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a b s t r a c t 

Community detection is one of the important methods for understanding the mechanism behind the 

function of social networks. The recently developed label propagation algorithm (LPA) has been gaining 

increasing attention because of its excellent characteristics, such as a succinct framework, linear time 

and space complexity, easy parallelization, etc. However, several limitations of the LPA algorithm, includ- 

ing random label initialization and greedy label updating, hinder its application to complex networks. A 

new parallel LPA is proposed in this study. First, grey relational analysis is integrated into the label updat- 

ing process, which is based on vertex similarity. Second, parallel propagation steps are comprehensively 

studied to utilize parallel computation power efficiently. Third, randomness in label updating is signif- 

icantly reduced via automatic label selection and label weight thresholding. Experiments conducted on 

artificial and real social networks demonstrate that the proposed algorithm is scalable and exhibits high 

clustering accuracy. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

As Web 2.0 applications rapidly develop, social networking has

ecome an important means for people to share information and

ommunicate with each other worldwide. Aside from analyzing

etwork structures, detecting groups of people with common inter-

sts or behavior patterns also plays an important role in research

n social networks. Unlike traditional networks, social networks

re complex and have their own special characteristics. First, social

etworks are usually extremely large in scale. For example, active

acebook users have already reached one billion in 2014 [1] . The

igh number of vertices and edges of networks significantly affect

rocessing capability. Second, social networks are typical heteroge-

eous networks that consist of different types of data from various

ources. For example, people can share their favorite writings, pic-

ures, songs, or movies on Facebook or Twitter. Therefore, handling

eterogeneous data is a necessary function of modern tools for so-

ial network analysis. Finally, community structures hidden in so-

ial networks may be highly complex. Communities may overlap or

ay be hierarchical. For example, the circle of friends of a person
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s usually combined with those of his/her colleagues, or teachers

orking in a university can be grouped into different levels, such

s colleges and departments. 

Many community detection algorithms have been proposed to

dentify complex community structures in social networks [2] .

ommunity detection appears to be similar to traditional cluster-

ng or graph partitioning. Thus, several effective clustering or graph

artitioning algorithms have been applied in community detec-

ion. The Kernighan–Lin algorithm aims to minimize the difference

etween intra-edges and inter-edges to detect communities [3] .

pectral methods determine the minimum cut to separate a graph

nd recursively divide a network into sections where communities

merge naturally [4] . The critical modularity character of networks

as discovered when hierarchical clustering was first applied by

rivan and Newman to detect communities [5] . Since its discovery,

odularity has been used frequently to design community detec-

ion algorithms. For example, it can be utilized as an evaluation

easure, an optimization objective, or a stopping criterion [2] . 

Early community detection algorithms cannot handle large so-

ial networks because these algorithms exhibit space complexity

nd require substantial time [1] . A promising algorithm, called

he label propagation algorithm (LPA), was proposed recently [6] .

his algorithm is particularly suitable for large social networks

ith complex and overlapping communities because of various
n algorithm based on parallel grey label propagation, Computer 
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reasons. First, the running time of LPA is linear to network size.

Thus, it can process extremely large networks. Second, LPA does

not require predefining the number of communities. Communities

emerge gradually during the propagation of labels. Finally, the al-

gorithm allows a vertex to carry multiple labels [7] . It finds over-

lapping communities naturally. However, LPA also has limitations.

First, vertex labels are initialized randomly, which results in the

unstable performance of LPA. Second, the greedy label updating

strategy tends to produce extremely large communities (i.e., mon-

ster communities) that swallow up most small communities near

them. Recently, several algorithms have been proposed to address

the limitations of the LPA algorithm The COPRA) [7] , SLPA [8] , and

BMLPA [9] algorithms alleviate the problem of monster communi-

ties by introducing an extra parameter to control the number of

labels that a vertex can hold. To deal with extremely large net-

works, SLPA has been further extended to the MPI model [10] to

run parallel on a multi-core computer [11] . The PSCAN algorithm

[12] , which was designed on the Hadoop framework, provides an-

other parallel scheme for the MapReduce model [13] . The LPA–CNP

algorithm [14] presents a new label updating strategy by consid-

ering the effect of neighbors that are more than one hop away.

The CK–LPA algorithm [15] provides another label updating strat-

egy that weighs the label of a vertex according to whether the

vertex is in the community kernel. The LPA–S algorithm [16] sug-

gests that a synchronous label propagation strategy is more effec-

tive than the default asynchronous strategy. In our previous works

[17, 18] , we proposed a parallel affinity propagation technique that

was efficient in discovering communities in large social networks.

