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This paper presents a novel technique of finding a convex combination of outputs of anomaly detectors 

maximizing the accuracy in τ -quantile of most anomalous samples. Such an approach better reflects the 

needs in the security domain in which subsequent analysis of alarms is costly and can be done only 

on a small number of alarms. An extensive experimental evaluation and comparison to prior art on real 

network data using sets of anomaly detectors of two existing intrusion detection systems shows that the 

proposed method not only outperforms prior art, it is also more robust to noise in training data labels, 

which is another important feature for deployment in practice. 
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. Introduction 

Increasing numbers of attacks against computing infrastructure

nd the critical importance of the infrastructure for enterprises

rives the need to deploy progressively more sophisticated defense

olutions to protect network assets. An essential component of the

efense are Intrusion Detection Systems (IDS) [1] searching for evi-

ence of ongoing malicious activities (network attacks) in network

raffic crossing the defense perimeter. 

Many intrusion detection systems are implemented as ensem-

les of relatively simple, yet heterogeneous detectors [2,3] , where

ome of them can be specialized to particular types of intrusions,

hereas others can be general anomaly detectors capable of de-

ecting previously unseen attacks at the expense of higher false

larm rates. Such a setup has multiple advantages, including faster

rocessing of the data stream, lower complexity of the detectors,

nd simpler inclusion of domain knowledge into the system. The

ain drawback is that combining outputs of individual detectors

s a non-trivial problem. Although a vast prior art on the problem

xists [4–6] , we believe that peculiarities of the security domain,

amely a highly imbalanced ratio of non-alarm and alarm samples

n the data, lack of accurately labeled datasets, and the need of

xtremely low false positive rates, call for a tailored solution. 

The rationale behind the above specifics is that from the user

erspective each raised alarm needs to be thoroughly investigated,

hich is expensive and can be done only for a small number of

hem. Hence reporting high numbers of false positives renders any
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ntrusion detection system useless (recall that most of the samples

re legitimate). Note that using a supervised method to learn the

ombination may bring the expense of lower generalization, but

ccording to our experience completely unsupervised approaches

arely have false positive rate low enough to be usable in prac-

ice. Moreover, anomaly detectors and their features are usually se-

ected based on the experience of the designer, which is a kind of

roxy for labels and surely not guaranteed to be complete. 

Obtaining labeled data in security domains and in network in-

rusion detection especially can be difficult, time consuming, and

xpensive. Besides, labeled data frequently contains errors in labels

f different sorts, for example some alerts might be missed and la-

eled as legitimate samples, or even worse, all samples of alerts of

ertain types might be missed and labeled as legitimate. 

The above concerns motivated the main goals and contributions

f this paper, which are a method of finding a convex combina-

ion of outputs of a fixed set of anomaly detectors maximizing the

umber of true alarms in τ -fraction of most anomalous connec-

ions (samples) 1 and an experimental study of the effect of dif-

erent types of label noise in the training data on the accuracy of

ombinations obtained by different methods to better understand

heir advantages and drawbacks. Conducted experiments revealed

hat the proposed method is not only better than the state of the

rt, but also more robust with respect to various kinds of noise in

abels we can expect in intrusion detection domains. 

If the proposed method requires labeled data, one can ask why

ot use them to train a classifier and sidestep the use of anomaly
1 Since the experimental evaluation is performed with network intrusion detec- 

ion systems, the terms sample and connection are used interchangeably. 

omaly detectors for security domain, Computer Networks (2016), 
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2 The chosen convex surrogate does not have a significant impact on the solution 

and can be replaced by the reader’s favorite choice, e.g. logistic, hinge, truncated 

square, etc. 
detectors? The most important reason to favor anomaly detec-

tors is that network traffic discussed in this paper is very non-

stationary and anomaly detectors are good at coping with this as-

pect, as they can constantly update their models (see [7–9] for a

review). 

This paper is organized as follows: The next section for-

mally defines the problem and presents the proposed solution.

Section 3 reviews related work and algorithms that we evaluate

in the experimental section. The experimental Section 4 compares

the proposed solution with existing methods using sets of anomaly

detectors from two different network intrusion detection systems

operating on two different data sources. 

