a constant approximation algorithm was pro-

osed for the (maximization) one-slot scheduling problem and a

ogarithmic approximation for the (minimization) multi-slot prob-

em. These results were derived for the single-rate scenario. Sev-

ral other works studied different aspects of the problem, such as

inear power assignment [13] and power control [14,15] . 

In [3] it was shown that single-rate scheduling in the SINR

odel can be approximated to within a constant factor by coloring

 unit disk graph, in the case when constant transmission power is

sed and the link set is “nearly-equilength”, i.e., link lengths vary

y at most a factor of two. In this work we take a step further,

nd show that a constant approximation can be achieved by ap-

roximating multi-rate scheduling with a disk graph with variable

isk radii. 

Joint channel assignment and routing has been investigated

n [16] . Efficient channel assignment schemes can greatly re-

ieve the interference effect of simultaneous transmissions while

outing schemes can alleviate potential congestion. In [17] , Kodi-

lam et al. characterized the capacity region in multi-radio multi-

hannel wireless mesh networks and derived the upper bounds

n the capacity in terms of achievable throughput. We solve the

ink scheduling problem, which is a fundamental problem in any

ireless network. It is a building block that can be integrated into

arger problems. For instance, it appears as a sub-problem in other

roblems, such as routing. 

In [18] , several versions of the wireless capacity problem were

nalyzed. Among them, one is referred to as “scheduling with QoS

eneralization and uniform power”, and is similar to the Multi-Rate

cheduling Problem studied here. A constant approximation was ob-

ained for the case of arbitrary link lengths and general metric

pace. In [19] , the problems of power control and data-rate maxi-

ization are studied in one formulation. The proposed solution is

roved to be O (log n )-approximation and computes both the power

evels and the data-rates assignment to the selected links. Our

ork, on the other hand, provides a constant approximation, al-

hough to a more restricted range of scenarios, and considers uni-

orm power assignment, which one might argue represents most

ractical scenarios. 

. Model 

In this work we study the problem of scheduling wireless com-

unication requests (links) in the physical interference model us-

ng multiple and variable data rates. 

A typical problem instance consists of a set L = { � 1 , . . . , � n } of n

ireless links (and, as explained later, a set of data rates), where

ach link � i represents a communication request from a sender s i 
o a receiver r i : � i = (s i , r i ) . The communication devices are viewed

s nodes positioned in a Euclidean space. The distance between



66 O. Goussevskaia et al. / Computer Networks 106 (2016) 64–76 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

v

x

 

s  

t

s

 

D  

a  

a  

a

x

 

a  

t  

a  

r

s

 

D

a  

F  

o

 

f

 

 

 

4

a sender s j and a receiver r i is denoted by d ji = d(s j , r i ) , and the

length of a link � i is denoted by d ii = d(s i , r i ) . 

For simplicity’s sake and without loss of generality, we as-

sume that transmissions are slotted into synchronized time slots of

equal length and there are no primary conflicts in the transmission

setup, i.e., each node is either a sender or a receiver and each re-

ceiver is associated with only one sender. Scenarios with this type

of conflicts could be reformulated by introducing additional nodes

at the same position, such that there is one sender-receiver pair for

each link. In this way, if a node is scheduled to transmit at a cer-

tain time slot, the interference at that location will be infinite and,

therefore, no co-located node can be scheduled as the receiver in

the same time-slot. Moreover, we assume that all nodes transmit

with the same power level P , i.e., we use uniform power assignment

scheme. 1 

In the physical interference model, a receiver r i successfully de-

codes a transmission from a sender s i iff

SINR S t (� i ) = 

P 
d α

ii ∑ 

s j ∈S t ,s j � = s i 
P 

d α
ji 

+ N 

≥ β, (1)

where S t is the set of nodes concurrently transmitting in time-slot

t; α > 2 is a constant path-loss exponent, with typical values in the

range 2 < α ≤ 6; d −α
ii 

is the propagation attenuation (link gain);

N is a constant ambient noise; and β is the minimum signal-to-

interference-plus-noise-ratio (SINR) required for a successful mes-

sage decoding. Typically, when performing theoretical analysis, it

is assumed that β > 1 and has the same value for all links in L . 

Now let T = { t 1 , . . . , t |T | } be a set of data rates, where |T | is

bounded by a constant, and let β(t k ) > 1 , t k ∈ T denote a data-

rate-dependent minimum SINR threshold required for a success-

ful transmission with data rate t k (note that, the higher the data

rate t k , the higher is the hardware threshold β( t k )). We say that

a successful transmission with data rate t ( � i ) (and corresponding

hardware threshold β( t ( � i ))) occurs when the following condition

is satisfied: 

SINR S t (� i ) ≥ βi , (2)

where β i is an abbreviation we use for the SINR threshold β( t ( � i ))

of a link � i that transmits with data rate t(� i ) ∈ T . 
In this work, we present two different problem definitions that

incorporate the use of multiple data rates. To the first problem we

refer as the Multi-Rate Scheduling Problem , to the second problem

we refer as the Variable-Rate Scheduling Problem . In both problems,

the objective is to select a subset of links that transmit successfully

at the same time, while maximizing the total sum of their data-

rates. 2 In the first problem, each link � i ∈ L is assigned a fixed data

rate t ( � i ) and then used as input to the maximization program. In

the second problem, a set of links and a set of possible data rates

are used as input, and the objective is to select a subset of links

and assign each link the “best” data rate to transmit with. 

Definition 3.1. The Multi-Rate Scheduling Problem can be for-

mulated as follows. The problem’s input is a set of n tuples

{ (� 1 , t(� 1 )) , . . . , (� n , t(� n )) } , where � i ∈ L = { � 1 , . . . , � n } and t(� i ) ∈
T = { t 1 , . . . , t |T | } , such that each link � i ∈ L is assigned a data rate

t ( � ) and a hardware threshold β = β(t(� )) . We define a binary
i i i 

1 In reality there exist many wireless networks where nodes can choose different 

transmission powers, however, either just from a small set of possible power levels, 

or where the power range is bounded. Apart from constants, the analytical results 

of this paper hold for both extensions. 
2 Note that maximizing the sum of data rates is equivalent to maximizing the 

total data transmitted, since we assume all transmissions occur for exactly one time 

slot. 

 

S  

m  

a  

i  

c  

f

ariable x i , such that: 

 i 

{
= 1 if link � i transmits 
= 0 otherwise. 