We also extended LPA under the MapReduce framework to process

large networks by considering the merits of this algorithm [19] .

In the current study, we design a new LPA parallelization scheme

from a different perspective, which addresses the limitations of our

previous work [19] . The major contributions of this study are sum-

marized as follows. 

1) The neighbors of a vertex and the similarity distribution of the

neighbors are considered in measuring similarity among ver-

tices by including grey relational analysis in calculating simi-

larity. 

2) Jaccard similarity is integrated into grey similarity. Thus, the

neighbors of a vertex and the neighbors of its neighbors are

considered in calculating similarity. 

3) A new parallel similarity calculation scheme based on the

MapReduce model is developed to improve the calculation of

similarity among vertices. 

4) Vertex labels are updated according to both weight threshold-

ing and automatic selection strategies. 

5) New parallel operators of the Spark framework are adopted in

the proposed algorithm to improve its scalability. 

Comprehensive experiments conducted on both artificial and

real social networks verify the effectiveness and efficiency of the

new algorithm. 

The remainder of the paper is organized as follows. In Section 2 ,

the theoretical basis of the grey relational analysis is introduced.

Section 3 provides a comprehensive discussion of the concept

behind the proposed algorithm, its detailed implementation, and

its complexity analysis. The results of the experiments conducted

on artificial and real social networks are presented in Section 4 .

Section 5 concludes the study and presents an outline for future

research. 

2. Grey relational analysis 

Grey relational analysis is one of the important components

of grey methods [20] . Unlike statistical and fuzzy methods, grey
Please cite this article as: Q. Zhang et al., A social community detectio
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ethods do not require large samples or a distribution hypothe-

is. Instead, analysis is performed by regarding problem objects as

 whole, and thus, this method is suitable for data with complex

ntrinsic structures. Recently, Zhang introduced entropy theory of

nformation sequence to improve grey relational analysis [21] . The

ey concepts of grey relational analysis are defined as follows. 

efinition 1. Let X = { � x i | � x i = ( x i (1) , x i (2) , . . . , x i (n )) , i = 0 , 1 , . . .

 m } be a set of sequences whose lengths are all equal to n . � x 0 is

alled the reference sequence, and the remaining � x i s are called the

omparison sequences. Given any real number ξ ∈ [0, 1], let 

γ ( x 0 ( j) , x i ( j)) 

= 

min 

i 
min 

j 
| x 0 ( j) − x i ( j) | + ξ max 

i 
max 

j 
| x 0 ( j) − x i ( j) | 

| x 0 ( j) − x i ( j) | + ξ max 
i 

max 
j 

| x 0 ( j) − x i ( j) | , (1)

then γ ( x 0 ( j ), x i ( j )) satisfies four grey relational axioms, namely

ormalization, even symmetry, integrity and closeness. γ ( x 0 ( j ),

 i ( j ))is called the grey relational coefficient of � x i to � x 0 at the j th

oint. ξ is called the differentiation coefficient. Let 

( � x 0 , � x i ) = 

1 

n 

n ∑ 

j=1 

γ ( x 0 ( j) , x i ( j)) , (2)

then γ ( � x 0 , � x i ) is referred to as the grey relational degree of � x i 
o � x 0 . 

efinition 2. Let � r i = (γ ( x 0 ( j) , x i ( j))) be the grey relational coef-

cient sequence of the i th comparison sequence. The mapping 

φ : � r i → 

�
 v i 

γ ( x 0 ( j) , x i ( j)) → v ( x 0 ( j) , x i ( j)) 

 ( x 0 ( j) , x i ( j)) = 

γ ( x 0 ( j) , x i ( j)) 
n ∑ 

j=1 

γ ( x 0 ( j) , x i ( j)) 

(3)

is called the distribution mapping of the grey relational coef-

cient. v ( x 0 ( j ), x i ( j )) is the grey relational density of the j th point

n the i th comparison sequence. All the grey relational densities of

his comparison sequence form a grey relational density sequence,

hich is denoted as � v i . 

efinition 3. Let V = { � v i | i ∈ N} be the grey relational density se-

uence set. Thus, function 

( � v i ) = −
n ∑ 

j=1 

v ( x 0 ( j) , x i ( j)) ln v ( x 0 ( j) , x i ( j)) (4)

is called the grey relational entropy of the i th comparison se-

uence. 

