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a b s t r a c t 

As the volume of content served by content distribution networks (CDNs) grows, these networks evolve 

to improve performance. Their performance is difficult to characterize because it depends on a number 

of factors. In this paper, we develop a methodology called DBit that can determine whether one CDN’s 

user-perceived performance is statistically different from another. We validate DBit and demonstrate its 

usefulness on CDNs used for photo delivery. We use PlanetLab to collect HTTP download data for 14.5 

million photo fetches and 5 million video fetches and RIPE Atlas nodes hosted in end-user homes in 1470 

ASes worldwide to obtain 470,400 photo fetches respectively, from three Photo CDNs and two Video 

CDNs. We find that DBit can identify significant performance differences not just between CDNs, but also 

across time and location. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Beyond Akamai’s early deployment of a large content distribu-

tion network (CDN), other content providers have recently built

out their own CDNs [1–5] . Today, a very large proportion of In-

ternet traffic is served by CDNs, so it is important to develop ro-

bust methodologies to understand their performance. The perfor-

mance of CDNs depend on many factors, including placement of

the front-end servers in the topology, the quality of their connec-

tivity to clients, the cache sizes and the cache efficacy, the com-

pute capacity of the front-ends, the network connectivity between

the front-ends and the back-end, the efficiency of the storage sys-

tem (e.g., for photos and videos) or the compute system (e.g., for

search) at the back-end, and so forth. 

There is, however, a lack of a widely accepted systematic

methodology for their performance analysis. Existing techniques

for CDN performance comparison fall into two classes. Some stud-

ies use first order statistics (mean, median, percentiles) of perfor-

mance measures and compare CDNs based on the differences in

the magnitude of these first-order statistics [6–8] . Others [9] com-

pare CDNs based on the distribution of the difference in perfor-

mance metrics across all clients. In either case, whether the per-

formance difference is significant is often a matter of judgement. 

Contributions. In this paper, we make the following contri-

butions: (1) we show that comparisons based on first or second
∗ Corresponding author. 
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rder statistics can lead to faulty conclusions, (2) we consider a

omplementary methodology for comparing CDNs based on sta-

istically significant differences in the distributions of performance

etrics (like latency) as seen by multiple clients. Specifically, given

wo CDNs A and B , we ask: how can we systematically determine if

 ’s user-perceived performance is statistically better than B ’s, or vice

ersa? Our approach, called DBit, can answer this question for a

ontinuous-valued performance metric such as latency or through-

ut. In this paper, we focus on latency comparisons. 

The key idea behind DBit is to use standard hypothesis testing

o establish statistical significance, but adapted for CDN architec-

ures. Suppose we measure multiple samples of CDN download la-

ency, for two CDNs A and B , from each client in a large set of CDN

lients. At each client, its samples approximate the distribution of

atency seen for each CDN. The key idea behind DBit is to use a test

f differences in the distribution at each client: this determines

hether, at that client, A is statistically better than B . Then, we use

nother statistical test to determine if there is a statistically signif-

cant number of clients at which A is significantly better than B . 

Using active measurements of 14.5 million photo fetches and 5

illion video fetches spanning over a period of eight months from

lanetLab and RIPE Atlas, we show: (a) that DBit signals statisti-

al differences where these might be expected to exist (such as

iurnal differences, or differences between cache fetch and CDN

ackend fetch performance); (b) that when DBit detects a statisti-

al difference, the magnitude of the differences are significant (sev-

ral hundred milliseconds) and systematic (visible across multiple,

eographically dispersed) vantage points; and (c) that it is flexible

nough to be used to perform a variety of other comparisons, such

s tail latency performance and outlier detection. 

http://dx.doi.org/10.1016/j.comnet.2016.05.020
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.05.020&domain=pdf
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http://dx.doi.org/10.1016/j.comnet.2016.05.020


Z. Akhtar et al. / Computer Networks 107 (2016) 94–103 95 

 

f  

i  

o  

C  

t  

t  

d  

e

2

 

D  

e  

w  

F  

c  

t  

C  

c  

e  

i  

s  

p  

t

 

o  

b  

w  

d  

t  

t  

l

 

m  

t  

o  

f  

p

 

e

3

 

w  

a  

d

 

o  

V  

i  

f  

C  

k  

c  

s  

n

 

f  

W  

X  

p  

t

 

A  

s  

K  

k  

u  

I  

f  

t  

s

 

t  

h  

c  

i  

s  

h

 

p  

s  

p  

t  

s  

t  

d

 

p  

c  

i  

B  

s  

a

 

t  

i  

t  

t  

s  

u  

i  

r

 

t  

t  

o  

r  

a  

s  

t  

s  

t  

D  

a  

m  

w  

t  

n

 

u  

t  

s  

c  

b  

1 The value 150 is calculated as 60% of 250. 
Use cases. DBit is a first step towards a systematic methodology

or assessing statistical differences between CDN performance. By

tself, it can either be used by third-party companies (like Conviva

r Keynote [10,11] ) to provide a comparative performance of major

DNs. Customers can use such an assessment as input in deciding

o use a CDN service. Moreover, a CDN can use this methodology

o compare itself against its competitors (for whom it will not have

irect access to performance metrics), to help focus its engineering

fforts. 

. Motivation and design rationale 

In this section we discuss the point in the design space which

Bit aims to occupy and our rationale for choosing it. CDNs in gen-

ral are dynamic entities with a great degree of diversity in the

ay they are engineered and the characteristics of their workload.

or instance, a CDN with a highly uniform workload like Facebook

an be engineered through very specific optimizations driven by

he characteristics of its workload as compared to a third party

DN like Akamai [5,12] . Similarly, factors such as scale, cache size,

ache efficacy, network connectivity to the backend and clients

tc. also affect CDN performance. As a result, CDN performance

s known to vary greatly across both temporal and spatial dimen-

ions [10] . Therefore, any straightforward attempt to do CDN com-

arison is likely to fall short, since care is required in selection of

he correct metrics and the methodology [6] . 