The objective of the problem is to pick a subset of links S ⊆ L,

uch that the total data rate is maximized over one time-slot and

he SINR is at least β i at every scheduled receiver r i . 

maximize 

n ∑ 

i =1 

x i t(� i ) 

ubject to: 

SINR S (� i ) ≥ x i βi , ∀ � i ∈ L, S = { � k | k � = i and x k = 1 } (3)

x i ∈ { 0 , 1 } . 
efinition 3.2. The Variable-Rate Scheduling Problem can be defined

s follows. The input is comprised by a set of links L = { � 1 , . . . , � n }
nd a set of data rates T = { t 1 , . . . , t |T | } , where |T | is bounded by

 constant. A variable x ij is defined as: 

 i j 

{
= 1 if link � i ∈ L transmits with data rate t j ∈ T 
= 0 otherwise. 

The objective of the problem is to select a subset of links S ⊆ L

nd assign each link � i ∈ S a data rate t(� i ) = t j ∈ T , such that the

otal number of transmitted bits is maximized over one time-slot

nd the SINR is at least βi = β(t(� i )) at every scheduled receiver

 i | � i ∈ S . More formally: 

maximize 

n ∑ 

i =1 

|T | ∑ 

j=1 

x i j t j 

ubject to: 

|T | ∑ 

j=1 

x i j ≤ 1 , ∀ � i ∈ L, 

SINR S (� i ) ≥
|T | ∑ 

j=1 

x i j βi , ∀ � i ∈ L, S = { � k | k � = i and 

|T | ∑ 

j=1 

x k j = 1 } 

x i j ∈ { 0 , 1 } . (4)

We make use of a series of definitions introduced in [3,12,20] . 

efinition 3.3. The affectance of link � v caused by a link � w 

is 

 w 

(� v ) = 

P 
d αw v 

P 
d αvv 

= 

(
d vv 

d w v 

)α

. (5)

or convenience, let a v (� v ) = 0 . The combined affectance of a set S

n link � v is denoted by a S (� v ) = 

∑ 

� w ∈ S a w 

(� v ) . 

Note that, as proved in [20] , the affectance function satisfies the

ollowing properties for a set S of links: 

1. (Range) S is SINR-feasible if and only if, for all � v ∈ S, a S ( � v )

≤ 1/ βv (otherwise, there would be a link � v ∈ S such that

SINR S (� v ) < βv ). 

2. (Additivity) a S (� v ) = a S 1 (� v ) + a S 2 (� v ) , whenever ( S 1 , S 2 ) is a

partition of S . 

. Disk graph model approximation 

In this section we show that when an instance of the Multi-Rate

cheduling Problem is composed by links that vary in length by at

ost a constant factor and are assigned data rates that also vary by

t most a constant factor, it can be approximated by a disk graph,

.e., many-to-many interference relationships of the SINR model

an be simplified by pairwise relationships, modulo small constant

actors. 
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[  
The proof works by constructing two disk graphs where each

ender has an associated disk. The graph used to derive an up-

er bound utilizes (small) disks that represent inevitable conflicts

n the SINR model. The graph used to derive a lower bound uti-

izes (large) disks used to construct feasible schedules. We begin

ith a series of definitions: In Definitions 4.1 and 4.2 , we charac-

erize a set of links according to their affectance and relative dis-

ances, respectively. In Definition 4.3 , we define a conflict graph of

 set of links based on their relative distances. In Definition 4.4 ,

e define a disk graph derived from a set of links, which will

e used to prove the lower bound on the achievable data rate. In

efinition 4.5 , we define a unit disk graph derived from a set of

inks, which will be used to show the upper bound on the total

chievable data rate. 

efinition 4.1. Given a set of links L = { � 1 , . . . , � n } and an (or-

ered) vector p = { p(l 1 ) , . . . , p(l n ) } , we define L to be a p -signal

et if the affectance of any link � i ∈ L is at most 1/ p ( � i ), i.e., a L ( � i )

1/ p ( � i ). Note that if p = { β1 , . . . , βn } then a p -signal set L is SINR-

easible, i.e., SINR ( � i ) ≥ β i , ∀ � i ∈ L . 

efinition 4.2. Given a set of links L = { � 1 , . . . , � n } and a set of

alues r = { r (l 1 ) , . . . , r (l n ) } , we define a set of links L to be r -

ndependent if any two links � v , � w 

∈ L satisfy the constraint d vw 

d wv ≥ r ( � v ) r ( � w 

) d vv d ww 

. 

efinition 4.3. Given a set of links L = { � 1 , . . . , � n } and a set of

alues r = { r (� 1 ) , . . . , r (� n ) } , we define an r -conflict graph G r (L)

n the link set L to be a graph with a vertex for each link in L

nd an edge between two vertices ( � v , � w 

) iff � v and � w 

are not

 -independent. 

efinition 4.4. Given a set of links L = { � 1 , . . . , � n } and a set of val-

es z = { z(� 1 ) , . . . , z(� n ) } , z(� i ) ≥ 1 , ∀ � i ∈ L, we define a disk graph

G z (L) on the link set L to be a graph with a vertex for each sender

n L and an edge between two vertices ( s v , s w 

) iff d(s v , s w 

) <

(� v ) d vv + z(� w 

) d ww 

. 

efinition 4.5. Given a set of links L with minimum link length

 min and a constant u , we define a unit disk graph UDG u (L) on

he link set L , to be a graph with a vertex for each sender in L and

n edge between two vertices ( s v , s w 

) iff d ( s v , s w 

) < u · d min . 

In the following lemma, we establish a relation between af-

ectance and relative distance of links. 

emma 4.1. If S is a p-signal set of links, where p(� i ) = βi , ∀ � i ∈ S,

hen S is r-independent, where r(� i ) = β1 /α
i 

, ∀ � i ∈ S. 

roof. Since S is a p -signal set, any two links � v , � w 

∈ S satisfy
P 

d αvv 
/ P 

d αw v 
≥ βv and 

P 
d αww 

/ P 
d αv w 

≥ βw 

. By multiplying the inequalities,

e get d v w 

· d w v ≥ β1 /α
v β1 /α

w 

d vv d ww 

, which means that they are r -

ndependent. �

In Lemma 4.2 , we provide the lower bound by proving that, if a

unction z ( � i ) is appropriately defined, and the corresponding disk

raph DG z (L) is built, then an independent set of disks corresponds

o a conflict-free schedule of links in the SINR model. 

