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a b s t r a c t 

Pervasive coverage and continuous connectivity of Mobile Broadband (MBB) networks are common goals 

for regulators and operators. Given the increasing heterogeneity of technologies in the last mile of MBB 

networks, further support for seamless connectivity across multiple network types relies on understand- 

ing the prevalent network coverage profiles that capture different available technologies in an area. Cor- 

relating these coverage profiles with network performance metrics is of great importance in order to 

forestall disturbances for applications running on top of MBB networks. In this paper, we aim to profile 

MBB coverage and its performance implications from the end-user’s perspective along critical transport 

infrastructures (i.e., railways in Norway). For this, we deploy custom measurement nodes on-board five 

Norwegian inter-city trains and we collect a unique geo-tagged dataset along the train routes. We then 

build a coverage mosaic , where we divide the routes into segments and analyze the coverage of indi- 

vidual operators in each segment. We propose and evaluate the use of hierarchical clustering to describe 

prevalent coverage profiles of MBB networks along the train routes and classify each segment accordingly. 

We further analyze the areas we classify with each profile and assess the packet-loss and HTTP download 

performance of the networks in those areas. 

© 2016 Published by Elsevier B.V. 
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. Introduction 

Mobile Broadband (MBB) access to Internet enables operators

o join mobility and communications towards the common goal of

ffering subscribers performance and efficiency in highly dynamic

obile scenarios. However, Internet access under mobility brings a

umber of challenges, including high probability of service inter-

uptions. A popular example of such scenarios is the case of trav-

lers regularly commuting on public transport infrastructures, such

s inter-city trains. In this context, tens or hundreds of passen-

ers try to access the Internet simultaneously for entertainment,

ommunication and work-related tasks, all while moving at high

peeds. During the last years, railway operators throughout the

orld have been testing and providing commercial Internet con-

ectivity solutions aimed at enabling on-board Internet services to

rain passengers. Various types of communication solutions have

een advanced [1,2] , including cellular solutions, WLAN-based so-

utions or hybrid terrestrial/satellite solutions. 

The performance of cellular-based solutions for on-board con-

ectivity highly depends on the MBB coverage around the railway
∗ Corresponding author. 
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ines. MBB operators are the main providers of coverage maps for

ther stakeholders, including regulators, subscribers or businesses

uch as public transport operators. These coverage maps usually

efine the status of one radio access technology (RAT) in a re-

ion for a MBB operator. However, they do not offer information

n how end-users actually experience the distribution of different

ATs in the same geographical region. For example, the existence

f 4G connectivity in an area does not mean that all end-users are

ble to use that technology and it does not necessarily guarantee

 good user experience for the end-users that are able to access it.

his may be due to a number of factors, including specific geogra-

hy of the area, variable train speed, number of passengers in the

rain or congestion in the network. Given the increasing hetero-

eneity of technologies in the last mile of MBB networks, user ex-

erience highly depends on support for seamless handovers across

ultiple network types. Therefore, identifying the network coverage

rofiles that capture the distribution of all available technologies in

he same area from the end-user experience is very important. 

In this paper 1 , we focus on profiling the MBB coverage along

he critical railway infrastructure in Norway from the end-user

erspective. In Fig. 1 , we summarize the workflow we follow in
1 This paper is an extension of prior work [3] the authors published in the 2016 

FIP International Workshop on Traffic Monitoring and Analysis. 
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Fig. 1. The workflow we follow to generate the coverage mosaic maps. 

Fig. 2. Spatial locations of the MBB measurements from the NNE nodes operating 

aboard the NSB trains overlayed on the population density map of Norway. In the 

population density map, red color indicates highly populated areas such as cities 

whereas yellow color indicates thinly populated rural areas. 
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this paper in order to achieve this goal. Our main objective is to

build a coverage mosaic , where we classify and characterize rail-

way route segments based on the distribution of RATs along that

segment and on how end-users traveling along that route would

experience the service. For this, we use a vast dataset that we col-

lect through periodic measurements from custom devices that we

strategically place on-board several passenger trains. The dataset is

pestered by numerous challenges, including high volume, the mix-

ture of spatio-temporal coordinates and the presence of categori-
Please cite this article as: A. Lutu et al., The good, the bad and the 
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al variables (i.e., the RAT value). Furthermore, depending on the

eployment of base stations along the railway routes, the distribu-

ion of different RATs highly varies from one segment to another.

ome operators rely on thresholds that are imposed on statistical

escriptors to characterize coverage and classify different regions

n coverage categories. Even when envisioning a simple intuitive

lassification such as “good” coverage (where we have dominant

G and 4G) or “bad” coverage (where we have dominant 2G or no

ervice), there is no consensus on what should be the threshold in

erms of percentage of 3G/4G presence in a certain area in order

o label that area with good coverage. Thus, it is challenging and

umbersome to use statistical descriptors to define good and bad

overage. In this paper, we leverage ideas from machine learning

o help us overcome limitations of using classification rules based

n statistical descriptors to characterize coverage. More specifically,

e evaluate the use of hierarchical clustering to characterize the

istribution of different RATs from individual MBB providers along

he train routes. Clustering facilitates the efficient manipulation of

his dataset and enables us to determine the salient coverage pro-

les, characterize them and then classify the route segments with

he proper profile. 

The coverage mosaic we produce successfully captures the mix-

ure of available RATs as experienced by the end-user inside the

rain. Two main coverage profiles emerge from our analysis, one

here 3G is dominant (which we further title “profile A”) and an-

ther where No Service is dominant (which we further title “profile

”). This validates the intuition within the community regarding

good” and “bad” coverage. Moreover, through the stability analysis

f these coverage profiles, we demonstrate the need for repetitive

easurements (at least 5–10 measurement runs) in order to profile

he coverage of a certain area. 

We finally investigate the implications of the coverage profiles

n network performance by analyzing basic QoS metrics and ap-

lication performance by analyzing HTTP performance metrics. Re-

arding network performance, we are able to pinpoint the areas

ith Profile B (”bad”) coverage as trouble zones with poor per-

ormance. These are areas where operators need to reiterate their

overage evaluation measurements for proper characterization. We

urther validate these results with HTTP download analysis. Con-

idering that mobile operators often deploy performance enhanc-

ng proxies, we carry out our analysis both on the web port (TCP

ort 80) and a different port (TCP port 85) in order to understand

he impact of proxies on the application performance for differ-

nt profiles. For both operators, we observe high percentages of

uccessful downloads for Profile A, while noting very low percent-
implications of profiling mobile broadband coverage, Computer 
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Table 1 

Terminology. 

(NNE) Node 

A NorNet Edge node is a small computer that 

is used for MBB measurements. 

Route A fixed geographical path following a train 

route from one city to another city in 

Norway. 

Run A one way trip in a route when the NNE node 

collects data. 

GPS point The point in space where a GPS reading is 

taken. 

Metadata Network context information (e.g., RAT, signal 

strength, signal to noise ratio, etc.). 

(Geo-tagged) Data-point A data-point tagged with a geographical 

location (GPS coordinates). 

Grid block Square area that results from superimposing a 

grid on the map of Norway for geographical 

binning of the geo-tagged data points. 

(Route) Segment Portion of the railway route delimited within a 

grid block. 

Coverage Chart The distribution of RATs [2G, 3G, 4G, no 

service] over the geo-tagged data points 

along a route segment in one run. 
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Table 2 

Total number of measurement drive runs per route per 

operator. 

Route Number of measurement runs 

Telenor Telia 

Oslo - Voss 125 99 

Oslo - Stavanger 138 147 

Oslo - Trondheim 64 64 

Trondheim - Bødo 142 136 
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ges of successful downloads for Profile B. We also find evidence

f the presence of a web proxy in Telia’s network, which slightly

ncreases the HTTP success rate in both profiles. 

. Measurement setup and datasets 

In this section, we present the measurement infrastructure that

e use in this paper, the measurements we deploy and the dataset

e collect. We summarize the terminology we use throughout this

aper in Table 1 . 