efinition 4. Let I( � v i ) be the grey relational entropy of the i th

omparison sequence and I m 

be the largest grey relational entropy

f the grey relational coefficient sequence. Then, 

( � x 0 , � x i ) = I( � v i ) / I m 

(5)

is called the entropy relational degree of the i th comparison se-

uence. 

efinition 5. Let γ ( � x 0 , � x i ) and E( � x 0 , � x i ) be the grey relational de-

ree and the entropy relational degree of the i th comparison se-

uence, respectively. Then, 

 ( � x 0 , � x i ) = E( � x 0 , � x i ) × γ ( � x 0 , � x i ) (6)

is called the balanced closeness degree of the i th comparison

equence. 
n algorithm based on parallel grey label propagation, Computer 
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Fig. 1. Procedures of grey label propagation. 
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The balanced closeness degree considers both the closeness of

he points from grey relational factor sequences and global indis-

riminate closeness. Thus, the strong associative inclination of the

ocal data points can be addressed. 

. Parallel grey label propagation 

.1. Grey label propagation 

Each vertex in LPA updates its label according to the labels of

ts neighbors. The labels chosen by more neighbors are likely to be

elected as the new labels of a vertex [6–9] . This situation indicates

hat the labels of each neighbor are equally weighted from the per-

pective of label weighting. However, different neighbors may have

arying effects on a vertex [22] . Hence, weighting different labels

arried by various neighbors is preferable. Accordingly, we select

he new labels of a vertex in three steps. First, the influence of

ach neighbor is measured through its similarity with the vertex.

ubsequently, the labels of a neighbor are weighted through its in-

uence. Finally, labels with high weights are prioritized as the new

abels of a vertex. The grey relational degree can be viewed as a

omposite metric that measures the similarity of two sequences

ot only in a pointwise way like the Euclidean distance but also in

 probability distribution way like the Kullback–Leibler divergence.

oreover, by combining it with the Jaccard index, the grey rela-

ional degree can measure the similarity according to set coverage

s well. Therefore, we adopt this metric to calculate the similar-

ty of the vertices and call the new label propagation process grey

abel propagation. 

The general procedures of grey label propagation are illustrated

n Fig. 1 . 

.2. Parallelization of grey label propagation 

The parallelization of grey label propagation includes the par-

llelization of four critical steps: adjacency list construction, grey
Please cite this article as: Q. Zhang et al., A social community detectio

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.06.002 
imilarity calculation, vertex label initialization, and vertex label

pdating. 

.2.1. Parallel adjacency list construction 

When a network is too large to be stored on the memory of

 single machine, it is typically saved in the distributed memory,

uch as the HDFS (Hadoop Distributed File System) or HBase. Thus,

 parallel method can be developed to read the network from the

istributed memory and build an adjacency list. A simple and ef-

ective scheme for constructing a parallel adjacency list is depicted

n Fig. 2 . First, each edge e ij is read from the distributed mem-

ry and mapped onto a tuple with i as the key and j as the value.

hen, the tuples are grouped by the keys. The values with the same

ey i are reduced into a set NB ( i ), including all the neighbors of i ,

amely, NB (i ) = { j| e i j isanedge } . After all the NB ( i )s are built, the

djacency list of the network is constructed. 

.2.2. Parallel grey similarity calculation 

Vertices generally do not have the same number of neighbors.

owever, the balanced closeness degree requires all the sequences

o have equal lengths. Thus, developing a method to transform the

eighbors of two vertices into two lists with equal lengths for grey

imilarity calculation is necessary. A feasible scheme is presented

n Fig. 3 . First, the neighbor lists of a vertex i and its neighbor j ,

.e., ( x 1 , x 2 , …, x n ) and ( y 1 , y 2 , …, y m 

), are used to compute Jaccard

imilarity. Second, the lists of vertices i and j of Jaccard similarity,

.e., ( s x 1 , s x 2 , …, s xn ) and ( s y 1 , s y 2 , …, s yn ), are aligned and padded

ith zeroes to build new similarity lists with equal lengths. In par-

icular, the new similarity list of vertex i will be padded with zero

f a vertex k is its neighbor and vice versa if it is not a neighbor of

ertex j . Hence, two transformed lists with equal lengths are ready

or calculating balanced closeness degree according to Eq. (6) . Fur-

hermore, the distribution of neighbors and their neighbors is re-

arded as a whole, which is deemed beneficial for label selection

14] . 

