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a b s t r a c t 

This paper studies the temporal behavior of communication flows in the Internet. Characterization of 

flows by temporal patterns supports traffic classification and filtering for network management and net- 

work security in situations where full packet data is not accessible (e.g., obfuscated or encrypted traf- 

fic) or cannot be analyzed due to privacy concerns or resource limitations. In this paper we define a 

time activity feature vector that describes the temporal behavior of flows. Later, we use cluster analysis 

to capture the most common time activity patterns in real internet traffic using traces from the MAWI 

dataset. We discovered a set of seven time-activity footprints and show that 95.3% of the analyzed flows 

can be characterized based on such footprints, which represent different behaviors for the three main 

protocols (4 in TCP, 1 in ICMP and 2 in UDP). In addition, we found that the majority of the observed 

flows consisted of short, one-time bursts. An in-depth inspection revealed, besides some DNS traffic, the 

preponderance of a large number of scanning, probing, DoS attacks and backscatter traffic in the network. 

Flows transmitting meaningful data became outliers among short, one-time bursts of unwanted traffic. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Understanding traffic in communication networks is a challenge

hat matters not only to network administrators, but also to service

roviders and security system developers. An accurate knowledge

bout the structures of underlying communication flows enables

ast, proactive reactions against attacks and network degradation,

reventing substantial costs. Surveys about cyber crime indicate

hat the derived costs for companies are immense and increase

ear by year [1] . 

When exploring Internet traffic, data analysts confront some

ifficulties inherent to the field: 

• Big data . The amount of communication traffic generated every

second in the world is overwhelming. Any representative dataset

easily takes dimensions that overload analysis techniques that

are suitable in other areas [2] . 

• Evolving nature . New protocols are used, new applications and

new ways to deal with old applications continuously proliferate,

so that traffic shapes and rates evolve quickly. 

• Encrypted traffic . The Internet moves inexorably toward encryp-

tion. Recent studies predict that, by the end of 2016, more than
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two-thirds of the U.S. Internet traffic will be encrypted [3] . This

prevents access to packet contents as well as traffic features

that have been typically applied for analysis. 

• Fast reaction . Prompt detection of incidents is required in order

to minimize the damage caused by network attacks and break-

downs [4] . 

In this paper we face the mentioned difficulties by observing

he temporal behavior of Internet communications, i.e., registering

acket occurrences and transmitted data from a source to a desti-

ation during a fixed observation interval. The data object is called

 time-activity vector and represents a communication flow. The

pproach is fast, lightweight and non-intensive from the perspec-

ive of data preprocessing. Later, we analyzed time-activity vec-

ors with clustering algorithms. In the analyzed captures we dis-

overed that 95.3% traffic followed a set of seven clear patterns

or footprints), which identified specific activities within the most

ommon protocols. These phenomena corresponded to ICMP prob-

ng, TCP and UDP scanning, DoS, backscatter and DNS resolution.

lustering-based methods were devised to operate during off-line

hases, but clustering outcomes were intended to become filters

uring real-time monitoring. 

Fig. 1 shows a possible scheme for a traffic monitor based on

ime-activity vectors. This scheme adapts to the evolving nature

f network traffic as patterns used for classification are periodi-

ally updated and refined. Encrypted traffic does not make a dif-

erence since time-activity vectors only require basic header in-

ormation that is not encrypted (i.e., source and destination IP
ity footprints in IP traffic, Computer Networks (2016), 
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Fig. 1. Scheme of a traffic monitor based on time-activity vectors. 
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addresses, IP protocol and packet length). 1 A fast reaction is guar-

anteed as the block in the forefront of the process is a simple fil-

ter that matches incoming traffic with available patterns; the more

costly analysis operations remain in a parallel phase not subject

to time constraints. This fact partially alleviates the big data prob-

lem, which is also addressed by the considerable data reduction

involved by the flow representation and the time-activity vector

format. In the conducted tests, considering already that captured

data has no payload, its size is reduced by about 95.5%, i.e., from

1G to 45M. The bottleneck of this scheme remains in the feature

extractor , but fast feature extraction is a challenge that any traffic

monitor must face. 

The benefits of performing traffic analysis by combining cluster-

ing and time-activity vectors are: 

• Early filters . Time-activity footprints are useful filters to pre-

classify network traffic. Therefore, only a minor part must

undergo deeper, more costly analysis to detect sophisticated

threats. The complex nature of network traffic forces intrusion

detection systems to rely on multi-layer and combined tech-

niques to achieve efficacy [5] . 

• Knowledge discovery . Time-activity footprints provide valuable

snapshots to understand how conversations between hosts hap-

pen and what the main trends are. Such knowledge leads to the

enhancement of networks, protocols and applications, granting

strategic information to service providers and network opera-

tors. 

• Detection of global events . Clustering time-activity vectors is

suitable for detecting massive and large scale events on the In-

ternet, like scanning activities or DoS attacks. Such incidents

respond to multiple, repetitive algorithmic operations that are

easy to catch by their time imprint. 

• Analysis of human-in-the-loop . Even though not covered in this

paper and moved to future research, the temporal representa-

tion of flows was originally devised to detect the human inter-

action on the Internet based on the analysis of timings within

flows. 

Analyses were conducted on datasets from the MAWI Work-

ing Group Traffic Archive, which publishes Internet captures for

research purposes on a daily basis from 2006 ( Section 3 ). As an

additional benefit, our initial analysis tests discovered a miscon-

figuration problem in MAWI detectors that affected their captures

from April to September 2015. 

2. Related work 

The necessity and difficulties related to an efficient and flex-

ible monitoring for network management have been frequently
1 Source and destination ports can be used for a more fine granular flow defini- 

tion. Ports are available with transport layer encryption (TLS), but may be encrypted 

if network layer encryption (IPsec) is used. In our analysis we extract port numbers 

from the data for subsequent verification, but they are not required for obtaining 

the footprints. 
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eferred to in the specialized literature [6,7] . The study of In-

ernet flow characteristics, distributions and time behavior is a

undamental strategy to understand how networks are used and

an be improved. For example, in [8] statistics of flow durations

re investigated, revealing useful knowledge to establish optimized

hresholds shortcuts between hosts or network flows. Unidirec-

ional flows are classified based on their inter-arrival-time charac-

eristics in [9] , whereas in [10] distributions of inter-arrival-times

n flows from large-scale networks are studied and contrasted with

ow lengths. In [11] “network elephants” are defined after observ-

ng that “a very small percentage of the flows carries the largest

art of the information”. They are a common phenomenon in back-

one traffic and are well isolated by looking at temporal flow char-

cteristics. Authors propose to exploit such a property in traffic en-

ineering applications. In this respect, diverse research groups and

rojects carry out a continuous measurement of wide area traffic

o facilitate the optimization of networking equipment and explain

he impact of new protocols [12–14] . 

In addition, network anomalies, attacks and misconfigurations

ometimes present footprints or patterns that can be tracked just

y looking at temporal behaviors and packet flows [15] . Internet

orms are explored in [16] from this perspective. In [17] , a Fourier-

ased method is applied to detect anomalies after representing

raffic by means of graph wavelets that capture the spatial and

emporal behavior of Internet flows. 

Cluster analysis, as a knowledge discovery method, is an ap-

ropriate way to extract and abstract common structures in net-

ork traffic data (what is normal) and, by extension, anomalies

what is not normal). This issue is widely discussed in [18] , where

P sources are classified by clustering tools and the traffic is rep-

esented by means of aggregated features. In [19] behavior pro-

les of Internet backbone traffic are obtained by using clustering.

ource and destination IP addresses as well as source and desti-

ation ports are taken to construct a four-dimensional input space

here traffic is mapped. Clustering for anomaly detection is also

tilized in [20] . In this case the creation of the input space involves

ome transformations based on entropy and a multiway subspace

ethod. Beyond the specific type of analyzed traffic and the fea-

ure level of depth, what usually differs in related works is how

etwork traffic is represented and how clustering techniques are

pecifically applied. 