2. Proposed method 

Prior art in combining detectors and anomaly detectors in par-

ticular is vast [4,10] , nevertheless we feel that security domains

requires a tailored solution because of its prominent requirement

of extremely low false positive rate. We assume that the network

operator observers connections (samples) from an unknown distri-

bution P o = πP a + (1 − π) P b with P a / P b being distributions of ma-

licious/background samples and π ∈ [0, 1]. The network opera-

tor uses set of m anomaly detectors on samples H m 

= { h k : X �→
[0 , 1] } m 

k =1 
(w.l.o.g. it is assumed that zero means the sample is le-

gitimate and one means the sample is malicious) and wishes to

have a convex combination of anomaly detectors α = (α1 , . . . , αm 

)

that would maximize the number of alarms in top τ quantile of

the distribution of the combined anomaly scores. For purposes of

this paper it is safe to assume that each connection (sample) is

described by m -dimensional vector (an output of m anomaly de-

tectors), which implies that distributions P o , P a , and P b are defined

on the m -dimensional Euclidean space.The requirements on detec-

tors having their image in the interval [0, 1] and learning a convex

combination instead of a linear one are to improve interpretability

of the results as discussed in [11] , but can be dropped. The same

work also presents a general approach to scale the output of any

anomaly detector to the interval [0, 1] reviewed in Appendix A . 

With respect to the above, networks operator’s goal can be

written as 

arg min 

α∈ R m 
R (H α) = E x ∼P b 

[
1 (αT h (x ) ≥ q α,τ ) 

]
︸ ︷︷ ︸ 

R fp (H α ) 

+ E x ∼P a 

[
1 (αT h (x ) < q α,τ ) 

]
︸ ︷︷ ︸ 

R fn (H α ) 

, (1)

subject to 

H α(x ) = 

m ∑ 

k =1 

αk h k (x ) = αT h (x ) , 

1 

� α = 1 , 

αi ≥ 0 , ∀ i ∈ { 1 , . . . , m } , 

(2)

where the first term in (1) is the false alarm rate, the second term

is the false negative rate, and finally q α, τ is a τ -quantile of ob-

served distribution of ensemble’s output { αT h ( x )| x ∈ P o }. The min-

imized term (1) captures the accuracy of a particular convex com-

bination in top τ -quantile of its distribution, which is the goal. 

In theory it would be sufficient if (1) minimizes either only the

false positive rate R fp or only the false negative rate R fn , because

each of them together with constraints (2) implies minimization of

the other. But including both terms increases the robustness with

respect to noise on labels, since the error and its gradient are es-

timated from larger number of samples implying their better esti-

mates. This is demonstrated in Appendix B , where the combination

of anomaly detectors was found by optimizing either only false
Please cite this article as: M. Grill, T. Pevný, Learning combination of an
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ositive rate or only false negative rate under constraints (2) . The

xperiments have confirmed that optimizing the proposed (1) is

ndeed more robust to error in labels, which are almost inevitable

n security domains. In the rest of this section we show, how to

nd a good solution in practice using adaptation of the method of

oyd et al. [12] . 

First, the true loss function (1) cannot be used in practice, since

he true probability distributions P a and P b are not known. There-

ore the expectations are replaced by their empirical estimates cal-

ulated from some labeled data used for learning the weight vector

. Below the S = S a ∪ S b denotes the set of available samples with

 b being the set of background (legitimate) samples and S a the set

f malicious samples. The empirical estimate of (1) is therefore 

ˆ 
 (H α) = 

1 

|S b | 
∑ 

x ∈S b 
1 
[
αT h (x ) ≥ ˆ q α,τ

]
+ 

1 

|S a | 
∑ 

x ∈S a 
1 
[
αT h (x ) < 

ˆ q α,τ

]
, 

(3)

here ˆ q α,τ is an empirical estimate of the true quantile q α, τ de-

ned as 

ˆ 
 α,τ = arg max 

ω 

1 

|S| 
∑ 

x ∈S 

[
1 (αT h (x ) ≤ ω) 

]
≤ τ. (4)

ince the empirical loss function (3) is neither convex nor smooth,

nding the optimal solution is an NP-complete problem. A usual

pproach is to replace indicator function 1 with a convex surro-

ate, for example an exponential used in this work. 2 This substitu-

ion leads to the following optimization problem 

arg min 

α

1 

|S b | 
∑ 

x ∈S b 
exp 

(
αT h (x ) − ˆ q α,τ

)

+ 

1 

|S a | 
∑ 

x ∈S a 
exp 

(
ˆ q α,τ − αT h (x ) 

)
(5)

ubject to 1 

� α = 1 , 

αi ≥ 0 , ∀ i ∈ { 1 , . . . , l} , 
ˆ q α,τ is a τ -quantile defined in (4) . 

here the optimized term (further denoted as ˆ R exp (H α) ) is an up-

er bound of the empirical loss function 

ˆ R (H α) defined in Eq. (3) . 