.1. Measurement infrastructure 

We use the NorNet Edge [4] (NNE) dedicated mobile broad-

and measurement platform that is designed to measure the per-

ormance and reliability of mobile broadband networks from the

ser’s perspective. NNE nodes are single board computers that run

 standard Linux distribution and connect to multiple MBB opera-

ors at the same time. The node connects to the different broad-

and providers via Huawei E392-u12 modems supporting 4G/LTE

onnectivity. The software running on the NNE nodes ensures that

he MBB connections are alive and also collects network connec-

ion information. All the data collected on the node are periodically

ransferred to a server hosted in the back-end and then imported

nto a database. Note that the data collected using this platform

epends on the hardware used and, more specifically, the particu-

ar implementation of the device logic. 

In order to measure the mobile scenarios, we expand the NNE

estbed to include six custom NNE measurement devices (i.e., NNE

odes) active on the NSB 

2 regional trains in Norway. Fig. 2 shows

he routes covered by these trains on the population density map

f Norway. As illustrated in the figure, the routes traverse a rea-

onable mix of urban and rural areas. The regional trains that host

ur measurement nodes run periodically on four different national

outes 3 , covering over 2500 km. We define each one-way train

rip on a certain route as a run . We collect data from these nodes

or the two largest MBB operators in Norway, Telenor and Telia for

ve months (from November 2014 to March 2015). In Table 2 we

ummarize the number of runs we have for each operator on each
2 NSB is a government-owned railway company operating most passenger trains 

n Norway. 
3 The train routes are: Oslo-Voss, Oslo-Stavanger, Oslo-Trondheim and 

rondheim-Bodø. 
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oute and different direction. The total number of runs per route

anges from 60 to 150 runs and depends on the public schedule of

he trains hosting the nodes. 

The measurements we collect from the NNE nodes operating

board passenger trains in Norway mimic the user experience of

he passengers in the train. Under mobility scenarios, as with all

ser equipment (e.g. smartphones or modems), the modems will

eport a single RAT value, which is the best available RAT, regard-

ess of how many RATs are available in an area. In other words, our

latform behaves in the same way as the user equipment would

nd this is exactly what we aim to measure with our platform:

he RAT experienced by the end user. 

.2. Datasets 

In this section, we describe the measurements we deploy on

he NNE mobile nodes and the resulting datasets. We transfer all

he data we collect on the node to a server we host in the back-

nd and then import it into a database. Along with the mea-

urement results, each node also provides context information (i.e.

etadata) that is very valuable during the analysis. Furthermore,

e access the train GPS location from the NSB system. For the

overage analysis and its implications, we use the combination of

easurement data (network metadata, UDP ping and HTTP down-

oads) and GPS data results, which we explain in detail in the fol-

owing sections. 

PS dataset . We collect the GPS location data from the train fleet

anagement system to identify the location of NNE measurement

odes and train’s speed during the measurements. The trains up-

ate their GPS locations every 10 to 15 seconds in the NSB fleet

anagement system. 

eo-tagged (Metadata) dataset . The NNE nodes monitor various

etadata types including the RAT, which can be No service , 2G, 3G

r 4G/LTE; different signal quality indicators (e.g. RSSI, Ec/Io, and

SRQ); network attachment information (e.g. serving cell identifier,

ocation area code, and tracking area code); and Radio Resource

ontrol (RRC) state. 

We record the metadata when there is a change in the value

f any of these variables, for example, technology change, cell/LAC

hange, etc. The device pushes the updates to the measurement

ystem when changes occur. Moreover, in order to ensure that we

lways have the latest information about the connection status in

ase the modem happens not to inform the changes in the meta-

ata, we also pull this information from the device by querying

he device periodically. More precisely, at the beginning of every

inute, we record the values for all above-mentioned variables. 

For our analysis, we specifically require geo-localization of the

overage information from the modems. To obtain this, we merge

he metadata from the device with the GPS information we re-

rieve from the train. The trains update their GPS locations every

0 to 15 seconds in the NSB fleet management system. For each

PS point, we find the corresponding RAT value (e.g. No Service ,
implications of profiling mobile broadband coverage, Computer 
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2G, 3G or 4G) from the metadata readings based on the times-

tamp values. We start from the timestamp of the GPS reading and

define a one minute time interval prior to the GPS timestamp to

look for the latest update on the RAT value. Note that if there is an

update on the RAT value in this 1 minute interval, we take the lat-

est update, and this value corresponds to the RAT value of the GPS

reading. As we previously explained, besides receiving push notifi-

cations from the device reporting any RAT changes, we also pull in-

formation from the device every 1minute. Therefore, if there are no

RAT updates, we used the last pulled RAT value, and this value cor-

responds to the latest known RAT value prior to the GPS timestamp .

We define a geo-tagged data point as the GPS point where we can

find a corresponding metadata reading. Note that there are cases

when we do not have metadata information for the GPS reading

(e.g., when the modem is down, or the IP address is lost). We dis-

card from our dataset the GPS points with missing metadata infor-

mation. These geo-tagged data points forms our geo-tagged dataset .

UDP ping dataset . To measure network performance and capture

basic quality of service (QoS) metrics (e.g., packet loss, latency), we

send a 20-byte UDP packet every second over each connection to

an echo server that is part of NNE backend and then record a reply

packet from the server. A packet is considered lost if we do not

receive a reply from the server within one minute. 

HTTP downloads dataset . In order to measure application perfor-

mance, we run periodic HTTP downloads using cURL . This choice

is motivated by the fact that the majority of the Internet traffic

in general and MBB in particular is HTTP traffic, which transfers

over TCP port 80. Additionally, MBB operators are increasingly us-

ing transparent proxies that split and accelerate TCP connections,

especially for web traffic [5] . Therefore, in this study, along with

TCP port 80, we also consider a different port, namely TCP port 85,

to understand the effect of these proxies on the application per-

formance. In order to ensure the different ports experience similar

channel conditions, we perform two simultaneous HTTP downloads

of size 4MB on the two different TCP ports for each of our connec-

tions once every hour. 

We choose this file size to capture two relevant use cases. First,

the case of business passengers who would like to use the com-

mute as part of their work day. These users are likely to engage

in downloading and sending email attachments that are several

Mbytes in size. Second, the case of commuters who are access-

ing popular video streaming services for entertaining. DASH-based

streaming, for example, segments video into small chunks and

send them over HTTP. For a decent streaming quality, the size of

these chunks is a few Mbytes [6] . Note that we only start a HTTP

download if there is coverage. Hence, this test complements our

coverage measurements by examining whether coverage actually

translates into a usable connectivity that lasts for a reasonable du-

ration to allow users completing a small task. For example, down-

loading a 4MB file only takes half a minute with an average speed

of 1 Mbit/s. 

For each HTTP download, we log the start time of the down-

load and set the timeout to 900s from the start time. Addition-

ally, we collect information on the time to first byte (TTFB), the

total download time and the transfer size (as a proportion of the

4 MB target file that successfully transferred during the download

time). We also log the HTTP error code and utilize it in order to

deduce whether the download was successful or not. We collect

this dataset from March until mid-May 2015, which overpasses

the time interval we use to collect coverage measurements by 6

weeks. This allows us to analyze HTTP performance assuming that

the coverage profiles are stable. 

For each MBB provider and for each of the two ports, we fur-

ther map the HTTP download data-point to the corresponding GPS
Please cite this article as: A. Lutu et al., The good, the bad and the 
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ocation. To this end, we match the GPS dataset from the NSB fleet

anagement system with the results of the HTTP measurements

rom the NNE mobile nodes. For each HTTP download, we define

he download interval and we find the GPS point that is closest

o the download start time and falls within the download interval

ased on the timestamps. This allows us to geo-locate the HTTP

ownload start time. 

. Identifying coverage profiles 

Our goal is to build a coverage mosaic , where we segment the

outes and classify the coverage of each segment into coverage

rofiles that capture the distribution of RATs as the end-user would

xperience it. The purpose of building such a coverage mosaic is to

nable further analysis in terms of network performance character-

zation and reliability. In this section, we propose and evaluate the

se of hierarchical clustering to characterize coverage patterns in

pace and time. However, this comes with a number of challenges,

hich we formulate below. 

