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Pervasive coverage and continuous connectivity of Mobile Broadband (MBB) networks are common goals
for regulators and operators. Given the increasing heterogeneity of technologies in the last mile of MBB
networks, further support for seamless connectivity across multiple network types relies on understand-
ing the prevalent network coverage profiles that capture different available technologies in an area. Cor-
relating these coverage profiles with network performance metrics is of great importance in order to
forestall disturbances for applications running on top of MBB networks. In this paper, we aim to profile
MBB coverage and its performance implications from the end-user’s perspective along critical transport
infrastructures (i.e., railways in Norway). For this, we deploy custom measurement nodes on-board five
Norwegian inter-city trains and we collect a unique geo-tagged dataset along the train routes. We then
build a coverage mosaic, where we divide the routes into segments and analyze the coverage of indi-
vidual operators in each segment. We propose and evaluate the use of hierarchical clustering to describe
prevalent coverage profiles of MBB networks along the train routes and classify each segment accordingly.
We further analyze the areas we classify with each profile and assess the packet-loss and HTTP download

performance of the networks in those areas.

© 2016 Published by Elsevier B.V.

1. Introduction

Mobile Broadband (MBB) access to Internet enables operators
to join mobility and communications towards the common goal of
offering subscribers performance and efficiency in highly dynamic
mobile scenarios. However, Internet access under mobility brings a
number of challenges, including high probability of service inter-
ruptions. A popular example of such scenarios is the case of trav-
elers regularly commuting on public transport infrastructures, such
as inter-city trains. In this context, tens or hundreds of passen-
gers try to access the Internet simultaneously for entertainment,
communication and work-related tasks, all while moving at high
speeds. During the last years, railway operators throughout the
world have been testing and providing commercial Internet con-
nectivity solutions aimed at enabling on-board Internet services to
train passengers. Various types of communication solutions have
been advanced [1,2], including cellular solutions, WLAN-based so-
lutions or hybrid terrestrial/satellite solutions.

The performance of cellular-based solutions for on-board con-
nectivity highly depends on the MBB coverage around the railway
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lines. MBB operators are the main providers of coverage maps for
other stakeholders, including regulators, subscribers or businesses
such as public transport operators. These coverage maps usually
define the status of one radio access technology (RAT) in a re-
gion for a MBB operator. However, they do not offer information
on how end-users actually experience the distribution of different
RATs in the same geographical region. For example, the existence
of 4G connectivity in an area does not mean that all end-users are
able to use that technology and it does not necessarily guarantee
a good user experience for the end-users that are able to access it.
This may be due to a number of factors, including specific geogra-
phy of the area, variable train speed, number of passengers in the
train or congestion in the network. Given the increasing hetero-
geneity of technologies in the last mile of MBB networks, user ex-
perience highly depends on support for seamless handovers across
multiple network types. Therefore, identifying the network coverage
profiles that capture the distribution of all available technologies in
the same area from the end-user experience is very important.

In this paper!, we focus on profiling the MBB coverage along
the critical railway infrastructure in Norway from the end-user
perspective. In Fig. 1, we summarize the workflow we follow in

! This paper is an extension of prior work [3] the authors published in the 2016
IFIP International Workshop on Traffic Monitoring and Analysis.
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Fig. 1. The workflow we follow to generate the coverage mosaic maps.

Fig. 2. Spatial locations of the MBB measurements from the NNE nodes operating
aboard the NSB trains overlayed on the population density map of Norway. In the
population density map, red color indicates highly populated areas such as cities
whereas yellow color indicates thinly populated rural areas.

this paper in order to achieve this goal. Our main objective is to
build a coverage mosaic, where we classify and characterize rail-
way route segments based on the distribution of RATs along that
segment and on how end-users traveling along that route would
experience the service. For this, we use a vast dataset that we col-
lect through periodic measurements from custom devices that we
strategically place on-board several passenger trains. The dataset is
pestered by numerous challenges, including high volume, the mix-
ture of spatio-temporal coordinates and the presence of categori-

cal variables (i.e., the RAT value). Furthermore, depending on the
deployment of base stations along the railway routes, the distribu-
tion of different RATs highly varies from one segment to another.
Some operators rely on thresholds that are imposed on statistical
descriptors to characterize coverage and classify different regions
in coverage categories. Even when envisioning a simple intuitive
classification such as “good” coverage (where we have dominant
3G and 4G) or “bad” coverage (where we have dominant 2G or no
service), there is no consensus on what should be the threshold in
terms of percentage of 3G/4G presence in a certain area in order
to label that area with good coverage. Thus, it is challenging and
cumbersome to use statistical descriptors to define good and bad
coverage. In this paper, we leverage ideas from machine learning
to help us overcome limitations of using classification rules based
on statistical descriptors to characterize coverage. More specifically,
we evaluate the use of hierarchical clustering to characterize the
distribution of different RATs from individual MBB providers along
the train routes. Clustering facilitates the efficient manipulation of
this dataset and enables us to determine the salient coverage pro-
files, characterize them and then classify the route segments with
the proper profile.

The coverage mosaic we produce successfully captures the mix-
ture of available RATs as experienced by the end-user inside the
train. Two main coverage profiles emerge from our analysis, one
where 3G is dominant (which we further title “profile A”) and an-
other where No Service is dominant (which we further title “profile
B”). This validates the intuition within the community regarding
“good” and “bad” coverage. Moreover, through the stability analysis
of these coverage profiles, we demonstrate the need for repetitive
measurements (at least 5-10 measurement runs) in order to profile
the coverage of a certain area.

We finally investigate the implications of the coverage profiles
on network performance by analyzing basic QoS metrics and ap-
plication performance by analyzing HTTP performance metrics. Re-
garding network performance, we are able to pinpoint the areas
with Profile B ("bad”) coverage as trouble zones with poor per-
formance. These are areas where operators need to reiterate their
coverage evaluation measurements for proper characterization. We
further validate these results with HTTP download analysis. Con-
sidering that mobile operators often deploy performance enhanc-
ing proxies, we carry out our analysis both on the web port (TCP
port 80) and a different port (TCP port 85) in order to understand
the impact of proxies on the application performance for differ-
ent profiles. For both operators, we observe high percentages of
successful downloads for Profile A, while noting very low percent-

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.06.017

Please cite this article as: A. Lutu et al., The good, the bad and the implications of profiling mobile broadband coverage, Computer



http://dx.doi.org/10.1016/j.comnet.2016.06.017

JID: COMPNW

[m5G;June 30, 2016;6:16]

A. Lutu et al./Computer Networks 000 (2016) 1-18 3
Table 1 Table 2
Terminology. Total number of measurement drive runs per route per
- operator.
A NorNet Edge node is a small computer that
(NNE) Node is used for MBB measurements. Route Number of measurement runs
Route A fixed geographical path following a train Telenor  Telia
Ir\?ourtvevaf;orn one city to another city in 0Oslo - Voss 125 a9
o Oslo - Stavanger 138 147
Run A one way trip in a route when the NNE node
colle\gsydatlf ! w Oslo - Trondheim 64 64
GPS point The point in space where a GPS reading is Trondheim - Bado 142 136
taken.
Metadata Network context information (e.g., RAT, signal

strength, signal to noise ratio, etc.).

A data-point tagged with a geographical
location (GPS coordinates).

Square area that results from superimposing a
grid on the map of Norway for geographical
binning of the geo-tagged data points.

Portion of the railway route delimited within a
grid block.

The distribution of RATs [2G, 3G, 4G, no
service| over the geo-tagged data points
along a route segment in one run.

(Geo-tagged) Data-point

Grid block

(Route) Segment

Coverage Chart

ages of successful downloads for Profile B. We also find evidence
of the presence of a web proxy in Telia’s network, which slightly
increases the HTTP success rate in both profiles.