Nevertheless the last problem is still hard to solve, as it is

ot convex. Boyd et al. [12] showed how to find a good solu-

ion in polynomial time using series of convex problems. How-

ver his algorithm does not guarantee finding the global mini-

um, and the computational complexity prevents it from being

sed on problems with millions of samples. We therefore pro-

ose to solve (5) by a simple gradient algorithm summarized in

lgorithm 1 , which albeit not reaching the global minimum per-

orms well, according to our experiments. In each step the current

olution αk is updated by subtracting a small multiple of the gradi-

nt of (5) , which is decreasing in each step to ensure convergence.

he αk is then truncated to satisfy the constraints, and finally

he estimate of the quantile ˆ q α,τ is updated. The algorithm may

nd sub-optimal solutions but the experiments in Section 4 show

hat the solutions found are in most of the cases better than the

nes of the state-of-the-art methods. Additionally, detailed discus-

ion about the differences between the solution found by Boyd

t al. and the one found by the proposed algorithm can be found

n Appendix C . 

The combination of detectors found by the above algorithm is

ptimized with respect to the known malware, by which we under-

tand the malware whose samples are present in the training set
omaly detectors for security domain, Computer Networks (2016), 
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Algorithm 1: The algorithm used to solve the optimization 

problem (5) . 

Data : Set of labeled samples x 1 , . . . , x l ∈ S , 

set of anomaly detectors H m 

and δmin . 

Result : weights α ∈ R 

m 

Start with equal weights α1 = 1 /m ; 

repeat 

Set q H α (τ ) to be τ -quantile of the distribution of H αk 
; 

Update the step size as γk = 

1 √ 

k 
; 

αk+1 = αk − γk 
∂ 
∂α

ˆ R exp (H αk 
) ; 

until | R (H αk 
) − R (H αk−1 

) | < δmin ; 
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nd most of them are correctly labeled. We believe that it is very

ard to draw any conclusions about the accuracy of the algorithm

n malware that has never been observed. If the unknown mal-

are is similar to the known one (e.g. using similar components

r having similar behavior), then it is likely that the above opti-

ization will help. In order to get insight to this phenomenon on

eal data, the experimental section compares accuracy of several

lgorithms on training sets with errors on labels of different types.

e believe this study will help to select the right algorithms for

ractice. 

. Related work 

There are two classes of prior art relevant to this work. The first

re unsupervised methods combining outputs of anomaly detec-

ion algorithms. The second are supervised methods maximizing

ccuracy or some other type of loss in top τ -quantile of outputs

sing labeled samples. Both are briefly reviewed below (sorted

rom the least to the most important). 

.1. Unsupervised methods 

The first explicit use of ensembles in anomaly detection [6] em-

loyed a feature bagging method to create a diverse set of anomaly

etectors. Their output was fused either by summing anomaly

cores of individual anomaly detectors for a given sample, which is

quivalent to taking the mean , or by picking the k most anomalous

amples from each detector ( breadth-first strategy). In [3] authors

ave compared several static combination functions, namely mean,

edian, minimum, maximum , and mean of maximum and mean in

etwork intrusion detection. According to their results, mean of

aximum and mean [13] was the most effective. 

A necessary condition to combine heterogeneous anomaly de-

ectors is similar range of their output. This problem is tackled

n [11] by using estimated cumulative distribution functions of

etectors’ output. The authors show that their approach outper-

orms other normalization strategies including HeDES [14] , maxi-

um rank [6] or sigmoid mean [15] . The experimental part of this

ork uses an adaptation of [11] described in Appendix A . 

A hybrid solution proposed in [14] relies on artificial samples

enerated uniformly at random. First, several classifiers are trained

o separate the artificial samples from the provided true ones, and

hen weights of classifiers in the combination function are deter-

ined according to their accuracy on artificial samples. 

.2. Supervised methods 

Algorithms learning the combination of classifier outputs using

abeled data do not differ much from general algorithms for su-

ervised classification. But as already mentioned, for security ap-

lications the algorithms should be designed to handle large dis-
Please cite this article as: M. Grill, T. Pevný, Learning combination of an
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roportions between numbers of samples in positive and negative

lasses, and achieve extremely low false positive rates. Such algo-

ithms are also needed in information retrieval (although the re-

uirement on low positive rates is not as strict), where most of

he prior art comes from. 

One class of relevant algorithms maximizes accuracy of rank-

ng in top τ -quantile, which can be viewed as prioritizing the ma-

icious samples over the legitimate ones. These algorithms (opti-

izing for example Prec@k [16] or Normalized Discounted Cumu-

ative Gain [17] ) frequently lead to non-convex optimization prob-

ems that are difficult to solve efficiently or lead to sub-optimal so-

utions [18] like ours. A notable exception is SVM- perf [19] method

ptimizing a convex upper bound on the number of errors among

he top k items, but still the training is computationally intensive

ue to a large number of constraints of the quadratic program. 

Another class of relevant algorithms like RankBoost [20] max-

mize area under ROC curve, which is equivalent to optimizing

anking. Since only top τ -quantile matters, Infinite Push [21] and

op Push [22] concentrate on the higher-ranked negatives and try

o push them down. 