.1. Motivation and problem formulation 

Investigating coverage patterns in terms of distribution of dif-

erent technologies in the same area over time is challenging for

hree reasons. First, the RAT distribution varies greatly from one

egment to another based on the deployment of base stations in

n area. This information is usually not available from an objective

ource. Additionally, connectivity upgrades are common and oper-

tors do not make their strategies public. Second, the geo-tagged

ataset is difficult to work with because of its large volume and

patio-temporal inconsistency (i.e., data point’s location and time

f reading differ from run to run over the same route). Third, the

easurement data is noisy because of a number of factors, includ-

ng specific geography of the area, variable train speed, number of

assengers in the train or congestion in the network. For exam-

le, all the end-users active in an area at a moment in time might

ot simultaneously use the fastest available RAT. All these reasons

ake efficient characterization of the network coverage using sta-

istical descriptors challenging and cumbersome. 

To tackle these challenges, we design, implement and evaluate

 machine learning methodology that can help us characterize cov-

rage patterns in the areas of interest. Our methodology contains

wo separate parts: data morphing and clustering . First, in the data

orphing, we propose the segmentation of the region of interest

n smaller areas and spatially group the geo-tagged data points in

hese segments. Second, we focus on capturing the prevalent cov-

rage profiles and classify each route segment to a profile accord-

ngly. 

Although good or bad coverage may seem like a straight-

orward classification, due to the challenges we present above, it

s surprisingly hard to give predetermined quantitative definitions

f what is good or bad coverage when focusing on the combination

f different RATs in the same area (e.g., is continuous 2G bad cov-

rage? is it worse having intermittent 3G coverage? how can one

et the thresholds on the RAT distributions to classify good or bad

overage?). We expand on this issue in the following Section 3.3 .

e propose the use of unsupervised clustering to help us with the

lassification. The spatio-temporal heterogeneity of the geo-tagged

ataset we collect makes the clustering algorithm a good fit for

dentifying patterns in the coverage offered by MBB providers. In

articular, we choose the hierarchical clustering algorithm [7,8] ,

hich clusters data instances based on their similarity [9] , thus

ighlighting the prevalent coverage profiles in the region. 
implications of profiling mobile broadband coverage, Computer 
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Fig. 3. ECDF of train speed over the segments of each of the 4 routes for a) Telenor and b) Telia. 
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.2. Data morphing 

Our geo-tagged dataset from repetitive runs consists of numer-

us time-stamped instances of network-specific variables at differ-

nt geographic coordinates along the railway routes. We identify

he objects in our dataset as categorical variables (i.e., the RAT

alue) with dynamic location (i.e., the results from the measure-

ent device does not always come in the same point in space).

he interaction between the spatio-temporal dimensions of the

ataset dictates the complexity and challenges in moving from

cquiring the data to drawing knowledge through data analytics.

n order to address these challenges, we begin by organizing the

ataset into instances that we can easily compare. 

patial binning . We first divide the railway routes into smaller

egments using a fix grid of 2km × 2km tiles that we superimpose

n Norway’s map. Each square grid block that overlaps on the train

outes contains a segment of the route. The resulting segments are

isjoint and uniquely identified by the fix spatial coordinates of

he square grid blocks that contain them. We then partition the

eo-tagged dataset by grouping the data points that fall along the

ame route segment. 

In order to make an informed decision on the size of the grid

e use for spatial binning, we first investigate the speed distri-

ution of trains, which we depict in Fig. 3 . We show both opera-

ors to illustrate that the speed of the train affect both geo-tagged

atasets in the same way. We observe that majority of speeds are

etween 75–100 kph and in 98% of the time the train stays below

he maximum speed of 120 kph for all the routes. 

Recall that the granularity of the GPS data is 10–15 seconds and

n order to have a long enough period to sufficiently capture the

ata-plane performance, we need multiple GPS readings within the

ame bin. Based on the speed distribution, the smallest possible

rid block size that captures at least one GPS points even at high

peeds is 500m × 500m . However, a single point per grid block

s not enough to allow performance analysis. Considering all the

bove observations, we decide to use a grid block of size 2km ×
km . 

In order to validate our choice, we illustrate the total number

f GPS points within the grid blocks which the train traverses in

ig. 4 . As expected, due to variation in the speed and the varia-

ion of the route segment lengths per grid block, the number of

PS points varies. More specifically, for the Oslo-Trondheim and

rondheim–Bodø routes approximately 75% of the route segments

ave 4 or more geo-tagged data points for both operators. For the

slo-Stavanger and Oslo-Voss routes the percentage of route seg-

ents with 4 or more geo-tagged datapoints drops to approxima-
Please cite this article as: A. Lutu et al., The good, the bad and the 
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ively 65% for both operators. We leave for future work a detailed

nalysis of the impact that the size of the grid we use for spatial

inning has on the coverage patterns we observe. The analysis of

he spatial data in terms of spatial sampling patterns is an impor-

ant and hard question, and we are currently working on inform-

ng spatio-temporal sampling guidelines based on geographical in-

ormation system (GIS) knowledge for network measurement plat-

orms, such as NorNet Edge or the upcoming MONROE 4 platform.

s part of our future work, we will also consider the technical

uidelines of Data Specification on Geographical Grid Systems 5 and

se INSPIRE reference grid for spatial binning in order to ease the

erging of our (binned) results with other potential data sources. 

overage chart time series . After the spatial binning, the route

egment with fix spatial coordinates becomes the object that we

urther characterize in terms of mobile coverage. A route segment

s characterized by a variable number of RAT readings, correspond-

ng to the geo-tagged data points from every run that the 2km ×
km area encloses. In this second step, we transform the categor-

cal variable representing the RAT at each geo-tagged data point

nto a set of continuous variables that show the distribution of

ach of the RAT values (i.e., 4G, 3G, 2G or noS) over the set of data

oints along a segment of the route. We define the distribution of

AT over one run as the segment’s coverage chart . For example,

f a segment contains 5 different geo-tagged data points [noS, 2G,

G, 3G, 4G], then we can derive the coverage chart of the segment

or the measurement run: 2G: 20%, 3G: 40%, 4G: 20%, noS: 20%. 

We merge the runs independently of the train trip direction

long a route to generate a coverage chart time series . Note that

ue to variations of train speed and the variations on where the

PS points are sampled, the number of geo-tagged data points per

egment may vary. For example, we might have 3 geo-tagged data

oints in one run and 4 geo-tagged data points in the consecutive

un for the same grid. As discussed in the previous section, our

nalysis requires a minimum number of 4 GPS points per route

egment per run for each route and operator. In Fig. 5 , we illustrate

he empirical cumulative distribution function (ECDF) of number

f train runs that generate at least 4 GPS points on each route

egment per route and per operator. We measure different routes

sing different nodes and depending on the schedule of the pas-

enger trains that the nodes are placed, each route has a different

umber of runs. For example, the Oslo-Trondheim route has the

owest number of repetitions, while the Oslo-Stavanger route has
implications of profiling mobile broadband coverage, Computer 

https://www.monroe-project.eu/
http://inspire.ec.europa.eu/documents/Data_Specifications/INSPIRE_DataSpecification_GG_v3.1.pdf
http://dx.doi.org/10.1016/j.comnet.2016.06.017


6 A. Lutu et al. / Computer Networks 0 0 0 (2016) 1–18 

ARTICLE IN PRESS 

JID: COMPNW [m5G; June 30, 2016;6:16 ] 

Fig. 4. ECDF of the number of geo-tagged data points per grid block per route for a) Telenor and b) Telia. 

Fig. 5. CDF of the number of train runs (i.e., measurement repetitions) on each route segment with at least four GPS points per route. We measure different routes using 

hardware devices that operate depending on the schedule of the passenger trains. The Oslo-Trondheim route has the lowest number of repetitions, while the Oslo-Stavanger 

and the Trondheim-Bodo route has the highest number of repetitions. In order to have comparable coverage charts for the route segments we classify, we analyze only the 

ones where we collected data during at least 75% of the maximum of measurement repetitions. The vertical lines we show in the plots represent the 75% of the maximum 

number of measurement runs (on the x axis) we indicate in Table 2 . The lines are color-coded to match the Train Route legend. From the intersection of the ECDF with the 

vertical lines, we discard from our analysis the route segments at the left of the vertical lines that have less than 75% of the maximum possible measurement repetitions 

per route and operator. 
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the highest number of repetitions. We observe that by selecting

75% of the total runs per route, we have sufficient number of runs

per route to do the classification. The dashed vertical lines on the

ECDF plots are color-coded to match the train routes legend and

represent the 75% thresholds for the number of measurement rep-

etitions we require to build the coverage chart time series of each

route segment. Hereinafter, in order to have comparable coverage

chart time series for the route segments we classify, we analyze

only the route segments where we collected at least 4 geo-tagged

data points for at least 75% of the total of measurement repetitions.