In our proposal we cluster an input space where flows are

rawn as vectors that collect the temporal behavior of flows. In

ur analysis we do not aim to capture anomalies but footprints of

he main phenomena occurring on the Internet datasets. The foot-

rints can then be used to filter traffic and detect deviations from

ommon flow characteristics. 

. Data and features 

The analyzed IP traffic traces are measurements of the WIDE

ackbone, which are available at the MAWI Working Group Traffic

rchive. 2 From 2006 on, this archive collects daily sample traces at

he transit link of WIDE (150 Mbps) to the upstream ISP. Reposi-

ories were firstly introduced in [13,14] . The reasons to choose the

AWI data set for our research are: 

• The MAWI dataset is publicly available. It allows further repli-

cation of all experiments. 

• The MAWI dataset is daily updated. We selected capture files

from 2015 in order to reflect most recent trends in the shapes

of IP traffic. 
2 http://mawi.wide.ad.jp/mawi/ . 

ity footprints in IP traffic, Computer Networks (2016), 
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Fig. 2. Time series example of an IP flow time-activity vector. 

Listing 1. Time-activity vector format. 
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• MAWI traces are parts of a Day in the Life of the Internet project

(DITL) [21] , an initiative by multiple organizations for coordi-

nated large scale data capturing throughout the Internet. 

• The selected public MAWI captures account for a short time

(900 s) but they contain a considerable amount of packets

transmitted between many different hosts (between 50 and 200

million packets every 900 s, i.e., between 1 GB and 3 GB of

compressed pcap traces per file). Such figures entail a signifi-

cant amount of data about representative Internet traffic. 

• MAWI traces reflect snapshots of traffic every day. Thus it is

possible to obtain insight into characteristics that prevail or

change over time. 

We looked at data from January to July 2015. For the in-depth

lustering analysis we selected the following MAWI files: 

• Id: 201501011400 ( d1 dataset) 

Thu Jan 1 2015, From 14:0 0:0 0 to 14:15:00. 3 

• Id: 201504151400 ( d2 dataset) 

Wed Apr 15 2015, From 14:0 0:0 0 to 14:15:00. 4 

• Id: 201507311400 ( d3 dataset) 

Fri Jul 31 2015, From 14:0 0:0 0 to 14:15:00. 5 

.1. Data preprocessing 

The preparation of the data for the knowledge extraction in-

olved some sequential steps. These steps performed the transfor-

ation of pcap captures into time-activity feature vectors . They are:

1. Extraction of ordered tuples . The original pcap traces were pre-

processed and expressed in a tuple format just containing the

following information per packet: timestamp, source and desti-

nation addresses, source and destination ports (or type and code

for ICMP packets), protocol, TCP flags, and packet and header

lengths. 

2. Capturing flows in 60 s activity time-series. 

Relying on timestamps, tuples were swept and the activity of

flows was captured in a fixed 60 s time window. We define

a flow based on the IPFIX definition in RFC7011 [22] ; hence, a

flow is the unidirectional data stream between a sending host

A and a receiving host B, i.e., “A > B” (“B > A” would be a dif-

ferent flow). Although IPFIX also allows bidirectional flows [23] ,

we decided to work with unidirectional flows as it requires less

analysis steps and no state keeping. Furthermore, the genera-

tion of the time activity vectors involves packet arrival times

and therefore can anyway not be directly generated from IPFIX

flow data. 

An example of the time series of a flow is displayed in Fig. 2 .

Flows whose duration was shorter than 60 s showed a 0-tail in

the right side of the time series; flows with a duration longer

than 60 s were split and considered as separate 60 s flows

for the analysis. Flows which could not be observed in a time

frame of at least 60 s were directly discarded (i.e., residual

heads and tails of the analyzed files). 

3. Summarizing into time-activity feature vectors. Some character-

istic features were extracted from the activity time-series. The

definition and format of such features are explained in detail in

the next subsection, Section 3.2 . 

.2. Time-activity vector 

Traffic flows were finally represented by time-activity feature

ectors (or just time-activity vectors for brevity), which were
3 http://mawi.wide.ad.jp/mawi/samplepoint-F/2015/201501011400.html . 
4 http://mawi.wide.ad.jp/mawi/samplepoint-F/2015/201504151400.html . 
5 http://mawi.wide.ad.jp/mawi/samplepoint-F/2015/201507311400.html . 
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ltimately the objects of the knowledge discovery processes. Time-

ctivity vectors were formed by the fields listed in Listing 1 . 

T imestamp, flowID are used as flow keys to identify a flow. Pro-

ocol and ports are also collected to facilitate a deeper analysis. A

ow in our definition always lasts 60 s. timestamp stores the time

resolution of seconds) when the flow started. FlowID retains the

ource and destination addresses of the flow hosts with a ‘ > ’

o mark flow direction, e.g., “A > B”. Protocol contains the proto-

ol number characteristic of the flow. Ports saves either the UDP

nd TCP ports with the format: source-port:destination-port or, in

he case of ICMP, the pair: type:code . For other protocols that do

ot use port numbers, the value of ports is set to “0:0”. In the

ases where the flow uses various protocols or ports, the respec-

ive fields take the ‘–1’ value. 

The remaining fields are: 

• Tdata : total amount of data transmitted (bytes). 6 

• Tpkts : total amount of packets transmitted. 

• sectran : number of seconds when the flow was active . 

• datapstran : average data per active-second transmitted (bytes). 

• pkpstran : average packets per active-second transmitted. 

• maxton : maximum amount of consecutive seconds that the

flow showed activity. 

• minton : minimum amount of consecutive seconds that the flow

showed activity. 

• maxtoff: maximum amount of consecutive seconds that the

flow did not show activity. 

• mintoff: minimum amount of consecutive seconds that the flow

did not show activity. 

• interv : number of activity intervals. 

For analysing the time-activity, the sampling granularity within

he 60 s flow was 1 s. 

Time-activity feature vectors were formed by transforming

ow-activity time series. As an example, given a time series like

he one in Fig. 2 , which accounts for a TCP flow between host

11.74.5.25 (port 1234) to host 146.34.9.14 (port 80), starting at
6 Tdata is calculated as the length of the IP datagram minus the length of the IP 

eader and the length of the TCP (or the UDP) header. ICMP and other protocols 

eaders are considered as payload. 

ity footprints in IP traffic, Computer Networks (2016), 
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Listing 2. Time-activity vector example. 
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13:38:33 GMT on Tue 11 Aug 2015; the corresponding time-activity

vector would remain as displayed in Listing 2 : 

4. MAWI dataset overview 

We here describe some general characteristics of the traffic col-

lected in the MAWI datasets. 

4.1. Data and packet rates 

The MAWI webpage contains some descriptive information

about the traffic captures. From 1 January to 31 July 2015 we used

the daily rates, reported at the MAWI page, to study the evolution

of traffic according to different protocols. The number of packets

and bytes of every 900 s sample per day are shown in Figs. 3 and

4 . Beyond confirming the preponderance of TCP, UDP and ICMP

traffic, from the figures we observed some initial traits about the

nature of IP traffic in MAWI captures: 

• Most of the data traveling the network belongs to TCP trans-

missions. TCP is the dominant protocol on the Internet, so this

observation was expected. 

• TCP traffic packet and data rates follow a weekly pattern, from

which low peaks usually coincide with saturdays and sundays.

Higher peaks during work days are also typical in Internet traf-

fic. 

• UDP traffic showed a chaotic behavior, with occasional high

peaks of packet rates (usually transporting low amounts of

data). 

