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a b s t r a c t 

In the last decade, many systems for the extraction of operational statistics from computer network inter- 

connects have been designed and implemented. Those systems generate huge amounts of data of various

formats and in various granularities, from packet level to statistics about whole flows. In addition, the

complexity of Internet services has increased drastically with the introduction of cloud infrastructures,

Content Delivery Networks (CDNs) and mobile Internet usage, and complexity will continue to increase in

the future with the rise of Machine-to-Machine communication and ubiquitous wearable devices. There- 

fore, current and future network monitoring frameworks cannot rely only on information gathered at a

single network interconnect, but must consolidate information from various vantage points distributed

across the network.

In this paper, we present DBStream, a holistic approach to large-scale network monitoring and analysis

applications. After a precise system introduction, we show how its Continuous Execution Language (CEL)

can be used to automate several data processing and analysis tasks typical for monitoring operational

ISP networks. We discuss the performance of DBStream as compared to MapReduce processing engines

and show how intelligent job scheduling can increase its performance even further. Furthermore, we

show the versatility of DBStream by explaining how it has been integrated to import and process data

from two passive network monitoring systems, namely METAWIN and Tstat. Finally, multiple examples

of network monitoring applications are given, ranging from simple statistical analysis to more complex

traffic classification tasks applying machine learning techniques using the Weka toolkit.

© 2016 Elsevier B.V. All rights reserved.
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. Introduction

Since the introduction of computer networks in general and the

nternet more specifically, networked computer systems have be-

ome more and more important to modern society. Todays Internet

s a highly complex, distributed system, spanning the globe and

eaching even into outer space to the International Space Station.

uman communication relies to a large extent on emails, (mobile)

hone calls and social media. It has become normal to buy elec-
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ronics, clothes or even cars, book flights and make bank transfers

ver the Internet. The financial market exchanges large amounts

f stocks via interconnected high frequency trading systems. This

hows that computer networks have become a corner stone of to-

ay’s modern society. 

Network operators are responsible for the proper functioning

f those highly complex networks. They face the challenge of de-

ecting and reacting very quickly to network anomalies, security

reaches and, at the same time, plan ahead to adopt their net-

orks to novel usage patterns. Network monitoring and analysis

ystems play a central role in supporting operators in these tasks.

owever, the above challenges put a wide range of requirements

o the system in charge to collect, store, and process the gathered

onitoring data. Such a system should be: (i) able to store data
 to large-scale network traffic monitoring and analysis, Computer 
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Fig. 1. A standard deployment of DBStream in an ISP network. DBStream is a 

data repository capable of processing data streams coming from a wide variety of 

sources. 
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over extended time periods, (ii) make analysis results available

quickly, on the order of minutes or even seconds, and (iii) network

experts should be able to easily specify and extend typical analysis

tasks. Whereas, many isolated systems and approaches have been

proposed to capture and analyze network data [1–4] , there is still a

clear lack of open, comprehensive approaches for integrating, com-

bining and post processing data from multiple sources. 

In this paper, we propose the open source system DBStream 

1 ,

a holistic approach to large-scale network data analysis ( Fig. 1 ).

DBStream is a Data Stream Warehouse (DSW) based on tradi-

tional database techniques, designed with comprehensive network

monitoring in mind. We show that DBStream is performance-wise

at least on par with the most recent large-scale data processing

frameworks such as Hadoop and Spark. We report the use of DB-

Stream for several network monitoring and analysis applications,

and the experience from its deployment in a production mobile

network. Finally we show a DBStream integration with the well-

known Weka Machine Learning (ML) toolkit can be used for on-

line detection of Machine-to-Machine (M2M) devices in mobile

networks, using only high level statistical information. 

The specific contributions of the paper are: 

• We propose the open source DSW DBStream. 

• We present the high level, micro service architecture of DB-

Stream. 

• We show the high performance of DBStream by comparing it to

state-of-the-art large-scale data processing frameworks. 

• We demonstrate how the Continuous Execution Language (CEL)

language empowers users to solve analytic challenges effec-

tively. 