Unfortunately, there is a lack of a widely accepted methodol-

gy to perform CDN comparison. Current techniques range from

ack of the envelope calculations or anecdotal evidence to schemes

hich are either application specific, or use first and second or-

er statistics to compare proxy metrics such as DNS resolution

ime [6,13] . It is, therefore, not surprising that deciding whether

he performance difference between CDNs is significant is often

eft to judgment. 

Our design of DBit is motivated by the need for a systematic

ethodology for CDN comparison. We place two requirements on

he design of DBit: that it declares one CDN to be better than an-

ther only when there is a statistically significant performance dif-

erence; and that it be flexible and can accommodate a variety of

erformance comparisons. 

In the following section we discuss the design of DBit and also

xplain our design choices in light of the design principles. 

. How DBIT works 

In this section we describe the internals of DBit. Suppose we

ant to determine whether the latency difference between CDN A

nd CDN B is statistically significant. Conceptually, DBit has three

istinct stages: 

Stage 1: DBit obtains active measurements to CDNs from a set

f vantage points V . Each active measurement from a node v in

to A or B produces one sample of the performance metric of

nterest (e.g., latency or throughput). Suppose we model this per-

ormance metric as a random variable X A, v and X B, v for the two

DNs at each node v . In general, the distributions of X may not be

nown a priori and can be different for different CDNs, because the

orresponding performance metric may depend upon many factors,

uch as, the location of the client and Photo CDN load, competing

etwork traffic, etc. 

Stage 2: DBit looks for statistically significant distributional dif-

erences in the empirical distributions of the random variables X .

e ask: is the distribution of X A, v statistically better or worse than

 B, v ? If we use latency as the performance metric then “better” im-

lies “faster” and the above questions translates to: is CDN A faster

han CDN B ? 
We frame the above question as a hypothesis, namely that

 is faster than B , which can then be answered using hypothe-

is testing. For this purpose, we use the two-sample one-sided

olmogorov–Smirnov test (or K–S test) [14] . The KS-Test is a well-

nown non-parametric test and makes no assumptions about the

nderlying distribution, hence making it a good fit for our purpose.

ts decision is based on the KS-statistic which is the maximum dif-

erence between the two cumulative distributions. Fig. 1 (a) shows

wo sample distributions for A and B , the arrow shows the KS-

tatistic (maximum distance between the CDFs). 

Given the distributions of X A, v and X B, v we are now in a posi-

ion to test our hypothesis that A is faster than B against the null

ypothesis that A is similar or slower than B for a given signifi-

ance level . The significance level indicates a degree of confidence

n the verdict. Smaller significance levels are better. For example, a

ignificance level of 0.05 (used in this paper) means that the null

ypothesis can be rejected with 95% confidence. 

The output of the KS-test is a single bit b A,B, v for each vantage

oint v which is 1 (respectively 0) if the null hypothesis could (re-

pectively could not) be rejected in the favor of our alternate hy-

othesis. Thus, if b A,B, v is 1, it implies that at some part of the dis-

ribution A is faster than B for vantage point v at the specified

ignificance level. However, the KS-test is one-sided, which leaves

he possibility that B is faster than A in some other part of the

istribution. Fig. 1 (b) shows an example of this ambiguity. 

To deal with this ambiguity, DBit also tests the converse hy-

othesis, namely that B is faster than A , before making a final de-

ision. It generates a final decision bit c A,B, v which is 1 if and only

f the hypothesis that A is faster than B is true and the hypothesis

 is faster than A is false or vice versa. At the end of the second

tage, each vantage point generates a bit c A,B, v : these bits are used

s input to the third state. 

Stage 3: Finally, DBit uses the Binomial test [15] to determine if

he fraction of nodes with c A,B, v bits being 1 is statistically signif-

cant. If, for a significant number (as determined by the Binomial

est) of nodes, c A,B, v is 1, then we conclude that A is indeed faster

han B . The fraction of c A,B, v bits being 1 required to determine

tatistical significance depends on the number of vantage points

sed ( Fig. 1 (c)): for example, if the total number of vantage points

s 250 then at least 150 1 vantage points with c A,B, v equal to 1 are

equired to establish statistical significance. 

Choice of statistical test. While we choose the KS-test, it is not

he only test that can be used to detect statistical differences be-

ween distributions: other tests such as the Anderson–Darling test

r Chi-Squared test can also be used. However, these tests either

equire a priori assumptions about the underlying distribution or

re only designed to test whether a given sample comes from a

pecific probability distribution. These constraints are contrary to

he DBit’s generality principle which requires that minimum as-

umptions be made about the data. Hence, the non-parametric K–S

est is more suited for comparing empirical distributions the way

Bit does. As an aside, the K–S test is known to have flaws, for ex-

mple when testing whether a given distribution matches the nor-

al distribution [16] , but this does not apply in our setting since

e use the two-sample one-sided version of the test to compare

wo samples rather than testing whether a sample matches the

ormal distribution. 

Why simpler approaches are insufficient. Comparing CDNs

sing means or percentiles can be misleading [17,18] in at least

wo cases: when CDN performance measures like latency have

kewed distributions (as is often the case with CDNs serving

lients with significant geographic diversity); or when the distri-

utions are multi-modal (e.g., when vantage points are directed to
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Fig. 1. (a) A sample plot showing that CDN A is faster than CDN B. KS-statistic is shown by arrow. (b) A sample plot showing the ambiguous case. (c) The significant regions 

show the fraction of 1’s required for a 95% confidence in the Binomial test verdict. 

Fig. 2. (a) The latency distributions of two CDNs for which the KS-Test is inconclusive, but the first order statistics show CDN A is better than CDN B. The reason KS-Test 

is inconclusive because the distribution for CDN A is bimodal, notice that between 60th and 70th percentile CDN A performs worse than CDN B which is enough evidence 

for KS-Test to be inconclusive. (b) The latency distributions of two CDNs for which the KS-Test is conclusive, but the first order statistics are ambiguous as CDN A is worse 

than CDN B with respect to average and median but better at the 95th percentile. The reason KS-Test is not inconclusive because the difference in performance at the tail is 

insignificant evidence for KS-Test, whereas the performance difference between 0 and 90th percentile is significant. 
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geographically different front end servers due to load balancing).