• The ICMP number of bytes was low and very stable. ICMP time

series related to number of packets showed a flat shape with

two well differentiated steps. 7 

• There was a considerable increment of global packet and data

rates as of end March (data) and mid May 2015 (packets). 8 

4.2. Pre-analysis of flows 

The amount of observed ICMP packets in the MAWI datasets

was considerable. In this respects, MAWI data publishers warn

about the unusually large amount of ICMP traffic in the traces, 9 

mostly caused by the USC ANT project [24,25] . The USC ANT

project uses ICMP to probe the entire IPv4 space and is constant

in a high activity rate since March 27, 2013. 

When analyzing the situation from the perspective of time-

activity flows, the predominance of ICMP traffic is unquestionable

( Table 1 and Fig. 5 ). The provided figures show that most of the

flows consisted of short, low-data ICMP packets. 

5. Knowledge extraction methodology 

Beyond digging into the superficial characteristics of IP flows,

our exploration of the MAWI datasets aimed to discover time-

activity patterns able to identify big portions of the IP space with-

out checking packet contents and only few parts of the packet
7 Some misconfiguration problems affected MAWI monitors from end May 2015 

to early September 2015, generating a considerable amount of duplicated pack- 

ets. We discovered this issue with the application of clustering-based analysis (see 

Section 6 ). Figs. 3 and 4 are therefore affected and can lead to wrong interpreta- 

tions. 
8 See footnote 7 . 
9 http://mawi.wide.ad.jp/mawi/ . 
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eaders. Once preprocessing steps were finished, i.e., all captured

ata was transformed into time-activity feature vectors, the knowl-

dge extraction analysis was carried out according to the following

teps ( Fig. 6 displays the corresponding scheme): 

1. Subset sampling. 

Given the huge amount of data to deal with, for every global

set (i.e., d1, d2 and d3 ) we took several subsets of about 5% to

10% of the samples by means of a random permutation algo-

rithm – we call them analysis subsets . We used such subsets to

find statistical properties, to adjust analysis parameters and, af-

ter separating into protocols, to discover significant clusters. We

assumed that the statistical power of the subsets was enough to

guarantee their representativeness. The validity of this assump-

tion was checked later when applying the derived methods and

filters to the whole data. 

2. Descriptive analysis of features. 

The subsets were submitted to statistical analysis to evaluate

their boundaries and superficial shapes. Analysis outcomes dis-

closed that all features showed skewed, unbalanced distribu-

tions. This fact was specially significant for features with a

high dynamic range, i.e., the ones related to total or averaged

amount of data or packets ( Tdata, Tpkts, datapstran, pkpstran —

see Section 3.2 ). 

3. Correlation analysis. 

Correlation analysis provide outcomes that explain dependen-

cies in feature variations, therefore helping to understand the

nature of the explored datasets. Such information allows to

refine the selection of clustering parameters and methods, as

well as to suggest redundancies for the subsequent extraction

of the most relevant features, described in Section 10 . In this

respect, all features turned out to be positively or negatively

correlated with at least one other feature (coefficient absolute

values above 0.7). The couples Tdata –datapstran and maxton –

minton showed the strongest linear correlation. High correla-

tion coefficients do not necessarily mean that some features

are dispensable for the traffic representation; little differences

can be determining for the final classification. Therefore assess-

ments about feature selection should not be done prior to the

clustering analysis (unless the number of features were over-

whelming). They must be performed after post-processing steps

( Section 10 ), since clustering outcomes are necessary to validate

the feature selection. 

4. Logarithmic transformation of features with highly skewed dis-

tributions. 

Features with unbalanced distributions within wide dynamic

ranges can hamper the efficacy of subsequent cluster analy-

sis. In such cases, capturing orders of magnitude (tens, hun-

dreds, thousands) instead of absolute values can be advisable,

still providing meaningful information while presenting a more

manageable input space to the analysis algorithms [26] . Fol-

lowing such reasoning, Tdata, Tpkts, datapstran, pkpstran were

transformed according to Eq. 1 . An example of dynamic ranges

and feature distributions is shown in Fig. 7 . 

y = 1 + log 10 x (1)

5. Normalization. 

To equalize the importance of features during the analysis,

datasets must undergo some kind of normalization. Given the

characteristics of the features, we opted for range normalization

( Eq. 2 ), i.e., to divide each sample value by feature maximums

and minimums, therefore the dynamic range of every feature

remains enclosed between [0...1]. 

y i = 

x i − min (X i ) 

max (X ) − min (X ) 
(2)
i i 

ity footprints in IP traffic, Computer Networks (2016), 
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Fig. 3. Daily amount of IPv4 packets from 14:00 to 14:15 split into protocol-type, from 1 Jan to 31 Jul 2015. 

Fig. 4. Daily amount of IPv4 data (bytes) from 14:00 to 14:15 split into protocol-type, from 1 Jan to 31 Jul 2015. 

Table 1 

Distribution of IP flows in protocols. a 

01-01-2015 15-04-2015 31-07-2015 

TCP 1.3 M (07.3%) 1.6 M (08.6%) 4.7M (31.9%) 

ICMP 16.4 M (89.4%) 16.1M (88.1%) 9.5 M (64.5%) 

UDP 486 K (02.7%) 604 K (03.3%) 473 K (03.2%) 

Multi 130 K (00.7%) 10 K (00.1%) 58 K (00.4%) 

Others 172 (neglig.) 192 (neglig.) 169 (neglig.) 

a After removing duplicates (see Section 6 ) as well as heads 

and tails — i.e., considering about 780 s of traffic. 

Fig. 5. Number of flows according to protocol type. d1, d2 and d3 stand for 01/01/15 

dataset, 15/04/15 dataset and 31/07/15 dataset respectively. 

 

 

 

Fig. 6. Conducted steps linked to the respective data subsets. 
where i identifies the specific feature and X i stands for the sub-

set with all the possible values taken by feature i . 

6. Separation according to protocols. 

The subsets were separated once more into smaller subsets ac-

cording to the main protocols: TCP, UDP, ICMP – we call them
Please cite this article as: F. Iglesias, T. Zseby, Time-activity footprints in IP traffic, Computer Networks (2016), 
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Fig. 7. Histograms of the feature Tpkts along the d1 dataset, before and after loga- 

rithmic transformation. 
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protocol subsets . The purpose was to find the representative

clusters and patterns of every main protocol. 

7. Study of k , number of clusters. Clustering. 

For every protocol subset the suitable number of clusters k was

explored. As a design parameter, for the model discovery we

limited k between 2 and 15. The analysis of the most suitable k

in every case was carried out by weighted votes among diverse

cluster validation indices. We applied: classification entropy, par-

tition index, Xie and Benix’s index [27,28] , clustering gain [29] as

well as an ad-hoc validity method based on inter- and intra-

cluster distances. 

The selected clustering algorithm was the Fuzzy Gustafson-

Kessel clustering method with squared Mahalanobis distance

norm [30] and outlier rejection. Fuzzy clustering was chosen to

avoid undesired local minima problems that could distort the

solution [31] , also to deal with a noisy environment and over-

lapping clusters in a more efficient way than with crisp cluster-

ing [32] . The Mahalanobis distance based Gustafson-Kessel ap-

proach responds to the suspicion of elongated clusters (due to

features with variated statistical behavior) and to the evidence

of high correlated data and features, disclosed during the cor-

relation analysis (see current section, list-point 3). This method

allows that features with low variance have more importance

for the subspace division than features with high variance [33] .

Since we looked for discovering clusters and patterns repre-

senting most of the population under analysis, removing out-

liers based on the Median Absolute Deviation (MAD) [34] was

appropriate. The removal of outliers enabled the obtaining of

cleaner centroids. 