From the above list of supervised methods RankBoost, SVM- perf

nd Top Push are compared to our method in the experimental

ection. 

. Experimental evaluation 

The proposed combination technique was evaluated and com-

ared to prior art using two existing network intrusion detec-

ion systems, both implemented as an ensemble of anomaly detec-

ors with mean being the default combination function. The first

ne, described in Section 4.2 , uses NetFlow [23] records, while the

econd one, described in Section 4.3 , uses logs from HTTP proxy

ervers. 

To compare algorithms, we use measures from information re-

rieval, namely precision and recall . Assuming that malware sam-

les have positive labels, precision is the fraction of the number

f malware samples classified as positive and the total number of

amples classified as positives, and recall is the fraction of mal-

are samples classified as positives and the total number of mal-

are samples. To highlight that the detection threshold is set to 1%

f the most anomalous samples, we abbreviate both measures as

rec@1% and Rec@1% . The use of precision and recall is preferred

ver the popular area under the Receiver Operating Characteris-

ic curve (AUC ROC) [24] , because the latter compares the algo-

ithms in areas which are outside the region of the interest (top

% anomalies). Moreover, precision and recall are better suited for

roblems with highly imbalanced classes [25] . 

The use of machine learning methods in security is frequently

indered by the lack of fully labeled dataset. While samples la-

eled as malicious are most of the time connected to some ma-

icious behavior, it can frequently happen that some background

amples are actually malicious, but the labelling oracle (analyst)

as failed to recognize them. Experiments described below aim to

imulate three types of noise in labels (and of course the noise-less

ase denoted as Non.) to investigate their effect on the learning of

he combination function. The types of considered label noise are: 

• The training data contains samples of all types of malicious ac-

tivities, but 50% of the samples of each activity type were not

recognized as malicious by the oracle (human), and therefore

they are labeled as a background. This case is denoted below

as anomaly label noise ( ALN ). 

• Samples of some (50%) types of malicious activities are com-

pletely missing in the training data, but they are present in the

testing data. Samples of remaining types of malicious activities

are present in the training set, but as in the previous case the
omaly detectors for security domain, Computer Networks (2016), 
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Fig. 1. PR curve comparison of algorithms with different types of label noise (de- 

scribed in Section 4 ) using the NetFlow anomaly detectors. Curves represent pre- 

cision and recall values for all possible thresholds. The threshold corresponding to 

the 1% quantile is marked on each line with a filled circle. 
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labeling oracle did not recognize 50% of such samples. This case

is denoted as missing anomaly types ( MAT ). 

• Samples of all types of malicious activities are present in the

training data, but the oracle did not know 50% of types, and la-

beled them as background. On samples from the remaining 50%

of types of malicious activities present in the training set the

oracle again made a mistake and labeled them as background.

This type of noise is further denoted as anomaly label noise

with type mislabeling ( MLT ). 

The testing set was always noiseless to allow for fair compari-

son and evaluate the effects. 

Datasets for each intrusion detection engine are described in

corresponding subsection. The available data were split so that 50%

of samples were used to learn the combination of anomaly detec-

tors and the rest for testing. This split has been repeated five times

to account for the variance of the estimate. 

4.1. Compared algorithms 

The experimental comparison involves four unsupervised com-

bination rules ( mean, max, rank BFS [6] , mean rank [6] ), and four

combination rules trained by supervised methods (SVM- perf [19] ,

TopPush [22] , RankBoost [20] , and the proposed method). SVM- perf

used L1-slack algorithm with constraint cache setting, so that 1%

of positive examples was used as value of k for Prec@k . Regular-

ization constant in TopPush was set to one. The proposed method

( Acc@Top ) was set to optimize the accuracy in top 1% of most

anomalous samples, which means τ = 0 . 99 . 

Algorithms chosen for comparison enabled comparing unsu-

pervised methods among themselves (repeating the experiment

in [3] ), relevant supervised methods among themselves, and also

the gain one can expect when using supervised methods even

though the labels are not perfect. 

4.2. Evaluation on NetFlow anomaly detection 

The NetFlow anomaly detection engine [26,27] processes Net-

Flow [23] records exported by routers or other network traffic

shaping devices. The anomaly detection engine identifies anoma-

lous traffic using an ensemble of anomaly detection algorithms.

Some of them are based on Principal component analysis [28–30] ,

others detect abrupt changes in the behavior [31] or even use fixed

rules [32] . Furthermore, there are detectors designed to detect spe-

cific type of unwanted behavior like network scans [33] or mal-

ware with domain generating algorithm [34] . In total the NetFlow

anomaly detection engine uses 16 anomaly detectors. Thus the goal

is to find a linear combination of these 16 anomaly detectors max-

imizing the accuracy in the top 1% quantile. 