2. Measurement setup and datasets

In this section, we present the measurement infrastructure that
we use in this paper, the measurements we deploy and the dataset
we collect. We summarize the terminology we use throughout this
paper in Table 1.

2.1. Measurement infrastructure

We use the NorNet Edge [4] (NNE) dedicated mobile broad-
band measurement platform that is designed to measure the per-
formance and reliability of mobile broadband networks from the
user’s perspective. NNE nodes are single board computers that run
a standard Linux distribution and connect to multiple MBB opera-
tors at the same time. The node connects to the different broad-
band providers via Huawei E392-u12 modems supporting 4G/LTE
connectivity. The software running on the NNE nodes ensures that
the MBB connections are alive and also collects network connec-
tion information. All the data collected on the node are periodically
transferred to a server hosted in the back-end and then imported
into a database. Note that the data collected using this platform
depends on the hardware used and, more specifically, the particu-
lar implementation of the device logic.

In order to measure the mobile scenarios, we expand the NNE
testbed to include six custom NNE measurement devices (i.e., NNE
nodes) active on the NSB? regional trains in Norway. Fig. 2 shows
the routes covered by these trains on the population density map
of Norway. As illustrated in the figure, the routes traverse a rea-
sonable mix of urban and rural areas. The regional trains that host
our measurement nodes run periodically on four different national
routes®, covering over 2500 km. We define each one-way train
trip on a certain route as a run. We collect data from these nodes
for the two largest MBB operators in Norway, Telenor and Telia for
five months (from November 2014 to March 2015). In Table 2 we
summarize the number of runs we have for each operator on each

2 NSB is a government-owned railway company operating most passenger trains
in Norway.

3 The train routes are: Oslo-Voss, Oslo-Stavanger, Oslo-Trondheim and
Trondheim-Bodg.

route and different direction. The total number of runs per route
ranges from 60 to 150 runs and depends on the public schedule of
the trains hosting the nodes.

The measurements we collect from the NNE nodes operating
aboard passenger trains in Norway mimic the user experience of
the passengers in the train. Under mobility scenarios, as with all
user equipment (e.g. smartphones or modems), the modems will
report a single RAT value, which is the best available RAT, regard-
less of how many RATs are available in an area. In other words, our
platform behaves in the same way as the user equipment would
and this is exactly what we aim to measure with our platform:
the RAT experienced by the end user.

2.2. Datasets

In this section, we describe the measurements we deploy on
the NNE mobile nodes and the resulting datasets. We transfer all
the data we collect on the node to a server we host in the back-
end and then import it into a database. Along with the mea-
surement results, each node also provides context information (i.e.
metadata) that is very valuable during the analysis. Furthermore,
we access the train GPS location from the NSB system. For the
coverage analysis and its implications, we use the combination of
measurement data (network metadata, UDP ping and HTTP down-
loads) and GPS data results, which we explain in detail in the fol-
lowing sections.

GPS dataset. We collect the GPS location data from the train fleet
management system to identify the location of NNE measurement
nodes and train’s speed during the measurements. The trains up-
date their GPS locations every 10 to 15 seconds in the NSB fleet
management system.

Geo-tagged (Metadata) dataset. The NNE nodes monitor various
metadata types including the RAT, which can be No service, 2G, 3G
or 4G/LTE; different signal quality indicators (e.g. RSSI, Ec/lo, and
RSRQ); network attachment information (e.g. serving cell identifier,
location area code, and tracking area code); and Radio Resource
Control (RRC) state.

We record the metadata when there is a change in the value
of any of these variables, for example, technology change, cell/LAC
change, etc. The device pushes the updates to the measurement
system when changes occur. Moreover, in order to ensure that we
always have the latest information about the connection status in
case the modem happens not to inform the changes in the meta-
data, we also pull this information from the device by querying
the device periodically. More precisely, at the beginning of every
minute, we record the values for all above-mentioned variables.

For our analysis, we specifically require geo-localization of the
coverage information from the modems. To obtain this, we merge
the metadata from the device with the GPS information we re-
trieve from the train. The trains update their GPS locations every
10 to 15 seconds in the NSB fleet management system. For each
GPS point, we find the corresponding RAT value (e.g. No Service,
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2G, 3G or 4G) from the metadata readings based on the times-
tamp values. We start from the timestamp of the GPS reading and
define a one minute time interval prior to the GPS timestamp to
look for the latest update on the RAT value. Note that if there is an
update on the RAT value in this 1 minute interval, we take the lat-
est update, and this value corresponds to the RAT value of the GPS
reading. As we previously explained, besides receiving push notifi-
cations from the device reporting any RAT changes, we also pull in-
formation from the device every 1minute. Therefore, if there are no
RAT updates, we used the last pulled RAT value, and this value cor-
responds to the latest known RAT value prior to the GPS timestamp.
We define a geo-tagged data point as the GPS point where we can
find a corresponding metadata reading. Note that there are cases
when we do not have metadata information for the GPS reading
(e.g., when the modem is down, or the IP address is lost). We dis-
card from our dataset the GPS points with missing metadata infor-
mation. These geo-tagged data points forms our geo-tagged dataset.

UDP ping dataset. To measure network performance and capture
basic quality of service (QoS) metrics (e.g., packet loss, latency), we
send a 20-byte UDP packet every second over each connection to
an echo server that is part of NNE backend and then record a reply
packet from the server. A packet is considered lost if we do not
receive a reply from the server within one minute.

HTTP downloads dataset. In order to measure application perfor-
mance, we run periodic HTTP downloads using cURL. This choice
is motivated by the fact that the majority of the Internet traffic
in general and MBB in particular is HTTP traffic, which transfers
over TCP port 80. Additionally, MBB operators are increasingly us-
ing transparent proxies that split and accelerate TCP connections,
especially for web traffic [5]. Therefore, in this study, along with
TCP port 80, we also consider a different port, namely TCP port 85,
to understand the effect of these proxies on the application per-
formance. In order to ensure the different ports experience similar
channel conditions, we perform two simultaneous HTTP downloads
of size 4MB on the two different TCP ports for each of our connec-
tions once every hour.

We choose this file size to capture two relevant use cases. First,
the case of business passengers who would like to use the com-
mute as part of their work day. These users are likely to engage
in downloading and sending email attachments that are several
Mbytes in size. Second, the case of commuters who are access-
ing popular video streaming services for entertaining. DASH-based
streaming, for example, segments video into small chunks and
send them over HTTP. For a decent streaming quality, the size of
these chunks is a few Mbytes [6]. Note that we only start a HTTP
download if there is coverage. Hence, this test complements our
coverage measurements by examining whether coverage actually
translates into a usable connectivity that lasts for a reasonable du-
ration to allow users completing a small task. For example, down-
loading a 4MB file only takes half a minute with an average speed
of 1 Mbit/s.

For each HTTP download, we log the start time of the down-
load and set the timeout to 900s from the start time. Addition-
ally, we collect information on the time to first byte (TTFB), the
total download time and the transfer size (as a proportion of the
4 MB target file that successfully transferred during the download
time). We also log the HTTP error code and utilize it in order to
deduce whether the download was successful or not. We collect
this dataset from March until mid-May 2015, which overpasses
the time interval we use to collect coverage measurements by 6
weeks. This allows us to analyze HTTP performance assuming that
the coverage profiles are stable.

For each MBB provider and for each of the two ports, we fur-
ther map the HTTP download data-point to the corresponding GPS

location. To this end, we match the GPS dataset from the NSB fleet
management system with the results of the HTTP measurements
from the NNE mobile nodes. For each HTTP download, we define
the download interval and we find the GPS point that is closest
to the download start time and falls within the download interval
based on the timestamps. This allows us to geo-locate the HTTP
download start time.