8. Selection of big, stable clusters and patterns. 

From all the discovered clusters, we kept the ones that em-

braced a considerable amount of samples in the analyzed

datasets (above 1% of the total flows) and showed acceptable

quality coefficients based on inter- and intra-cluster distances. 

For every cluster a pattern was established. A pattern is a

special representative sample that accepts some drifts and

redefines cluster boundaries. Cluster boundaries are defined

according to Eq. 3 : 

pat t a,i = cent roid a,i ± 2 × intra _ dist a,i (3)

where patt a, i identifies the value of feature i in pattern patt a ,

centroid a is the centroid of cluster a , and intra _ dist a,i is the av-

erage distance to centroid a of all samples embraced in cluster

a . 

In short, a pattern describes a subspace (specifically a hyper-

rectangle of n -dimensions) within the input space defined by

the n features of the time-activity feature vector format. From

the perspective of traffic analysis, a cluster pattern is a traffic

footprint. 

9. Classification of the whole datasets with the discovered pat-

terns. With the final set of patterns already defined, all samples
Please cite this article as: F. Iglesias, T. Zseby, Time-activ
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in the whole d1, d2 and d3 datasets were filtered and classified.

Results are displayed and discussed in Section 8 . 

. Detection of misconfiguration in captures 

The outcomes of the first analysis disclosed very similar clus-

ers in datasets d1 and d2 , but a strong alteration in major flow

hapes and rates of the d3 dataset. In short, the d3 dataset con-

ained clusters that accounted for a significant amount of traffic,

ut were nonexistent in d1 and d2 , and their shapes showed dou-

led values in Tdata, Tpkts, datapstran and pkpstran when com-

ared to other clusters. The manual inspection of captures in d3

xposed that such clusters represented flows with duplications –

.e., a second identical packet – captured some micro- or millisec-

nds after the first packet. 

The issue was communicated to MAWI on early September

015. After a few days, MAWI experts confirmed a misconfigura-

ion problem affecting one of their routers. The misconfiguration

aused the re-injection of a significant portion of traffic and af-

ected published captures from 28 May 2015 to 3 September 2015.

Published datasets have been cleaned by MAWI technicians af-

er the discovery of this problem. We repeated the experiments

ith cleaned datasets, therefore results displayed in Table 1 and

ections 8, 9 and 10 have been obtained after the removal of du-

licates. 

. Analysis times 

The goal of the research was the exploration and knowledge

xtraction of the captured traffic, and not optimizing the compu-

ational effort of the analysis. Table 3 provides some guiding fig-

res to offer a general impression of the preprocessing and analysis

osts with preliminary, non-time-optimized programming. All cal-

ulations have been performed with scripts built over the follow-

ng softwares and programming languages: TShark [35] , Python [36] ,

erl [37] and MATLAB [38] . 

Figures in Table 3 correspond to the preprocessing of the d3

ataset and the analysis of d1, d2 and d3 together. Note that d3 is

he biggest dataset; it consists of 213758683 packets (almost 214

illions), 11.2 GB of captured header data with no payload. 

. IP flow footprints 

The discovered clusters were stable throughout every dataset,

et their relative size varied depending on the specific dataset un-

er analysis. The selection of the appropriate number of clusters k

s usually an arguable parameter, submitted to the peculiarities of

he clustering methodology. We applied a weighted evaluation of

iverse validity methods to fix k ( Section 5 , point 7). In any case,

n our analysis an accurate selection of the initial k is not a crucial

ecision as, in a posterior step, we remove minor, less representa-

ive clusters and focus only on the big, clear partitions ( Section 5 ,

oint 8). 

The patterns of the principal discovered clusters are displayed

n Table 2 . We denote clusters found in TCP traffic with T1, T2, T3

nd T4; clusters from UDP flows with U1, U2; and the cluster rep-

esenting most ICMP traffic with I1. They embraced the following

mount of flows: 

T1: 0.6% T2: 5.0% T3: 5.6% T4: 0.3% 

I1: 79.9% U1: 0.4% U2: 3.5% out.: 4.7% 

The total analyzed data accounted for 51.4M flows. 48.9M out

f 51.4M flows (95.3%) matched patterns in Table 2 . In spite of the

ifferences, patterns show some characteristics that are common

n the analyzed traffic. Moving apart small clusters T1 and T4, the
ity footprints in IP traffic, Computer Networks (2016), 
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Table 2 

Pattern cores of the main discovered clusters: central value (in brackets ranges covered by the first 

standard deviation). 

T1 T2 T3 T4 I1 U1 U2 

Tdata (B) 0 896 0 0 12 242 (42,1384) 56 (36,86) 

Tpkts 2 (2,3) 1 1 4 (3,6) 1 2 (2,6) 1 

Sectran (s) 2 (2,3) 1 1 3 (2,4) 1 1 (1,2) 1 

Datapstran (B) 0 896 0 0 12 229 (44,1169) 56 (36,86) 

Pkpstran 1 1 1 1 (1,2) 1 2 (2,5) 1 

Maxton (s) 1 1 1 1 (1,2) 1 1 (1,2) 1 

Minton (s) 1 1 1 1 1 1 (1,2) 1 

Maxtoff (s) 55 (53,57) 59 59 48 (43,52) 59 59 (57,59) 59 

Mintoff (s) 2 (1,3) 59 59 3 (1,7) 59 59 (58,59) 59 

#Interv 2 (2,3) 1 1 3 1 1 1 

Table 3 

Analysis times. 

Preprocessing a 

(d3 dataset) 

-Remove duplicates, split in smaller sets Editcap 06 m 40 s 

-Extracting header features TShark, 15 h 06 m 44 s 

Python 

-Parsing, preprocessing Perl 17 m 12 s 

-Extracting time series Perl 28 m 27 s 

-Extracting time-activity vectors Perl 06 m 20 s 

-Final parsing, preprocessing Perl 01 m 09s 

Analysis b 

(d1, d2 and d3 datasets) 

-Importing data, subset sampling, descriptive and corr. analysis, log. transformation MATLAB 04 m 26 s 

-Importing data, normalization, clustering, outlier removal, obtaining indices, validity comparisons MATLAB 28 m 22 s 

-Importing data, classification based on patterns, results aggregation MATLAB 3 h 16 m 34 s 

a Machine: 64-bit, Intel Core i7-4770T CPU @ 2.50GHz x 8, 16GB RAM, Ubuntu 14.04 LTS. 
b Machine: 64-bit, Intel Processor 5Y10 CPU @ 0.80GHz 4, 8GB RAM, Ubuntu 14.04 LTS. 

Fig. 8. Idealized two-dimensional representation of the solution space to illustrate 

the pair I1-U2 case. Concentric circles mark global distance radius according to stan- 

dard deviation multiples. 
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Table 4 

Distribution of TCP flows in clusters. 

01-01-2015 15-04-2015 31-07-2015 

T1 7.0% 4.9% 2.9% 

T2 0.3% 0.8% 53.0% 

T3 57.7% 71.2% 20% 

T4 6.6% 1.0% 1.0% 

I1 0.1% 0.1% 0.1% 

U1 2.3% 2.9% 0.7% 

U2 0.1% 0.3% 0.1% 

Out 26.0% 18.7% 22.2% 

Table 5 

Distribution of ICMP flows in clusters. 

01-01-2015 15-04-2015 31-07-2015 

T1 0.0% 0.0% 0.0% 

T2 0.0% 0.1% 0.0% 

T3 0.0% 0.0% 0.0% 

T4 0.0% 0.0% 0.0% 

I1 97.9% 97.8% 95.3% 

U1 0.1% 0.1% 0.0% 

U2 1.5% 1.7% 3.5% 

Out 0.5% 0.5% 1.1% 

Table 6 

Distribution of UDP flows in clusters. 