The evaluation used several datasets from traffic captured on

the network of Czech Technical University (CTU) in Prague. The

datasets and labels especially were created by three different ap-

proaches: manual labeling, infecting virtual machines, and per-

forming real attacks against our computers within the network. In

manual labeling, experienced network operator was able to suc-

cessfully identify malicious activities that generated almost 10% of

the total number of the connections (samples). In datasets with

manually infected virtual machines 3 all their connections were la-

beled as malicious, whereas the rest was labeled as background.

In the final dataset a network specialist run several attacks against

one computer in the network. The attack vector consisted of a hor-

izontal scan to discover open SSH ports, followed by SSH brute-

force attack to break the password, and finished by SSH login and

data download simulating data theft. 
3 Neeris, FastFlux and RBot were used to infect the machines [27] . 

 

g  

s  
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Fig. 1 shows precision-recall curves for eight compared algo-

ithms. The graphs demonstrate that the combination found by the

roposed method ( Acc@Top ) most of the time dominates all other

ethods and fixed combination rules. Notable exceptions are cases

hen some types of malicious activities are completely missing in

he training data (MAT) or they are incorrectly labeled (MLT). In

hese cases unsupervised mean rank combination is better on the

ower recall part of the curve. This behavior suggests that differ-

nt anomaly detectors detect different types of malicious activities

nd the supervised combination has slightly overfitted. In practi-

al applications combining supervised and unsupervised combina-

ion rules should be used to ensure good accuracy on known ma-

icious activities and simultaneously some generalization on un-

nown alerts, where the precision will be substantially smaller.

lso notice that the proposed algorithm is the most robust with

espect to noise from all supervised ones. SVM- perf is good in the

oiseless case, but poor when noise of any kind is present. The

opPush is slightly more robust, but still it performed poorly with

oise of MAT and MLT types, both of which are also the hardest

ases. Unsupervised combination function mean rank performed

he best among unsupervised combination functions and it was

urprisingly close to supervised ones at low recall. 

Precision and recall in top 1% quantile are shown in Table 1 . It

hows that the presented algorithm has the best or close to the

est precision if we compare the supervised combination rules. As

iscussed above, the unsupervised mean rank is better in the pres-

nce of severe noise. The low recall of all algorithms except unsu-

ervised maximum is caused by the high volume of malicious ac-

ivities which have amounted up to 10% of the total volume of the

raffic. This means that they cannot all fit into the top 1% quantile.

At the first sight RankBoost achieves the best recall of all al-

orithms, but a closer inspection reveals that it returns 20% of

amples as those that belong in top 1%. This highly undesired
omaly detectors for security domain, Computer Networks (2016), 
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Table 1 

Comparison of various combination techniques as applied to the NetFlow anomaly detectors described in 

Section 4.2 . Each column represents precision or recall in percent for various types of noise defined at 

the beginning of Section 4 . The best-scoring algorithm is boldfaced. Small numbers in braces below rates 

show the fraction of samples returned in top 1% quantile of anomaly scores. Technically this value should 

be equal to one, but if many samples have the same value, the algorithm returns all of them, which can 

results to values significantly higher than 1.0%. 

Prec@1% Rec@1% 

Method Non. ALN MAT MLT Non. ALN MAT MLT 

Mean 0.9 0.9 1.4 0.9 0.1 0.1 0.1 0.1 

(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) 

Maximum 19.8 19.8 25.4 19.8 71.8 71.8 69.6 71.8 

(48.8%) (48.7%) (49.8%) (48.8%) (48.8%) (48.7%) (49.8%) (48.8%) 

Mean rank 88.3 88.5 92.3 88.8 7.4 7.5 5.7 7.8 

(1.4%) (1.5%) (1.4%) (1.5%) (1.4%) (1.5%) (1.4%) (1.5%) 

Rank BFS 15.0 15.0 18.5 15.0 1.0 1.0 1.0 1.0 

(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) 

RankBoost 53.4 53.5 56.6 63.7 65.9 65.9 34.8 29.2 

(16.6%) (16.6%) (9.8%) (7.3%) (16.6%) (16.6%) (9.8%) (7.3%) 

TopPush 99.7 84.1 43.5 24.2 9.5 6.9 2.9 1.9 

(1.3%) (1.3%) (1.4%) (1.7%) (1.3%) (1.3%) (1.4%) (1.7%) 

SVM- perf 76.2 0.1 0.4 0.3 6.7 0.0 0.0 0.0 

(1.2%) (1.0%) (1.0%) (1.0%) (1.2%) (1.0%) (1.0%) (1.0%) 

Acc@Top 98.3 96.7 29.1 76.9 9.7 6.8 1.2 5.2 

(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) 
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Fig. 2. PR curve comparison of various algorithms with various label noise using 

the HTTP anomaly detectors. Again, threshold corresponding to the 1% quantile is 

marked on each line with the dot. 
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ehavior is caused by assigning the same score to multiple sam-

les. The same phenomenon can be observed in the case of Maxi-

um aggregation function. 