3. Identifying coverage profiles

Our goal is to build a coverage mosaic, where we segment the
routes and classify the coverage of each segment into coverage
profiles that capture the distribution of RATs as the end-user would
experience it. The purpose of building such a coverage mosaic is to
enable further analysis in terms of network performance character-
ization and reliability. In this section, we propose and evaluate the
use of hierarchical clustering to characterize coverage patterns in
space and time. However, this comes with a number of challenges,
which we formulate below.

3.1. Motivation and problem formulation

Investigating coverage patterns in terms of distribution of dif-
ferent technologies in the same area over time is challenging for
three reasons. First, the RAT distribution varies greatly from one
segment to another based on the deployment of base stations in
an area. This information is usually not available from an objective
source. Additionally, connectivity upgrades are common and oper-
ators do not make their strategies public. Second, the geo-tagged
dataset is difficult to work with because of its large volume and
spatio-temporal inconsistency (i.e., data point’s location and time
of reading differ from run to run over the same route). Third, the
measurement data is noisy because of a number of factors, includ-
ing specific geography of the area, variable train speed, number of
passengers in the train or congestion in the network. For exam-
ple, all the end-users active in an area at a moment in time might
not simultaneously use the fastest available RAT. All these reasons
make efficient characterization of the network coverage using sta-
tistical descriptors challenging and cumbersome.

To tackle these challenges, we design, implement and evaluate
a machine learning methodology that can help us characterize cov-
erage patterns in the areas of interest. Our methodology contains
two separate parts: data morphing and clustering. First, in the data
morphing, we propose the segmentation of the region of interest
in smaller areas and spatially group the geo-tagged data points in
these segments. Second, we focus on capturing the prevalent cov-
erage profiles and classify each route segment to a profile accord-
ingly.

Although good or bad coverage may seem like a straight-
forward classification, due to the challenges we present above, it
is surprisingly hard to give predetermined quantitative definitions
of what is good or bad coverage when focusing on the combination
of different RATs in the same area (e.g., is continuous 2G bad cov-
erage? is it worse having intermittent 3G coverage? how can one
set the thresholds on the RAT distributions to classify good or bad
coverage?). We expand on this issue in the following Section 3.3.
We propose the use of unsupervised clustering to help us with the
classification. The spatio-temporal heterogeneity of the geo-tagged
dataset we collect makes the clustering algorithm a good fit for
identifying patterns in the coverage offered by MBB providers. In
particular, we choose the hierarchical clustering algorithm [7,8],
which clusters data instances based on their similarity [9], thus
highlighting the prevalent coverage profiles in the region.
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Fig. 3. ECDF of train speed over the segments of each of the 4 routes for a) Telenor and b) Telia.

3.2. Data morphing

Our geo-tagged dataset from repetitive runs consists of numer-
ous time-stamped instances of network-specific variables at differ-
ent geographic coordinates along the railway routes. We identify
the objects in our dataset as categorical variables (i.e., the RAT
value) with dynamic location (i.e., the results from the measure-
ment device does not always come in the same point in space).
The interaction between the spatio-temporal dimensions of the
dataset dictates the complexity and challenges in moving from
acquiring the data to drawing knowledge through data analytics.
In order to address these challenges, we begin by organizing the
dataset into instances that we can easily compare.

Spatial binning. We first divide the railway routes into smaller
segments using a fix grid of 2km x 2km tiles that we superimpose
on Norway’s map. Each square grid block that overlaps on the train
routes contains a segment of the route. The resulting segments are
disjoint and uniquely identified by the fix spatial coordinates of
the square grid blocks that contain them. We then partition the
geo-tagged dataset by grouping the data points that fall along the
same route segment.

In order to make an informed decision on the size of the grid
we use for spatial binning, we first investigate the speed distri-
bution of trains, which we depict in Fig. 3. We show both opera-
tors to illustrate that the speed of the train affect both geo-tagged
datasets in the same way. We observe that majority of speeds are
between 75-100 kph and in 98% of the time the train stays below
the maximum speed of 120 kph for all the routes.

Recall that the granularity of the GPS data is 10-15 seconds and
in order to have a long enough period to sufficiently capture the
data-plane performance, we need multiple GPS readings within the
same bin. Based on the speed distribution, the smallest possible
grid block size that captures at least one GPS points even at high
speeds is 500m x 500m. However, a single point per grid block
is not enough to allow performance analysis. Considering all the
above observations, we decide to use a grid block of size 2km x
2km.

In order to validate our choice, we illustrate the total number
of GPS points within the grid blocks which the train traverses in
Fig. 4. As expected, due to variation in the speed and the varia-
tion of the route segment lengths per grid block, the number of
GPS points varies. More specifically, for the Oslo-Trondheim and
Trondheim-Bodg routes approximately 75% of the route segments
have 4 or more geo-tagged data points for both operators. For the
Oslo-Stavanger and Oslo-Voss routes the percentage of route seg-
ments with 4 or more geo-tagged datapoints drops to approxima-

tively 65% for both operators. We leave for future work a detailed
analysis of the impact that the size of the grid we use for spatial
binning has on the coverage patterns we observe. The analysis of
the spatial data in terms of spatial sampling patterns is an impor-
tant and hard question, and we are currently working on inform-
ing spatio-temporal sampling guidelines based on geographical in-
formation system (GIS) knowledge for network measurement plat-
forms, such as NorNet Edge or the upcoming MONROE* platform.
As part of our future work, we will also consider the technical
guidelines of Data Specification on Geographical Grid Systems® and
use INSPIRE reference grid for spatial binning in order to ease the
merging of our (binned) results with other potential data sources.

Coverage chart time series. After the spatial binning, the route
segment with fix spatial coordinates becomes the object that we
further characterize in terms of mobile coverage. A route segment
is characterized by a variable number of RAT readings, correspond-
ing to the geo-tagged data points from every run that the 2km x
2km area encloses. In this second step, we transform the categor-
ical variable representing the RAT at each geo-tagged data point
into a set of continuous variables that show the distribution of
each of the RAT values (i.e., 4G, 3G, 2G or noS) over the set of data
points along a segment of the route. We define the distribution of
RAT over one run as the segment’s coverage chart. For example,
if a segment contains 5 different geo-tagged data points [noS, 2G,
3G, 3G, 4G], then we can derive the coverage chart of the segment
for the measurement run: 2G: 20%, 3G: 40%, 4G: 20%, noS: 20%.
We merge the runs independently of the train trip direction
along a route to generate a coverage chart time series. Note that
due to variations of train speed and the variations on where the
GPS points are sampled, the number of geo-tagged data points per
segment may vary. For example, we might have 3 geo-tagged data
points in one run and 4 geo-tagged data points in the consecutive
run for the same grid. As discussed in the previous section, our
analysis requires a minimum number of 4 GPS points per route
segment per run for each route and operator. In Fig. 5, we illustrate
the empirical cumulative distribution function (ECDF) of number
of train runs that generate at least 4 GPS points on each route
segment per route and per operator. We measure different routes
using different nodes and depending on the schedule of the pas-
senger trains that the nodes are placed, each route has a different
number of runs. For example, the Oslo-Trondheim route has the
lowest number of repetitions, while the Oslo-Stavanger route has

4 https://www.monroe-project.eu/
5 http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_
DataSpecification_GG_v3.1.pdf
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Fig. 5. CDF of the number of train runs (i.e.,, measurement repetitions) on each route segment with at least four GPS points per route. We measure different routes using
hardware devices that operate depending on the schedule of the passenger trains. The Oslo-Trondheim route has the lowest number of repetitions, while the Oslo-Stavanger
and the Trondheim-Bodo route has the highest number of repetitions. In order to have comparable coverage charts for the route segments we classify, we analyze only the
ones where we collected data during at least 75% of the maximum of measurement repetitions. The vertical lines we show in the plots represent the 75% of the maximum
number of measurement runs (on the x axis) we indicate in Table 2. The lines are color-coded to match the Train Route legend. From the intersection of the ECDF with the
vertical lines, we discard from our analysis the route segments at the left of the vertical lines that have less than 75% of the maximum possible measurement repetitions

per route and operator.

the highest number of repetitions. We observe that by selecting
75% of the total runs per route, we have sufficient number of runs
per route to do the classification. The dashed vertical lines on the
ECDF plots are color-coded to match the train routes legend and
represent the 75% thresholds for the number of measurement rep-
etitions we require to build the coverage chart time series of each
route segment. Hereinafter, in order to have comparable coverage
chart time series for the route segments we classify, we analyze
only the route segments where we collected at least 4 geo-tagged
data points for at least 75% of the total of measurement repetitions.
We discard the route segments at the left of the intersection of
each vertical line with its matching ECDF curve. The proportion of
route segments we discard per router per operator varies between
37% (e.g., for Telenor on Oslo-Trondheim or Telia on Oslo-Voss) and
as much as 62% (e.g., for Telia on Trondheim-Bedo).