A naive scheme for calculating parallel grey similarity is de-

icted in Fig. 4 [12] . The main idea is to collect the neighbor lists

f two vertices to calculate their Jaccard similarity. A tuple with

ey ( i, j ) and value NB ( i ) is sent for each neighbor j of vertex i in

B ( i ) using the map operator. The first reduce operator will receive

oth NB ( i ) and NB ( j ) for the same key ( i, j ) to support the calcula-

ion of Jaccard similarity s ( i, j ). The second reduce operator is used

o collect the Jaccard similarity s ( i, j ) of all the neighbors of vertex

 to build similarity vector s i . 

However, the naive scheme has a serious defect. Fig. 4 shows

hat the map operator sends NB ( i ) for each neighbor of vertex i .

ence, this scheme requires O( k 2 ) space for each vertex and O( nk 2 )

or the entire network, where k is the average number of neighbors

f a vertex. For networks with a smooth degree distribution, the

pace required can be reduced to O( n ) because k is typically sig-

ificantly smaller than n . By contrast, for networks with a skewed

egree distribution, space complexity may reach O( n 3 ) because of

he extremely large k for a few vertices. Therefore, the scheme

ay be unable to handle a moderate network if its degree dis-

ribution is highly skewed. The defect is caused by the excessive

ropagation of the same NB ( i ), i.e., broadcasting the same neighbor

ist of a vertex too many times. To address this problem, we de-

ign a scheme that broadcasts NB ( i ) to each node of a computation

luster only once. A traditional parallel computation framework,

uch as Hadoop, does not support the direct transfer of informa-

ion to a certain node. However, the parallel computation frame-

ork Spark can effectively support orientated data transfer with

he aid of the new partitionBy and mapPartition operators. Thus, a

ew efficient scheme for parallel similarity calculation is developed

 Fig. 5 ). 
n algorithm based on parallel grey label propagation, Computer 
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Fig. 2. Scheme for constructing a parallel adjacency list. 

Fig. 3. Scheme of grey similarity calculation. 

Fig. 4. Naive scheme for parallel similarity calculation. 

Fig. 5. New scheme for parallel similarity calculation. 
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First, the partition id p k for each of its neighbor is calculated

for any vertex i . Second, the tuple ( i, NB ( i )) is sent to each partition

only once. Third, by using the partitionBy operator, each partition

will have sufficient vertices, along with their neighbors, for simi-

larity calculation, i.e., for each k in NB ( i ), NB ( k ) is also in the same

partition. Then, the similarity scheme depicted in Fig. 3 is adopted

to calculate similarity vector s i for each vertex i in the partition

by using the mapPartition operator. Finally, all the similarity vec-

tors are collected using the reduce operator. Determining that N p 
p

Please cite this article as: Q. Zhang et al., A social community detectio

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.06.002 
opies of the same ( i, NB ( i )) will exist at most is easy. Thus, space

ccupation can be significantly reduced. 

.2.3. Parallel vertex label initialization 

The parallelization of vertex label initialization is a straightfor-

ard process, as shown in Fig. 6 . Vertex i is initialized with a label

et L ( i ), which contains only itself as its label. The weight of each

abel is initialized to 1.0. Our algorithm can identify the overlap-

ing communities by allowing each vertex to carry a label set. 
n algorithm based on parallel grey label propagation, Computer 
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Fig. 6. Scheme of parallel vertex label initialization. 
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.2.4. Parallel updating of vertex labels 

The label weights should be calculated before updating the ver-

ex labels. The neighbor list, similarity vector, and label set of each

ertex i can be connected using the join operator to calculate label

eights, as shown in Fig. 7. 

For each vertex i , s i and L ( i ) are sent to each of their neighbors

o calculate label weight according to Eq. (7) . The weight w ( l k )

or label l k is equal to the ratio of its similarity weight s ( l k ) to the

imilarity weight of all the labels. The similarity weight of label l k 
s the sum of the similarity of all the neighbors whose label sets

nclude this label. 

 ( l k ) = 

s ( l k ) 

1 + 

∑ 

p 
s ( l p ) 

 ( l k ) = 

∑ 

j∈ LV ( l k ) 
s i j 

V ( l k ) = { i | l k ∈ L ( i ) } 

(7) 

The vertex labels are updated according to the newly updated

abel weights, as demonstrated in Fig. 8 . The parallelization process

tself is simple and only requires a map operator. The complexity

ies in the map operation details. For each L ’( i ), the following steps

re performed in the map operation. 

(1) The labels in L ’( i ) are sorted according to their weights in a

descending order. 

(2) The ankle value a k of the labels is determined. 

(3) The labels whose weights are smaller than ρw max are

dropped. 

(4) The left labels form the new label set L ′ ′ ( i ). 