For example, Fig. 2 (a) shows the CDF of HTTP request completion

latencies from two different CDNs, where the KS-Test is inconclu-

sive but the first order statistics show that CDN A is consistently

better than CDN B. Similarly, Fig. 2 (b) shows a different exam ple

where KS-Test is conclusive but first-order statistics are inconclu-

sive. Notice that CDN A is worse than CDN B with respect to av-

erage and median but better at the 95th percentile. 2 In scenarios

such as these, using first order statistics can lead to erroneous con-

clusions, and comparing distributions is often the most robust way

to judge statistical differences. 

4. Data collection methodology 

In this section we describe our methodology to collect data

which we later use to demonstrate how DBit’s approach can be ap-

plied to detect statistically significant performance differences. The

data is collected through active measurements spanning a period

of six months. We use two different testbeds to fetch content from

popular Photo CDNs and record the download latency. 

Testbed selection. In order to collect data we use two well

known testbeds, namely PlanetLab and RIPE Atlas. We fully ac-

knowledge the shortcomings of both PlanetLab and RIPE Atlas

testbeds in terms of location of their vantage points and their suit-

ability for measuring the performance of CDNs. For instance, it is

well known that PlanetLab nodes on average tend to have bet-

ter connectivity than real users in the wild. This is largely due

to the fact that 85% of PlanetLab nodes are located in research

organizations or university campuses which typically have better

provisioned networks with high speed upstream connections [19] .

Moreover, user accounts on a PlanetLab node run inside a virtual-

ized environment, hence any latency measurements that involves

the NIC (Network Interface Card), such as HTTP request to fetch an

object from an external source can simply get inflated due to the
2 Both these examples are taken from real-world measurements described later. 

 

s  
irtualization overhead and the load imposed by concurrently ac-

ive user accounts on a particular node. Similarly, the RIPE Atlas

odes are also known to be biased towards the research commu-

ity, although a number of nodes are hosted in end user homes

ut these nodes are mostly setup by researchers using the testbed.

Addressing bias in vantage point selection is a non-goal of this

aper. Our goal is to demonstrate how DBit can be used to com-

are two CDNs, given measurements from several vantage points.

n our case, we have used two open measurement infrastructures

or this demonstration. While our actual results might possibly be

kewed by vantage point selection bias, the value of our paper is

n showing how to use DBit to study various aspects of CDN per-

ormance. A study or service that claims to compare CDNs would

ave to address this bias, but once they do, they can leverage the

tatistical validity of DBit’s hypothesis tests. DBit is also not lim-

ted by scale, since the data is collected from distributed vantage

oints, it can easily scale to bigger measurement studies, in fact

any real world systems routinely collect such data, as discussed

ore in Section 6 . 

The CDNs our primary data set was collected from three Photo

DNs: Google+, Facebook and Flickr. The general architecture of

hese three Photo CDNs is as follows: Photo CDNs direct client

hoto fetches to front-end servers , and a cache miss results in an

ccess to a photo back-end . Each photo is accessed by a URL. We

btained direct CDN URLs to photos by employing user facing APIs

or each of the Photo CDN (Facebook’s Graph API, Google’s Data

PI, Flickr’s Data API.) 

Google+: Recent work has shown that Google has expanded its

eb serving infrastructures and directs search requests to satellite

ront-ends, which relay the requests to back-end data centers [4] .

hrough measurements spanning the Google address space we

ave found that these satellite front-ends also serve requests for

oogle+ photos. Therefore, Google+ has front-ends at 1400 distinct

ites across the world [4] . 

Facebook: Facebook uses its own set of cache front-end

ervers [5] and also relies on Akamai [20] for front-end servers to
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erve photos around the globe. In our paper, we treat the two sets

f cache servers differently, since they may have different perfor-

ance properties [21] . Hence, in what follows, every reference to

he Akamai CDN refers to Facebook’s use of Akamai . Beyond nine

nown Facebook front-end servers (the edge caches in [5] ), we

ave discovered through active probing 14 additional sites belong-

ng to Facebook. Of these additional sites, 1 is in the US and the

emaining are in Europe and Asia. 3 

Flickr: An analysis of DNS names from our measurements in-

icates Flickr directs clients to three photo back-ends. These sites

ost three of the five known Yahoo! data centers [22] . To study

DN performance using a range of different Internet applications,

e also collect data from two popular Video CDNs, namely Face-

ook and YouTube. Video content delivery differs widely from

hoto or other file delivery. Most Video CDNs serve video us-

ng HTTP adaptive chunking protocols such as HTTP Live Stream-

ng (HLS) or HTTP Dynamic Streaming (HDS) which allow the

ideo players to dynamically switch bitrates depending on the user

andwidth and playback buffer occupancy. Video QoE metrics are

herefore, also much more complex than those used for photos or

le delivery. Previous work on video QoE modelling has shown

hat the user perceived quality of a video sessions depends on a

umber of factors such as (1) join time : the time it takes for play-

ack to start, (2) average bitrate : the session life time average of

he bitrates played, (3) rebuffering events : the video player going

nto a buffering state due to playback buffer drainage and (4) bi-

rate change frequency : the rate of bitrate switches in a session. 

Delivering high video QoE not only depends on good CDN per-

ormance but also relies on the effectiveness of the adaptive bitrate

lgorithms (ABR) used by video players and as such is an active

rea of research. Since our goal in this paper is to show how DBit

an be used to measure the performance of CDNs and not to mea-

ure the effectiveness of ABR algorithms, we use a slightly different

etric for Video CDNs : namely the time to first byte (TTFB) of the

rst video chunk. The TTFB is a direct indicators of the CDN per-

ormance since it shows how quickly a CDN is able to start serving

 request. It should be noted that TTFB also impacts the join time,

n particular, if TTFB is high then the join time will be inflated as

ell. 

Vantage points. To collect HTTP download data from Photo

DNs, we use 162 PlanetLab vantage points each from a distinct

ite. PlanetLab provides rich visibility into components of perfor-

ance and allows us to record the latency of each stage of the

ntire life-cycle of a HTTP request. 