3.3. The clustering approach

After morphing the dataset, we reduce the problem to the mat-
ter of quantifying the similarity between the segments’ coverage
charts. For the Oslo-Stavanger route, we illustrate the spatial varia-
tion of the distributions of different RATs in Fig. 6a for Telenor and
in Fig. 6b for Telia. We immediately observe that, for both opera-
tors, the distribution of RATs greatly varies in the spatial domain,

supporting our claim that defining thresholds on some statistical
descriptors of the RATs distributions to profile coverage is difficult
and non-adaptive.

In this section, we present the similarity metric we choose,
the clustering method we follow and the approach we use to
determine the optimal number of coverage clusters. We perform
the clustering of segments on a per-route basis, thus applying
the same methodology on datasets we collect along four different
routes.

Similarity metric. In order to calculate the similarity between two
segments, we organize the coverage time series into vectors of cov-
erage charts we measure at each run over a route. The length of
the vector is fix and equal to the number of measurement runs we
register on a route. In the case where the coverage chart for a seg-
ment for a run is missing (either due to hardware issues during
the run or due to sifting the data based on the minimum required
number of data points), we populate the coverage chart with null
value or the corresponding coverage mode variables. We then use
the extended Jaccard measure [10] to evaluate the similarity be-
tween two objects. In Section 4.2, we investigate the similarity in
the measurements from repeated runs and quantify the number of
minimum measurement samples which we can use to character-
ize each route segment in terms of coverage as experienced by the
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Fig. 6. The distribution of RAT per route segment for Telenor and Telia along Oslo-Stavanger train route. The x-axis represents the route segment ID and the y-axis represents
the percentage of each RAT for that particular segment using median, first and third quartiles. The points on the figure are the median/quartile values, while the lines show

the fitted curves to these points.

end-user. In Section 4.4, we then generate the per-route-segment
coverage chart using a fix number of non-null samples. This fur-
ther allows us to understand the impact of populating the time
series of a route segment with null values for the runs when we
were unable to generate the coverage chart.

Clustering method. The clustering method we select is an
average-link hierarchical clustering method, which organizes the
data objects into a multi-level structure, based on the similarity
between objects. Such methods consider the distance between two
clusters to be equal to the average distance from any member of
one cluster to any member of another cluster. More specifically, we
employ here Ward’s minimum variance method for clustering [11],
which aims at finding compact, spherical clusters.

Optimal number of clusters. Hierarchical clustering leaves the
task of detecting the optimal number of clusters to the user. To
this end, we evaluate a validity index for different number of clus-
ters [12]. The number of clusters that generates the best value for
the index is then chosen as optimal. There is no general consensus
on which validity index should be used. In this paper, we consider
the Silhouette index [13] that represents an average, over all the
clusters, of how similar the data in each cluster is.

4. Clustering results

In this section, we run the proposed methodology to character-
ize coverage along the four Norwegian train routes and then we
analyze the results.

4.1. Coverage clusters analysis

We apply the hierarchical clustering method separately to the
coverage chart time-series of the segments covering each of the
train routes. In other words, for each route, we calculate the simi-
larity between segments’ coverage chart time series and we group

together the segments with similar coverage patterns. We then de-
termine the optimal number of coverage clusters using the Silhou-
ette index. For all the four routes and both operators, the Silhou-
ette index gives 2 clusters, which we detail next.

Prevalent coverage profiles. In Fig. 7, we depict the results for the
hierarchical clustering obtained, both for Telenor and Telia. Each
subplot contains in the upper part the dendrogram of the clus-
tering results, and the tile plot of the coverage clusters of grid
block time series in the lower part. The optimal clustering of route
segments defines the dominant coverage profiles for the two MBB
operators. We observe that the clustering algorithm identifies two
main coverage profiles, which we generically label as coverage Pro-
file A and Profile B. In Fig. 7, the color-coded values of the tiles
show that route segments with similar coverage chart evolution
are grouped together.

In Fig. 8, we illustrate the characteristics of these two coverage
profiles, namely the average RAT distributions [2G, 3G, 4G, noS]
over all runs for the segments in the same cluster. When analyz-
ing the coverage profiles, we note that in the areas with Profile A,
Telenor has around 70% 3G accompanied with 15% 4G, while Telia
compensates with higher 3G availability (85% 3G) for its slower
4G deployment (5% 4G). This clearly shows the different deploy-
ment strategies of the operators. Furthermore, we observe slight
differences in the profiles of different routes. For example, the
Trondheim-Bodg route in the Profile A areas of Telia clearly stands
out because it has a lower 3G and higher noS percentage compared
to the other routes. For the Profile B coverage areas, we observe a
high degree of No Service for both operators, which combines with
a smaller ratio of 3G and 2G. The distribution of 2G and 3G varies
considerably among different routes.

Coverage profiles on route. In Fig. 9, we show the spatial distri-
bution of the two coverage profiles along the four train routes. We
observe that Telenor had a slightly larger area with Profile A cov-
erage than Telia. For both operators, we observe that coverage Pro-
file B is extensive along the critical transport infrastructure. This
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elements we show in the dendrogram. The dendrogram illustrates how the grid blocks we represent on the x axis group together according to the extended Jaccard distance
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The tile plot illustrates all the measurements we collect on the Oslo-Stavanger route and has on the y axis the time component (i.e., the drive runs the train performs on
the route in chronological order from down to top), and on the x axis the spatial component (i.e., the grid blocks we use to segment the Oslo-Stavanger route). Each tile of
the mosaic plot represents one measurement instance of the RAT tuple [2G, 3G, 4G, noS], color-coded per level (e.g., green for 4G, orange for 3G, blue for 2G and red for

noS) and with a color gradient proportional to the value of the distribution of the connection mode.
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Fig. 8. Characterization of the coverage profiles we derive using all the data we collect during the 5-months measurements period along the four measured routes in Norway,
for (a) Telenor and (b) Telia. The coverage profile consists of four features we label on the x axis (%2G, %3G, %4G, %noS) that show the distribution of the four RATs over the

segments in the same cluster and whose values we illustrate on the y axis.

is mostly due to the very challenging geography of Norway where
there are many mountains that the trains need to traverse. Fur-
thermore, in order to minimize the difficult mountain crossings
during winter, many tunnels have been built along the railroads.
Moreover, in contrast to other European countries, the rural areas
in Norway is very thinly populated (see Fig. 2). Therefore, part of
the railroad has known to have no coverage or only 2G coverage
and these are the areas where an infrastructure improvement is
needed.

Next, we analyze the coverage profiles in more detail for the
Oslo-Stavanger route. In Fig. 10, we depict the results for the hi-
erarchical clustering we obtain for Oslo-Stavanger, both for Telenor
and Telia. Each subplot contains the dendrogram of the hierarchi-
cal clustering grouping according to the similarity measures we
choose. We group the segments into two main coverage clusters,
namely Profile A and Profile B coverage clusters. We note that for
both operators, the two clusters are well distanced. Additionally,

the distances between elements within the same cluster are rela-
tively small. Thus, the dendrogram allow us to clearly observe the
separation between the clusters according to the similarity mea-
sure, validating the result of the validity index.