emma 4.2. Consider a set of links S, where each link � i is assigned a

ata rate t(� i ) = t k ∈ T with corresponding hardware threshold βi =
(t k ) , and uniform power assignment is used. If every two senders s v ,

 w 

∈ S are separated by a distance d(s v , s w 

) ≥ z(� v ) d vv + z(� w 

) d ww 

i.e., S is an independent set in the disk graph DG z ( S ) ), then S forms a

-signal set, where p(� i ) = βi , ∀ � i ∈ S (i.e., a set that can be scheduled

oncurrently without collisions in the SINR model). The values z ( � i )

re defined as follows: 

(� i ) = 

g i w 

d 
, (6) 
ii 
 i = 

[
βi ·

(
d ii 
w 

)α

· α − 1 

α − 2 

· α · 4 C 

] 1 
α−2 

, (7) 

 = d min · z min , (8) 

 min = d(r min , s min ) , (9) 

 min = z(l min ) = 

(
β(t(� min )) α · 4 C 

α − 2 

) 1 
α

, (10) 

 min = argmin � i ∈ S (β
1 /α
i 

d ii ) , (11) 

 min , s min = receiver and sender of � min (12) 

 = π
√ 

3 / 6 . (13) 

roof. The proof is provided in the Appendix . �

In Lemma 4.3 we provide the upper bound by proving that if an

ppropriate UDG is built for a set of links, this UDG is a subgraph

f the conflict graph based on relative distances of links. 

emma 4.3. Given a set of links L with minimum link length d min , a

onstant u ≥ 1, and a set of values r(� i ) = u, ∀ � i ∈ L . If we consider

n r-conflict graph G r ( L ) and a unit disk graph UDG u −1 (L ) , we have

hat UDG u −1 (L ) ⊆ G r (L ) . 

roof. To prove the claim, let v and w be two adjacent

odes in UDG u −1 (L ) . By Definition 4.5 of a unit disk graph,

(s v , s w 

) < (u − 1) d min . By triangular inequality, d v w 

≤ d(s v , s w 

) +
 ww 

< (u − 1) d min + d ww 

≤ (u − 1) d ww 

+ d ww 

= u · d ww 

. So is d wv <

 · d vv . Multiplying the two inequalities, we have that d v w 

d w v <

 

2 d vv d ww 

= r (� v ) r (� w 

) d vv d ww 

. Therefore, � v and � w 

are neighbors in

he r -conflict graph G r ( L ). �

Theorem 4.4 summarizes the lower and upper bounds used in

ur model transformation. 

heorem 4.4. Consider a set of links S with minimum link length

 min , where each link � i is assigned a data rate t(� i ) = t k ∈
 with corresponding hardware threshold βi = β(t k ) and uniform

ower level. Moreover, consider a constant u = β1 /α
min 

, where βmin =
in � i ∈ L βi , a set of values p, defined as p(� i ) = βi , ∀ � i ∈ L and a set

f values z, defined in (6) . Claim 1: Any independent set in the disk

raph DG z ( L ) is a p-signal set, i.e., a set that can be scheduled con-

urrently without collisions in the SINR model. Claim 2: Any p-signal

ubset of L is an independent set in the unit disk graph UDG u −1 (L ) . 

roof. Claim 1: By Lemma 4.2 , an independent set in DG z ( L ) is a p -

ignal set and, therefore, can be scheduled successfully in the SINR

odel. Claim 2: By Lemma 4.1 , a p -signal subset of links is also r -

ndependent, where r(� i ) = p(� i ) 
1 /α = β1 /α

i 
, ∀ � i ∈ S. Note that u =

in � i ∈ S r(� i ) and, if a set is r -independent, it is also u -independent,

ince d v w 

· d w v ≥ β1 /α
v β1 /α

w 

d vv d ww 

≥ β2 /α
min 

d vv d ww 

. Therefore, any p -

ignal subset of L is an independent set in the conflict graph G u ( L ).

y Lemma 4.3 , it is then an independent set in UDG u −1 (L ) (since

his is equivalent to the claim UDG u −1 (L ) ⊆ G u (L ) ). �

Finally, in Theorem 4.5 we prove the approximation ratio of the

odel transformation. 

heorem 4.5. Consider two constants �l ≥ 1, �β ≥ 1, and a set

f links L with link lengths in the range [ d min , . . . , �l · d min ) , where

ach link � i is assigned uniform power and a data rate t(� i ) = t k ∈
 with corresponding hardware threshold βi = β(t k ) in the range

 βmin , . . . , �β · βmin ) . A solution to the maximum weight independent
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set problem MWIS in the disk graph DG z ( L ), z being a function de-

fined in (6) , is a constant approximation to the Multi-Rate Schedul-

ing Problem in the SINR model. The approximation ratio ρ is defined

as 

ρ = C(1 + 2 a/b) 2 , (14)

b = β1 /α
min 

− 1 , (15)

a = 2�l · w · max 
� i ∈ L 

g i , (16)

max 
� i ∈ L 

g i = max 
� i ∈ L 

(βi d 
α
ii ) 

1 
α−2 

(
4 Cα(α − 1) 

(α − 2) w 

α

) 1 
α−2 

, 

≤ (�ββmin (�l d min ) 
α) 

1 
α−2 

(
4 Cα(α − 1) 

(α − 2) w 

α

) 1 
α−2 

, (17)

where C, w and z min are defined in (13) , (8) , and (10) , respectively. 

Proof. Upper Bound : By Theorem 4.4 , we know that for p(� i ) =
βi , ∀ � i ∈ L and u = β1 /α

min 
, any p -signal subset of L is an independent

set in the unit disk graph UDG u −1 (L ) . In other words, if two links

are too close to each other, i.e., are neighbors in UDG u −1 (L ) , they

are also neighbors in the conflict graph G u ( L ) and, therefore, not

u -independent. By Lemma 4.1 , they do not form a u α-signal set,

and, since u α = βmin , they cannot be scheduled concurrently in the

SINR model. This means that “small” disks of radius d min (u − 1)

capture inevitable conflicts in the SINR model. 

Lower Bound : By Theorem 4.4 , we know that for z defined in

(6) , any independent set in the disk graph DG z ( L ) is a p -signal set,

i.e., can be scheduled concurrently without collisions in the SINR

model. This means that a solution to the MWIS problem in the disk

graph model renders a feasible solution to the Multi-Rate Schedul-

ing Problem in the SINR model. 