The ankle value is used to select the position in a label weight

equence in which two consecutive weight values exhibit the

harpest fluctuation [23] . Threshold ρ is used to set up a constraint

herein labels that are too light are no longer considered [24] . 

.3. The PGLPA algorithm 

By combing all the parallel steps together, a parallel label prop-

gation based on grey relational analysis, called PGLPA, is devel-

ped by combining all the parallel steps, as follows. 

Algorithm 1 . PGLPA 

Input : network G = ( V,E ), where V is the vertex set and E is the edge set; 

label selection parameter ρ; maximum iterations maxIter 

Output : community set { C i } 

1. //PARALLEL ADJACENCY LIST CONSTRUCTION 

2. map (key i , value j ) 

3. output (key i , value j ); 

4. output (key j , value i ); 

5. reduce (key i , values { j, k , … …}) 

6. output (key i , value ( NB ( i )); 

7. //PARALLEL GREY SIMILARITY CALCULATION 

8. map (key i , value NB ( i )) 

9. output (key partition p k , value ( i, NB ( i )) ); 

m  

Please cite this article as: Q. Zhang et al., A social community detectio

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.06.002 
10. mapPartition(key partition p k , value {( i, NB ( i )), ( j, NB ( j )), … …}) 

11. output (key partition p k , value ( i , s i )); 

12. reduce(key NULL, values {( i , s i )}) 

13. output (key i value s i ); 

14. //PARALLEL VERTEX LABEL INITILIZATION 

15. map (key i , value NB ( i )) 

16. output (key i , value L ( i )); 

17. //PARALLEL LABEL PROPAGATION 

18. iter ← 1 

19. while iter < maxIter do 

20. //PARALLEL LABEL WEIGHT CALCULATION 

21. join((key i , value NB ( i )), (key i , value s i ), (key i , value L ( i ))); 

22. output (key i , value ( NB ( i ), s i , L ( i ))); 

23. map (key i , value ( NB ( i ), s i , L ( i ))) 

24. output (key j , value (s i , L ( i ))); 

25. reduce (key i , values {(s j , L ( j )), (s k , L ( k )), … …}) 

26. output (key i , value L ′ ( i )); 
27. //PARALLEL VERTEX LABEL UPDATING 

28. map (key i , value L ′ ( i )) 
29. output (key i , value L ′ ′ ( i )) 
30. if termination conditions are satisfied, then 

31. break; 

32. end if 

33. end for 

34. extract communities from the vertex–label relationship; 

35. output the communities; 

.4. Complexity analysis 

The time cost for parallel adjacency list construction, parallel

ertex initialization, parallel label weight calculation, and parallel

ertex label updating is proportional to the number of vertices n

nd vertex degree k and inversely proportional to the number of

achines N m 

. The time cost for parallel grey similarity calculation,

side from its dependence on n and k , is also proportional to the

umber of partitions N p . N p is typically set to the number of CPU

ores in a computation cluster. Thus, it can be regarded as propor-

ional to N m 

. The total time complexity of PGLPA is O( n × k / N m 

),

hich can be further reduced to O( m / N m 

), where m is the number

f edges. 

Network data require O( m / N m 

) space. The space necessary for

arallel computation, excluding that for parallel grey similarity cal-

ulation, is O( n × k / N m 

). Parallel grey similarity calculation occu-

ies O( n × k ) because of the N p copies of neighbor lists. Thus, the

otal space complexity of PGLPA is O( n × k ). 

. Experiments 

Comprehensive experiments were conducted on artificial and

eal networks to evaluate the performance of the proposed algo-

ithm. This section presents the details of the experimental prepa-

ation and the analysis of the experimental results. 

.1. Experimental preparation 

.1.1. Datasets 

The artificial networks were generated using the benchmark

etwork generator developed by Lancichinetti and Fortunato [25] .

he real social networks were obtained from the SNAP project

ebsite [26] . Table 1 summarizes the details of the experimental

ata sets. Parameters n, m, mu, k, maxk, minc, maxc, on , and om

epresent the number of vertices and network edges, the mixing

arameter required by the network generator, the minimum and

aximum degrees of the vertices, the average and maximum com-

unity sizes, the number of overlapping vertices, and the number

f memberships of the overlapping nodes, respectively. 

The sizes of the artificial networks vary from 100 k (one thou-

and) to 500 k (fifty thousand) for small networks and 1 M (one

illion) to 5 M (five million) for large networks. The ratios of the

ixed vertices range from 10–80%. The degree of a vertex varies
n algorithm based on parallel grey label propagation, Computer 
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Fig. 7. Scheme of parallel label weight calculation. 