We discard the route segments at the left of the intersection of

each vertical line with its matching ECDF curve. The proportion of

route segments we discard per router per operator varies between

37% (e.g., for Telenor on Oslo-Trondheim or Telia on Oslo-Voss) and

as much as 62% (e.g., for Telia on Trondheim-Bødo). 

3.3. The clustering approach 

After morphing the dataset, we reduce the problem to the mat-

ter of quantifying the similarity between the segments’ coverage

charts. For the Oslo-Stavanger route, we illustrate the spatial varia-

tion of the distributions of different RATs in Fig. 6 a for Telenor and

in Fig. 6 b for Telia. We immediately observe that, for both opera-

tors, the distribution of RATs greatly varies in the spatial domain,
Please cite this article as: A. Lutu et al., The good, the bad and the 
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upporting our claim that defining thresholds on some statistical

escriptors of the RATs distributions to profile coverage is difficult

nd non-adaptive. 

In this section, we present the similarity metric we choose,

he clustering method we follow and the approach we use to

etermine the optimal number of coverage clusters. We perform

he clustering of segments on a per-route basis, thus applying

he same methodology on datasets we collect along four different

outes. 

imilarity metric . In order to calculate the similarity between two

egments, we organize the coverage time series into vectors of cov-

rage charts we measure at each run over a route. The length of

he vector is fix and equal to the number of measurement runs we

egister on a route. In the case where the coverage chart for a seg-

ent for a run is missing (either due to hardware issues during

he run or due to sifting the data based on the minimum required

umber of data points), we populate the coverage chart with null

alue or the corresponding coverage mode variables. We then use

he extended Jaccard measure [10] to evaluate the similarity be-

ween two objects. In Section 4.2 , we investigate the similarity in

he measurements from repeated runs and quantify the number of

inimum measurement samples which we can use to character-

ze each route segment in terms of coverage as experienced by the
implications of profiling mobile broadband coverage, Computer 
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Fig. 6. The distribution of RAT per route segment for Telenor and Telia along Oslo-Stavanger train route. The x-axis represents the route segment ID and the y-axis represents 

the percentage of each RAT for that particular segment using median, first and third quartiles. The points on the figure are the median/quartile values, while the lines show 

the fitted curves to these points. 
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nd-user. In Section 4.4 , we then generate the per-route-segment

overage chart using a fix number of non-null samples. This fur-

her allows us to understand the impact of populating the time

eries of a route segment with null values for the runs when we

ere unable to generate the coverage chart. 

lustering method . The clustering method we select is an

verage-link hierarchical clustering method, which organizes the

ata objects into a multi-level structure, based on the similarity

etween objects. Such methods consider the distance between two

lusters to be equal to the average distance from any member of

ne cluster to any member of another cluster. More specifically, we

mploy here Ward’s minimum variance method for clustering [11] ,

hich aims at finding compact, spherical clusters. 

ptimal number of clusters . Hierarchical clustering leaves the

ask of detecting the optimal number of clusters to the user. To

his end, we evaluate a validity index for different number of clus-

ers [12] . The number of clusters that generates the best value for

he index is then chosen as optimal. There is no general consensus

n which validity index should be used. In this paper, we consider

he Silhouette index [13] that represents an average, over all the

lusters, of how similar the data in each cluster is. 

. Clustering results 

In this section, we run the proposed methodology to character-

ze coverage along the four Norwegian train routes and then we

nalyze the results. 

.1. Coverage clusters analysis 

We apply the hierarchical clustering method separately to the

overage chart time-series of the segments covering each of the

rain routes. In other words, for each route, we calculate the simi-

arity between segments’ coverage chart time series and we group
Please cite this article as: A. Lutu et al., The good, the bad and the 
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ogether the segments with similar coverage patterns. We then de-

ermine the optimal number of coverage clusters using the Silhou-

tte index. For all the four routes and both operators, the Silhou-

tte index gives 2 clusters, which we detail next. 

revalent coverage profiles . In Fig. 7 , we depict the results for the

ierarchical clustering obtained, both for Telenor and Telia. Each

ubplot contains in the upper part the dendrogram of the clus-

ering results, and the tile plot of the coverage clusters of grid

lock time series in the lower part. The optimal clustering of route

egments defines the dominant coverage profiles for the two MBB

perators. We observe that the clustering algorithm identifies two

ain coverage profiles, which we generically label as coverage Pro-

le A and Profile B . In Fig. 7 , the color-coded values of the tiles

how that route segments with similar coverage chart evolution

re grouped together. 

In Fig. 8 , we illustrate the characteristics of these two coverage

rofiles, namely the average RAT distributions [2G, 3G, 4G, noS]

ver all runs for the segments in the same cluster. When analyz-

ng the coverage profiles, we note that in the areas with Profile A ,

elenor has around 70% 3G accompanied with 15% 4G, while Telia

ompensates with higher 3G availability (85% 3G) for its slower

G deployment (5% 4G). This clearly shows the different deploy-

ent strategies of the operators. Furthermore, we observe slight

ifferences in the profiles of different routes. For example, the

rondheim-Bodø route in the Profile A areas of Telia clearly stands

ut because it has a lower 3G and higher noS percentage compared

o the other routes. For the Profile B coverage areas, we observe a

igh degree of No Service for both operators, which combines with

 smaller ratio of 3G and 2G. The distribution of 2G and 3G varies

onsiderably among different routes. 

overage profiles on route . In Fig. 9 , we show the spatial distri-

ution of the two coverage profiles along the four train routes. We

bserve that Telenor had a slightly larger area with Profile A cov-

rage than Telia. For both operators, we observe that coverage Pro-

le B is extensive along the critical transport infrastructure. This
implications of profiling mobile broadband coverage, Computer 
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Fig. 7. Clustered Time Series on the Oslo-Stavanger route, for a) Telenor and b) Telia. Each subplot contains in the upper part - the dendrogram with the hierarchical 

clustering results, and in the lower part - the measurements tile plot (i.e., the mosaic containing all the measurements in the dataset) arranged following the order of 

elements we show in the dendrogram. The dendrogram illustrates how the grid blocks we represent on the x axis group together according to the extended Jaccard distance 

metric we represent on the y axis of the plot. Furthermore, it shows how homogeneous the resulting clusters are in terms of the distance between the grid blocks within. 

The tile plot illustrates all the measurements we collect on the Oslo-Stavanger route and has on the y axis the time component (i.e., the drive runs the train performs on 

the route in chronological order from down to top), and on the x axis the spatial component (i.e., the grid blocks we use to segment the Oslo-Stavanger route). Each tile of 

the mosaic plot represents one measurement instance of the RAT tuple [2G, 3G, 4G, noS], color-coded per level (e.g., green for 4G, orange for 3G, blue for 2G and red for 

noS) and with a color gradient proportional to the value of the distribution of the connection mode. 

Fig. 8. Characterization of the coverage profiles we derive using all the data we collect during the 5-months measurements period along the four measured routes in Norway, 

for (a) Telenor and (b) Telia. The coverage profile consists of four features we label on the x axis (%2G, %3G, %4G, %noS) that show the distribution of the four RATs over the 

segments in the same cluster and whose values we illustrate on the y axis. 
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is mostly due to the very challenging geography of Norway where

there are many mountains that the trains need to traverse. Fur-

thermore, in order to minimize the difficult mountain crossings

during winter, many tunnels have been built along the railroads.

Moreover, in contrast to other European countries, the rural areas

in Norway is very thinly populated (see Fig. 2 ). Therefore, part of

the railroad has known to have no coverage or only 2G coverage

and these are the areas where an infrastructure improvement is

needed. 

Next, we analyze the coverage profiles in more detail for the

Oslo-Stavanger route. In Fig. 10 , we depict the results for the hi-

erarchical clustering we obtain for Oslo-Stavanger, both for Telenor

and Telia. Each subplot contains the dendrogram of the hierarchi-

cal clustering grouping according to the similarity measures we

choose. We group the segments into two main coverage clusters,

namely Profile A and Profile B coverage clusters. We note that for

both operators, the two clusters are well distanced. Additionally,
Please cite this article as: A. Lutu et al., The good, the bad and the 
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he distances between elements within the same cluster are rela-

ively small. Thus, the dendrogram allow us to clearly observe the

eparation between the clusters according to the similarity mea-

ure, validating the result of the validity index. 