Approximation Ratio : Firstly we observe that if we define a max-

imum disk radius as d min · R, R = 2�l max � i ∈ L w · g i , where w and g i 
were defined in (8),(7) , then the disk graph DG z ( L ), z defined in (6) ,

is contained in the unit disk graph UDG R ( L ), i.e., DG z ( L ) ⊆UDG R ( L ).

Let a = R and b = u − 1 = βa/α
min 

− 1 . Note that a ≥ b . Consider two

unit disk graphs UDG a ( L ) and UDG b ( L ) with different radii but on

the same set of links L . Now consider a link l v ∈ L with closed

neighborhood N a = N UDG a (L ) [ l v ] in UDG a ( L ) and the induced sub-

graph UDG b ( L )[ N a ] on N a in UDG b ( L ). The cardinality of a maximum

independent set 

| MIS(UDG b (L )[ N a ]) | ≤ C(1 + 2 a/b) 2 . 

This is due to the fact that the nodes in an independent set in

UDG b ( L ) form disjoint balls of radius bd min /2 centered at senders

of the links. Senders in N a are all contained in the ball B ( s v ,

ad min ). This means that the (small) balls in the independent

set MIS ( UDG b ( L )[ N a ]) are completely contained in the larger ball

B (s v , (a + b/ 2) d min ) . Therefore, we can apply the packing argu-

ment (19) to show that only a limited number of smaller disjoint

balls can fit inside the larger ball, namely | MIS(UDG b (L )[ N a ]) | ≤
P(B (s v , (a + b/ 2) d min ) , bd min / 2) ≤ C(1 + 2 a/b) 2 . 

This means that the Multi-Rate Scheduling Problem reduces,

within constant factors, to MWIS in disk graphs. So any algorithm

to solve MWIS on DG z ( L ) is a constant approximation for the Multi-

Rate Scheduling Problem. The performance ratio of such algorithm

is bounded by C(1 + 2 a/b) 2 . �

5. Variable-rate disk graph 

In this section we extend the model transformation technique,

proposed in Section 4 , to transform an instance of the Variable-

Rate Scheduling Problem in the physical model into a problem in-

stance in a disk graph model. In contrast to what was done in
ection 4 for the Multi-Rate Scheduling Problem , we need to include

ifferent data-rate assignment options in each problem instance,

o that the solution selects an assignment that maximizes the to-

al data-rate of transmitting links. In order to do this, instead of

dding one disk for each link, we add |T | disks for each link, i.e.,

ne disk for each combination of link � i ∈ L and data-rate t k ∈ T . 
In order to construct a disk-graph problem instance, we use the

ollowing definition (which is an extension of Definition 4.4 ): 

efinition 5.1. Given a set of links L = { � 1 , . . . , � n } , a set of data-

ates T = { t 1 , . . . , t |T | } , and a function z ′ ( � i , βk ). Consider a set

f disks D 

′ 
z ′ = { D � 1 ,t 1 , . . . , D � 1 ,t |T | , D � 2 ,t 1 , . . . , D � 2 ,t |T | , . . . , D � n ,t |T | } of

ize n × |T | , such that every disk D � i ,t k 
has radius z ′ (� i , βk ) d ii , � i ∈

, βk ∈ { β(t 1 ) , . . . , β(t |T | ) } and is centered at the sender of each

ink � i ∈ L . We define a variable-rate disk graph DG 

′ 
z ′ (L) to be

 graph with a vertex for each disk center in D 

′ 
z ′ and an edge

etween two vertices ( v ( � i , t k ), v ( � j , t m 

)) iff d(v (� i , t k ) , v (� j , t m 

)) <

 

′ (� i , t k ) d ii + z ′ (� j , t m 

) d j j , i.e., if the two disks intersect. The weight

f each vertex v (� i , t k ) ∈ DG 

′ 
z ′ (L ) is assigned the value t k . 

In this way, each link in the problem’s input is assigned |T |
isks, and the radius of each disk is proportional to length d ii of

he link, multiplied by a factor (function z ), which depends on the

INR threshold β( t ( � k )) and the link length (and the global path-

oss parameter α). The higher the data-rate, the larger will be the

adius of the corresponding disk. Higher values of α, on the other

and, require lower radii for the disks. Function z ′ is defined as

ollows (note that r min and s min are the receiver and the sender of

ink � min , respectively): 

 

′ (� i , βk ) = 

g i,k w 

d ii 
, 

g i,k = 

[
βk ·

(
d ii 
w 

)α

· α − 1 

α − 2 

· α · 4 C 

] 1 
α−2 

, (18)

here w, d min , z min , � min , and C are defined in (8), (9), (10), (11) ,

nd (13) , respectively. 

Note that a problem instance of size n in the SINR model is

ransformed into a problem instance of size n × |T | in the disk

odel. This increase in problem size adds extra computation cost,

ut we will show that a solution to the MWIS problem in this new

odel results in a correct solution in the SINR model. Moreover,

e show that the approximation ratio of the MWIS solution also

olds for the Variable-Rate Scheduling Problem in the SINR model,

p to a constant factor. 

Firstly, we provide the lower bound in Lemma 5.1 . 

emma 5.1. Consider a set of wireless links L = { � 1 , . . . , � n } that

ransmit under uniform power assignment and a set of data-rates

 = { t 1 , . . . , t |T | } . Now consider a variable-rate disk graph DG 

′ 
z ′ (L ) on

 and T , as defined in 5.1 . Any Independent Set (IS) on DG 

′ 
z ′ (L ) repre-

ents a feasible solution to the Variable-Rate Scheduling Problem, i.e.,

S(DG 

′ 
z ′ (L )) will only contain disks corresponding to links that can be

cheduled concurrently without collisions in the SINR model. 

roof. We know from Section 4 that for a given assignment of

ata-rates to links, an independent set in the corresponding disk

raph with fixed data-rates represents a feasible solution, i.e., no

ollisions in the SINR model. It is left to show that more than

ne disk corresponding to different data-rates but the same link

 i ∈ L are never contained in the same independent set on DG 

′ 
z ′ (L ) .

ets assume that it is true, i.e., IS(DG 

′ 
z ′ (L )) contains two disks D � i ,t k 

nd D � i ,t m 
corresponding to the same link � i . This means their cen-

ers overlap and therefore the two disks intersect, and there is an

dge between the corresponding vertices in DG 

′ 
z ′ (L ) . This contra-

icts the assumption that IS(DG 

′ 
z ′ (L )) is an independent set, which

ompletes the proof. �
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Finally, we prove the approximation factor in Theorem 5.2 . 