Table 1 

Details of the experimental data sets. 

Network Description 

Artificial networks n = 100k to 500k for small networks and 1 M to 5 M for large networks 

mu = 0.1 ∼0.8, k = 20, maxk = 100, minc = 10, maxc = 100, on = 0.1 n, om = 3 

Real networks CA-HepPh n = 12,008, m = 118,505 

Email-Enron n = 36,692, m = 183,831 

web-Stanford n = 281,903, m = 2,312,497 

com-youtube n = 1,134,890, m = 2,987,624 

Fig. 8. Scheme of parallel vertex label updating. 
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from 20–100, and the size of a community varies from 50–100.

The directed edges in the directed graphs are all transformed into

undirected edges to obtain the corresponding undirected graphs. 

4.1.2. Implementations of the parallel COPRA and SLPA 

The clustering accuracy and run time of the proposed algorithm

are compared with those of the COPRA and SLPA algorithms. Paral-

lel versions of the COPRA and SLPA algorithms were developed for

fair comparison. Their details are given in follows. 

(1) Parallel COPRA (PCOPRA) 

With modifications to the steps of PGLPA, we can design a

scheme for the parallelization of COPRA. First, the parallel grey

similarity calculation is no long necessary. Second, the weight of

each vertex’s initial label is set to 1.0. Third, in the step of parallel

label weight calculation, we only need to measure the weight of a

vertex’s label according to its proportion in the vertex’s neighbors.

Finally, each vertex label is updated according to COPRA’s strategy.

(2) Parallel SLPA (PSLPA) 
r  

Please cite this article as: Q. Zhang et al., A social community detectio

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.06.002 
PGLPA can also be modified to realize the parallelization of

LPA. First, the parallel grey similarity calculation is removed. Sec-

nd, the initial count of each vertex’s label is set to 1. Third, the

arallel label weight calculation and the parallel vertex label up-

ating are replaced with the parallel speak and listen that includes

wo steps: (1) parallel speak: each vertex selects a label randomly

rom its memory with the probability of its occurrence and sends

t to its neighbors; (2) parallel listen: each vertex selects the most

opular label received from its neighbors to its memory. Fig. 9 il-

ustrates the scheme of parallel speak and listen. The map operator

ends the selected labels l i to vertices’ neighbors. The reduce oper-

tor receives vertices’ labels sent from their neighbors and updates

heir memory L ′ ( i ). Finally, a postprocessing procedure is added to

xtract communities according to vertices’ memory of labels and

he threshold r . 

.1.3. Performance criteria 

Clustering accuracy is measured using normalized mutual in-

ormation (NMI) [27] if the community structures of a network are

nown or modularity Q [2] if this information is absent. The equa-

ions for NMI and Q are as follows: 

MI (X | Y ) = 1 − [ H 

(X | Y ) + H 

(Y | X )] / 2 

 ( X ) = −
n ∑ 

i =1 

p ( x i log x i ) 

 ( X ) = 

∑ 

i, j 

p 
(
x i , y j 

)
log 

p ( y j ) 
p ( x i , y j ) 

, (8)

here X and Y denote the sets of true communities and discovered

ommunities, respectively. x i and y i represent a vertex in X and Y ,

espectively. H( X ) is the entropy of X , and H( X | Y ) is the conditional
n algorithm based on parallel grey label propagation, Computer 

http://dx.doi.org/10.1016/j.comnet.2016.06.002


Q. Zhang et al. / Computer Networks 0 0 0 (2016) 1–11 7 

ARTICLE IN PRESS 

JID: COMPNW [m5G; June 15, 2016;22:8 ] 

Fig. 9. Scheme of parallel speak and listen in PSLPA. 
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Fig. 10. NMI and run time of the algorithms on small networks with varying sizes. 
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 = 

n c ∑ 

c=1 

[ 

l c 

m 

−
(

d c 

2 m 

)2 
] 

, (9) 

here m, n c , l c , and d c are the edge number, the number of com-

unities, the number of internal edges in community c , and the

um of degrees in community c , respectively. 

.1.4. Run configuration 

The parameters of the algorithms are: (1) PGLPA: ρ = 0.5, max-

ter = 10; (2) COPRA and PCOPRA: v = 3, maxIter = 10; (3) SLPA

nd PSLPA: r = 0.5, maxIter = 10. Parameters ρ and r are set to 0.5

ccording to the suggestion in [8] . Parameter v is set to the true

umber of communities ( om in Table 1 ) that a vertex belongs to.

he results of the experiments indicate that PGLPA converges after

0 iterations. Hence, the maxIter s of all the algorithms are set to

0 for fair comparison. 