01-01-2015 15-04-2015 31-07-2015 

T1 0.0% 0.0% 0.0% 

T2 2.4% 1.4% 4.7% 

T3 0.2% 7.2% 0.0% 

T4 0.0% 0.0% 0.0% 

I1 3.9% 12.9% 7.3% 

U1 5.9% 5.7% 5.2% 

U2 58.2% 59.5% 63.7% 

Out 29.5% 13.3% 19.1% 
ost noticeable common trait of the remaining clustered traffic

94.2%) is that flows between hosts were generally short, one-time

ursts of one to few consecutive packets transmitted immediately. 

Although cluster cores are well differentiated, some overlap-

ing among clusters boundaries appears. For instance, I1 is an ex-

remely dense cluster inside the confines of a less dense cluster

2. Fig. 8 projects an idealized two-dimensional representation of

he solution space in order to illustrate this case. Something simi-

ar happens with T3 and U2, or T2 and U1. This is the reason why a

onsiderable amount of UDP traffic matched I1 during the analysis

nd, in a minor proportion, also matched T2 and T3. To check these

spects, Table 4 shows how TCP flows distributed into the discov-

red clusters, analogously Table 5 for ICMP flows, and Table 6 for

DP. 

Deep down what such overlapping expresses is that some

ows from different protocols behaved in a similar way when

onsidering only time-activity footprints. Up to a certain degree

his is expected and is not a critical issue if the underlying phe-

omena behind is understood. For example, if we can identify

hich type of UDP traffic falls into I1. We analyze such aspects
Please cite this article as: F. Iglesias, T. Zseby, Time-activity footprints in IP traffic, Computer Networks (2016), 
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Table 7 

Distribution of data and packets according to clusters. 

Cluster Flows Bytes Pkts Bytes/flow Pkts/flow 

T1 0.6% 0.0% 0.2% 0.0 2.1 

T2 5.0% 2.1% 1.0% 1.0 K 1.1 

T3 5.6% 0.0% 1.1% 0.1 1.0 

T4 0.3% 0.0% 0.2% 0.0 3.4 

I1 79.9% 0.4% 15.3% 12.0 1.0 

U1 0.4% 0.1% 0.4% 0.4 K 4.7 

U2 3.5% 0.1% 0.7% 71.7 1.0 

OutTCP 3.2% 91.1% 48.9% 61.7 K 79.1 

outICMP 0.5% 0.1% 1.2% 0.5 K 12.0 

outUDP 0.6% 4.3% 28.7% 15.1 K 0.2 K 

outMulti 0.4% 0.4% 0.9% 2.3 K 12.0 

outOther 0.0% 1.4% 1.3% 3.1M 6.9 K 

out{TCP,ICMP,UDP}: TCP, ICMP and UDP flows clustered as outliers. 

outMulti: outlier flows that use multiple protocols. outOther: outlier 

flows that are not TCP, ICMP, UDP or multi-protocol. 
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later in this section when describing the traffic represented by the

footprints. In any case, it is noteworthy that, from a global per-

spective, Tables 4, 5 and 6 display how the analyzed TCP, ICMP and

UDP traffic flows were distributed mostly fitting the patterns cor-

responding to their specific protocol. Hence, in the analyzed cap-

tures, time-activity vector patterns can be used to identify the pro-

tocol of a considerable part of IP traffic. These results can be better

assessed with some figures: 

• 93.2% of all TCP, ICMP and UDP flows fell in clusters corre-

sponding to their protocol type (76.5%, 97.3% and 64.7% respec-

tively). 

• 4.4% of TCP, ICMP and UDP flows were labeled as outliers

(21.8%, 0.6% and 20.5% respectively). 

• 2.4% of TCP, ICMP and UDP flows fell in a non-corresponding

protocol type cluster (1.7%, 2.1% and 14.9% respectively). 

• 96.5% of flows using more than one protocol type (about two

hundred thousand) as well as flows using protocols different to

TCP, UDP and ICMP (slightly above five hundred) were labeled

as outliers. 

Another remarkable fact observable in Table 4 is an evolution

of TCP cluster distributions that occurred in d3 . In the following

section we give an explanation to this fact. 

8.1. TCP patterns 

Pattern T1: The manual inspection of flows matching T1 dis-

closed TCP connection attempts mainly to ports 445 and 23. The

standard case behind this footprint was a source trying to connect

to a destination with a SYN packet. After getting an ICMP Destina-

tion Unreachable, a TCP RST or no response from the destination,

the source tried to connect a second time (sometimes even a third

time). 

Such a situation was unique or exceptional to sources with

flows clustered under T1, hence in principle T1 is not necessarily

an indication of illegitimate behavior. However, part of the flows

generated by a source that was conducting a massive scan to port

23 in d2 fell into this group. In such a case, the used scanner occa-

sionally sent a second SYN packet (a different packet, not a dupli-

cation) to just some destinations after some seconds. This behavior

is not usual in the observed TCP scanning, it might be caused by a

peculiarity or defect in the specific exploration algorithm. 

Pattern T2: This cluster was caused by an isolated address –

we refer to it as add0 – that concentrated 98.7% of all TCP flows in

T2. T2 flows showed one SYN packet transmitting about 896 bytes

of data (excluding TCP and IP headers) to add0 , specifically to the

TCP destination port 80. The SYN flag was sometimes combined
Please cite this article as: F. Iglesias, T. Zseby, Time-activ
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ith less habitual flags, e.g., ECN, CWR, NS, etc. add0 did not an-

wer or start any communication attempt in the analyzed traffic.

e hypothesize that T2 captured a new generation of intense DoS

ttack known as Tsunami SYN flood [39] . 

The remaining, spurious TCP flows clustered by T2 not identifi-

ble as belonging to the Tsunami attack consisted mostly in very

hort, legitimate bursts delivered by web servers (source ports 80

nd 443); to a minor degree, also going to web servers (destination

orts 80 and 443). UDP flows falling into T2 corresponded to DNS

esolution – mainly answers – that matched the characteristic pay-

oad size of the footprint. Such web server TCP activities and DNS

esolution captured by T2 were often flows in the boundaries of

he T2 cluster, exhibiting drifts essentially in the number of trans-

itted packets (more than one). 

Pattern T3: The manual inspection of flows matching T3 re-

ealed a clear profile of scanning behavior: no data, one TCP packet

ith the SYN flag, few sources and many different destinations

rom selected address ranges. The preferred ports to scan varied

ignificantly depending on the analyzed file d1, d2 or d3 . This is

ue to the fact that most flows came from a few number of very

ctive sources, which were aiming at different ports in every ana-

yzed period. In any case, ports 4 43, 8888, 4 45, 22, 23, 1080, 11211

nd 3389 seemed to be classic objectives for scanning since they

ppeared always within the top 25 most scanned ports for the

hree analyzed datasets. 

This pattern also embraced answers to the scanning activity, not

nly from protected hosts responding with RST or RST-ACK, but

lso in a few cases from vulnerable hosts accepting the connec-

ion with a SYN-ACK response (but never receiving a correspond-

ng ACK from the source). The amount of flows showing scanning

eactions were much lower than the scanning activity itself, pre-

umably due to the fact that scanners point to random addresses

hat can be nonexistent as well as many scanned hosts incorporate

ropping policies against undesired connection attempts or directly

end ICMP messages to inform about the rejection. 

UDP flows falling in T3 corresponded to UDP scans with no pay-

oad. In the visual inspection, most of such scan pointed to UDP

ort 1900 (also UDP port 19 was aimed at in a reduced scale). 

Pattern T4: The manual inspection of TCP flows in T4 revealed

iverse cases: 

• Servers rejecting retransmitted connection attempts with RST-

SYN packets. Servers could not satisfy the connection requests

for some reason. 