heorem 5.2. Consider a set of wireless links L = { � 1 , . . . , � n } that

ransmit under uniform power assignment and a set of data-rates

 = { t 1 , . . . , t |T | } . Now consider a variable-rate disk graph DG 

′ 
z ′ (L ) on

 and T . A solution to the maximum weight independent set problem

WIS in the disk graph DG 

′ 
z ′ (L ) , z ′ being a function defined in (18) , is

 constant approximation to the Variable-Rate Scheduling Problem

n the SINR model. 

roof. By Lemma 5.1 we know that any independent set in DG 

′ 
z ′ (L )

s a feasible solution to the Data-Rate Maximization Problem . Also,

rom Section 4 , we know that for a given assignment of data-rate

o links, a solution to MWIS in the disk graph with fixed data-rates

G z (L ) ⊆ DG 

′ 
z ′ (L ) is a constant approximation to the link schedul-

ng problem with fixed data rates. It remains to show that by hav-

ng a separate disk for every possible data-rate at every link leads

o an approximation for the Variable-Rate Scheduling Problem . Let’s

ssume that a solution MWIS 1 to the MWIS problem on DG 

′ 
z ′ (L ) is

ore than a constant smaller than the optimum. This means that

here is a subset of links S opt ∈ L with some data-rate assignment

 : T → L that is more than a constant “heavier” than MWIS 1 . If we

onsider the links and the corresponding data-rates of S opt and use

t as input to build a disk graph DG z ( S opt ), as defined in 4.4 , we

now that a solution to MWIS on DG z ( S opt ), say MWIS 2 , is a con-

tant approximation to the Multi-Rate Scheduling Problem . We also

now that MW IS 2 ⊆ DG z (S opt ) ⊆ DG 

′ 
z ′ (L ) and that MWIS 2 is heav-

er than MWIS 1 . This contradicts the assumption that MWIS 1 is a

aximum-weight independent set of DG 

′ 
z ′ (L ) and is not a constant

pproximation to the Variable-Rate Scheduling Problem , which com-

letes the proof. �

This means that the Variable-Rate Scheduling Problem reduces,

ithin constant factors, to MWIS in disk graphs. So any algorithm

o solve MWIS on DG 

′ 
z ′ (L ) is a constant approximation for the

ariable-Rate Scheduling Problem . 

. Approximation algorithms 

In this section we describe a polynomial-time approximation

cheme (PTAS) that computes a maximum weight independet set

MWIS) of a disk graph. As shown in Sections 4 and 5 , if we

arefully construct the input graph instances, the MWIS solution

epresents a constant-factor approximation for the Multi-Rate and

he Variable-Rate Scheduling Problems . We present two implemen-

ations of this algorithm: the first implementation, to which we

efer as Disk-MRS, is used to solve the Multi-Rate Scheduling Prob-

em ; the second implementation, to which we refer as Data rate

PTAS, is a parallel implementation of Disk-MRS and is used to

olve the Variable-Rate Scheduling Problem , given that it results in

ignificantly larger disk graph instances. 

.1. Disk-MRS 

In this section we describe the Disk-MRS algorithm and show

ow it can be used to solve the Multi-Rate Scheduling Problem . 

The input to the problem is a set of n tuples

 (� 1 , t(� 1 )) , . . . , (� n , t(� n )) } , where � i ∈ L = { � 1 , . . . , � n } and

(� i ) ∈ T = { t 1 , . . . , t |T | } , such that each link � i ∈ L is assigned

 data rate t ( � i ) and a hardware threshold βi = β(t(� i )) . Using

esults from Section 4 , this input is transformed into a disk graph

G z (L) , comprised by a set of disks D = { D 1 , . . . , D n } , according to

efinition 4.4 , where each disk is assigned a weight w (D i ) = t(� i )

nd a radius R (D i ) = d ii · z(� i ) , where z is a function defined in 6 . 

Next, DG z (L) is used as input to the algorithm proposed by Er-

ebach et al. in [9] for computing MWIS in disk graphs. We re-

er to this algorithm as MWIS-PTAS and outline its mechanism in
ppendix B . The goal of MWIS-PTAS is to compute, for a given set

f disks with variable weights and radii, a subset of disjoint (non-

verlapping) disks with maximum total weight. Given an integer K

 1, the algorithm achieves an approximation ratio of (1 + 

1 
K−1 ) 

2 ,

.e., as K gets larger, the approximation ratio gets arbitrarily close

o 1. The output solution S ⊆ L is formed by links l i , where l i is part

f the solution if disk D i is part of the MWIS (see Algorithm 1 ). 

lgorithm 1 Disk-MRS 

equire: A set L = { � 1 , . . . , � n } of links with data rates t(� i ) = t k ,

t k εT = { t 1 , . . . , t |T | } , and a parameter K. 

nsure: A subset S ⊆ L in which every link � i can betransmitted

successfully with data rate t(� i ) and the total weight w (S) is

maximized. 

1: Generate DG z (L ) = { D 1 , . . . , D n } , according to the Definition 4.4

of adisk graph and the function z (6); 

2: Assign weights w (D i ) = t(� i ) , ∀ D i ∈ DG z (L ) ; 

3: S = MWIS-PTAS( DG z , K); 

4: return S . 

.2. Data-rate parallel PTAS 

Data-Rate Parallel PTAS is a parallel implementation of Disk-

RS, which we apply to solve the Variable-Rate Scheduling Problem ,

iven that it results in significantly larger disk graph instances. 

The first step is to apply the results of Section 5 to trans-

orm the original problem input into a set of disks D 

′ 
z ′ , using the

efinition 5.1 . 

Parallel algorithms usually consist of a map phase and a reduc-

ion phase. In the map phase, which consists of mapping parallel

nstances to threads, each thread has a unique identifier. We rep-

esent every possible subset of n elements by a binary number.

ach thread calculates the next potential solution, transforms it to

 subset of links and checks if the potential solution is an inde-

endent set. If it is, the thread computes its weight and stores its

ocal maximum solution. Obviously, sets with more than 16 k 4 ele-

ents are not computed since we know they can not be a solution,

 property from the PTAS algorithm. 

Each thread computes what the next potential solution is in-

ependently from the other threads, since the only information

eeded is the total number of threads, which is pre-configured,

nd the thread’s identifier. The computation of the next poten-

ial solution is completely distributed and guarantees load balance

mong threads. The evaluation of each potential solution depends

nly on the disk graph structure. The disk graph structure is used

nly for reading and is distributed among all threads. Thus, the

ap phase is completely distributed. 