The remainder of the paper is organized as follows.

Section 2 presents the related work. In Section 3 and 4 , we

describe the system architecture and the processing language of

DBStream, respectively. In Section 5 , the performance of DBStream

is compared to the in-memory MapReduce framework Spark. We

discuss the impact of jobs scheduling on DBStream performance

in Section 6 . We provide in Section 7 an extensive report of the

DBStream usage in several network traffic monitoring and analysis

projects, as well as in a nation-wide mobile network. A proto-

typical integration of DBStream with a ML library is presented

in Section 8 , along with its application to M2M traffic detection.

Finally, Section 9 provides the overall conclusions and an outlook

on the future work. 
1 https://www.github.com/arbaer/dbstream 
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. Related work 

The introduction of the term Big Data lead to a new era in

hich many scientific and commercial organizations started de-

igning and developing novel large-scale data processing systems.

ost of them achieve increased performance by re-implementing

he whole or parts of the data processing engine. They of-

en relax Atomicity, Consistency, Isolation, Durability (ACID) con-

traints [5] and/or apply novel data processing paradigms. Still, a

imitation of such systems is the inability to cope with continuous

nalytics, where data arrive as high-volume, possibly delayed, data

treams. Data Stream Management Systems (DSMSs), such as Gi-

ascope [6] , Borealis [7] , Esper [8] or the more recent Streambase

ystem [9] , support continuous processing, but they cannot support

nalytics over historical data, as required in Network Traffic Mon-

toring and Analysis (NTMA) applications, and are not available as

pen source. 

DSW systems extend traditional databases and Data Ware-

ouse (DWH) with the ability to ingest and process new data

n near real-time. DataCell [10] and DataDepot [11] are two ex-

mples, as well as the DBStream system presented in this paper.

nother important development are Not only SQL (NoSQL) sys-

ems based on the MapReduce framework made popular by Google

n [12] . Those systems use a key-value interface rather than a high

evel declarative language, like Structured Query Language (SQL),

ypically supported by Database Management Systems (DBMSs).

adoop [13] and Hive [14] are two popular open source imple-

entations of the MapReduce framework. Dremel [15] is a Google

roprietary technology that exploits the MapReduce paradigm

nd uses a column oriented database to optimize web search.

park [16] is another interesting system, promising an approximate

00x scale up factor with respect to the MapReduce implementa-

ion of Hadoop, by using an in-memory processing architecture. 

MapReduce systems focus on processing data in large batches,

ather than streams, as required for NTMA applications. There has

een some recent work on enabling real-time analytics in NoSQL

ystems, such as Muppet [17] , SCALLA [18] and Spark Stream-

ng [19] . At the moment, the main focus of Spark Streaming lies on

he processing of real-time data, e.g., a stream of twitter feeds. Un-

ortunately, it is not possible out-of-the-box to perform non real-

ime processing, where data may arrive with delays of several sec-

nds or even minutes. Nevertheless, Spark Streaming seems to be

n interesting candidate for future network monitoring solutions. 

However, with the exception of the proprietary, closed-source

ataDepot system, none of these systems were designed to address

ontinuous data processing, required for NTMA applications. Fur-

hermore, to the best of our knowledge, DBStream is the only open

ource system that supports incremental queries defined through

 declarative language. As we show in this paper, the continuous

nalytical capabilities, and the incremental query processing, make

BStream particularly suited for tracking the status of large-scale

obile networks and for traffic classification. 

The field of automatic network traffic classification has been

xtensively studied during the last decade [20,21] . The specific

pplication of ML techniques to the traffic classification problem

as also attracted large attention from the research community.

 non-exhaustive list of standard supervised ML-based approaches

ncludes the use of Bayesian classifiers, linear discriminant anal-

sis and k -nearest-neighbors, decision trees and feature selection

echniques, and support vector machines. In addition, many unsu-

ervised and semi-supervised learning techniques have been used

or network traffic classification, including the use of k -means, DB-

CAN, and AutoClass clustering. Also the GRIDCLUST algorithm pre-

ented in [22] and its later extension to the BANG-clustering sys-

em [23] are good candidates for being used in NTMA applications,

ue to their computational efficiency on large datasets. We point
 to large-scale network traffic monitoring and analysis, Computer 
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Fig. 2. General overview of the DBStream architecture. 
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t  
he interested reader to [24] for a detailed survey on the different

L techniques applied to network traffic classification. 