Though, using the Silhouette index, we systematically discover

wo prevalent coverage clusters that dictate the coverage profiles,

e can further divide these clusters into smaller sub-clusters with

ore homogeneous profiles. In some cases, other indexes such

s the Dunn or DB indexes indicate a larger number of clusters,

ecause of the heterogeneity between the coverage time series

f each of two major clusters. We see in Fig. 10 that the cov-

rage clusters contain several coverage sub-profiles that highlight

he predominance of one RAT or the mixture of several RATs.

or example, in the case of Telenor, we identify 4 different sub-

lusters in the Profile A ”good” coverage cluster, underlining the in-

reasing heterogeneity of technologies in the MBB networks. For

uture work, we plan to collect GPS with a 1 second granular-
implications of profiling mobile broadband coverage, Computer 
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Fig. 9. Map of the Coverage Mosaic we derive by clustering and analysing the route segments using all the measurement repetitions we collect throughout the 5 months 

measurement interval. The route segments are characterized by the two different coverage profiles (their color and shape shows the coverage profile to which each was 

assigned), for (a) Telenor and (b) Telia. 

Fig. 10. Clustering dendrograms showing the prevalent coverage profiles (i.e., Profile 

A and Profile B ) and the coverage sub-profiles along Oslo-Stavanger route, for (a) 

Telenor and (b) Telia. We generate the dendrogram of the hierarchical clustering 

according to the similarity measures we show on the y axis. On the x axis we show 

the ID for each route segment we cluster. 
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ty and further analyze the impact of sampling on the clustering

esults. 

.2. Coverage clustering stability 

In this section, we focus on coverage cluster stability and in-

estigate the minimum number of runs (i.e., different sam ples in

ime) that is sufficient to classify a segment in one of the main

overage profiles, namely “Profile A” with good coverage and ”Pro-
Please cite this article as: A. Lutu et al., The good, the bad and the 
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le B” with bad coverage. Our goal is to quantify how much ad-

itional information regarding the coverage can each run bring to

he clustering problem and when the classification of a route seg-

ent with one of the above-mentioned profiles is stable. 

To this end, we run the clustering approach we explain in

ection 3 for varying number of runs n , where n is between 1 and

0. Using the resulting coverage chart time series from n measure-

ent runs, we cluster the segments and separate them in Profile

 and Profile B coverage clusters, which we have previously estab-

ished to intuitively stand for “good” and, respectively, “bad” cov-

rage. We mention that we use here as input the results of the

rior analysis in Section 4.1 in terms of the existence of the two

ain coverage clusters, but the clusters resulting after each iter-

tion are obviously different from the ones we obtain when us-

ng all the available dataset. We use the profile characteristics we

llustrate in Fig. 8 to guide the labelling of the coverage profiles

t each iteration into “Profile A” or “Profile B”, so we are always

rying to understand whether a segment had “good” or “bad” cov-

rage. For example, in order to find the clusters of segments us-

ng only 2 measurement runs ( n = 2 ), we select any pair of runs

mong all runs and apply the clustering algorithm. Thus, we ob-

ain an assignation of coverage profile per route segment, for all

outes and both operators. For each n , we repeat this exercise for

00 different combinations of n runs out of the ones available on

ach route. We obtain 100 different assignation of the coverage

rofiles per segment for each size n of the set of runs we use as

nput. In order to gauge the differences between the 100 cover-

ge profile assignments for every n input measurement runs, we

alculate the similarity between these 100 coverage profile assign-

ents. We use the Jaccard distance [10] , which is well-defined for
implications of profiling mobile broadband coverage, Computer 
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Fig. 11. Stability of coverage profile assignment in function of the number of measurement runs we use to build the coverage chart time series of the route segments. 

Fig. 12. Evolution of the coverage profiles when using a sliding window of 10 measurement runs to derive them. 
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binary vectors (for each segment, we assign 1 for Profile A and 0 for

Profile B ). 

In Fig. 11 we show the average Jaccard distance between the

coverage profile assignments as a function of the number of runs

we use as input. We show this for each operator and every route

we measure. We conclude that individual runs are highly dissimi-

lar, generating highly variable assignations of coverage profiles for

the analyzed grid blocks. This is reflected in Fig. 11 with the value

of the average distance corresponding to the number of runs equal

to 1. However, we observe that, in order to obtain a stable coverage

profile assignment to each route segment, the minimum number of

drive runs required is between 5 and 10. This result is consistent

over all the routes, for both operators. 

4.3. Coverage profile adaptability 

Previously, we determined that 5–10 measurement runs bring

enough to decide whether a route segment belongs to Profile A

or Profile B . In this section, we aim to capture the evolution over

the measurement period for these two coverage profiles in terms

of the average distribution of RATs over the route segments that

fall within each coverage cluster. Here, we assume we have a set

of consecutive runs per segment. We then use a sliding window

of 10 measurement runs and employ the clustering approach we

propose in Section 3 to assign each segment to the good or bad

coverage cluster. In other words, clustering is done based on the

data collected over 10 consecutive runs per segment where the

first run is shifted in time. For example, the first clustering re-

sults considers the first 10 runs in a segment while the second

clustering results consider 10 runs starting from the second run

in the same segment. This analysis allows us to capture the tech-

nology upgrades over the period of five months we measure. In

Fig. 12 , we exemplify this analysis for the Trondheim-Bodø route,

which is the one where we collect the highest number of measure-

ment runs. We note that the coverage profiles are overall stable for

both operators. However, for Telenor we observe a slight increase

in the 4G distribution in the areas with Profile A coverage. Also,
Please cite this article as: A. Lutu et al., The good, the bad and the 
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here is a small improvement in the 3G distribution in the areas

ith Profile B coverage along the Trondheim-Bodø. More specifi-

ally, in the first 20 repetitions of deriving the RAT distribution in

he areas with Profile A , the average 4G distribution is 14.8% and

n the final 20 repetitions, the average 4G distribution increases

o 18.6%. Similarly, in the areas with Profile B coverage, we note

hat the initial average 3G distribution of 8% increases slightly to

.8% over the last 20 repetitions of coverage profiling using a tem-

oral sliding window of 10 runs. This shows that our methodol-

gy is capable of capturing technology upgrades in the operators’

etworks. 

.4. Coverage clustering optimization 

In the previous section we show that the similarity between

ifferent measurement runs is high and to obtain a stable cover-

ge profile assignment to each route segment, we can reduce the

umber of distinct runs to as little as 5 to 10 runs. In this sec-

ion, we re-run the clustering analysis of the route segments for

ach route using only the latest 10 different measurement runs per

oute segment. We then analyze the coverage profiles and investi-

ate whether the coverage profile assignment changes significantly

ompared to when we were using all available measurements. 

For each operator, for each route and for each route segment

e select where applicable the results from the latest 10 measure-

ent runs. Using this new dataset, we re-run the same clustering

lgorithm, using the extended Jacccard distance as similarity met-

ic, the Ward grouping algorithm to cluster route segments and

he Silhouette index to derive the number of coverage profiles. We

ote that the measurement runs that provide the coverage sam-

les may differ for distinct grid blocks. As we previously note in

ection 3.3 , during some measurement runs, the coverage chart

or a route segment might be missing because we were unable to

haracterize the coverage along the route segment. This may hap-

en either because of insufficient measurements along the route

egment to generate a coverage chart (according to the thresholds

e impose), lack of coverage and subsequent impossibility of mea-
implications of profiling mobile broadband coverage, Computer 
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Fig. 13. Map of the Coverage Mosaic we derive by clustering and analysing the route segments using only the latest 10 measurement repetitions we collect in the 5 months 

measurement interval. The route segments are characterized by the two different coverage profiles (their color and shape shows the coverage profile to which each was 

assigned), for (a) Telenor and (b) Telia. 

Fig. 14. Characterization of the coverage profiles we derive using the latest 10 measurement runs per route segment along the four measured routes in Norway, for (a) 

Telenor and (b) Telia. The coverage profile consists of four features we label on the x axis (%2G, %3G, %4G, %noS) that show the distribution of the four RATs over the 

segments in the same cluster and whose values we illustrate on the y axis. 
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uring with our mobile devices or device issues. Considering the

atest 10 samples of the coverage chart for a route segment irre-

pective of the run allows us to avoid the artificial population of

he coverage chart with null values. We continue calculating the

imilarity between route segments using the extended Jaccard dis-

ance. Based on this, we then group the elements and observe the

overage clusters that further dictate the prevalent coverage pro-

les. 