We also use the RIPE Atlas testbed to collect data from a more

onstrained environment. RIPE does not have the flexibility of Plan-

tLab since it does not provide direct access to the RIPE probes.

oreover, measurements once configured and launched from the

IPE dashboard can’t be changed dynamically. RIPE is also limited

n reporting the performance of different stages of a HTTP request,

ts current version only reports the download completion time but

ives no insight into other stages such as the time to perform the

CP handshake or the time to first byte etc. However, it still pro-

ides us with a valuable resource in demonstrating DBit’s ability to

ork with a constrained dataset. We select a set of 1470 RIPE van-

age points, each in a distinct AS, which are hosted in end user

omes. Our video measurements were solely collected from the

lanetLab testbed using the 162 vantage points. 

Latency measurements and reference stream. From each Plan-

tlab vantage point, we measure two forms of latency: cold-fetch

atency which is the time taken to download a non-cached photo

nd hot-fetch latency which is the time taken to download a cached
3 Seattle, Amsterdam, Paris, Frankfurt, Hong Kong, Kuala Lumpur, London, Lulea 

Sweden), Madrid, Milan, Tokyo, Sao Paulo, Singapore, Vienna 
accessed in recent past) photos. All downloads were performed

hrough cURL using direct CDN URLs to both photos and videos.

URL provides separate latency measures for DNS resolution, TCP

onnection setup, time-to-first-byte (the time between sending the

TTP request, and receiving the first byte) and time to download

he entire photo. 

To measure hot-fetch latency each vantage point repeatedly

ownloads a photo every 30 min, and for cold fetch latency a van-

age point downloads a different photo every hour. We assign 150

ifferent photos to each vantage point. This number ensures that a

hoto will be re-downloaded after six days which is long enough

or the photo to be evicted from any cache. We have confirmed

his using our measurements: for example, on Facebook we found

he eviction times to be between 52 and 60 h. 

Our methodology for videos followed a similar approach. In par-

icular a vantage point repeatedly requested the same video every

0 min for hot fetches and requested a different video every one

our for cold fetches. 

We followed substantially the same methodology for the RIPE

antage points, but with one important difference: all accesses

rom RIPE vantage points were to photos that were of resolution

 × 1. 4 Since most RIPE nodes are in home networks, we used

maller photos to minimally disturb home users’ perceived net-

ork performance. Moreover, because of limitations in the way

easurement campaigns can be mounted on RIPE, we were only

ble to measure hot-fetch latencies from the RIPE vantage points.

e do not perform video fetches from PlanetLab nodes due to the

forementioned concerns. 

Photos reference stream. To measure these forms of latency,

e uploaded a total of 60 0,0 0 0 photos, or 20 0,0 0 0 for each of the

hree providers (Facebook, Google+ and Flickr). We uploaded these

o newly created accounts and set privacy settings to ensure that

hese photos could not be accessed by other users of these Photo

DNs. All photos were JPEG images of the same resolution (960 ×
40) and the same JPEG quality factor (97). 

Videos reference stream. To measure the hot and cold fetches

or vidoes, we uploaded a total of 75,0 0 0 videos to Facebook and

ouTube. As with photos, privacy settings were employed to pre-

ent unauthorized access to videos. Our uploaded videos were 2 s

ong which is sufficient to measure TTFB. 

All our Planetlab experiments ran between April and Novem-

er 2014 during which we retrieved a total of 14.5 million photo

etches and 5 millions video fetches. Our latency measurements

or photos from RIPE Atlas ran for 12 days between Dec 1 and 12,

014. 

. Evaluation 

In this section we use our collected data to demonstrate dif-

erent use cases for DBit. First, we validate the correctness of DBit

y checking whether it can detect known performance differences

r not. Second, we show how to use DBit to uncover statistically

ignificant difference in performance of a CDN and finally we ex-

lore the range of questions which can be answered by DBit. In

ummary, following are our goals for the evaluation of DBit: 

• Does DBit correctly identify differences which are known to be

(likely) true and hide differences known not to exist? 

• How can DBit be used to detect statistically significant perfor-

mance differences? 

• What is the actual magnitude of differences when DBit identi-

fies statistically significant performance difference? 

• Is DBit flexible enough to perform other kinds of comparisons? 
4 a 1 × 1 resolution JPG image comprises of a single pixel 
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Table 1 

Hot fetch and cold fetch comparison. DBit correctly identifies that hot fetches have lower latencies than cold 

fetches. 

Hot vs. cold fetches 

Akamai Facebook Flickr Google+ 

C ∧ H H ∧ C C ∧ H H ∧ C C ∧ H H ∧ C C ∧ H H ∧ C 

c A,B, v frac. 0 0 .9864 0 .034 0 .7007 0 0 .9116 0 0 .9796 

P-value 1.1e −44 1.2e −40 3.0e −33 8.1e −08 1.1e −44 1.1e −29 1.1e −44 5.9e −39 

Significant H � H � H � H � 

Table 2 

Time of day comparison for hot fetches, DBit correctly identifies that P2 has lower latencies than P5 . 

Time of day variation detected by DBit 

Akamai Facebook Flickr Google+ 

P5 ∧ P2 P2 ∧ P5 P5 ∧ P2 P2 ∧ P5 P5 ∧ P2 P2 ∧ P5 P5 ∧ P2 P2 ∧ P5 

c A,B, v frac. 0 .0370 0 .8519 0 .1111 0 .5741 0 .0556 0 .7407 0 .1111 0 .3889 

P-val 1.6e −13 1.4e −07 3.3e −09 3.4e −01 2.9e −12 5.4e −04 3.3e −09 1.3e −01 

Significant P2 � ✗ P2 � ✗ 
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5.1. Is DBit correct? 

We first evaluate DBit by testing its ability to detect statistical

differences in settings where intuition suggests there should be a

significant performance difference. 

Hot vs. cold fetches. It is reasonable to expect that hot fetches

are faster than cold fetches. To test whether DBit’s results are con-

sistent with this expectation, we obtain the distribution of hot and

cold fetches X H, v and X C, v for each Photo CDNs at each node v in

the set V and use them as inputs to second stage of DBit. (As an

aside, although in Section 3 we described DBit in terms of compar-

ing two CDNs, DBit can be used to compare the performance of a

given CDN under different conditions. This is done by conditioning

the distributions appropriately, as we have done here by generat-

ing separate hot and cold fetch distributions.) 