.3. Evaluation on HTTP network anomaly detection 

The Cisco Cognitive Threat Analytics (CTA) [35] engine ana-

yzes HTTP proxy logs (typically produced by proxy servers located

n a network perimeter) to detect infected computers within the

etwork. Although the logs do not contain all host traffic (only

TTP(S) requests), the information is richer than the NetFlow as

ach entry contains the following information extracted from HTTP

eaders: time of the request, source IP address, destination IP ad-

ress, url, MIME type, downloaded and uploaded bytes, User-Agent

dentifier, etc. CTA contains more than 30 different anomaly detec-

ors detecting anomalies according to empirical estimates of (con-

itional) probabilities such as P(country), P(domain|host), P(User-

gent|second level domain), etc.), time series analyses (models of

ser activity over time, detection of sudden changes in activity,

dentification of periodical requests, etc.), and HTTP specific detec-

ors (e.g., discrepancy in HTTP User-Agent field [36] ). 

Evaluation data were collected from networks of 30 different

ompanies of various sizes and types with collection period rang-

ng from six days to two weeks. The data contains more than seven

illion HTTP connections, in which Cisco analysts identified 2 6 6 6

nfected users with 825 different families of malware. In total the

umber of HTTP connections created by the malware has reached

ore than 129 million. Malware connections usually represent less

han 2% of the network total traffic, with a notable exception of

etworks with hosts infected by ZeroAccess malware [37] . ZeroAc-

ess creates many HTTP connections that can easily reach 20% of

he volume of network traffic. The other most present malware

amilies were: Cycbot, QBot, SpyEye, BitCoinMiner, and Zbot. Mal-

are connections were identified using multiple approaches start-

ng with an analysis of the most anomalous HTTP logs as reported

y the anomaly detection engine, malware reported by the indi-

idual network administrators, matching blacklists and other pub-

ic feeds or third-party software. The rest of the logs remain unla-

eled, though we are almost certain there are malware connections

hat have been missed. 
Please cite this article as: M. Grill, T. Pevný, Learning combination of an
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As before, we show PR-curves of all evaluated detector combi-

ations and types of noise in Fig. 2 . We observe that the proposed

cc@Top method outperforms all other techniques in all cases of

tudied noise. Contrary to the above experiments with NetFlow an-

lytic engine, noise does not have significant impact on supervised

ethods. This indicates that malicious behaviors of different types

re similar in the space induced by the CTA HTTP(S) anomaly de-

ectors. This is probably caused by the fact that all labeled mali-

ious behaviors were in some sense connected to malware activity,
omaly detectors for security domain, Computer Networks (2016), 
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Table 2 

Comparison of various combination techniques as applied to the HTTP anomaly detectors described in 

Section 4.3 . The best-scoring algorithm is boldfaced. Small numbers in braces below rates show the frac- 

tion of samples returned in top 1% quantile of anomaly scores. Although this value should be equal to 

one, if many samples share the same value, the algorithm returns all of them, which can results to values 

significantly higher than 1.0%. 

Prec@1% Rec@1% 

Method Non. ALN MAT MLT Non. ALN MAT MLT 

Mean 17.9 18.4 22.0 17.1 7.6 7.8 6.2 7.3 

(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) 

Maximum 10.6 10.6 15.8 10.6 100.0 100.0 100.0 100.0 

(20.0%) (19.9%) (20.9%) (19.9%) (20.0%) (19.9%) (20.9%) (19.9%) 

Mean rank 0.6 0.5 0.9 0.5 0.2 0.2 0.2 0.2 

(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) 

Rank BFS 20.9 21.3 24.7 20.7 9.1 9.3 7.1 9.1 

(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) 

RankBoost 81.7 81.6 87.2 81.5 100.0 100.0 100.0 100.0 

(2.6%) (2.6%) (3.8%) (2.6%) (2.6%) (2.6%) (3.8%) (2.6%) 

TopPush 100.0 93.8 96.7 95.6 42.6 39.9 27.3 40.7 

(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) 

SVM- perf 2.9 0.0 0.0 0.0 1.3 0.0 0.0 0.0 

(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) 

Acc@Top 100.0 99.6 99.7 97.6 42.6 42.4 28.2 41.5 

(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

e  

o

 

s  

e  

A

 

a  

c  

v  

d  

K

h  

w  

s  

G  

T  

a  

f  

p  

m  

i  

r  

b

A

 

t  

w  

w  

t  

(  

u  

c  
for which CTA engine is designed. The curve of the Acc@Top sug-

gest that even if less or more samples than 1% are requested by

the operator, the precision will remain high in all scenarios. In con-

trast, the curve of the RankBoost method starts at high recall with

lower precision suggesting that almost all malicious samples and

around 20% legitimate were scored with the same maximal value.