Though, using the Silhouette index, we systematically discover
two prevalent coverage clusters that dictate the coverage profiles,
we can further divide these clusters into smaller sub-clusters with
more homogeneous profiles. In some cases, other indexes such
as the Dunn or DB indexes indicate a larger number of clusters,
because of the heterogeneity between the coverage time series
of each of two major clusters. We see in Fig. 10 that the cov-
erage clusters contain several coverage sub-profiles that highlight
the predominance of one RAT or the mixture of several RATs.
For example, in the case of Telenor, we identify 4 different sub-
clusters in the Profile A "good” coverage cluster, underlining the in-
creasing heterogeneity of technologies in the MBB networks. For
future work, we plan to collect GPS with a 1 second granular-
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Fig. 9. Map of the Coverage Mosaic we derive by clustering and analysing the route segments using all the measurement repetitions we collect throughout the 5 months
measurement interval. The route segments are characterized by the two different coverage profiles (their color and shape shows the coverage profile to which each was

assigned), for (a) Telenor and (b) Telia.
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Fig. 10. Clustering dendrograms showing the prevalent coverage profiles (i.e., Profile
A and Profile B) and the coverage sub-profiles along Oslo-Stavanger route, for (a)
Telenor and (b) Telia. We generate the dendrogram of the hierarchical clustering
according to the similarity measures we show on the y axis. On the x axis we show
the ID for each route segment we cluster.

ity and further analyze the impact of sampling on the clustering
results.

4.2. Coverage clustering stability

In this section, we focus on coverage cluster stability and in-
vestigate the minimum number of runs (i.e., different samples in
time) that is sufficient to classify a segment in one of the main
coverage profiles, namely “Profile A” with good coverage and "Pro-

file B” with bad coverage. Our goal is to quantify how much ad-
ditional information regarding the coverage can each run bring to
the clustering problem and when the classification of a route seg-
ment with one of the above-mentioned profiles is stable.

To this end, we run the clustering approach we explain in
Section 3 for varying number of runs n, where n is between 1 and
50. Using the resulting coverage chart time series from n measure-
ment runs, we cluster the segments and separate them in Profile
A and Profile B coverage clusters, which we have previously estab-
lished to intuitively stand for “good” and, respectively, “bad” cov-
erage. We mention that we use here as input the results of the
prior analysis in Section 4.1 in terms of the existence of the two
main coverage clusters, but the clusters resulting after each iter-
ation are obviously different from the ones we obtain when us-
ing all the available dataset. We use the profile characteristics we
illustrate in Fig. 8 to guide the labelling of the coverage profiles
at each iteration into “Profile A” or “Profile B”, so we are always
trying to understand whether a segment had “good” or “bad” cov-
erage. For example, in order to find the clusters of segments us-
ing only 2 measurement runs (n =2), we select any pair of runs
among all runs and apply the clustering algorithm. Thus, we ob-
tain an assignation of coverage profile per route segment, for all
routes and both operators. For each n, we repeat this exercise for
100 different combinations of n runs out of the ones available on
each route. We obtain 100 different assignation of the coverage
profiles per segment for each size n of the set of runs we use as
input. In order to gauge the differences between the 100 cover-
age profile assignments for every n input measurement runs, we
calculate the similarity between these 100 coverage profile assign-
ments. We use the Jaccard distance [10], which is well-defined for
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Fig. 11. Stability of coverage profile assignment in function of the number of measurement runs we use to build the coverage chart time series of the route segments.
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Fig. 12. Evolution of the coverage profiles when using a sliding window of 10 measurement runs to derive them.

binary vectors (for each segment, we assign 1 for Profile A and 0 for
Profile B).

In Fig. 11 we show the average Jaccard distance between the
coverage profile assignments as a function of the number of runs
we use as input. We show this for each operator and every route
we measure. We conclude that individual runs are highly dissimi-
lar, generating highly variable assignations of coverage profiles for
the analyzed grid blocks. This is reflected in Fig. 11 with the value
of the average distance corresponding to the number of runs equal
to 1. However, we observe that, in order to obtain a stable coverage
profile assignment to each route segment, the minimum number of
drive runs required is between 5 and 10. This result is consistent
over all the routes, for both operators.

4.3. Coverage profile adaptability

Previously, we determined that 5-10 measurement runs bring
enough to decide whether a route segment belongs to Profile A
or Profile B. In this section, we aim to capture the evolution over
the measurement period for these two coverage profiles in terms
of the average distribution of RATs over the route segments that
fall within each coverage cluster. Here, we assume we have a set
of consecutive runs per segment. We then use a sliding window
of 10 measurement runs and employ the clustering approach we
propose in Section 3 to assign each segment to the good or bad
coverage cluster. In other words, clustering is done based on the
data collected over 10 consecutive runs per segment where the
first run is shifted in time. For example, the first clustering re-
sults considers the first 10 runs in a segment while the second
clustering results consider 10 runs starting from the second run
in the same segment. This analysis allows us to capture the tech-
nology upgrades over the period of five months we measure. In
Fig. 12, we exemplify this analysis for the Trondheim-Bode route,
which is the one where we collect the highest number of measure-
ment runs. We note that the coverage profiles are overall stable for
both operators. However, for Telenor we observe a slight increase
in the 4G distribution in the areas with Profile A coverage. Also,

there is a small improvement in the 3G distribution in the areas
with Profile B coverage along the Trondheim-Bodg. More specifi-
cally, in the first 20 repetitions of deriving the RAT distribution in
the areas with Profile A, the average 4G distribution is 14.8% and
in the final 20 repetitions, the average 4G distribution increases
to 18.6%. Similarly, in the areas with Profile B coverage, we note
that the initial average 3G distribution of 8% increases slightly to
9.8% over the last 20 repetitions of coverage profiling using a tem-
poral sliding window of 10 runs. This shows that our methodol-
ogy is capable of capturing technology upgrades in the operators’
networks.

4.4. Coverage clustering optimization

In the previous section we show that the similarity between
different measurement runs is high and to obtain a stable cover-
age profile assignment to each route segment, we can reduce the
number of distinct runs to as little as 5 to 10 runs. In this sec-
tion, we re-run the clustering analysis of the route segments for
each route using only the latest 10 different measurement runs per
route segment. We then analyze the coverage profiles and investi-
gate whether the coverage profile assignment changes significantly
compared to when we were using all available measurements.

For each operator, for each route and for each route segment
we select where applicable the results from the latest 10 measure-
ment runs. Using this new dataset, we re-run the same clustering
algorithm, using the extended Jacccard distance as similarity met-
ric, the Ward grouping algorithm to cluster route segments and
the Silhouette index to derive the number of coverage profiles. We
note that the measurement runs that provide the coverage sam-
ples may differ for distinct grid blocks. As we previously note in
Section 3.3, during some measurement runs, the coverage chart
for a route segment might be missing because we were unable to
characterize the coverage along the route segment. This may hap-
pen either because of insufficient measurements along the route
segment to generate a coverage chart (according to the thresholds
we impose), lack of coverage and subsequent impossibility of mea-
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Fig. 14. Characterization of the coverage profiles we derive using the latest 10 measurement runs per route segment along the four measured routes in Norway, for (a)
Telenor and (b) Telia. The coverage profile consists of four features we label on the x axis (%2G, %3G, %4G, %noS) that show the distribution of the four RATs over the

segments in the same cluster and whose values we illustrate on the y axis.

suring with our mobile devices or device issues. Considering the
latest 10 samples of the coverage chart for a route segment irre-
spective of the run allows us to avoid the artificial population of
the coverage chart with null values. We continue calculating the
similarity between route segments using the extended Jaccard dis-
tance. Based on this, we then group the elements and observe the
coverage clusters that further dictate the prevalent coverage pro-
files.