We illustrate in Fig. 14 the characteristics of the coverage pro-

les that correspond to the clusters of route segments. When

omparing these results with the coverage profiles built using all

he available data, we observe similar coverage profiles. Especially

n the Oslo-Voss, Oslo-Stavanger and Trondheim-Bodø routes for
Please cite this article as: A. Lutu et al., The good, the bad and the 
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oth operators the coverage profiles are remarkably similar. We

raw the same conclusion for Telia on the Oslo-Trondheim route.

owever, in the case of Telenor’s MBB service along the Oslo-

rondheim route, we note that the route segments with Profile B

overage have comparable noS/2G/3G/4G distributions within the

rofile, indicating that along these segments we recorded frequent

AT changes from the measurement device. Unlike for the route

egment along the same route with Profile A coverage, where 3G is

bviously dominant with 80% ratio, in this coverage profile there is

o clear dominant RAT along the route segments, even if noS has

he highest ratio of more than 35% in average. Despite the fact that

e register quite significant 4G presence in Profile B , the coverage

s patchy. 
implications of profiling mobile broadband coverage, Computer 
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Table 3 

The number of route segments that change Profile Cov- 

erage assignment when using the latest 10 measure- 

ment runs per route segment (without synchronization 

between runs over the route segments). For each value, 

we show in parenthesis the proportion of the total num- 

ber of route segments these ones represent. 

Route # Route segments (Proportion 

Telenor Telia 

Oslo - Voss 4 (5 .6%) 9 (10%) 

Oslo - Stavanger 12 (7 .8%) 13 (7 .14%) 

Oslo - Trondheim 33 (17%) 24 (12%) 

Trondheim - Bødo 12 (5%) 19 (12%) 
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This difference from the previous clustering result comes from

the fact that by considering the route segments along the route

with exactly 10 different measurement repetitions, we are able to

analyze a larger proportion of the route but discard the end-user

experience by not accounting for the cases when the device was

not able to measure any RAT. In Fig. 13 , we illustrate on a Norway

map the route segments we were able to analyze and profile using

a coverage chart time series derived from the latest 10 measure-

ment runs on each segment independently. When comparing with

the coverage mosaic from Fig. 9 , we confirm that, indeed, the to-

tal number of route segments we are able to analyze significantly

increases. By discarding the measurement instances in some runs

where we were unable to generate a coverage chart for a route

segment, we are essentially discarding the cases when the end-

user is not able to connect to the network. Though for the other

routes this does not impact the coverage profiling, in the case of

the Oslo-Trondheim route the coverage patterns seem to shift, as

there is small amount of no service that we measure along the

route (compared to the other routes). Thus, along this route, the

patterns in the coverage evolve from dominant-3G (Profile A) and

dominant-noS (Profile B) to dominant-3G (Profile A) and patchy-

coverage (Profile B) with frequent RAT changes. 

For the route segments we previously characterized using all

the coverage measurements collected throughout the 5-month

measurement interval, we investigate whether the coverage pro-

file assignment changes (i.e., the coverage) when we considered

only 10 different measurement samples along the routes. In other

words, we investigate to which degree the route segments from

the coverage mosaic we depict in Fig. 9 change coverage pro-

file assignment in the coverage mosaic we depict in Fig. 13 . In

Table 3 , we summarize the number of route segments that change

the coverage profile after reducing the number of measurement

runs to only 10. The fraction of route segments that change cover-

age profile assignment varies between 5% (routes like Oslo-Voss or

Trondheim-Bødo), to as much as 17% (routes like Oslo-Trondheim

for Telenor). As noted above, this is due to the change in the defini-

tion of coverage profiles along the route after discarding the cases

where we were unable to generate the coverage profile of some

route segments. 

5. Coverage implications: reliability and performance 

In this section, we focus on how coverage profiles correlate

with the performance of the networks from the end-user point of

view. During the performance analysis, we use the profiles we de-

rive using all the data (see Section 4.1 ) and we investigate the per-

formance throughout the whole measurement period. This anal-

ysis opens the future possibility of using the resulting coverage

mosaic with coverage profiles as an indicator for network perfor-

mance. Furthermore, this will enable the design of contex-aware

algorithms to improve the application quality of experience for
Please cite this article as: A. Lutu et al., The good, the bad and the 
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nd-users. We now turn to investigating per-profile MBB perfor-

ance in terms of downtime and packet loss as key performance

easures. 

.1. Uptime 

To calculate connection uptime in a time window T , we divide

he number of sent packets in T by the length of T . In our case, T

epresents the time that the NNE node spends inside a grid block,

nd has a minimum value of 30–45 s Figs. 15 a and b show the

DF of the fraction of uptime for each route and cluster combina-

ion. As expected there are clear differences between areas with

ifferent coverage profiles. For example, areas with Profile B cov-

rage (“bad” coverage) exhibits very low uptime caused by the

igh percentage of no service. Furthermore, there are clear spatial

ifferences between operators. For instance, the worst performing

oute in the Profile B coverage cluster is Oslo-Stavanger for Telenor

nd Trondheim-Bødo for Telia. Trondheim-Bødo is the best per-

orming route with Profile B coverage for Telenor. These differences

ndicate that multi-connectivity, i.e. the use of several operators si-

ultaneously, can improve users experience along the same route.

nalyzing differences in uptime between operators and between

outes in conjunction with routes coverage profiles (see Fig. 8 ), in-

icates a tight coupling between coverage profiles and uptime. 

.2. Packet loss 

Fig. 16 shows the CDF of packet loss in a grid block. We mea-

ure a significant difference in the extent of loss between Profile

 and Profile B coverage clusters. Loss, however, remains high in

he areas with Profile A (“good” coverage) coverage. Between 30%

nd 50% of our samples, depending on the operator and route, ex-

ibit more than 1% packet loss. This can be explained by the co-

xistence of different RATs and the need for frequent handovers

n the areas with Profile A coverage. Further, we observe that the

anking of route segments with Profile A coverage in terms of

acket loss matches their ranking in terms of uptime. There is,

owever, less similarity between the Profile B coverage routes loss

nd uptime rankings: the worst route is always similar. We believe

his similarity in ranking is because packet loss is usually expe-

ienced in areas with challenging coverage conditions (i.e., larger

ercentage of no service) which can also lead to a connectivity

oss. We also measure how loss in a grid block varies in different

uns and find that irrespective of the operator and route, the stan-

ard deviation of packet loss is twice as much the mean for at least

0% of the grid blocks. Interestingly, this variability is higher for ar-

as with “Profile A” coverage (which can be perceived as “good”

overage), which underlines the fact that one-off measurements

re not enough to make conclusions about performance under mo-

ility. 

. Coverage implications: application performance 

In this section, we continue the analysis from Section 5 on the

mplications of the coverage profiles and investigate how the lat-

er correlate with the application performance as experienced by

he end-user. In particular, we focus on HTTP performance and we

tudy TCP port 85 along with TCP port 80 in order to understand

he effect of the proxies on the application performance. We em-

loy the HTTP Download dataset we describe in Section 2.2 . In

rder to identify the corresponding route segment for an HTTP

ownload data-point, we use the GPS information of the HTTP

ownload data-point to identify the unique grid-block that con-

ains the GPS location of the HTTP data-point. Thus, by identifying

he grid block, we also retrieve the corresponding train route seg-

ent delimited by that grid block and its coverage profile. 
implications of profiling mobile broadband coverage, Computer 
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Fig. 15. Uptime per route, run and cluster. There is a tight coupling between uptime and the coverage profiles we show in Fig. 8 . 

Fig. 16. The distribution of packet loss in a grid block for different routes. 
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Next, we first describe how we identify the presence of a proxy

n one of the operator’s networks. We then analyze the HTTP per-

ormance in terms of download success and failure. Finally, we

haracterize the HTTP downloads based on the features we collect

or each data-point. 