The second phase is the reduction phase, which consists of syn-

hronizing the solutions of the threads. This phase happens when

ll threads finished their local computation. In this phase, we col-

ect the maximum value of each local thread and compute the

aximum solution. 

.3. ApproxDiversity 

In order to evaluate the performance of our disk-based ap-

roach, we compared the solution returned by Disk-MRS (see

lgorithm 1 ) with the algorithm proposed in [12] , to which we re-

er as ApproxDiversity. To the best of our knowledge, ApproxDiver-

ity is the only algorithm to solve the weighted one-slot schedul-

ng problem in the SINR model. It is an approximation algorithm

or one-slot scheduling initially designed for single rate with SINR

odel without power control. We slightly modified it to handle

he multi-rate case, as shown in Algorithm 2 . 
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Algorithm 2 ApproxDiversity 

Require: A set L = { � 1 , . . . , � n } of links with data rate t(l i ) = t k , 

t k εT = { t 1 , . . . , t |T | } . 
Ensure: Asubset L k 

j 
in which every link can be transmitted suc- 

cessfullyand the total weight w (L k 
j 
) is maximized 

1: w (� i ) = t(� i ) , ∀ � i ∈ L ; 

2: Let R = R 0 , . . . , R log ( l max ) such that R k is the set of links l i of 

length 2 k ≤ d ii < 2 k +1 ; 

3: μ = 4 

(
8 βmax (α−1) 

α−2 

) 1 
α

; 

4: for all R k � = ∅ do 

5: Partition the plane into squares of width μ · 2 k ; 

6: 4-color the cells such that no two adjacent cells have the 

same color. 

7: for j = 1 to 4 do 

8: For each square A of color j, pick the heaviest link l i ∈ R k 
with receiver r i in A , assign it to L k 

j 
( L k 

j 
= L k 

j 
∪ l i ); 

9: end for 

10: end for 

11: return argmax 
L k 

j 

∑ 

l i ∈ L k j 
w (l i ) ; 

Table 1 

IEEE 802.11b required SINR per data- 

rate. 

Rates (Mbps) 1 2 5 .5 11 

SINR (dB) 4 6 8 10 

Table 2 

IEEE 802.11n 5Ghz 40MHZ required SINR per data-rate. 

Rates (Mbps) 30 60 90 120 180 240 270 300 

SINR (dB) 14 17 19 22 26 30 31 32 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 1. Multi-Rate Results with α = 3 , K = 4 , 4 ≤ βi ≤ 10 (IEEE 802.11b). 

Fig. 2. Multi-Rate Results with α = 3 , K = 4 , 10 ≤ βi ≤ 32 (IEEE 802.11n). 
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ApproxDiversity works on the original link set L (no interme-

diate disk graph instance is built). The links are divided into link

length classes { R 0 , . . . , R log ( l max ) } . Each link length class is parti-

tioned into square cells of side μ, computed as a function of link

length and parameters α and β of the SINR model. We used the

maximum value βmax to compute the cell size, in order to guar-

antee no interference among cells no matter what data rate ( β i )

is used (see line 2 of Algorithm 2 ). Thereafter, each cell is colored

with 4 colors, such that no two adjacent cells have the same color.

Then, for each cell, the heaviest link is chosen. In the end, the set

of links with maximum total weight among all possible partitions

(cell sizes) and colorings is returned. 

7. Simulation results 

In this section, we present simulations results, including a com-

parative study for the algorithms described in Section 6 . 

We generated random topologies by placing n receiver nodes

uniformly distributed over a plane field of size 10 4 x 10 4 units.

The respective n senders were uniformly distributed inside a disk

of radius l max around each of the receivers. In all experiments, the

number of simulation runs was chosen to obtain sufficiently small

confidence intervals. The standard deviation is plotted for all data

points. 

To model the multiple data rate links, we obtained their neces-

sary SINR values from the IEEE 802.11 Standard [21] , which defines

the minimum SINR needed to decode a transmission at a given

rate. Table 1 [22] shows the required SINR values for IEEE 802.11b

and the respective data-rates. Table 2 [23] presents the necessary
INR values for the IEEE 802.11n with 40 MHz channel width on

 GHz. 

In our input sets, each link’s data rate was uniformly chosen

rom Tables 1 or 2 . The weight of a link was modeled as the data

ate of the link, since it indicates how much data can be transmit-

ed. 

To begin with, we compare the performance of Disk-MRS (see

lgorithm 1 ) to the performance of ApproxDiversity, proposed

n [12] (see Algorithm 2 ). 

Initially, we analyze the total data rate of the schedule as a

unction of the number of links. The number of links varied from

6 to 2048, l max = 6 
√ 

2 , Disk-MRS parameter K = 4 and α = 3 un-

ess otherwise noticed. Fig. 1 shows the total data rate as a func-

ion of the number of nodes scheduled by Disk-MRS and Approx-

iversity using IEEE 802.11b data rates ( Table 1 ). Fig. 2 depicts the

ame experiment with IEEE 802.11n data rates ( Table 2 ). Fig. 3 il-

ustrates the results in terms of Disk-MRS gain, showing that Disk-

RS achieves an average factor 3 gain over ApproxDiversity. For all

ensities, the Disk-MRS algorithm achieved better results. 

In Fig. 4 , we study the influence of the path-loss exponent α on

he performance of the algorithms. For all α, Disk-MRS algorithm

omputes schedules with higher total data rates. 

Next, we evaluate the algorithms for instances where the data

ate is constant (fixed βi = 4 , ∀ � i ∈ L ). Fig. 5 illustrates the perfor-

ance of both algorithms, once again Disk-MRS has a performance

ain factor of about three. 

Next, we analyze the performance of Disk-MRS algorithm by

arying the approximation parameter K . The number of links is set

o 512, β i varies from 4 to 10, and α = 3 . Fig. 6 shows that, as K

ncreases, a better approximation is achieved, as expected. 
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Fig. 3. Multi-Rate Gain with α = 3 , K = 4 , 4 ≤ βi ≤ 10 . 

Fig. 4. Path-loss α Results with 512 links, K = 4 , 4 ≤ β i ≤ 10. 

Fig. 5. Single Rate with α = 3 , K = 4 , βi = 10 , ∀ � i ∈ L . 
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Fig. 6. PTAS parameter K evaluation with 512 links, α = 3 , 4 ≤ β i ≤ 10. 

Fig. 7. Data-Rate results with α = 3 , K = 4 , 4 ≤ βi ≤ 10 (IEEE 802.11b). 