Table 1 shows the results from DBit. For example, the Akamai

column shows two hypotheses: C ∧ H and H ∧ C, where ∧ sign de-

notes a “faster than” relation, hence, H ∧ C should be read as “hot

is faster than cold”. The c A,B, v row shows the output of the second

stage of DBit, that is, total fraction of nodes where the hypothesis

is true, so under the hypothesis C ∧ H, at no node is the hypothe-

sis true resulting in a value of 0. Conversely, the high value under

the hypothesis H ∧ C signifies that an overwhelming majority of

the nodes found that the hot fetches are indeed faster than cold

fetches. The P-value row shows the output of DBit’s third stage,

that is, the probability of getting the fractions in the c A,B, v row due

to mere chance. Observe that the values are negligibly small, ruling

out the possibility of chance with high probability. By similarly ex-

amining other columns, we see that this statistical difference per-

sists across other Photo CDNs. Thus, we can conclude that, DBit

correctly identifies that for all Photo CDNs, hot fetches are distribu-

tionally faster than cold fetches . Finally, the “significant” row shows

the final outcome of DBit. 

Peak vs. off-peak hours. Internet traffic and server load is

known to follow diurnal patterns. Thus, one might expect CDN

performance to be better during off-peak hours and worse during

peak hours. We use DBit to see if its results are consistent with

this expectation. To understand this, we select a subset of 54 Plan-

etlab nodes from our set which lie in the same time zone and di-

vide the 24 h day into 4 h periods (labeled P1 to P6 ), with P1 from

2:30 a.m. to 6:29 a.m., P2 from 6:30 a.m. to 10:29 a.m. and so

on (these periods are determined by local time at the correspond-

ing nodes’ timezone). For each Photo CDN, we obtain the distribu-

tion of each period X P1 , v , X P2 , v , X P3 , v , X P4 , v , X P5 , v and X P6 , v for each
hoto CDNs at each node v in the set V and use DBit to compare

istributions from one period to the Photo CDN’s own distribution

n another period for both hot and cold fetches. DBit detects that

here is a statistical performance difference between P2 and P5 .

e show the results in Table 2 for the comparison between P2

nd P5 . P2 , the early morning hours between 6:30 a.m. and 10:29

.m., sees better performance than evening (6:30 –10:29 p.m.) of

5 . While all CDNs exibit better performance during P2 , DBit does

ot determine the differences to be statistically significant in case

f Facebook and Google+, since these difference are small. 

.2. Using DBit to compare CDNs 

We now use our collected dataset to demonstrate how DBit can

e used to compare the performance of CDNs. Towards this end

e use data collected from both Photo CDNs and Video CDNs . For

hotos, we compare the performace of Flickr with Facebook and

oogle+ and for videos we compare the performance of Facebook

ith YouTube. 

Photo CDN comparison. Flickr uses Yahoo’s CDN to serve

ontent around the globe. It is known from previous work that

he scale of Yahoo’s CDN is much smaller than Akamai and

oogle [22] . Our measurement of Facebook’s content serving in-

rastructure also confirms that Facebook operates a greater number

f Edge Caches than Flickr. Given this background knowledge, it is

easonable to expect that the latency performance of Flickr should

e inferior to other Photo CDNs with respect to both hot and cold

etches. 

It is known from previous work that CDN performance can vary

onsiderably across both spatial and temporal dimensions [23] .

herefore, in order to apply DBit we divide our PlanetLab vantage

oints on the basis of continents, which is also the finest granular-

ty permitted by our data. Another study which has greater num-

er of vantage points may choose to group vantage points at much

ore finer granularities such as cities or metro areas. 

We then apply DBit to these two groups as well the global set

f vantage points. When comparing Flickr to a given Photo CDN we

rame two hypothesis to test both sides of the comparison. For ex-

mple, when comparing with Facebook, the framed hypothesis are

Facebook is faster than Flickr” and “Flickr is faster than Facebook”.

able 3 shows the results of both the second and third stage of

Bit for Flickr in comparison to other Photo CDNs for both hot and

old fetches. The c A,B, v row shows the total fraction of nodes where

he hypothesis is true, whereas the p-values show if the fraction of
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Table 3 

Hot and cold fetch results for Flickr against other Photo CDNs. Ticks denote a significant comparison, The coverage includes the total set of nodes, nodes in North America 

and nodes in Europe. 

Global hot fetch comparison Global cold fetch comparison 

Flickr vs. Facebook Flickr vs. Google+ Flickr vs. Akamai Flick vs. Facebook Flickr vs. Google+ Flickr vs. Akamai 

FB ∧ Fl Fl ∧ FB G+ ∧ Fl Fl ∧ G+ Ak ∧ Fl Fl ∧ Ak Fb ∧ Fl Fl ∧ FB G+ ∧ Fl Fl ∧ G+ Ak ∧ Fl Fl ∧ Ak 

Global c A,B, v frac. 0 .6481 0 .1296 0 .94 4 4 0 0 .8086 0 0 .9074 0 .0185 0 .9691 0 .0062 0 .8519 0 .0123 

P-value 2.0e −04 5.1e −23 6.1e −35 3.4e −49 7.9e −16 3.4e −49 2.1e −28 2.4e −43 3.1e −40 5.6e −47 1.2e −20 4.5e −45 

Significant? Facebook � Google+ � Akamai � Facebook � Google+ � Akamai � 

N. America hot fetch comparison N. America cold fetch comparison 

N. America c A,B, v frac. 0 .7761 0 .0149 0 .9701 0 0 .9104 0 0 .9403 0 0 .9403 0 0 .806 0 .0149 

P-value 6.5e −06 9.2e −19 3.1e −17 1.4e −20 1.5e −12 1.4e −20 1.1e −14 1.4e −20 1.4e −20 1.1e −14 4.5e −07 9.2e −19 

Significant? Facebook � Google+ � Akamai � Facebook � Google+ � Akamai � 

Europe hot fetch comparison Europe cold fetch comparison 

Europe c A,B, v frac. 0 .5949 0 .2278 0 .962 0 0 .7595 0 0 .8734 0 .0253 0 .9873 0 .0127 0 .8734 0 .0127 

P-value 1.2e −01 1.3e −06 2.7e −19 3.3e −24 4.2e −06 3.3e −24 5.5e −12 1.1e −20 3.3e −24 2.7e −22 5.5e −12 2.7e −22 

Significant? ✗ Google+ � Akamai � Facebook � Google+ � Akamai � 

Table 4 

Photo CDN comparison based on average, median and 95th percentile. All values are in seconds, highest values are shown 

in bold. 