We illustrate in Fig. 14 the characteristics of the coverage pro-
files that correspond to the clusters of route segments. When
comparing these results with the coverage profiles built using all
the available data, we observe similar coverage profiles. Especially
on the Oslo-Voss, Oslo-Stavanger and Trondheim-Bode routes for

both operators the coverage profiles are remarkably similar. We
draw the same conclusion for Telia on the Oslo-Trondheim route.
However, in the case of Telenor's MBB service along the Oslo-
Trondheim route, we note that the route segments with Profile B
coverage have comparable noS/2G/3G/4G distributions within the
profile, indicating that along these segments we recorded frequent
RAT changes from the measurement device. Unlike for the route
segment along the same route with Profile A coverage, where 3G is
obviously dominant with 80% ratio, in this coverage profile there is
no clear dominant RAT along the route segments, even if noS has
the highest ratio of more than 35% in average. Despite the fact that
we register quite significant 4G presence in Profile B, the coverage
is patchy.
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Table 3

The number of route segments that change Profile Cov-
erage assignment when using the latest 10 measure-
ment runs per route segment (without synchronization
between runs over the route segments). For each value,
we show in parenthesis the proportion of the total num-
ber of route segments these ones represent.

Route # Route segments (Proportion
Telenor Telia

Oslo - Voss 4 (5.6%) 9 (10%)

Oslo - Stavanger 12 (7.8%) 13 (7.14%)

Oslo - Trondheim 33 (17%) 24 (12%)

Trondheim - Bgdo 12 (5%) 19 (12%)

This difference from the previous clustering result comes from
the fact that by considering the route segments along the route
with exactly 10 different measurement repetitions, we are able to
analyze a larger proportion of the route but discard the end-user
experience by not accounting for the cases when the device was
not able to measure any RAT. In Fig. 13, we illustrate on a Norway
map the route segments we were able to analyze and profile using
a coverage chart time series derived from the latest 10 measure-
ment runs on each segment independently. When comparing with
the coverage mosaic from Fig. 9, we confirm that, indeed, the to-
tal number of route segments we are able to analyze significantly
increases. By discarding the measurement instances in some runs
where we were unable to generate a coverage chart for a route
segment, we are essentially discarding the cases when the end-
user is not able to connect to the network. Though for the other
routes this does not impact the coverage profiling, in the case of
the Oslo-Trondheim route the coverage patterns seem to shift, as
there is small amount of no service that we measure along the
route (compared to the other routes). Thus, along this route, the
patterns in the coverage evolve from dominant-3G (Profile A) and
dominant-noS (Profile B) to dominant-3G (Profile A) and patchy-
coverage (Profile B) with frequent RAT changes.

For the route segments we previously characterized using all
the coverage measurements collected throughout the 5-month
measurement interval, we investigate whether the coverage pro-
file assignment changes (i.e., the coverage) when we considered
only 10 different measurement samples along the routes. In other
words, we investigate to which degree the route segments from
the coverage mosaic we depict in Fig. 9 change coverage pro-
file assignment in the coverage mosaic we depict in Fig. 13. In
Table 3, we summarize the number of route segments that change
the coverage profile after reducing the number of measurement
runs to only 10. The fraction of route segments that change cover-
age profile assignment varies between 5% (routes like Oslo-Voss or
Trondheim-Bado), to as much as 17% (routes like Oslo-Trondheim
for Telenor). As noted above, this is due to the change in the defini-
tion of coverage profiles along the route after discarding the cases
where we were unable to generate the coverage profile of some
route segments.

5. Coverage implications: reliability and performance

In this section, we focus on how coverage profiles correlate
with the performance of the networks from the end-user point of
view. During the performance analysis, we use the profiles we de-
rive using all the data (see Section 4.1) and we investigate the per-
formance throughout the whole measurement period. This anal-
ysis opens the future possibility of using the resulting coverage
mosaic with coverage profiles as an indicator for network perfor-
mance. Furthermore, this will enable the design of contex-aware
algorithms to improve the application quality of experience for

end-users. We now turn to investigating per-profile MBB perfor-
mance in terms of downtime and packet loss as key performance
measures.

5.1. Uptime

To calculate connection uptime in a time window T, we divide
the number of sent packets in T by the length of T. In our case, T
represents the time that the NNE node spends inside a grid block,
and has a minimum value of 30-45 s Figs. 15a and b show the
CDF of the fraction of uptime for each route and cluster combina-
tion. As expected there are clear differences between areas with
different coverage profiles. For example, areas with Profile B cov-
erage (“bad” coverage) exhibits very low uptime caused by the
high percentage of no service. Furthermore, there are clear spatial
differences between operators. For instance, the worst performing
route in the Profile B coverage cluster is Oslo-Stavanger for Telenor
and Trondheim-Bedo for Telia. Trondheim-Bedo is the best per-
forming route with Profile B coverage for Telenor. These differences
indicate that multi-connectivity, i.e. the use of several operators si-
multaneously, can improve users experience along the same route.
Analyzing differences in uptime between operators and between
routes in conjunction with routes coverage profiles (see Fig. 8), in-
dicates a tight coupling between coverage profiles and uptime.

5.2. Packet loss

Fig. 16 shows the CDF of packet loss in a grid block. We mea-
sure a significant difference in the extent of loss between Profile
A and Profile B coverage clusters. Loss, however, remains high in
the areas with Profile A (“good” coverage) coverage. Between 30%
and 50% of our samples, depending on the operator and route, ex-
hibit more than 1% packet loss. This can be explained by the co-
existence of different RATs and the need for frequent handovers
in the areas with Profile A coverage. Further, we observe that the
ranking of route segments with Profile A coverage in terms of
packet loss matches their ranking in terms of uptime. There is,
however, less similarity between the Profile B coverage routes loss
and uptime rankings: the worst route is always similar. We believe
this similarity in ranking is because packet loss is usually expe-
rienced in areas with challenging coverage conditions (i.e., larger
percentage of no service) which can also lead to a connectivity
loss. We also measure how loss in a grid block varies in different
runs and find that irrespective of the operator and route, the stan-
dard deviation of packet loss is twice as much the mean for at least
50% of the grid blocks. Interestingly, this variability is higher for ar-
eas with “Profile A” coverage (which can be perceived as “good”
coverage), which underlines the fact that one-off measurements
are not enough to make conclusions about performance under mo-
bility.

6. Coverage implications: application performance

In this section, we continue the analysis from Section 5 on the
implications of the coverage profiles and investigate how the lat-
ter correlate with the application performance as experienced by
the end-user. In particular, we focus on HTTP performance and we
study TCP port 85 along with TCP port 80 in order to understand
the effect of the proxies on the application performance. We em-
ploy the HTTP Download dataset we describe in Section 2.2. In
order to identify the corresponding route segment for an HTTP
download data-point, we use the GPS information of the HTTP
download data-point to identify the unique grid-block that con-
tains the GPS location of the HTTP data-point. Thus, by identifying
the grid block, we also retrieve the corresponding train route seg-
ment delimited by that grid block and its coverage profile.
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Fig. 16. The distribution of packet loss

Next, we first describe how we identify the presence of a proxy
in one of the operator’s networks. We then analyze the HTTP per-
formance in terms of download success and failure. Finally, we
characterize the HTTP downloads based on the features we collect
for each data-point.