Fig. 8. Data-Rate results with α = 3 , K = 4 , 10 ≤ βi ≤ 32 (IEEE 802.11n). 
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In order to evaluate the performance of Data-Rate Parallel PTAS,

e compared it both to ApproxDiversity and to Disk-MRS. We start

y analyzing the total data-rate of the schedule as a function of

he number of disks. 3 The number of links was set from 8 to

4, l max = 6 
√ 

2 , the Data-Rate Parallel PTAS parameter K = 4 , and

= 3 , unless otherwise noticed. Fig. 7 depicts the total data-rate

s a function of the number of disks scheduled by Data-Rate Par-

llel PTAS, Disk-MRS and ApproxDiversity using data-rates (set T )
rom Table 1 (IEEE 802.11b). Fig. 8 shows the same experiment

ith data-rates from Table 2 (IEEE 802.11n). Since IEEE 802.11n has
3 Note that here we use the number of disks as the x-axis instead of the number 

f links, since it determines the actual size of the problem’s input. 

f  

g

 

o  
reater variety of data-rates, the Data-Rate Parallel PTAS gain over

isk-MRS and ApproxDiversity is greater than the gain obtained

hen comparing with the IEEE 802.11b. But, IEEE 802.11n has more

ata-rate choices, which is (significantly) more expensive to com-

ute than 802.11b data-rates. Fig. 9 illustrates the results in terms

f gain. 

Next, we analyze the path-loss exponent α influence over the

erformance of the algorithms. Fig. 10 depicts their performance

or α varying from 3 to 6. In all cases, Data-Rate Parallel PTAS al-

orithm obtained higher total data rate. 

Figs. 11 and 12 illustrate the distribution of different values

f data-rates for instances using 802.11b and 802.11n, respectively.
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Fig. 9. Data-Rate results with α = 3 , K = 4 , 4 ≤ βi ≤ 10 (IEEE 802.11b). 

Path-loss alpha

Fig. 10. Path-loss α results with 16 links, K = 4 , 4 ≤ β i ≤ 10. 

Fig. 11. Histogram of rates in the solution with link = 16, α = 3 and α = 6 , K = 3 , 4 ≤
βi ≤ 10 (IEEE 802.11b). 

 

 

 

 

 

 

 

 

 

 

Fig. 12. Histogram of rates in the solution with link = 16, α = 3 , K = 3 , 10 ≤ βi ≤
32(IE E E 802 . 11 n ) . 

Fig. 13. Normalized time for Parallel PTAS with various number of threads with 

link = 32, α = 3 , K = 3 , 4 ≤ βi ≤ 10 (IEEE 802.11b). 
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First, we can see that Data-Rate Parallel PTAS selects a variety of

data-rates. We compare solutions with α = 3 and α = 6 . As α in-

creases, the energy dissipation coefficient also increases, decreas-

ing interference from other links and bringing the opportunity to

choose links with higher data-rates. This also allows to choose

links with small data-rate that are not affected by links with high

data-rate. In other words, the option of picking one big disk and

several small ones over two medium disks becomes possible when

the interference decays quicker ( α values are higher). 

We evaluate the scalability of the Parallel PTAS by running on

a computer with 16 processors. Fig. 13 shows the execution time
er number of threads. The y-axis is the completion time normal-

zed by executing time of 1 thread. As we increase the number of

hreads, the execution time decreases. There is no benefit running

ith 32 threads since the computer has 16 processors and there is

he overhead of thread context switch. 

Note that Figs. 1–4 and 7 fig0 0 08 fig0 0 09–10 , which analyze

he performance of the proposed algortihm with variable SINR pa-

ameters β i and α, demonstrate the robustness (low sensitivity) of

his solution to changes in the SINR model parameters. 

To sum up, the simulations indicated that the proposed ap-

roach is both practical, since we were able to implement and

olve various problem instances, and presents advantages in var-

ous scenarios, including different densities of links, number of

ata-rates and path-loss exponent. 

. Conclusion 

In this paper, we studied the problem of scheduling wireless

equests in the physical interference model with multiple and

ariable data rates. We proposed a method of solving two ver-

ions of the problem by providing intermediate representations as

isk graphs. As opposed to the majority of previous results on

raph-based models, our approach allows the application of graph-

heoretic algorithmic tools, while guaranteeing feasible solutions

n the physical interference model, which is closer to reality than

raph models. 
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Fig. 14. Balls of radius w are disjoint. 
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We showed that, in a Euclidean space, where the path loss ex-

onent is strictly larger than two, the problem can be modeled as

 disk graph if the data rates and sender-receiver distances differ

y a contact factor between communication requests. We showed

ow to build the corresponding disk graph instances. Moreover, we

mplemented a polynomial-time approximation scheme algorithm. 
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ppendix A. Proof of Lemma 4.2 

roof. Let S ′ denote the set of senders in S . Note that, by assump-

ion, senders in S ′ are separated by distance at least 2 w (since

(� v ) d vv + z(� w 

) d ww 

≥ 2 z min d min = 2 w ) 

We will use the result from [24] , where it is proved that the

aximum number P of balls of radius r that can be “packed” into

 ball B ( x, t · r ) of radius t · r, t > 0 centered at any point x (in a

-dimensional doubling metric space) is bounded by 

(B (x, tr) , r) ≤ Ct 2 , where C = π
√ 

3 / 6 . (19)

We will first prove the result for the “minimum-radius” link

 min (11) and then extend it to an arbitrary link � i ∈ S . Let g ≥
 be a number and s min ∈ S ′ be the sender of � min . Let S g = { s y ∈
 

′ | d(s min , s y ) < gw } be the set of senders within distance less than

w from s min , and let Ring g = S g \ S g−1 . By construction, S 2 = ∅ (see

ig. 14 ). The senders in Ring g are of distance at least (g − 1) w from

 min , so the affectance of each sender s y in Ring g on � min is at

ost 

 s y ∈ Ring g (l min ) = 

1 /d(s y , r min ) 
α

1 /d α
min 

≤ 1 / (w (g − 1)) α

1 /d α
min 

= 

1 

(z min (g − 1)) α
, (20) 

 l y ∈ Ring g . Then, the overall affectance on � min can be bounded

y 

 S ′ (� min ) = 

∑ 

g≥3 

a Ring g (� min ) 

≤
∑ 

g≥3 

| S g \ S g−1 | ·
(

1 

z min (g − 1) 