Also notice that the mean rank unsupervised combination function,

dominating in the previous section, was in this experimental sce-

nario superseded by simple mean . 

Precision and recall at the top 1% are shown in Table 2 , and as

in the previous section RankBoost and maximum achieve the best

recall. The causes are the same. RankBoost and maximum have re-

turned 2.6% and 20% of samples, respectively, which is far away

from the required 1%. This is again caused by assigning the same

value to many samples. Contrary, the proposed Acc@Top meets the

1% requirement with really high precision. Its seemingly low recall

is partially caused by the fraction of malicious samples being 2% of

the total number of all samples. This means that the best achiev-

able recall while meeting the requirements on returning 1% of the

total number of sample is 50%. 

5. Conclusion 

This paper has proposed a new algorithm for finding a con-

vex combination of anomaly detectors maximizing accuracy at τ -

quantile of returned samples, which is a scenario frequently ap-

pearing in the security field. The algorithm assumes labeled data,

which are difficult to obtain and rarely perfect in security domains.

Therefore, an emphasis was put on the experimental study, involv-

ing two different types of intrusion detection systems, eight types

of combination functions, 34 different network captures contain-

ing more than 20 million of samples of behavior of different algo-

rithms under different types of noise. 

The experimental results show that the proposed method is

more accurate than prior art in finding a good combination of de-

tectors with high accuracy in returned samples. The results also

show that supervised methods can easily overfit if some type of

malicious behavior is completely missing in the training data or is

incorrectly labeled (mistake of labeling oracle). The severity of the

overfitting depends on how much different types of malicious be-

havior are similar to each other. The comparison of unsupervised
Please cite this article as: M. Grill, T. Pevný, Learning combination of an

http://dx.doi.org/10.1016/j.comnet.2016.05.021 
ombination functions did not have a clear winner, since in one

xperimental setting mean rank was the best while in the second

ne it was mean . 

The presented experimental results show that future effort s

hould be directed toward finding methods combining good prop-

rties of both supervised and unsupervised combination functions.

ppendix A. Scaling outputs of anomaly detectors 

Generally, individual anomaly detectors need not generate

nomaly scores of the same scale. This causes problems during the

ombination process, since one or more detectors could be inad-

ertently favored. Therefore, the anomaly scores of the individual

etectors are normalized using the gaussian scaling proposed by

riegel et al. [11] : 

˜ 
 (x ) = max 

{
0 , erf 

(
h (x ) − μh 

σh 

√ 

2 

)}
, (A.1)

here the ˜ h (x ) is the normalization of the anomaly score h ( x ) as-

igned to the observation x ∈ X by anomaly detector h . The used

aussian Error Function erf () is monotone and thus ranking stable.

he μh and σ h are the mean and the standard deviation of the

nomaly scores returned by the anomaly detector h . This trans-

orms the anomaly scores of individual anomaly detectors into

robability estimates, where the probability of zero represent nor-

al observation, aligned with the predictive model, whereas one

ndicates highly anomalous observation. These are therefore di-

ectly comparable and can be aggregated using a number of com-

ination techniques [11] . 

ppendix B. Optimizing only false positives or false negatives 

To demonstrate the advantage of minimizing both false posi-

ive and false negative rates in the objective function 

ˆ R exp (H α) (5) ,

e have evaluated two additional variants of the objective function

ith only the false negative part ˆ R 
f n 
exp ( Acc@Top-FN ) and false posi-

ive part ˆ R 
f p 
exp ( Acc@Top-FP ) using both NetFlow ( Table B.3 ) and CTA

 Table B.4 ) anomaly detection systems. As can be seen in Table B.3 ,

sing only one part of the criterion results in substantially de-

reased efficacy in the NetFlow scenario. Additionally, the false
omaly detectors for security domain, Computer Networks (2016), 
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Table B3 

Comparison of three variants of the proposed criterion, each used to train an ensemble for the NetFlow 

anomaly detection system. Small numbers in braces below rates show the fraction of samples returned 

in top 1% quantile of anomaly scores. Although this value should be equal to one, if many samples share 

the same value, the algorithm returns all of them, which can results to values significantly higher than 

1.0%. 