6.1. Detecting the presence of a proxy

Assessing TCP and HTTP performance is not a trivial task since
there can be several middleboxes on the end-to-end path that
modulate TCP behavior. Transparent web proxies can alter the
end-to-end communication in several ways that include content
caching, traffic redirection, object rewriting (e.g. image compres-
sion), and connection lifecycle manipulation. Since we control both
end points (i.e. the HTTP server and client), we can detect the pres-
ence of transparent proxies for web traffic by inspecting packet
traces of a complete HTTP transaction. Note that proxies’ behav-
iors like traffic redirection and object rewriting are not relevant
to the test scenario because we are exchanging immutable con-
tent from a single server. Further, we find that our HTTP server re-
ceives an HTTP request and engages in a packet transfer whenever
a download is attempted meaning that neither operator caches the
requested file. To test for presence of connection lifecycle manipu-
lation proxies, we perform the following:

« Check if the initial TCP handshake is delayed: Transparent prox-
ies are known to delay the initial handshake until the client
sends an HTTP GET request [5].

« Inspect TCP roundtrip time measured at the server side: Pres-
ence of a connection splitting proxy pretending to be the other
end of the connection would result in TCP roundtrip times that
are not consistent with the path end to end delay.
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in a grid block for different routes.

 Cross-match all TCP messages received by the server side with
all messages sent by the client: A mismatch in these messages
confirms the presence of a transparent proxy.

We perform these preliminary tests both for Telia and Telenor.
We find evidence that Telia uses a transparent proxy. For Telenor,
we cannot confirm nor preclude the use of a web proxy. More
specifically, we find that Telia’s proxy delays the initial TCP hand-
shake until the client sends an HTTP GET request. We also find that
server side TCP roundtrip times are mostly less than 5 msec, which
is far lower than a typical RTT in a MBB network. Finally, we find a
clear mismatch between TCP messages received by the server side
with all messages sent by the client. The server received a receiver
window full messages that were not sent by the client. By doing
this, we believe that the proxy was attempting to slow down the
server without reducing the size of its congestion window. Note
that this evidence is only found when accessing content over tradi-
tional web ports (e.g. ports 80 and 8080). We detail in the follow-
ing section the impact of the web proxy in both coverage profiles.

6.2. HTTP download success/Failure

In Fig. 17, we show the breakdown of the HTTP dataset based
on the coverage profile of the route segment where each download
initiated. We observe that there is a large difference between the
sample sizes of HTTP downloads in Profile A and Profile B. For Te-
lenor, there are 8 times less data-points along Profile B route seg-
ments than in Profile A route segments. Similarly, for Telia there
are 5 times less data-points initiated in Profile B route segments.
This is reasonable though since, based on the coverage profiles’
characterization in Section 4, Profile B has a large degree of No
Service in the RAT distribution. Thus, it is likely that several of the
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Fig. 17. Breakdown of the HTTP downloads dataset per coverage profile, operator (Telenor and, respectively, Telia) and per port (for each operator, we measure port 80 and

port 85 at the same time).

HTTP downloads we schedule in the areas with Profile B coverage
cannot start because of the lack of connectivity.

Moving downwards through the HTTP tree in Fig. 17, we ob-
serve the separation for each coverage profile, based on the op-
erator (Telenor/Telia) and the port number (port 80/85). For each
sub-branch, we then break apart the successful/failed downloads
and calculate the corresponding number of route segments (RS). A
download is labeled as failed, if it does not conclude with trans-
ferring the whole 4MB file, or if cURL exits with a non-zero code.
The later happens when cURL fails to complete the initial hand-
shake, or when network connectivity is lost while downloading
the file. We observe that in the case of HTTP downloads that start
along a route segment with Profile A coverage, the rate of success
is very high. While we observe comparable high success rate in
both ports (84%) for Telenor, we note that for Telia the rate of suc-
cess in port 80 (92%) is significantly higher than in port 85 (85%).
Given that the measurement setup is such to ensure the same con-
ditions for downloads in port 80 and 85. This difference in perfor-
mance indicates that web content served over port 80 in Telia en-
joys a differential treatment because of the use of transparent web
proxies.

For the HTTP downloads that initiate along route segments that
have Profile B coverage we observe, as expected, that the rate of
failure is very high for both operators. Similar to the case of HTTP
Downloads that initiate along route segments with Profile A cover-
age, in the case of Telia there is an obvious difference between the
failure rate in port 80 (64%) and the one in port 85 (71%). How-
ever, the overall failure rate in Telenor (97%) is much larger than
the one in Telia (70%), though the sample sizes in both cases are
comparable. Apart from accounting for the benefits of using a mid-
dlebox for performance enhancements, we can get more intuition
into what may be the cause for this difference by analyzing the
characterization of the coverage profiles we depict in Fig. 8. We
observe that the coverage Profile B in Telia has a slightly higher
rate of 3G and 2G than in Telenor. Also, overall we observe that
the number of route segments we classify with Profile B in Telia
is higher than the one in Telenor. This is apparent also from the
tile plot we depict in Fig. 7 for the Oslo-Stavanger route, where
the Profile B cluster is 30% larger in Telia than in Telenor. Also, we
observe that the two clusters of route segments we use to define
coverage profiles are more homogeneous and better distanced in
the case of Telenor than in the case of Telia. This explains why for
Telenor most HTTP downloads that initiate along route segments
with Profile B coverage end in a failure, while for Telia as much as
30% of them succeed.

6.3. HTTP download characterization

As we previously described in Section 2.2, we characterize each
HTTP download data-point beyond the binary description of suc-
cess/failure by measuring the time to first byte (TTFB) and the
transfer size (the proportion of the target file that downloaded us-
ing cURL). In Fig. 18, we show the ECDF for all the three above-
mentioned variables for (a) Telenor and (b) Telia. In each subplot,
we break apart the ECDFs as a function of the port we measure
and also the coverage profile.

In all the ECDFs for the HTTP transfer size and TTFB we ob-
serve the separation between the downloads that initiate in Pro-
file A route segments and the ones that initiate in Profile B route
segments. The variable that makes the clearest separation between
the two coverage profiles for both operators is the transfer size
(i.e., proportion of target file downloaded). This is due to the fact
that this parameter captures until which point the HTTP download
continued before losing connectivity, which is important especially
in areas with Profile B coverage. For Telenor, we observe that in
more than 90% of the Profile B downloads the transfer is incom-
plete, while for approximately 90% of the Profile A downloads the
transfer is complete. This also validate the previous conclusions
we drew from analyzing the HTTP downloads tree. For Telia, we
note that in the case of HTTP downloads that initiate in Profile B
route segments, the transfer completes for approximately 25% of
the cases. This verifies our observation from the previous section
that a slightly larger degree of 2G or 3G in the RAT distribution
in Profile B for Telia explains the higher proportion of completed
HTTP downloads. We observe only slight differences when analyz-
ing the transfer size in port 80 and port 85, with a higher pro-
portion of HTTP downloads that complete in port 80 than in port
85.

7. Related work

Building accurate and reliable coverage maps has been in the
attention of the community and a magnitude of work exists in this
area. Drive tests are widely used by MBB operators for coverage as-
sessment and performance monitoring. In this paper, we argue that
piggy-backing mobile broadband measurements onto public trans-
port infrastructure is an efficient, cost-effective and automated way
to perform drive tests. Aside from the very high costs of drive tests,
the data collected from them usually has a series of shortcomings,
including variable spatio-temporal sampling and limitation of test
repeatability. The drawbacks of drive tests act as incentive for the
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Fig. 18. CDF of the transfer size and time to first byte (TTFB) for all HTTP downloads on port 80 and port 85 for (a) Telenor and (b) Telia.

design of new methodologies that address these issues [14,15]. In
this sense, our experimental setup brings the benefit of repeatabil-
ity at a low additional cost. Other apporaches including, for exam-
ple, crowdsourcing platforms, may help verify coverage maps [16],
but they also bring additional limitations including, for example,
the lack of control on the measurement device and lack of repeata-
bility.