More recent approaches for traffic classification focus on the

pecific analysis of the applications running on top of HTTP/HTTPS

25,26] , including the analysis of modern Internet services such as

ouTube, Facebook, WhatsApp, etc. 

The particular classification and analysis of M2M traffic and

2M devices has very recently emerged as a need to understand

he novel traffic patterns such devices introduce. So far only a few

apers have explictily addressed this problem. The most relevant

ork on M2M traffic characterization is provided in [27] . There,

he authors present an extensive analysis of the traffic generated

y M2M devices in the AT&T US mobile network. They apply a

ype Allocation Code (TAC)-based approach to separate M2M from

ther devices. 

The M2M TRAffic Classification (MTRAC) approach presented in

ection 8 aims at the classification of M2M devices in mobile net-

ork traffic. The whole system relies on DBStream for the data col-

ection and processing, is operated online, and assumes the avail-

bility of only coarse-grained traffic descriptors at the user session

evel. 

. DBStream system design 

The main purpose of DBStream is to store and analyze large

mounts of network monitoring data. But, it might also be applied

o data from other application domains like e.g., smart grids, smart

ities, intelligent transportation systems, or any other use case that

equires continuous processing of large amounts of heterogeneous

ata data over time. DBStream is implemented as a middle-ware

ayer on top of PostgreSQL. Whereas all data processing is done in

ostgreSQL, DBStream offers the ability to receive, store and pro-

ess multiple data streams in parallel. In addition, DBStream offers

 declarative, SQL-based CEL which is highly precise but yet very

exible and easy to use. Using this novel stream processing lan-

uage, advanced analytics can be programmed to run in parallel

nd continuously over time, using just a few lines of code. 

In Fig. 2 , a high-level overview of the architecture of DBStream

s shown. The design of DBStream follows a micro service architec-

ure and is composed of a set of decoupled modules, each executed

s a separate operating system process. As opposed to a mono-

ithic software architecture, modules can be stopped, updated and

estarted without the need to stop and restart the whole DBStream

ystem. The most important module is the Scheduler , which

ictates the ordering in which jobs are executed. The Import
robe module, running on one or more monitoring probes, sends

ocally stored data to the Import module running on the DB-
Please cite this article as: A. Baer et al., DBStream: A holistic approach
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tream side. The DBStream Import module writes data into time

artitioned Continuous Tables (CTs) and also signals the availability

f new data to the Scheduler module. Data from one or more

Ts is read by jobs registered in the configuration of the View
eneration modules and the results are written into new CTs,

hich are created automatically or appended to if the CTs do not

lready exists. In each of those jobs, data projections, transforma-

ions or aggregations are expressed in a batched data stream pro-

essing language called CEL, which is explained in full detail in

ection 4 . The Retention module monitors the size of CTs and

eletes old data if a certain pre-configured size limit is exceeded. 

All modules register tasks for execution at the Scheduler
odule. As soon as the Scheduler detects that a certain task can

ow be executed, it messages the corresponding Import , View
eneration or Retention module to start the task. The deci-

ion of when a certain task is ready for execution is based on two

onditions. i) a full new window of data has to be available for

ll input time windows, meaning that all precedence constraints of

 task have to be met. ii) the scheduling policy. As shown in de-

ail in Section 6 , it might not always be optimal to execute each

ob right away, but, in certain cases it is more efficient to wait for

ther jobs, sharing the same input partition. Therefore, in specific

ituations, e.g., when the maximum number of parallel jobs is ex-

eeded, the Scheduler blocks the execution of certain jobs. 