Global hot fetch first order statistics Global cold fetch first order statistics 

Akamai Facebook Flickr Google+ Akamai Facebook Flickr Google+ 

Global Average 0 .36 0 .49 0 .97 0 .27 0 .84 0 .65 2 .39 0 .52 

Median 0 .17 0 .28 0 .50 0 .12 0 .53 0 .44 2 .26 0 .36 

95 %ile 4 .97 1 .4 5 .0 1 .37 4 .98 1 .77 5 .0 1 .81 

N. America hot fetch first order statistics N. America cold fetch first order statistics 

N. America Average 0 .33 0 .3 0 .87 0 .29 0 .72 0 .44 2 .19 0 .48 

Median 0 .18 0 .18 0 .41 0 .13 0 .44 0 .26 2 .26 0 .3 

95% ile 1 .55 0 .97 4 .97 1 .45 2 .38 1 .45 5 .0 1 .6 

Europe hot fetch first order statistics Europe cold fetch first order statistics 

Europe Average 0 .36 0 .58 1 .01 0 .23 0 .93 0 .75 2 .37 0 .53 

Median 0 .16 0 .42 0 .58 0 .1 0 .56 0 .61 2 .01 0 .4 

95 %ile 5 .0 1 .39 5 .0 0 .87 5 .1 1 .67 5 .0 1 .7 

Table 5 

Hot and cold fetch results for Facebook, Google+ and Akamai against each other Photo CDNs. 

Global hot fetch comparison Global cold fetch comparison 

Facebook vs. Akamai Facebook vs. Google+ Akamai vs. Google+ Facebook vs. Akamai Facebook vs. Google+ Akamai vs. Google+ 

FB ∧ Ak Ak ∧ FB FB ∧ G+ G+ ∧ FB Ak ∧ G+ G+ ∧ Ak FB ∧ Ak Ak ∧ FB FB ∧ G+ G+ ∧ FB Ak ∧ G+ G+ ∧ Ak 

Global c A,B, v frac. 0 .2407 0 .4136 0 .1667 0 .5370 0 .1605 0 .5555 0 .6605 0 .1235 0 .3457 0 .4877 0 .0432 0 .8642 

P-value 2.5e −11 3.4e −02 1.8e −18 3.9e −01 3.5e −19 1.8e −01 5.4e −05 7.4e −24 1.1e −04 8.1e −01 1.8e −37 3.4e −22 

Significant? ✗ ✗ ✗ Facebook � ✗ Google+ � 

N. America hot fetch comparison N. America cold fetch comparison 

N. America c A,B, v frac. 0 .3731 0 .2537 0 .2388 0 .3433 0 .2090 0 .5522 0 .8507 0 .0149 0 .5375 0 .2985 0 .0448 0 .8806 

P-value 5.0e −02 6.7e −05 2.2e −05 1.4e −02 1.8e −06 4.6e −01 4.0e −09 9.2e −19 6.3e −01 1.3e −03 6.8e −16 1.0e −10 

Significant? ✗ ✗ ✗ Facebook � ✗ Google+ � 

Europe hot fetch comparison Europe cold fetch comparison 

Europe c A,B, v frac. 0 .1842 0 .4868 0 .1315 0 .6711 0 .1053 0 .5789 0 .5657 0 .1579 0 .2368 0 .5921 0 .0263 0 .9211 

P-value 2.3e −08 9.1e −01 3.0e −11 3.8e −03 5.6e −13 2.1e −01 3.0e −01 1.0e −09 4.7e −06 1.4e −01 7.7e −20 6.3e −15 

Significant? ✗ Google+ � ✗ ✗ ✗ Google+ � 
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rue nodes is significant. Since majority of the comparisons reveals

tatistically significant differences in performance between Flickr

nd other Photo CDNs, we can conclude with sufficient confidence

hat for our given dataset, Flickr’s performance is indeed inferior. 

Table 5 presents the complete results of all Photo CDNs. In ad-

ition to the DBit results, we show the comparison based on first

rder statistics (mean, median and 95th percentile) in Table 4 . The

rst order statistics are obtained by aggregating the samples across

ll vantage points. 

We use the results in Table 4 in conjunction with Tables 3 and

 to demonstrate how ambiguities can arise due to comparisons

ased on first order statistics and how DBit is able to avoid them.

or example, observe in Table 4 , that with respect to cold fetches
n Europe, Akamai performs the worst at 95th percentile, whereas

lickr performs the worst with respect to median and average.

hough the difference at the 95th percentile is marginal, this

hows an example of an instance where first order statistics do not

learly distinguish which Photo CDN is better. DBit on the other

and is able to provide a statistically significant verdict which de-

lares Flickr to be slower than Akamai in Europe as shown in

able 3 . 

Similarly, notice that the comparison between Akamai and

acebook in Europe with respect to first order statistics is ambigu-

us ( Table 4 ). While Akamai performs better with respect to the

verage and median, its performance is significantly worse at the

5th percentile. Deciding which Photo CDN performs better now
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Table 6 

Hot and cold fetch comparison for video CDNs . 