• Retransmitted SYNs from clients (mainly to ports 80, 443 and

23). In this case, servers were overloaded, suffering a DoS attack

or they just rejected connection attempts for some reason. 

• Servers sending several late SYN-ACK packets (mainly from

ports 80 and 443). The tracking of such hosts disclosed clear

cases of servers suffering DoS attacks, already overloaded or

quickly becoming overloaded. SYN-ACK packets were sent to

presumably spoofed sources while waiting for never-coming

ACKs. 

.2. ICMP patterns 

Pattern I1: The manual inspection of flows matching I1 showed

hat most of such traffic corresponded to Echo requests (pings)

rom at least four specific IP addresses as well as Echo replies

oing to these same addresses (we refer to them as add1, add2,

dd3 and add4 ). Only 0.9% of flows that matched pattern I1

id not involve add1, add2, add3 or add4 . We hypothesize that

uch addresses belonged to the ANT project probing mentioned

n Section 4.2 . Therefore, ICMP flows from add1, add2, add3 and

dd4 matching I1 covered respectively 79.1% of the total analyzed
ity footprints in IP traffic, Computer Networks (2016), 
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Fig. 9. Distribution of 100 random flows from the analyzed MAWI datasets after 

stratified sampling. 
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ows. In other words, approximately 79 out of 100 flows in MAWI

atasets were related to the ANT project probing activity. 

I1 also included other ICMP Echo request and reply flows not

inked to the ANT probing. In addition, TCP flows that very oc-

asionally fell in I1 corresponded to tails of longer TCP connec-

ions that were cut by the 60 s time-window defined for the time-

ctivity vector format. 

As for the considerable amount of UDP flows falling in I1, the

isual inspection revealed the following situations: 

• Sources performing UDP scans (in the observed files, mainly to

ports 161, 9987, 5351 and 53). 

• Isolated communication attempts with inactive or unresponsive

UDP services. 

• At a negligible rate, residuals of legitimate UDP communica-

tions (tails of longer UDP conversations). 

.3. UDP patterns 

Pattern U1: 76.8% UDP flows included in U1 mainly belonged

o legitimate DNS resolution (UDP source and destination port 53).

t a lower rate (2.3%), this footprint also embraced some flows of

egitimate bit-torrent communications. Such behavior consisting of

nstantaneous, isolated bursts of a few UDP packets seemed to be

uite common in both DNS and bittorrent services. Also some UDP

cans were observed falling into this group; for example, scans to

DP port 123 that were truncated in two packets by network anal-

sis tools due to the long packet size, or scans actually sending two

onsecutive packets to port 161. The remaining residual flows be-

onged to normal UDP communications that matched the footprint.

Finally, the scarce number of TCP flows falling in U1 corre-

ponded to legal, short TCP connections whose data and packet

ates matched U1. 

Pattern U2: U2 clustered many UDP scanning activities, where

orts 53 (DNS), 161 (SNMP), 123 (NTP) and 1900 (SSDP, UPnP)

urned out to be the most targeted ones in the analyzed files. Ac-

ivities related to these ports accounted for 84.2% of the flows.

gain, beyond scanning activities, this footprint is also character-

stic of flows with non-suspicious DNS queries and answers (ap-

roximately one third of the traffic related to port 53 was normal

NS traffic), as well as some flows of residual bittorrent communi-

ations. 

On the other hand, a considerable amount of ICMP traffic fell in

2. The visual inspection of such flows disclosed a dominant pres-

nce of ICMP Destination Unreachable messages, mainly from hosts

hat were being scanned (about 70%). It also included ICMP Time

xceeded messages, Echo requests and Echo replies. The difference

etween I1 and U2 relies on the payload size, that in the case of

estination Unreachable messages is bigger as it contains part of

he original, not successfully delivered packet. Some Echo request

nd replies fell in U2 because this type of ICMP packets admit the

ddition of variable contents in the payload. 

.4. Other protocols or multi-protocol flows 

The number of flows using other protocols or combinations of

rotocols were negligible if compared with the rest of the traffic.

ut of 44.7 M flows, 198 K were flows with packets from diverse

rotocols and less than 1 K came from protocols different to TCP,

CMP or UDP. In any case, 96.5% of such flows did not match any

attern and were classified as outliers. 

. Minor clusters and outliers 

After filtering all flows belonging to the discovered seven pat-

ern set, the remaining flows that, either belonged to minor clus-

ers or were directly identified as outliers, accounted for the 4.7%
Please cite this article as: F. Iglesias, T. Zseby, Time-activ
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i.e., 2.4 M out of 51.4 M flows. Outliers were mainly TCP flows

68.0%), followed by UDP and ICMP flows (13.1% and 11.0% respec-

ively). The remaining 7.9% corresponded to multi-protocol flows or

ows using other protocols different from TCP, ICMP or UDP. Fig. 9

llustrates such figures with a chart. 

In the outlier subset we found the actual delivery of real and

eaningful data over the Internet. For instance, the duration of

ctive intervals was significantly longer in the outliers and dis-

ributed along the 60 s time window. In high contrast with the

lustered flows, which mostly occurred in an isolated interval

 Table 2 ), 87.1% of outlier flows showed two or more intervals in

he activity profile, i.e., source hosts sent their packets in, at least,

wo bursts separated by one second of no activity. Multi-interval

ows were 75.5% TCP, 10.3% ICMP and 6.8% UDP. 

To check the number of intervals or their duration is revealing

n order to disclose where the exchange of actual information is

ocated. Directly evaluating data rates can be misleading since, for

xample, we have seen how Tsunami attack flows massively sent

eaningless, heavy payloads just to overload the attacked host

nd bypass security barriers. Also some UDP scans carried data

r ICMP packets stored data about the packet that originated the

CMP message. This fact can distort slightly the perception of “ele-

hants” as envisioned in [11] , yet their existence is obvious when

ackets and data histograms are checked ( Section 5 , point 4; also

ig. 7 ). Looking for long-active-time flows is also a good evaluator

o discover where the actual information transfer took place. For

nstance, flows with a sectran ≥ 5 s (all of them classified as out-

iers) accounted for 0.13% of the total flows, being 70.3% TCP, 5.2%

CMP and 19.1% UDP. 

Although classified as outliers, we found that most ICMP multi-

nterval flows also pertained to the ANT probing activity, but in

his case the strategy consisted in sending a second Echo request

a new packet, no duplicate) to every scanned destination 2 or 3 s

fter the first. This otherwise well-defined group was not included

ithin the main patterns due to its low representativity compared

o I1, but accounts for about 95% of the ICMP outliers displayed in

able 5 . 

Finally, Table 5 shows a relationship between flows, data (bytes)

nd packets, as well as data and packets per flow. It is clearly visi-

le how most of the data exchange belongs to the outliers, mostly

CP outliers. 

In short, TCP traffic showed to be the richest and most vari-

ble type of traffic in terms of time-activity behavior, contain-

ng most of the multi-interval and long-active flows and being

he common protocol within the outlier group ( Table 7 ) . Fu-

ure research must focus on such traffic and on the identifica-

ion of TCP and UDP services by means of time-activity foot-

rints once the bulk of probing and scanning activities as well as

ther massive flow-types have been filtered. Time-activity vectors

ere also conceived to capture flows where the human interaction

ppears, possible to identify thanks to the time-between-packets

r time-between-intervals response, which is supposed to differ
ity footprints in IP traffic, Computer Networks (2016), 
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Table 8 

Precision and recall indices. Using 1ten features (left) and four fea- 

tures (right). 