Each job advances one single CT. Meta data of each CT, along

ith the information until which point in time until a job has fin-

shed processing is persisted in the data dictionary of DBStream,

henever the internal state of the job is advanced by the exe-

ution of a task. In case the system crashes during the execution

f a task and later on is restarted, the data dictionary is checked

y the View Generation module for the latest point in time

ntil which the job was finished. All intermediate tables, which

ight have been created before the crash, but are not complete,

re deleted and recreated. This guaranties the Atomicity property

f the ACID constraints. 

The design decision to decouple job scheduling from job exe-

ution makes the system more flexible. Jobs can be executed by

ifferent View Generation modules and if one job has to be

hanged the Scheduler and all other View Generation mod-

les can continue processing. Therefore, users can change or add

ew jobs to the system without impacting already running jobs. 

As shown in Fig. 2 , all DBStream modules are started and mon-

tored by an application server process called hydra . It reads the

BStream configuration file and starts all modules listed there.

ach module has a standardized interface to provide status in-

ormation. Hydra periodically fetches this status information and

akes it available in a centralized location. Another crucial func-

ion of the hydra module is restarting other crashed modules.

ince modules might depend on external processes potentially run-

ing on remote machines, they might crash at unpredictable mo-

ents. Therefore, all DBStream modules are designed and imple-

ented such that they can crash at any point in time and leave the

hole system in a recoverable state. This provides the guaranties

f the Durability property of the ACID constraints to DBStream. 

The communication with hydra as well as the communication

etween modules, e.g., between the Scheduler and the View
eneration , is implemented as remote procedure calls over the

TTP protocol. Therefore, it is easily possible to distribute certain

odules of DBStream over several machines. 

.1. System vs. application time 

DBStream is a DSW and therefore similar to a stream processing

ystem in many ways. In contrast to typical database applications,

here time often is modeled as a column with a specific data type,

ime is an essential part of the architecture of DBStream. There-
 to large-scale network traffic monitoring and analysis, Computer 
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Table 1 

Definition of the most important terms of CEL. 

Term Description 

window A time slice of a stream, defined by stream_name ( window N [ delay M ] [ primary ]) [ as window_name ] [, ...] 

primary Marks the window along which processing is advanced. primary can only be used once per job. 

__STARTTS Is replaced in a query with the start of the primary window. 

__ENDTS Is replaced in a query with the end of the primary window. 

delay Can be used to shift a window into the past. 

job Defines how inputs are transformed into the output stream. Its State tracks the application time until which the job has been finished. 

task Concrete unit of work which is executed to advance the state of a job. 

application time Time of the application, contained in the processed data. 

system time Time of the processing system, often referred to as wall-clock time . 
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fore, the exact definition of time is crucial, determining how the

system works and what kind of problems it can solve. The authors

of [28] give an interesting overview of different methodologies for

time handling in stream processing systems. Two of their defini-

tions are very important to understand the time handling used by

DBStream. First, the term system time is defined to be the wall-

clock-time at the system processing the data. Second, the appli-

cation time is used for timestamps which are part of the data

processed by the system. Network monitoring systems typically as-

sign a timestamp to observed events and use their wall-clock-time

for this purpose. Since such systems are typically implemented as

some sort of stream processing system, and one of the purposes

of stream processing systems is to generalize the design of such

systems, using the wall-clock-time directly is a reasonable choice. 

The situation is very different for systems like DBStream. Here,

the goal is to store and analyze the output of other, typically re-

mote systems which are stream processing systems themselves.

Data arriving at DBStream already have a timestamp, assigned by

another system in a higher layer of the processing chain. It would

not be very helpful to add another wall-clock-time timestamp to

the data. Instead, the time the event was created, already con-

tained in the data, is of importance. Therefore, DBStream always

uses the application time contained in the data for all time win-

dows processing. 