.1. Detecting the presence of a proxy 

Assessing TCP and HTTP performance is not a trivial task since

here can be several middleboxes on the end-to-end path that

odulate TCP behavior. Transparent web proxies can alter the

nd-to-end communication in several ways that include content

aching, traffic redirection, object rewriting (e.g. image compres-

ion), and connection lifecycle manipulation. Since we control both

nd points (i.e. the HTTP server and client), we can detect the pres-

nce of transparent proxies for web traffic by inspecting packet

races of a complete HTTP transaction. Note that proxies’ behav-

ors like traffic redirection and object rewriting are not relevant

o the test scenario because we are exchanging immutable con-

ent from a single server. Further, we find that our HTTP server re-

eives an HTTP request and engages in a packet transfer whenever

 download is attempted meaning that neither operator caches the

equested file. To test for presence of connection lifecycle manipu-

ation proxies, we perform the following: 

• Check if the initial TCP handshake is delayed: Transparent prox-

ies are known to delay the initial handshake until the client

sends an HTTP GET request [5] . 

• Inspect TCP roundtrip time measured at the server side: Pres-

ence of a connection splitting proxy pretending to be the other

end of the connection would result in TCP roundtrip times that

are not consistent with the path end to end delay. 
Please cite this article as: A. Lutu et al., The good, the bad and the 
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• Cross-match all TCP messages received by the server side with

all messages sent by the client: A mismatch in these messages

confirms the presence of a transparent proxy. 

We perform these preliminary tests both for Telia and Telenor.

e find evidence that Telia uses a transparent proxy. For Telenor,

e cannot confirm nor preclude the use of a web proxy. More

pecifically, we find that Telia’s proxy delays the initial TCP hand-

hake until the client sends an HTTP GET request. We also find that

erver side TCP roundtrip times are mostly less than 5 msec, which

s far lower than a typical RTT in a MBB network. Finally, we find a

lear mismatch between TCP messages received by the server side

ith all messages sent by the client. The server received a receiver

indow full messages that were not sent by the client. By doing

his, we believe that the proxy was attempting to slow down the

erver without reducing the size of its congestion window. Note

hat this evidence is only found when accessing content over tradi-

ional web ports (e.g. ports 80 and 8080). We detail in the follow-

ng section the impact of the web proxy in both coverage profiles. 

.2. HTTP download success/Failure 

In Fig. 17 , we show the breakdown of the HTTP dataset based

n the coverage profile of the route segment where each download

nitiated. We observe that there is a large difference between the

ample sizes of HTTP downloads in Profile A and Profile B. For Te-

enor, there are 8 times less data-points along Profile B route seg-

ents than in Profile A route segments. Similarly, for Telia there

re 5 times less data-points initiated in Profile B route segments.

his is reasonable though since, based on the coverage profiles’

haracterization in Section 4 , Profile B has a large degree of No

ervice in the RAT distribution. Thus, it is likely that several of the
implications of profiling mobile broadband coverage, Computer 
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Fig. 17. Breakdown of the HTTP downloads dataset per coverage profile, operator (Telenor and, respectively, Telia) and per port (for each operator, we measure port 80 and 

port 85 at the same time). 
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HTTP downloads we schedule in the areas with Profile B coverage

cannot start because of the lack of connectivity. 

Moving downwards through the HTTP tree in Fig. 17 , we ob-

serve the separation for each coverage profile, based on the op-

erator (Telenor/Telia) and the port number (port 80/85). For each

sub-branch, we then break apart the successful/failed downloads

and calculate the corresponding number of route segments (RS). A

download is labeled as failed, if it does not conclude with trans-

ferring the whole 4MB file, or if cURL exits with a non-zero code.

The later happens when cURL fails to complete the initial hand-

shake, or when network connectivity is lost while downloading

the file. We observe that in the case of HTTP downloads that start

along a route segment with Profile A coverage, the rate of success

is very high. While we observe comparable high success rate in

both ports (84%) for Telenor, we note that for Telia the rate of suc-

cess in port 80 (92%) is significantly higher than in port 85 (85%).

Given that the measurement setup is such to ensure the same con-

ditions for downloads in port 80 and 85. This difference in perfor-

mance indicates that web content served over port 80 in Telia en-

joys a differential treatment because of the use of transparent web

proxies. 

For the HTTP downloads that initiate along route segments that

have Profile B coverage we observe, as expected, that the rate of

failure is very high for both operators. Similar to the case of HTTP

Downloads that initiate along route segments with Profile A cover-

age, in the case of Telia there is an obvious difference between the

failure rate in port 80 (64%) and the one in port 85 (71%). How-

ever, the overall failure rate in Telenor (97%) is much larger than

the one in Telia (70%), though the sample sizes in both cases are

comparable. Apart from accounting for the benefits of using a mid-

dlebox for performance enhancements, we can get more intuition

into what may be the cause for this difference by analyzing the

characterization of the coverage profiles we depict in Fig. 8 . We

observe that the coverage Profile B in Telia has a slightly higher

rate of 3G and 2G than in Telenor. Also, overall we observe that

the number of route segments we classify with Profile B in Telia

is higher than the one in Telenor. This is apparent also from the

tile plot we depict in Fig. 7 for the Oslo-Stavanger route, where

the Profile B cluster is 30% larger in Telia than in Telenor. Also, we

observe that the two clusters of route segments we use to define

coverage profiles are more homogeneous and better distanced in

the case of Telenor than in the case of Telia. This explains why for

Telenor most HTTP downloads that initiate along route segments

with Profile B coverage end in a failure, while for Telia as much as

30% of them succeed. 
r  
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.3. HTTP download characterization 

As we previously described in Section 2.2 , we characterize each

TTP download data-point beyond the binary description of suc-

ess/failure by measuring the time to first byte (TTFB) and the

ransfer size (the proportion of the target file that downloaded us-

ng cURL). In Fig. 18 , we show the ECDF for all the three above-

entioned variables for (a) Telenor and (b) Telia. In each subplot,

e break apart the ECDFs as a function of the port we measure

nd also the coverage profile. 

In all the ECDFs for the HTTP transfer size and TTFB we ob-

erve the separation between the downloads that initiate in Pro-

le A route segments and the ones that initiate in Profile B route

egments. The variable that makes the clearest separation between

he two coverage profiles for both operators is the transfer size

i.e., proportion of target file downloaded). This is due to the fact

hat this parameter captures until which point the HTTP download

ontinued before losing connectivity, which is important especially

n areas with Profile B coverage. For Telenor, we observe that in

ore than 90% of the Profile B downloads the transfer is incom-

lete, while for approximately 90% of the Profile A downloads the

ransfer is complete. This also validate the previous conclusions

e drew from analyzing the HTTP downloads tree. For Telia, we

ote that in the case of HTTP downloads that initiate in Profile B

oute segments, the transfer completes for approximately 25% of

he cases. This verifies our observation from the previous section

hat a slightly larger degree of 2G or 3G in the RAT distribution

n Profile B for Telia explains the higher proportion of completed

TTP downloads. We observe only slight differences when analyz-

ng the transfer size in port 80 and port 85, with a higher pro-

ortion of HTTP downloads that complete in port 80 than in port

5. 

. Related work 

Building accurate and reliable coverage maps has been in the

ttention of the community and a magnitude of work exists in this

rea. Drive tests are widely used by MBB operators for coverage as-

essment and performance monitoring. In this paper, we argue that

iggy-backing mobile broadband measurements onto public trans-

ort infrastructure is an efficient, cost-effective and automated way

o perform drive tests. Aside from the very high costs of drive tests,

he data collected from them usually has a series of shortcomings,

ncluding variable spatio-temporal sampling and limitation of test

epeatability. The drawbacks of drive tests act as incentive for the
implications of profiling mobile broadband coverage, Computer 

http://dx.doi.org/10.1016/j.comnet.2016.06.017


A. Lutu et al. / Computer Networks 0 0 0 (2016) 1–18 15 

ARTICLE IN PRESS 

JID: COMPNW [m5G; June 30, 2016;6:16 ] 

Fig. 18. CDF of the transfer size and time to first byte (TTFB) for all HTTP downloads on port 80 and port 85 for (a) Telenor and (b) Telia. 
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esign of new methodologies that address these issues [14,15] . In

his sense, our experimental setup brings the benefit of repeatabil-

ty at a low additional cost. Other apporaches including, for exam-

le, crowdsourcing platforms, may help verify coverage maps [16] ,

ut they also bring additional limitations including, for example,

he lack of control on the measurement device and lack of repeata-

ility. 