Precision Recall Precision Recall 

T1 99.18% 98.37% 99.19% 99.19% T1 

T2 99.65% 99.74% 98.96% 99.57% T2 

T3 99.91% 10 0.0 0% 10 0.0 0% 10 0.0 0% T3 

T4 96.61% 98.28% 93.22% 94.83% T4 

I1 10 0.0 0% 99.99% 10 0.0 0% 10 0.0 0% I1 

U1 82.76% 84.00% 82.96% 84.00% U1 

U2 84.69% 83.84% 86.23% 83.84% U2 

Out. 99.68% 99.37% 99.37% 99.16% Out. 
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if compared with scheduled or algorithmic machine-to-machine

operations. 

10. Most relevant features 

Given the high feature correlation and the similarities observed

among the most common footprints, we expected to find irrelevant

or redundant features in the time-activity vector when applied to

classify traffic flows based on the discovered patterns. To check the

feature selection, we randomly selected subsets of samples (strati-

fied sampling) from the three datasets linked to their characteristic

footprint. The subsets underwent a feature selection filter based on

correlation and maximum-relevance minimum-redundancy mea-

surements [40] . Results emphasized: 

Tdata, datapstran, maxtoff and mintoff

as the most relevant features. Table 8 displays the results ob-

tained from the confusion matrix 10 after applying 1ten-fold cross-

validation with a k-NN classifier [42] in both: the complete ten-

feature subset and the reduced four-feature subset. 

Results of the feature selection analysis revealed that traffic

flows can be either classified according the discovered patterns

or labeled as outliers just by considering only Tdata, datapstran,

maxtoff and mintoff. But the remaining features cannot be dis-

carded for further analysis that aim to discover footprints inside

the outliers, as higher shape variability and complexity is expected.

11. Conclusion 

In this paper we investigated the temporal behavior of commu-

nication flows in IP networks. We defined a time activity feature

vector that captures the temporal behavior of flows. The analysis of

the feature vectors by clustering algorithms discovered seven time-

activity footprints, namely T1, T2, T3, T4, I1, U1 and U2, embracing

all together 95.3% of all flows. Time-activity patterns detected mas-

sive events that showed well-delimited shapes in the time-activity

expression and were bound to the following communication phe-

nomena: 

• T1 identified TCP unsuccessful connection attempts and, even-

tually, abnormal TCP scanning. 

• T2 identified a TCP Tsunami SYN Flood attack and answers to

UDP DNS queries within a specific packet size range. 

• T3 identified TCP horizontal scans and UDP horizontal scans

with no payload. In a lower proportion, TCP flows from scanned

hosts. 

• T4 identified servers rejecting TCP reconnection attempts, re-

transmitted SYN from waiting clients and overloaded servers

suffering DoS attacks. 
10 We refer the interested reader to [41] to probe into performance measurements 

for classification. 
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• I1 identified ICMP ANT probing requests and replies. Also some

UDP scans. 

• U1 identified mostly UDP DNS resolutions and, at a minor rate,

bittorrent activity. 

• U2 identified UDP horizontal scanners and, at a lower rate, UDP

DNS resolutions. 

Footprints showed that flows were mostly isolated, one-time

ursts of few packets (usually only one). Thus, in terms of flows,

ctual data transmissions or conversations in prolonged flows were

he exception. The fact that the one-time burst flows fall into sev-

ral well defined clusters also shows that clustering according to

ime-activity patterns provides a valuable method to identify and

lassify different types of malicious traffic. 

The combination of time-activity flow representation with clus-

er analysis has shown itself to be a suitable tool for filtering traffic

nd detecting dominant events in IP networks, requiring a minimal

nspection of packets. The proposed methodology even detected a

isconfiguration problem in one of the MAWI traffic monitors. Fu-

ure work will focus on: a) the time-activity characterization (foot-

rints) of common, specific network operations; and b) the use of

omputer clusters (i.e., high performance distributed computing) to

nalyze traffic from a 1-to-3 year dataset based on the discovered

even patterns. 

cknowledgements 

We would like to show our gratitude to Prof. Kenjiro Cho and

he WIDE Project for their fast responses and support and for mak-

ng Internet traffic datasets available, which is a very valuable con-

ribution to network research nowadays. 

eferences 

[1] 2014 Global Report on the Cost of Cyber Crime , Technical Report, Ponemon

Institute, 2014 . 
[2] Y. Lee , Y. Lee , Toward scalable internet traffic measurement and analysis with

hadoop, SIGCOMM Comput. Commun. Rev. 43 (1) (2012) 5–13 . 
[3] Global Internet Phenomena Spotlight: Encrypted Internet Traffic , Technical Re-

port, Sandvine, 2015 . 

[4] J.M. Butler , Need for Speed: Streamlining Response and Reaction to Attacks,
Technical Report, SANS Institute, 2015 . 

[5] A . Dainotti , A . Pescape , K. Claffy , Issues and future directions in traffic classifi-
cation, Netw. IEEE 26 (1) (2012) 35–40 . 

[6] K. Anagnostakis , S. Ioannidis , S. Miltchev , M. Greenwald , J. Smith , J. Ioanni-
dis , Efficient packet monitoring for network management, in: Network Opera-

tions and Management Symposium, 2002. NOMS 2002. 2002 IEEE/IFIP, 2002,

pp. 423–436 . 
[7] M. Fomenkov , K. Keys , D. Moore , K. Claffy , Longitudinal Study of Internet Traf-

fic in 1998-2003, in: Proceedings of the Winter International Synposium on
Information and Communication Technologies, in: WISICT ’04, Trinity College

Dublin, 2004, pp. 1–6 . 
[8] J. Charzinski , HTTP/TCP connection and flow characteristics, Performan. Eval.

42 (2–3) (20 0 0) 149–162 . 

[9] N. Brownlee , One-way traffic monitoring with iatmon, in: Proceedings of the
13th International Conference on Passive and Active Measurement, in: PAM’12,

Springer-Verlag, Berlin, Heidelberg, 2012, pp. 179–188 . 
[10] H. Wu , M. Zhou , J. Gong , Investigation on the IP flow Inter-Arrival Time

in large-scale network, in: Wireless Communications, Networking and Mo-
bile Computing, 2007. WiCom 2007. International Conference on, 2007,

pp. 1925–1928 . 

[11] K. Papagiannaki , N. Taft , S. Bhattacharyya , P. Thiran , K. Salamatian , C. Diot , A
pragmatic definition of elephants in internet backbone traffic, in: Proceedings

of the 2Nd ACM SIGCOMM Workshop on Internet Measurment, in: IMW ’02,
ACM, New York, NY, USA, 2002, pp. 175–176 . 

[12] S. McCreary , K. Claffy , Trends in wide area IP traffic patterns, Technical Report,
CAIDA, 20 0 0 . 

[13] K. Cho , K. Mitsuya , A. Kato , Traffic data repository at the wide project, in: Pro-
ceedings of the Annual Conference on USENIX Annual Technical Conference,

in: ATEC ’00, USENIX Association, Berkeley, CA, USA, 20 0 0 . 

[14] A. Kato , J. Murai , S. Katsuno , An internet traffic data repository: The architec-
ture and the design policy, in: INET’99, 2012 . 

[15] P. Barford , D. Plonka , Characteristics of network traffic flow anomalies, in: Pro-
ceedings of the 1st ACM SIGCOMM Workshop on Internet Measurement, in:

IMW ’01, ACM, New York, NY, USA, 2001, pp. 69–73 . 
ity footprints in IP traffic, Computer Networks (2016), 

http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0015
http://dx.doi.org/10.1016/j.comnet.2016.03.012


F. Iglesias, T. Zseby / Computer Networks 0 0 0 (2016) 1–12 11 

ARTICLE IN PRESS 

JID: COMPNW [m5G; April 9, 2016;13:9 ] 

 

 

 

 

 

 

 

 

 

 

 

[  

[  

 

[  

[  

[  

 

[  

 

 

 

 

[  

 

[  

 

[  

 

[  

[  

 

[  

[
[

[

[  

[  

 

 

[  
[16] M. Lee , T. Shon , K. Cho , M. Chung , J. Seo , J. Moon , An approach for clas-
sifying internet worms based on temporal behaviors and packet flows, in:

D.-S. Huang, L. Heutte, M. Loog (Eds.), Advanced Intelligent Computing The-
ories and Applications. With Aspects of Theoretical and Methodological Issues,

volume 4681 of Lecture Notes in Computer Science, Springer Berlin Heidelberg,
2007, pp. 646–655 . 