Performance is measured by the View Generation module

on the level of tasks, not individual data rows. Each time a task

is executed, the execution time of the task is measured and can

be compared to the size of the primary window of that task. For

example, the primary window is 10 minutes, meaning for each 10

minutes of time one task is executed. If the task can be executed

in 1 minute, the whole job executes 10 times faster than real-time

and thus the performance of this task is good. 

4. Continuous execution language (CEL) 

In this section, we describe the batched stream processing lan-

guage CEL originally introduced in [29] in full detail. Table 1 gives

an overview of the important terms of CEL. We start with a sim-

ple example explaining the main functions of CEL. In the fol-

lowing Section 4.1 we detail the Continuous Tables (CTs) used in

CEL. Section 4.2 describes how time windows are handled in DB-

Stream. Finally, in Section 4.3 we explain multiple complex exam-

ples showing the full expressive power of the presented language. 

We start with a very simple example of CEL. Suppose we

want to generate aggregate statistics from a router in the net-

work under study. This router exports data on a per minute ba-

sis in the widely adopted NetFlow [30] format. Each row con-

tains information on a per flow basis, where a flow is identified

by the 5-tuple of < source and destination IP, source
and destination port and IP protocol number > . In

addition, each row contains information about the uploaded and

downloaded bytes. Our first CEL query will compute the amount
Please cite this article as: A. Baer et al., DBStream: A holistic approach

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.04.020 
f uploaded and downloaded bytes passing through that router on

 per hour basis. 

In CEL, such a job is expressed as presented in Algorithm 1 . In

his example, the inputs XML-attribute defines the input win-

ows and the output XML-attribute defines the destination Con-

inuous Table (CT) for the result. Here, only a single input win-

ow of 60 minutes of the CT A is defined, therefore a new task

epresented as a SQL query is executed in the underlying DBMS

or each full hour of input data. The result of this SQL query is

hen stored in the CT with the name W. The SQL-query inside

he query XML-element calculates the sum over all uploaded and

ownloaded bytes in one hour. In the from part of the query, the

ame of the CT A is used, which is a place holder and is replaced

y a time slice of stream A of one hour for every executed task.

lease note the special keyword __STARTTS which can be used

n DBStream CEL jobs and is replaced with the start time of the

rimary window. 

.1. Continuous tables 

In DBStream all data are stored in Continuous Tables (CTs). First,

aw data are imported into what would be called base tables in

raditional DWHs. Jobs process data batches from those base ta-

les and store the output into materialized views. Each job can

ave multiple inputs, which can either be base tables or materi-

lized views. From each input, the job fetches a certain time slice,

.g., five minutes which is available to the SQL query inside the job

ike a regular table. The SQL queries are executed in PostgreSQL

nd use INSERT INTO to store the results in regular time parti-

ioned tables. We refer to a time partitioned base table or materi-

lized view in DBStream as a Continuous Table (CT), since both are

andled in the same way. Please note, that in contrast to a DSMS,

n DBStream all data are stored on disk and can be used in CEL

obs over extended time periods, only limited by the available disk

pace. For example, a job can compare the current hour of data
 to large-scale network traffic monitoring and analysis, Computer 
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t
Input A

window 1min
primary

nowA) Single window job

t
Input E

Input D

window 3min primary

window 3min

nowD) Double window job

t
Input B

window 1min
primary

Input B window 3min

nowB) Sliding window job

Input Y
window 1min

delay 1min

t

Input C
window 1min

primary

nowC) Incremental job

output
windowOutput W

output windowOutput Z

Output X output
window

Output Y output
window

Fig. 3. Multiple input window definitions possible in DBStreams Continuous Execu- 

tion Language (CEL). 
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ith the same hour of the day one month ago, without keeping a

ull month of data in memory. 

.2. Time window definitions 

In Fig. 3 , an overview of several possible time window defini-

ions is shown. Those time windows define how jobs are contin-

ously executed over time and which data is read from each in-

ut in each executed task. We give two more illustrative examples

n how does time windows are used in real-world use cases in

ection 4.3 . 