Data analytics approaches are receiving much attention from
the community, due to their capabilities to draw useful informa-
tion from large databases collected from the network [17,18]. Cov-
erage prediction methodologies based on geostatistics [19,20] in
wireless networks constitute another approach in the direction of
data analytics. To the best of our knowledge, this paper is the first
attempt in mobile coverage profiling using hierarchical clustering
of multivariate time series. Similar solutions have been proposed
in the area of spatio-temporal data mining with different applica-
tions in real life e.g. [21,22]. This technique enables us to generate
adaptive coverage profiles, which are based on real measurements
and reflect the deployment reality of MBB connectivity solutions
and their evolution in time.

In the past years we have seen increased interest in the net-
working community from different parties (e.g., researchers, op-
erators, regulators, policy makers) in measuring the performance
of mobile broadband networks. There are mainly three approaches
for measuring the performance and reliability of MBB networks:
(i) crowd-sourced results from a large number of MBB users [23-
26] , (ii) measurements based on network-side data such as [27-
30] or earlier work including [31,32] and (iii) measurements col-
lected using dedicated infrastructure [33-35]. Network-side and
active tests can be combined in the so-called “hybrid measure-
ments” approach, as implemented e.g. in [36]. In this paper, we
collect data from a dedicated infrastructure in order to have full
control over the measurement nodes, allowing us to systematically
collect a rich and high quality dataset over a long period of time.
Unlike previous efforts that ran performance measurements, we

focus on coverage and its implications in terms of network (e.g.
packet loss) and application performance as experienced by end
users.

Several studies focused on the causes of packet loss in MBB net-
works. Different groups blamed RRC state transitions [37-41] and
showed that state demotions result in significant loss. Gember
et al. compared packet loss on idle and near active devices and
found loss rates on idle devices to be 26% higher and likely to
be caused by differences between cell sectors [42]. Xu et al. dis-
cussed the effect of bursty packet arrivals and drop-tail policies
employed by the operators [5]. RNC-level performance analysis of
UMTS networks identified correlations between RTTs and loss and
their dependency on diurnal patterns and overloaded NodeBs [41].
Another study presented a framework for measuring the user-
experienced reliability in MBB networks, and showed how both
radio conditions and network configuration play important roles
in determining reliability [35]. In a recent work [37], the au-
thors conducted a large-scale measurement study of packet loss
in MBB networks. The study showed that a significant fraction of
loss occurs during pathological and normal Radio Resource Con-
trol (RRC) state transitions and the causes of a significant part of
the remaining loss lie beyond the radio access network. Packet
loss has also been investigated for mobility scenarios. [43] stud-
ied TCP performance in HSPA+ networks on high-speed rails and
showed that the number of handovers is proportional to the in-
creased loss rates for high speeds. Similar observations were made
in a study by [44], showing that most HTTP sessions with inter-
RAT handovers are abandoned. [45] measured HSPA performance
on the move to be greatly different from static HSPA performance.
In particular, they observed that the final results of handovers
are often unpredictable and that UDP packet loss at least dou-
bles during handover periods. Although these studies considered
different aspects of packet loss for stationary and mobility sce-
narios, to the best of our knowledge, our paper is the first study
that ties the coverage with network reliability analysis by showing
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how coverage profiles can be used as an indicator for mobile
broadband reliability.

In this paper, we also study the implication of the coverage mo-
saic on the application performance by measuring and analyzing
HTTP downloads. The analysis of HTTP allows us to investigate the
presence of transparent web proxies that operators might be de-
ploying in their networks. Performance enhancing middleboxes are
widely deployed in Internet and it is of great interest to measure
and characterize the behavior of them especially in MBB networks
where the resources are scarce. One of the early studies in this
domain investigated the web performance of different mobile In-
ternet access technologies (GPRS, EDGE, UMTS and HSDPA) with
and without the web-proxy [46]. The impact of middleboxes on
measurements was explored in [47] where the authors proposed
a methodology for measurements in MBB networks. Farkas et al.
[48] used numerical simulations to quantify the performance im-
provements of proxies in LTE networks. The most thorough anal-
ysis to characterize the behavior and performance impact of de-
ployed proxies on MBB networks was carried out in [49] where the
authors enumerate the detailed TCP-level behavior of MBB proxies
for various network conditions and Web workloads. Although the
common belief is that the proxies provide performance benefits,
Hui et al. [50] showed that proxies can actually hurt performance
by revealing that direct server-client connections have lower re-
transmission rates and higher throughput. Wang et al. [51] showed
how MBB middlebox settings can impact mobile device energy us-
age and how middleboxes can be used to attack or deny service
to mobile devices. While these studies focus on the performance
of proxies on MBB networks, they have not consider the effect of
proxies on the reliability and packet loss.

8. Conclusions and future work

MBB networks are the key infrastructure for people to stay con-
nected, especially in high mobility scenarios (e.g., when using pub-
lic transport). MBB coverage profiling from the end-user experience
while on critical public transport routes are of great importance to
many stakeholders. At the same time, this is a challenging prob-
lem, since even a straight-forward classification of coverage into
“good” or “bad” is very difficult to grasp in quantitative thresholds.
In this paper, we evaluate the use of hierarchical clustering to build
a coverage mosaic of MBB technologies in an area and analyze
its implications in terms of network performance and application
performance. By piggy-backing network measurements onto pub-
lic transportation vehicles via the NNE platform, we first obtained
a unique dataset that (i) captures the coverage and performance
from user’s perspective and (ii) provides repetitive measurement
runs on the same route, in similar conditions. Moreover, an impor-
tant perk of such measurement platforms is allowing other par-
ties, including public transport companies, to assess and compare
the MBB coverage along their infrastructure to verify their service
level agreement. We then leveraged hierarchical clustering in order
to identify and characterize prevalent coverage profiles. Though in
this study we look at the case of railways in Norway, the method-
ology can easily be generalized for running a similar study in other
regions or applying it to a different datasets, (e.g. crowd-sourced
data). A copy of the dataset we used in this paper is available for
open access in Zenodo®, as well as the code for the clustering ap-
proach.

Our results reveal that the clustering approach can accurately
group together regions with high similarity in terms of coverage.
Based on the mixture of RATs and the time-domain evolution, two
main coverage profiles emerge: Profile A -where 3G dominates, and

6 http://dx.doi.org/10.5281/zenodo.47707

Profile B - where No Service dominates. This maps onto the gen-
eral intuition of “good” and, respectively, “bad” coverage. We then
analyze the identified coverage profiles, both in terms of stability
and performance. The stability analysis investigates the similarity
between different runs over the same route, with the express pur-
pose of indicating the amount of measurement repetitions we re-
quire to accurately observe stable coverage profiles. We find that
we need at least 5 to 10 measurement runs in order to achieve a
stable coverage profile in an area. We then focus on how coverage
profiles correlate with MBB and also application performance from
the end-user point of view. For this, we first assess packet loss per-
formance per coverage profile and find that it highly varies for ar-
eas with Profile A coverage. This result is counter-intuitive because
Profile A presents a high percentage of superior RATs. This indi-
cates that, although we can derive this profile with few measure-
ment runs, further characterization of the performance requires
more analysis, e.g., correlation with the network congestion and
measurement time of the day.

We take this analysis further and investigate the implication of
the coverage profiles on the application performance, with a fo-
cus on HTTP traffic. We observe that in the route segments with
Profile B coverage, the rate of failure for HTTP downloads is very
high, while in the route segments with Profile A coverage, the
HTTP downloads succeed with a high rate. For Telia, however, we
note a rate of 30% of successful downloads even in Profile B cover-
age, while for Telenor this rate is very small, less than 5%. This is
an artifact of the fact that the two clusters of route segments we
use to define coverage profiles are more homogeneous and better
distanced in the case of Telenor than in the case of Telia. While
assessing TCP performance we also try to detect the presence of
middleboxes that operators might deploy in their networks, such
as transparent web proxies. While analyzing the characteristics of
the HTTP downloads, we discover the impact of what seems to be
a web proxy in Telia.
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