[17] V. Bandara , A. Pezeshki , P. Anura , Modeling spatial and temporal behavior of
Internet traffic anomalies, in: IEEE 35th Conference on Local Computer Net-

works (LCN), 2010, pp. 384–391 . 

[18] F.I. Vazquez , T. Zseby , Modelling IP darkspace traffic by means of cluster-
ing techniques, in: IEEE Conference on Communications and Network Security

(CNS), 2014 . San Francisco, USA 
[19] K. Xu , Z.-L. Zhang , S. Bhattacharyya , Profiling internet backbone traffic: Behav-

ior models and applications, SIGCOMM Comput. Commun. Rev. 35 (4) (2005)
169–180 . 

20] A. Lakhina , M. Crovella , C. Diot , Mining anomalies using traffic feature distri-

butions, SIGCOMM Comput. Commun. Rev. 35 (4) (2005) 217–228 . 
[21] CAIDA, A day in the life of the internet (DITL), Last Modified: Wed Jul-6-2011. 

22] RFC 7011 - Specification of the IP Flow Information Export (IPFIX) Protocol for
the Exchange of Flow Information , Technical Report, Internet Engineering Task

Force (IETF), 2013 . 
23] RFC 5103 - Bidirectional Flow Export Using IP Flow Information Export (IPFIX) ,

Technical Report, Internet Engineering Task Force (IETF), 2008 . 

24] T.A. Lab, ANT censuses of the internet address space, Last Consulted: Aug-2015.
25] L. Quan , J. Heidemann , Y. Pradkin , Detecting Internet Outages with Precise Ac-

tive Probing (extended), Technical Report, USC/Information Sciences Institute,
2012 . ISI-TR-2012-678b 

26] H.-J. Mucha , H.-G. Bartel , J. Dolata , Effects of data transformation on
cluster analysis of archaeometric data, in: C. Preisach, H. Burkhardt,

L. Schmidt-Thieme, R. Decker (Eds.), Data Analysis, Machine Learning and Ap-

plications, Studies in Classification, Data Analysis, and Knowledge Organiza-
tion, Springer Berlin Heidelberg, 2008, pp. 6 81–6 88 . 
Please cite this article as: F. Iglesias, T. Zseby, Time-activ

http://dx.doi.org/10.1016/j.comnet.2016.03.012 
[27] M. Halkidi , Y. Batistakis , M. Vazirgiannis , On clustering validation techniques,
J. Intell. Inf. Syst. 17 (2-3) (2001) 107–145 . 

28] O. Arbelaitz , I. Gurrutxaga , J. Muguerza , J.M. Prez , I. Perona , An extensive com-
parative study of cluster validity indices, Pattern Recog. 46 (1) (2013) 243–256 .

29] Y. Jung , H. Park , D.-Z. Du , B. Drake , A decision criterion for the optimal num-
ber of clusters in hierarchical clustering, J. Global Optimization 25 (1) (2003)

91–111 . 
30] R. Krishnapuram , J. Kim , A note on the Gustafson-Kessel and adaptive fuzzy

clustering algorithms, Fuzzy Syst. IEEE Trans. 7 (4) (1999) 453–461 . 

[31] F. Klawonn , Fuzzy clustering: insights and a new approach, Mathw. Soft Com-
put. 11 (2-3) (2004) 125–142 . 

32] R.N. Dave , R. Krishnapuram , Robust clustering methods: a unified view, Trans.
Fuzzy Syst. 5 (2) (1997) 270–293 . 

33] R. Babuka , P. van der Veen , U. Kaymak , Improved covariance estimation for
Gustafson-Kessel clustering, in: Fuzzy Systems, 2002. FUZZ-IEEE’02. Proceed-

ings of the 2002 IEEE International Conference on, 2, 2002, pp. 1081–1085 . 

34] H. Liu , S. Shah , W. Jiang , On-line outlier detection and data cleaning, Comput.
Chem. Eng. 28 (9) (2004) 1635–1647 . 

35] TShark, ( https://www.wireshark.org/docs/man-pages/tshark.html ). 
36] Python, ( https://www.python.org/ ). 

[37] Perl, ( https://www.perl.org/ ). 
38] MATLAB, ( https://www.mathworks.de/products/matlab/ ). 

39] ERT Threat Alert – Tsunami SYN Flood Attack , Technical Report, Radware, 2014 .

40] H. Peng , F. Long , C. Ding , Feature selection based on mutual information cri-
teria of max-dependency, max-relevance, and min-redundancy, Pattern Anal.

Mach. Intell. IEEE Trans. 27 (8) (2005) 1226–1238 . 
[41] M. Sokolova , G. Lapalme , A systematic analysis of performance measures for

classification tasks, Inf. Process. Manage. 45 (4) (2009) 427–437 . 
42] T. Cover , P. Hart , Nearest neighbor pattern classification, Inf. Theory, IEEE Trans.

13 (1) (1967) 21–27 . 
ity footprints in IP traffic, Computer Networks (2016), 

http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0032
https://www.wireshark.org/docs/man-pages/tshark.html
https://www.python.org/
https://www.perl.org/
https://www.mathworks.de/products/matlab/
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30076-7/sbref0036
http://dx.doi.org/10.1016/j.comnet.2016.03.012


12 F. Iglesias, T. Zseby / Computer Networks 0 0 0 (2016) 1–12 

ARTICLE IN PRESS 

JID: COMPNW [m5G; April 9, 2016;13:9 ] 

0. He received the Ph.D. degree in technical sciences in 2012 from TU Wien, where he 

rked on fundamental research and project development for diverse Spanish and Austrian 
 automation. His research interests include machine learning, data analysis and network 

the Faculty of Electrical Engineering and Information Technology at TU Wien. She received 

. (Dr.-Ing.) from Technical University Berlin, Germany. Before joining TU Wien she led the 
fer Institute for Open Communication Systems (FOKUS) in Berlin and worked as visiting 
Félix Iglesias Vázquez was born in Madrid, Spain, in 198

currently holds a University Assistant position. He has wo
firms, and lectures in the fields of electronics, physics and

security. 

Tanja Zseby is a professor of communication networks in 

her Dipl.-Ing. degree in electrical engineering and her Ph.D
Competence Center for Network Research at the Fraunho

scientist at the University of California, San Diego. 
Please cite this article as: F. Iglesias, T. Zseby, Time-activity footprints in IP traffic, Computer Networks (2016), 

http://dx.doi.org/10.1016/j.comnet.2016.03.012 

http://dx.doi.org/10.1016/j.comnet.2016.03.012

	Time-activity footprints in IP traffic
	1 Introduction
	2 Related work
	3 Data and features
	3.1 Data preprocessing
	3.2 Time-activity vector

	4 MAWI dataset overview
	4.1 Data and packet rates
	4.2 Pre-analysis of flows

	5 Knowledge extraction methodology
	6 Detection of misconfiguration in captures
	7 Analysis times
	8 IP flow footprints
	8.1 TCP patterns
	8.2 ICMP patterns
	8.3 UDP patterns
	8.4 Other protocols or multi-protocol flows

	9 Minor clusters and outliers
	10 Most relevant features
	11 Conclusion
	 Acknowledgements
	 References