Global hot and cold comparison for video 

Hot fetch Cold fetch 

FB ∧ YT YT ∧ FB FB ∧ YT YT ∧ FB 

c A,B, v frac. 0 .037 0 .7778 0 .2963 0 .037 

P-value 1.7e −32 6.0e −11 2.5e −06 1.7e −32 

Significant YouTube � ✗ 
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5 Say that a Google+ sample is denoted by x G, v ,t n and a Flickr sample is denoted 

by x F, v ,t n at node v at time t = n . Then the difference between the sample is x D, v ,t n = 

x F, v ,t n − x G, v ,t n . We can then obtain a single CDF of the differences over all the nodes 

in the V . 
becomes a matter of judgement in this case. DBit’s approach, on

the other hand, provides a systematic framework to resolve this

ambiguity, its comparison yields an insignificant result since it is

unable to find statistically significant reasons to declare one better

than the other ( Table 5 ). 

Finally notice that in Table 3 the hot fetch comparison between

Flickr and Facebook is insignificant. Even though 59% of the nodes

accept the hypothesis that Facebook is faster than Flickr, the final

verdict is ruled to be insignificant. This happens because in Europe

we have access to 76 vantage points, out of which 44 (59%) accept

the hypothesis that Facebook is faster. However, because the total

number of vantage points is small, DBit requires a greater share

of vantage points (atleast 65%: 49 in this case, see Fig. 1 (c)) to

establish statistical significance, therefore resulting in an insignifi-

cant comparison. This points towards the ability of DBit to adjust

its statistical significance threshold to the total number of vantage

points available, hence only declaring significant performance dif-

ferences when there is strong statistical basis to do so. 

Video CDN comparison. For Video CDNs we compare the per-

formance of Facebook with YouTube. Not much is known about

YouTube’s CDN, however, it is reasonable to expect that YouTube

servers are co-located with other Google servers and hence

YouTube CDN should be of similar scale. We confirm through prob-

ing that Facebook uses the same sites to serve videos it uses for its

photo content. 

We apply DBit to the Video CDN data. The hypothesis and the

converse hypothesis we frame at every vantage point are that Face-

book is faster than YouTube and YouTube is faster than Facebook,

respectively. Table 6 shows the results for both hot and cold fetch

comparison for videos. With respect to hot fetches we see that ∼
78% of the vantage points indicate that hot fetches for YouTube are

faster. This forms a significant fraction of vantage points and the

probability of achieving this number on the basis of mere chance

is extremely low, as shown by the value in the corresponding P-

value row. Hence we conclude that for hot fetches YouTube per-

forms faster. 

On the other hand, we see that for cold fetches, for both the

hypothesis the fractions of c A,B, v is low. This implies that majority

of the vantage points did not see statistically significant distribu-

tional differences between Facebook and YouTube. Therefore, we

do not have sufficient basis to conclude that statistically significant

performance differences exist between the two and we mark the

comparison result to be insignificant. 

Together these results show how different CDNs can be com-

pared using DBit. Specifically, they show what are the conditions

under which we conclude statistically significant performance dif-

ference and conditions under which the performance differences

are not significant. 

5.3. What is the magnitude of differences? 

In this section, we try to understand the magnitude of dif-

ferences based upon which DBit detects statistical differences. To

this end, we employ the following methodology for a quantita-

tive evaluation. Say that DBit determines Flickr to be slower than
oogle+, then at the second stage of DBit we are able to select

ll those nodes where Flickr is slower than Google+. For these set

f nodes, the measured latency will be higher for the Flickr nodes

han the Google+ nodes on average. We calculate the magnitude

f the differences between Flickr and Google+ fetch by subtracting

ach Google+ sample from Flickr sample, where both samples were

cquired at the same time of day. 5 We then repeat the same pro-

edure for a pair of CDNs where DBit does not identify statistical

ifferences. 

Fig. 3 (a) shows the CDF of the differences between Flickr and

ther Photo CDNs for hot fetches. The difference between Flickr

nd other Photo CDNs at the medians is ∼ 80–95 ms and increases

o ∼ 900 ms at the 90th percentiles. This shows that DBit is able

o detect differences even when they exist at the scale of tens or

undreds of milliseconds. Fig. 3 (b) shows the CDF of the absolute

ifferences between Flickr and other Photo CDNs for cold fetches.

he median differences for cold fetch are ∼ 600 ms for all Photo

DNs, likely large enough to be easily detected by DBit. 

When DBit does not identify a statistical difference, what does

he magnitude of the differences look like? Fig. 3 (c) shows two

DFs one for the difference between Flickr and Facebook, the case

here DBit indicates a statistical difference and another between

acebook and Akamai, the case where DBit does not detect sta-

istical performance differences. Observe that the latter CDF lies

bove the former, implying that on average the magnitude of the

ifferences for the Facebook–Akamai case is smaller. Moreover, the

lickr–Facebook case shows a larger proportion of nodes for which

lickr shows worse behavior than Facebook than vice versa, but the

DF for the Facebook–Akamai case is more symmetric. 

This is better understood by looking at Fig. 3 (d), which shows

he scatter plot of all the Photo CDNs at the 95th percentile for

ach Planetlab node for Flickr’s comparison with other Photo CDNs.

ote that Flickr is clearly slower at many vantage points when

ompared to other Photo CDNs as evident from the spread in the

lot. In contrast, Fig. 3 (e) shows the scatter plot of the 95th per-

entile of latencies for Facebook and Akamai, the case where DBit

oes not identify performance difference. In this case, there is no

lear performance separation between the two Photo CDNs. From

hese results we conclude that DBit is sensitive enough to detect

ifferences where they exist and correctly hides differences where

hey do not exist or are not significant. 

.4. Is DBit general? 

We now explore the range of questions which can be answered

sing DBit. Our goal here is to demonstrate the generality of DBit

s a methodology for detecting statistical differences. 

Constrained datasets. In this section we evaluate DBit’s abil-

ty to work with constraind datasets to detect performance differ-

nces. Towards this end we use the data obtained from RIPE Atlas

estbed. Recall that, on the RIPE Atlas, we are only able to obtain

ot-fetch, because of platform limitations ( Section 4 ). Moreover, on

he RIPE Atlas platform, we are only able to use 1x1 pixel pho-

os. The summarized version of RIPE results are shown in Table 7

hich shows that DBit is indeed able to detect significant differ-

nces and the results are consistent with those obtained from the

lanetLab results (for Global, N. America and Europe). We refer the

eader to [21] for RIPE results comparing all Photo CDNs. 