PGLPA is implemented on the Spark framework [28] . All the ex-

eriments are performed on a cluster composed of eight machines

irtualized using VSphere 5.5. All the machines have the same con-

guration, as follows: 2.0 GHz 2-core CPU, 8GB RAM, and CentOS

.5. 

.2. Experimental results for the artificial networks 

(1) Effect of network size 

The experimental results for small networks with varying sizes

re presented in Fig. 10. 
Please cite this article as: Q. Zhang et al., A social community detectio

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.06.002 
As shown in Fig. 10 (a), the clustering accuracy of the PGLPA al-

orithm is consistently better than the other algorithms on small

etworks. This result demonstrates the effectiveness of grey sim-

larity and automatic label selection through the ankle values.

oreover, constraint on minimum label weight also helps stabi-

ize identified communities. It is interesting to find that the per-

ormance of COPRA and PCOPRA is not identical and neither is

he performance of SLPA and PSLPA. It may be caused by the syn-

hronous label updating strategy used in PCOPRA and PSLPA. The

ynchronization mechanism is necessary for designing the paral-

el steps of the algorithms. On the contrary, COPRA and SLPA up-

ate the labels asynchronously. Therefore, the updated labels of

he early processed vertices can affect the vertices processed later.

ig. 10 (b) shows that the time cost of all the algorithms increases

early linearly with network size except for COPRA. When network

ize is larger than 300 k, the runtime of COPRA increases rapidly

ue to the memory constraint. For small networks, the time spent

n data processing (work time) is comparable with the time spent

n cluster administration and communication (extra time). Hence,

he speedup of the other algorithms caused by parallel computa-

ion is not evident. It is possible that the parallel algorithms run

lower than the single-machine algorithms when the extra time

ar exceed the work time. Moreover, the time cost of calculating

accard similarity and grey similarity, as well as that of search-

ng for ankle values, hinders PGLPA. However, the experimental

esults for large networks demonstrate that the power of paral-

el computation becomes remarkable when network scale increases

eyond the capability of a single-machine algorithm such as

OPRA. 
n algorithm based on parallel grey label propagation, Computer 

http://dx.doi.org/10.1016/j.comnet.2016.06.002


8 Q. Zhang et al. / Computer Networks 0 0 0 (2016) 1–11 

ARTICLE IN PRESS 

JID: COMPNW [m5G; June 15, 2016;22:8 ] 

(a) NMI (b) run time

0

0.2

0.4

0.6

0.8

1

1M 2M 3M 4M 5M

PGLPA PCOPRA PSLPA COPRA SLPA

N
M

I

network size

0

1000

2000

3000

4000

5000

6000

7000

1M 2M 3M 4M 5M

PGLPA PCOPRA PSLPA

COPRA SLPA

R
un

 ti
m

e 
(s

)

network size

Fig. 11. NMI and run time of the algorithms on large networks with varying sizes. 
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The experimental results for large networks with varying sizes

are presented in Fig. 11 . The results of COPRA are absent on the

networks of 2 M to 5 M because it runs out of memory on the

networks. 

Fig. 11 (a) shows that the clustering accuracy of all the algo-

rithms on large networks are nearly the same as those on small

networks. PGLPA is again consistently better than the other algo-

rithms. From Fig. 11 (b), we can see that the run time of PGLPA in-

creases nearly linearly with network size, which reflects the good

scalability of the algorithm. PCOPRA algorithm also scales well

with the increase in network size. However, its run time is al-

ways higher than that of PGLPA. COPRA can only run on the 1 M

network and its time cost is extremely high. SLPA and PSLPA run

faster than PGLPA and PCOPRA because the speak and listen strat-

egy is simpler than the label updating strategies used in PGLPA.

PSLPA exhibits better scalability than SLPA, which is largely due to

the parallel speak and listen scheme developed in Fig. 9 . In the

real world, as a smoothly scalable algorithm is important for ef-

ficiently analyzing large networks because many social networks

contain millions or even billions of vertices. 

(2) Effect of mixing degree 

The experimental results for the 100k network with varying mu

values are presented in Fig. 12. 

Fig. 12 shows that the clustering accuracy of all the algorithms

except COPRA is stable when the value of mu is smaller than 0.5.