Prec@1% Rec@1% 

Method Non. ALN MAT MLT Non. ALN MAT MLT 

Acc@Top 98.3 96.7 29.1 76.9 9.7 6.8 1.2 5.2 

(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) 

Acc@Top-FP 13.4 13.4 18.1 13.4 100 100 100 100 

(100%) (100%) (100%) (100%) (100%) (100%) (100%) (100%) 

Acc@Top-FN 0.1 0.1 15.7 21.7 0.0 0.0 0.7 1.6 

(1.9%) (1.9%) (1.4%) (2.4%) (1.9%) (1.9%) (1.4%) (2.4%) 

Table B4 

Similarly to Table B.3 , the table presents a comparison of three variants of the proposed criterion used 

on the CTA anomaly detection system. 

Prec@1% Rec@1% 

Method Non. ALN MAT MLT Non. ALN MAT MLT 

Acc@Top 100 99.6 99.7 97.6 42.6 42.4 28.2 41.5 

(1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) (1.0%) 

Acc@Top-FP 98.1 1.2 52.7 0.6 41.7 11.2 19.3 25.4 

(1.0%) (11.7%) (7.8%) (26.2%) (1.0%) (11.7%) (7.8%) (26.2%) 

Acc@Top-FN 87.2 87.5 88.5 86.0 37.1 37.2 29.2 38.6 

(1.0%) (1.0%) (1.2%) (1.1%) (1.0%) (1.0%) (1.2%) (1.1%) 
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Fig. C3. Visualization of the artificial problem containing two anomaly detectors. 

The position of both anomalous and malicious samples is given by the anomaly 

score of the both A and B anomaly detectors. The solid and dashed lines represent 

decision boundaries of Acc@Top and Boyd algorithms respectively. 

f  

g  

p  

p  
ositive variant ( Acc@Top-FP ) results in all the samples having the

ame, zero value anomaly score. The results on the CTA anomaly

etection engine ( Table B.4 ) are slightly better, but still the pro-

osed Acc@Top outperforms both other variants in all label noise

cenarios. 

ppendix C. Comparison with state-of-the-art 

Although the algorithm of Boyd et al. [12] is currently consid-

red to be the state of the art for optimizing the accuracy at top,

t is not guaranteed to find the global minimum. Its biggest ad-

antage is in finding the solution by solving series of convex sub-

roblems; therefore it is bound to always find the same solution.

ut this limits the algorithm to be applicable only to small prob-

ems, since its complexity grows as of O ( n 4 ), where n is the num-

er of training samples, and the solver of the convex sub-problems

as the complexity of O ( n 3 ). In contrast, the proposed algorithm is

ssentially a stochastic descent algorithm, which has been proved

o work well on problems with large number of samples. 

In order to investigate how the solutions of both algorithms dif-

er, we have created an artificial problem, which we think well

odels the application scenario of finding a convex combination of

utputs of anomaly detectors. The problem was set to find the op-

imal combination of two anomaly detectors to optimize accuracy

t the 20% quantile. The anomaly scores of the anomaly detectors

or both, training and testing data, were generated using a set of

ormal distributions. 4 

The decision boundaries corresponding to solutions of both al-

orithms (shown in Fig. C.4 ) are very different, since Boyd et al.’s

lgorithm uses the output of one anomaly detector whereas ours

ses both detectors. Corresponding PR-curves, shown in Fig. C.3 ,
4 The legitimate samples were drawn from uniform distribution (100 sam- 

les) to simulate noise of the anomaly detectors and N ( [ 0 . 4 , 0 . 4 ] , [ 0 . 01 , 0 . 01 ] I 2 ) 

300 samples), where the I 2 denotes the 2 × 2 identity matrix. The mali- 

ious samples were drawn from N ( [ 0 . 6 , 0 . 7 ] , [0 . 03 , 0 . 003] I 2 ) (100 samples) and 

 ( [ 0 . 7 , 0 . 4 ] , [0 . 003 , 0 . 03] I 2 ) (100 samples). 

d  

d  

t  

s  

w  

B

Please cite this article as: M. Grill, T. Pevný, Learning combination of an
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urther reveal that on the training set (solid lines) Boyd et al.’s al-

orithm ( Boyd ) is better at the point of the interest, but the pro-

osed method ( Acc@Top ) is better on a wider range of operating

oints, which suggests that it would behave better on unknown

ata. This is experimentally confirmed by PR-curves on the testing

ata (dashed lines), where the proposed algorithm dominates. Al-

hough, theoretically, this can be due to overfitting which can be

olved by training on a larger training set, if available, this solution

ould be difficult in practice due to the prohibitive complexity of

oyd et al.’s algorithm. 
omaly detectors for security domain, Computer Networks (2016), 
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Fig. C4. PR-curves of the Acc@Top and the optimum found by the Boyd algorithm 

using the training (solid line) and testing (dashed line) data generated from the 

artificial problem. Threshold corresponding to the 20% quantile is marked on each 

curve. 
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