)α

= 

(
1 

z min 

)α

·
∑ 

g≥3 

| S g | 
(

1 

(g − 1) α
− 1 

g α

)
(21) 
≤
(

1 

z min 

)α

·
∑ 

g≥3 

| S g | α

(g − 1) α+1 
. (22) 

Equality (21) follows from the definition of Ring g , which is com-

rised by the senders in ball S g minus the senders in ball S g−1 , and

nequality (22) follows from 

1 

(g − 1) α
− 1 

g α
= 

g α − (g − 1) α

g α(g − 1) α
≤ αg α−1 

g α(g − 1) α
< 

α

(g − 1) α+1 

Using the packing bound (19) and the fact that all balls of

adius w are contained in the ball B (s min , (g + 1) w ) , for g ≥ 3

e have that | S g | ≤ P(B (s min , (g + 1) w ) , w ) ≤ C(g + 1) 2 , and there-

ore 

| S g | 
(g − 1) α+1 

≤ C(g + 1) 2 

(g − 1) α+1 
≤ 4 C 

(g − 1) α−1 
. 

he overall affectance on � min can therefore be bounded by 

 S ′ (� min ) ≤
(

1 

z min 

)α

· α · 4 C ·
∑ 

g≥2 

1 

g α−1 

≤
(

1 

z min 

)α

· α · 4 C · 1 

α − 2 

(23) 

= 

1 

β(t(� min )) 
. 

nequality (23) follows from the fact that 
∑ ∞ 

x =2 1 /x k ≤ ∫ ∞ 

1 1 /x k d x =
 / (k − 1) , and the last equality follows by plugging in the value of

 min , defined in (10) . 

This proves our claim for the “minimum-radius” link, i.e., that

 min is part of a p -signal set, p(� i ) = βi , ∀ � i ∈ S. Now let’s consider

n arbitrary link � i ∈ S . Note that, by assumption, an area of radius

 ii · z(� i ) = g i · w = g i · d min z min (see definition (6) of z ( � i )) around

ny sender s i does not contain any other senders in S ′ . Therefore,

he interference on � i comes from rings Ring g , g > g i . Using the

ame reasoning as for � min , we can bound the affectance on � i by

enders y ∈ Ring g as 

a y (� i ) = 

1 /d α
yi 

1 /d α
ii 

≤ 1 / (w (g − 1)) α

1 /d α
ii 

= 

(
d ii 

w (g − 1) 

)α

 S ′ (� i ) ≤
(

d ii 
w 

)α

· α · 4 C ·
∑ 

g≥g i 

1 

(g) α−1 

≤
(

d ii 
w 

)α

· α · 4 C ·
(

α − 1 

α − 2 

· 1 

g (α−2) 
i 

)
≤ 1 

βi 

. 

he last inequality follows by plugging in the values of w , defined

n (8) and g i , defined in (7) . Since all links � i ∈ S are affected by at

ost 1/ β i , set S forms a p -signal set, p(� i ) = βi , ∀ � i ∈ S, i.e., a set

hat can be scheduled concurrently without collisions in the SINR

odel, which completes the proof. �

ppendix B. MWIS-PTAS algorithm 

The MWIS-PTAS algorithm works as follows. First it partitions

he plane into quadrants. Then it applies the so-called shifting

trategy to compute an approximated solution. The finite area of

he quadrants provides an upper bound for the computation cost

f the MWIS. Since the PTAS technique is quite expensive in terms

f processing power, we propose a parallel implementation. Now,

e describe each of these steps in more details. 

Initially the various disks are partitioned into levels according

o their diameters as following. Let k > 1 be a fixed positive in-

eger. First, we scale all disks in such a way that the largest disk

ill have diameter equal to 1. Then, let d min be the smallest diam-

ter among all scaled disks. The disks D 

′ 
z are partitioned into l + 1

http://dx.doi.org/10.13039/501100003593
http://dx.doi.org/10.13039/501100002322
http://dx.doi.org/10.13039/501100004901
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Fig. 15. Shift strategy from line 0. 

Fig. 16. Shift strategy from line 1. 

Fig. 17. Meanings of colors. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 18. Shift strategy from line 2. 

Fig. 19. Optimal solution. 
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levels, where l is the floor of log k +1 (1 /d min ) . Level j , 0 ≤ j ≤ l , con-

sists of disks D i satisfying (k + 1) − j ≤ R (D i ) ≤ (k + 1) −( j+1) , where

R ( D i ) is radius of disk D i . 

Next, we subdivide the plane into a grid, comprised of vertical

and horizontal lines that are (k + 1) − j apart from each other. Then,

we apply the shifting strategy to compute the approximation solu-

tion into each square region of the grid. 

The shifting strategy works as follows. We illustrate it with an

instance of the MWIS problem ( Fig. 15 ). The first step of the shift-

ing strategy divides the plane into stripes (actually, it divides into

a grid but for simplicity we explain the strategy in one dimension).

Then, the shifting strategy combines the stripes into sub-areas of k

continuous stripes (call it k -stripes). Let k = 3 for our example. The

size of the stripes was previously explained in Section 8 . The Shift-

ing Strategy consists of shifting the combined k continuous stripes,

trying all possible k -stripes partitions. In this way, the strategy

tries many divisions of the space. Fig. 15 illustrates the case when

we combine three stripes and the offset is 0. Fig. 16 shows the di-

vision when the offset is 1. Finally, Fig. 18 depicts the regions when

the offset is 2. 

When dividing the area into stripes, disks that touch the line

are disregarded for computation since these disks could conflict

with other disks in the other area. Fig. 17 shows the disk legend.

The disregarded disk are indicated by light gray and dotted lines. 

The second step consists of computing the optimal solution for

each k -stripes. Computing the optimal solution might be computa-

tionally expensive, but the key idea here is that the quadrant-to-

disk-area ratio is bounded, so the number of possible independent
ets per quadrant is also bounded (we give more details later on).

he dark blue (dark grey) disks indicate the disks that are part of

he solution. The white disks are the disks that are not part of the

WIS solution. 

The third step is to compute the final solution for each off-

et, which is the union of the k -stripes solutions. Figs. 15, 16 and

8 have the following solutions, respectively: 5, 4 and 7 (assuming

ll disks have weight 1). 

The final solution for the shifting strategy is the one with the

ighest total weight, in our example, it is Fig. 18 . Observe that the

ptimal solution is 8 ( Fig. 19 ) but the shifting strategy solution is

, since it is an approximation algorithm. 
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