Subsequently, clustering accuracy decreases as the value of mu in-

creases. The poor performance of PCOPRA shows that the syn-

chronous label updating used for parallelizing COPRA has great im-

pact on the clustering accuracy. The performance of PGLPA is con-
Please cite this article as: Q. Zhang et al., A social community detectio

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.06.002 
istently better than those of the other algorithms at all mu values.

utomatic label selection through the ankle values and constraint

n the minimum label weight help strengthen the stability of the

ertex labels. Therefore, the effect of monster communities on the

ast number of nearby small communities is suppressed. 

(3) Effect of cluster scale 

Experiments are conducted on the 1 M network with a varying

umber of machines to evaluate the effect of cluster scale on the

erformance of PGLPA, PCOPRA and PSLPA. The speedup is calcu-

ated using Eq. (10) : 

peedup = 

run time on the single machine 

run time on the cluster 
. (10)

The experimental results for the 1 M and 3 M networks with a

arying number of machines are presented in Fig. 13. 

Fig. 13 shows that a boost on running speed caused by adding

achines to the cluster is evident when the number of machines

s smaller than 8. Subsequently, the advantage of expanding the

luster begins to decrease. At the beginning, communication and

anagement costs among the machines in a moderate compu-

ation cluster scale are negligible. Therefore, running speed in-

reases steadily when the CPU and memory resources enrolled in

he cluster are increased. However, communication and manage-

ent costs become sufficiently high when the cluster expands to

 certain degree, which cancels the advantage of increasing com-

utation power. Hence, speedup slows down when the number of

achines increases across a certain point. The speedup of all the

lgorithms on the 3 M networks is consistently better that on the

 M networks, which means that the parallel computation model

s particularly suitable for large networks. The speedup of PCOPRA
n algorithm based on parallel grey label propagation, Computer 
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i  

T  

a  

i  

P  

t  

v  

z

4

 

F

 

t  

t  

o  

n  

n  

c  

t  

a  

t  

d  

t  

a  

w  

P

5

 

m  

o  

c  

p  

i  

t  

t  

p  

p  

t  

w

 

i  

S  

c  

w  

a  

u

A

 

F  

H  

G  

e  

j  

G  

o  

t  

t  

j

R

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s the most remarkable since its parallel scheme is the simplest.

he speedup of PGLPA is similar to PSLPA on the 3 M networks

nd is better than PSLPA on the 1 M networks. Additional similar-

ty calculation steps and complex label updating strategies hinders

GLPA. PCOPRA runs out of memory on the 3 M network when

he number of machines is reduced to two. Therefore, the speedup

alue of the PCOPRA-3 M curve at the point of two machines is

ero. 

.3. Experimental results for the real networks 

The experimental results for the real networks are presented in

ig. 14. 

As shown in Fig. 14 (a), the performances of the algorithms on

he real networks are considerably different from those on the ar-

ificial networks. First, real networks generally do not present obvi-

us community components. Therefore, clustering accuracy on real

etworks is not as high as that on artificial networks. Second, real

etworks may contain complex community structures that make

ommunity detection a time-consuming task. Therefore, the ver-

ical axis scale of Fig. 14 (b) is set to the power of 10. On nearly

ll the real networks, PGLPA is superior to the other algorithms in

erms of both clustering accuracy and run time. This finding in-

icates that grey similarity calculation, automatic label selection

hrough ankle values, and constraint on the minimum label weight

lso affect real networks. COPRA fails to run on the CA-HepPh net-

ork and the com-youtube network. Therefore, the results of CO-

RA on these two networks are empty in Fig. 14. 

. Conclusions 

LPA, an efficient community detection algorithm, exhibits both

erits and defects. In this study, we investigate the parallelization

f the procedures of LPA and propose a fully parallel LPA. The cal-

ulation of vertex similarity on which label updating is based is

arallel. Grey relational degree is integrated into Jaccard similar-

ty to provide information for measuring similarity. The initializa-

ion and updating of the labels are also run in parallel, and mul-

iple labels are allowed to be assigned to a vertex. Therefore, the

roposed algorithm can discover overlapping communities. The ex-

eriments conducted on artificial and real networks demonstrate

hat the proposed algorithm runs well on both small and large net-

orks. 

Several issues remain for further research. First, the label updat-

ng strategy can be enhanced to consider label weighting manners.
Please cite this article as: Q. Zhang et al., A social community detectio

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.06.002 
econd, the algorithm can be improved further to be practical by

onsidering both overlapping and hierarchical communities. Third,

ith the rapid emergence of new parallel computation frameworks

side from Hadoop and Spark, efficient parallel operators may be

tilized to improve the performance of the algorithm. 
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