Tail latency. Because latency impacts revenue, content

roviders are interested in engineering for tail latency [24] . DBit

an also be used to study whether the tail latency distributions
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Fig. 3. (a) Difference CDF between Flickr and other Photo CDNs for hot fetches. (b) Difference CDFs between Flickr and other Photo CDNs for cold fetches. (c) CDFs where 

DBit identifies statistical differences and where it does not. (d) Scatter plot for hot fetches at 95th percentile where DBit detects statistical performance difference. (e) Scatter 

plot for hot fetches at 95th percentile where DBit does not detect difference. 

Table 7 

Results for hot fetch from RIPE Atlas probes using 1x1 pixel photo (size ∼ 750 

B). Latency here does not include DNS time. 

Global hot fetch comparison 

Facebook vs. Flickr Flickr vs. Akamai Flickr vs. Google+ 

Global Facebook � Akamai � Google+ � 

Africa ✗ ✗ Google+ � 

Asia ✗ Akamai � Google+ � 

Europe Facebook � Akamai � Google+ � 

N. America Facebook � Akamai � Google+ � 

Oceania Facebook � ✗ ✗ 

S. America Facebook � Akamai � Google+ � 

o  

t  

t  

a  

d  

a  

p  

G  

9  

p  

c  

i  

t

 

c  

c  

i  

t  

c  

U  

c  

a

6

 

a  

s  

F  

K  

a  

b  

t

 

e  

o  

d  

l  

s  

i  
f different CDNs differ significantly, by appropriately truncating

he original distributions. For example we can obtain the data at

he tail by only considering the samples at the 90th percentile

nd above. Table 8 shows the results for interesting performance

ifferences that we find from our dataset. The results show that

t the 90th percentile Google+ shows better performance com-

ared to Facebook for both hot and cold fetches. Additionally,

oogle+ also performs better than Akamai for hot fetches at the

0th percentile. This suggests that while Facebook’s optimized

hoto stack [5] allows comparable performance for the common

ase but Google’s massive scale and full control over its serving

nfrastructure gives it advantage over Facebook and Akamai at the

ail of the distribution. 
Table 8 

Tail latency for both hot and cold photo fetches from 

Comparison at 90t

Hot fetch 

Facebook vs. Google+ 

FB > G+ G+ > FB 

c A,B, v frac. 0 .7037 0 .216 

P-value ∗ 2.3e −07 1.0 −e13 

Global Significant? Google+ � 
Outliers. Using DBit, we can also detect outliers: “good” (“bad”)

lients which experience faster (slower) performance than all other

lients. We find that most of the good clients are in North Amer-

ca or Europe. Two of our clients, located in Boston and Washing-

on, are best across all Photo CDNs. We find other good performing

lients in Canada and USA (4), Germany (3), France (2), Ireland and

K one each. We find the worst client in Cyprus, and we find bad

lients in Spain (3), Portugal (3), Greece (2), Brazil (2), Ecuador (1)

nd Jordan (1). 

. Discussion 

DBit is a first step towards comparing CDN performance in

 systematic manner and its decisions are based on statistically

ignificant performance difference across a set of vantage points.

or this purpose we have used the well known KS-Test, however,

S-Test is known not to be very sensitive if the differences exist

t the tails of the distribution. Towards this end it may be possi-

le to extend other statistical tests such as the Kuiper Test for a

wo-sample one sided version which we leave for future work. 

Further, we have designed DBit to be used on data which is

ither routinely collected by real systems or can be obtained with-

ut a need for sophisticated measurement methodologies. Such

ata sets are collected through number of approaches (1) regu-

ar server side measurements [24] (2) client-side injected mea-

urements [9,25] or (3) emulated clients such as [11,26] and may

nclude metrics such as latency and througput. Though we use
the global set of Planetlab clients. 

h percentile 

Cold fetch 

Akamai vs. Google+ Facebook vs. Google+ 

AK > G+ G+ > AK FB > G+ G+ > FB 

0 .784 0 .1542 0 .6975 0 .2716 

1.9e −13 6.6e −20 5.4e −07 5.3e −09 

Google+ � Google+ � 
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latency as the metric to demonstrate how DBit can be used, DBit

itself is general and can be used with any other performance met-

ric. As future work, we plan to use DBit in determining CDN per-

formance difference on data collected from real world clients. To-

wards this end, we plan to take approach 2 from above by imple-

menting a browser plugin which can be installed by users opting

in to the measurement study. This allows us to capture data which

is representative of user performance in the wild and exposes op-

portunities to use DBit in understanding real world performance

comparison. Additionally, it allows to instrument a range of web

applications such as video streaming and search etc. Finally, in this

paper we focus on applying DBit to compare performance for a sin-

gle metric (i.e., latency), we leave it to future work to extend DBit

to incorporate more than one metric. 

7. Related work 

Prior work on CDN performance analysis ranges from mod-

elling to measurement studies for CDN comparison [4,13,20,22,27] .

Our work is complementary to these and proposes a methodol-

ogy to rigorously compare aspects of CDN performance. Other no-

table work attempts to understand peer-to-peer content delivery

systems [8] and ISPs [7] . Their methodology compares totals, and

first and second-order statistics across a variety of properties: con-

tent object sizes, bandwidth demands, transaction rates, path la-

tency, and path stretch. By contrast, our work focuses on a differ-

ent setting (photo sharing) and on one metric, latency, but explores

distributional differences. Finally, Tariq et al. [28] propose a What-

If scenario evaluator to understand how changes to network infras-

tructure will translate to user perceived performance. By contrast,

DBit can help a CDN understand what aspects of its network in-

frastructure it needs to improve in order to match a competitor’s

performance. 

8. Conclusion 

In this paper, we propose a novel methodology to detect statis-

tical differences in performance for Content Distribution Networks

and large scale distributed systems in general. DBit is powerful, en-

abling not only comparisons across CDNs, but can also be used to

answer a range of questions such as identifying differences in tail

performance and regional performance. DBit is a first step towards

a comprehensive methodology for CDN evaluation and much work

remains: exploring other metrics such as throughput. 
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