Data analytics approaches are receiving much attention from

he community, due to their capabilities to draw useful informa-

ion from large databases collected from the network [17,18] . Cov-

rage prediction methodologies based on geostatistics [19,20] in

ireless networks constitute another approach in the direction of

ata analytics. To the best of our knowledge, this paper is the first

ttempt in mobile coverage profiling using hierarchical clustering

f multivariate time series. Similar solutions have been proposed

n the area of spatio-temporal data mining with different applica-

ions in real life e.g. [21,22] . This technique enables us to generate

daptive coverage profiles, which are based on real measurements

nd reflect the deployment reality of MBB connectivity solutions

nd their evolution in time. 

In the past years we have seen increased interest in the net-

orking community from different parties (e.g., researchers, op-

rators, regulators, policy makers) in measuring the performance

f mobile broadband networks. There are mainly three approaches

or measuring the performance and reliability of MBB networks:

i) crowd-sourced results from a large number of MBB users [23–

6] , (ii) measurements based on network-side data such as [27–

0] or earlier work including [31,32] and (iii) measurements col-

ected using dedicated infrastructure [33–35] . Network-side and

ctive tests can be combined in the so-called “hybrid measure-

ents” approach, as implemented e.g. in [36] . In this paper, we

ollect data from a dedicated infrastructure in order to have full

ontrol over the measurement nodes, allowing us to systematically

ollect a rich and high quality dataset over a long period of time.

nlike previous effort s that ran perf ormance measurement s, we
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ocus on coverage and its implications in terms of network (e.g.

acket loss) and application performance as experienced by end

sers. 

Several studies focused on the causes of packet loss in MBB net-

orks. Different groups blamed RRC state transitions [37–41] and

howed that state demotions result in significant loss. Gember

t al. compared packet loss on idle and near active devices and

ound loss rates on idle devices to be 26% higher and likely to

e caused by differences between cell sectors [42] . Xu et al. dis-

ussed the effect of bursty packet arrivals and drop-tail policies

mployed by the operators [5] . RNC-level performance analysis of

MTS networks identified correlations between RTTs and loss and

heir dependency on diurnal patterns and overloaded NodeBs [41] .

nother study presented a framework for measuring the user-

xperienced reliability in MBB networks, and showed how both

adio conditions and network configuration play important roles

n determining reliability [35] . In a recent work [37] , the au-

hors conducted a large-scale measurement study of packet loss

n MBB networks. The study showed that a significant fraction of

oss occurs during pathological and normal Radio Resource Con-

rol (RRC) state transitions and the causes of a significant part of

he remaining loss lie beyond the radio access network. Packet

oss has also been investigated for mobility scenarios. [43] stud-

ed TCP performance in HSPA+ networks on high-speed rails and

howed that the number of handovers is proportional to the in-

reased loss rates for high speeds. Similar observations were made

n a study by [44] , showing that most HTTP sessions with inter-

AT handovers are abandoned. [45] measured HSPA performance

n the move to be greatly different from static HSPA performance.

n particular, they observed that the final results of handovers

re often unpredictable and that UDP packet loss at least dou-

les during handover periods. Although these studies considered

ifferent aspects of packet loss for stationary and mobility sce-

arios, to the best of our knowledge, our paper is the first study

hat ties the coverage with network reliability analysis by showing
implications of profiling mobile broadband coverage, Computer 
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how coverage profiles can be used as an indicator for mobile

broadband reliability. 

In this paper, we also study the implication of the coverage mo-

saic on the application performance by measuring and analyzing

HTTP downloads. The analysis of HTTP allows us to investigate the

presence of transparent web proxies that operators might be de-

ploying in their networks. Performance enhancing middleboxes are

widely deployed in Internet and it is of great interest to measure

and characterize the behavior of them especially in MBB networks

where the resources are scarce. One of the early studies in this

domain investigated the web performance of different mobile In-

ternet access technologies (GPRS, EDGE, UMTS and HSDPA) with

and without the web-proxy [46] . The impact of middleboxes on

measurements was explored in [47] where the authors proposed

a methodology for measurements in MBB networks. Farkas et al.

[48] used numerical simulations to quantify the performance im-

provements of proxies in LTE networks. The most thorough anal-

ysis to characterize the behavior and performance impact of de-

ployed proxies on MBB networks was carried out in [49] where the

authors enumerate the detailed TCP-level behavior of MBB proxies

for various network conditions and Web workloads. Although the

common belief is that the proxies provide performance benefits,

Hui et al. [50] showed that proxies can actually hurt performance

by revealing that direct server-client connections have lower re-

transmission rates and higher throughput. Wang et al. [51] showed

how MBB middlebox settings can impact mobile device energy us-

age and how middleboxes can be used to attack or deny service

to mobile devices. While these studies focus on the performance

of proxies on MBB networks, they have not consider the effect of

proxies on the reliability and packet loss. 

8. Conclusions and future work 

MBB networks are the key infrastructure for people to stay con-

nected, especially in high mobility scenarios (e.g., when using pub-

lic transport). MBB coverage profiling from the end-user experience

while on critical public transport routes are of great importance to

many stakeholders. At the same time, this is a challenging prob-

lem, since even a straight-forward classification of coverage into

“good” or “bad” is very difficult to grasp in quantitative thresholds.

In this paper, we evaluate the use of hierarchical clustering to build

a coverage mosaic of MBB technologies in an area and analyze

its implications in terms of network performance and application

performance. By piggy-backing network measurements onto pub-

lic transportation vehicles via the NNE platform, we first obtained

a unique dataset that (i) captures the coverage and performance

from user’s perspective and (ii) provides repetitive measurement

runs on the same route, in similar conditions. Moreover, an impor-

tant perk of such measurement platforms is allowing other par-

ties, including public transport companies, to assess and compare

the MBB coverage along their infrastructure to verify their service

level agreement. We then leveraged hierarchical clustering in order

to identify and characterize prevalent coverage profiles. Though in

this study we look at the case of railways in Norway, the method-

ology can easily be generalized for running a similar study in other

regions or applying it to a different datasets, (e.g. crowd-sourced

data). A copy of the dataset we used in this paper is available for

open access in Zenodo 6 , as well as the code for the clustering ap-

proach. 

Our results reveal that the clustering approach can accurately

group together regions with high similarity in terms of coverage.

Based on the mixture of RATs and the time-domain evolution, two

main coverage profiles emerge: Profile A -where 3G dominates, and
6 http://dx.doi.org/10.5281/zenodo.47707 
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rofile B - where No Service dominates. This maps onto the gen-

ral intuition of “good” and, respectively, “bad” coverage. We then

nalyze the identified coverage profiles, both in terms of stability

nd performance. The stability analysis investigates the similarity

etween different runs over the same route, with the express pur-

ose of indicating the amount of measurement repetitions we re-

uire to accurately observe stable coverage profiles. We find that

e need at least 5 to 10 measurement runs in order to achieve a

table coverage profile in an area. We then focus on how coverage

rofiles correlate with MBB and also application performance from

he end-user point of view. For this, we first assess packet loss per-

ormance per coverage profile and find that it highly varies for ar-

as with Profile A coverage. This result is counter-intuitive because

rofile A presents a high percentage of superior RATs. This indi-

ates that, although we can derive this profile with few measure-

ent runs, further characterization of the performance requires

ore analysis, e.g., correlation with the network congestion and

easurement time of the day. 

We take this analysis further and investigate the implication of

he coverage profiles on the application performance, with a fo-

us on HTTP traffic. We observe that in the route segments with

rofile B coverage, the rate of failure for HTTP downloads is very

igh, while in the route segments with Profile A coverage, the

TTP downloads succeed with a high rate. For Telia, however, we

ote a rate of 30% of successful downloads even in Profile B cover-

ge, while for Telenor this rate is very small, less than 5%. This is

n artifact of the fact that the two clusters of route segments we

se to define coverage profiles are more homogeneous and better

istanced in the case of Telenor than in the case of Telia. While

ssessing TCP performance we also try to detect the presence of

iddleboxes that operators might deploy in their networks, such

s transparent web proxies. While analyzing the characteristics of

he HTTP downloads, we discover the impact of what seems to be

 web proxy in Telia. 
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