CEL does not have an explicit definition for sliding windows,

ut instead, for each job one single window is marked to be the

rimary window by specifying the primary keyword in its defini-

ion. As soon as a task is successfully executed, the internal state of

he corresponding job is moved into the future by the size of one

rimary window. When enough data in all input windows of the

ext task becomes available, the scheduler executes the next task

f the maximum amount of parallel tasks is not yet reached. The

econd important keyword for window definitions in CEL is delay .

t can be used to shift a window into the past by a certain amount

f time. For example, if the internal state of the job is “2014-11-

1 12:20”, a window of one minute would start at minute “12:19”

nd end at “12:20”. If this window has a delay of 1 minute, given

y the following definition (window 1min delay 1 min) , it

ould start instead at “12:18” and end at “12:19”. 

The window definitions visualized in Fig. 3 have the following

roperties. Part A) shows the simplest possible window definition,

imilar to the window definition used in Algorithm 1 . The single

nput window is also the primary window of the job. Such jobs

re typically used for data projections, transformations and aggre-

ations. 

The window definition shown in part B) is an example of a slid-

ng window. Since the primary window has a length of one minute,

 task is executed every minute. The second window has a size of

 minutes. In consecutive task executions, the time slices of the

econd window will overlap. An example of such a job is shown in

lgorithm 2 . 

The most complex window definition is shown in part C). Here,

he primary window is used to fetch data from CT C, whereas the

ther window is used to make the last minute of the output CT
Please cite this article as: A. Baer et al., DBStream: A holistic approach

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.04.020 
vailable as an input to the job. Such jobs are very useful whenever

tate information has to be kept over time. A detailed example of

uch a job is given in Algorithm 3 . 

Part D) shows a double window job. Such jobs are typically

sed to merge information from multiple sources, which provide

ifferent parts of the same data, e.g., two monitoring probes, each

onitoring a different part of the network. Another typical usage

cenario is information enrichment, e.g., one source could contain

nformation about contacted IP addresses and another source con-

ains Domain Name System (DNS) information, i.e., a mapping of

P addresses to host names. In this situation, a double window job

an be used to combine the two information sources and produce

 new stream containing contacted host names. 

The concept of window definitions in CEL by using primary

indows is, to the best of our knowledge, a novel feature among

tream processing languages. Other stream processing systems use

ifferent approaches to define windows and especially sliding win-

ows. For instance, in the well known StreamBase [9] system win-

ows are specified by a size and a slide definition in the following

ay: [SIZE x ADVANCE y TIME] . Here, x defines the length

f the window and y the amount of time after which new output

s generated. The window definitions of StreamBase need the defi-
 to large-scale network traffic monitoring and analysis, Computer 
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Fig. 4. Time windows for incremental data processing. 
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nition of a separate join statement if more than one stream should

be used. 

Another important improvement of the DBStream system over

typical stream processing systems is that data is stored on disk

after each task execution. Therefore, the state of all running jobs

is always persisted to disk and can be recovered directly after a

restart of DBStream. This has three advantages. First, it makes DB-

Stream robust against hardware failures since no state information

is lost in case of a system crash or even a power outage. Second,

streams can be replayed starting in the past, only limited by the

amount of disk space available for a certain CT. Third, DBStream

can efficiently process jobs accessing information from a long time

in the past, e.g., a job can have the current day and the same week

day one month ago as inputs. 

4.3. Examples 

In this section, we explain a rolling window job and a complex

incremental job in full detail, by giving two exhaustive examples

of incremental data processing jobs. 

4.3.1. Rolling window average 

In this example, we explain how a rolling average calculation

can be implemented in CEL using a sliding window job. 

Algorithm 2 shows a job definition computing the average of

uploaded and downloaded bytes over a sliding or rolling time win-

dow of three minutes. The job has two input windows, where the

primary input window B1, along which processing is advanced, is

one minute long. The sliding or rolling window B3, which is used

for the average calculation in the SQL query, is three minutes long

and uses the same CT as input. Fig. 4 a visualizes which parts of

the input B are used over a period of four task executions. 

4.3.2. Rolling active set 

In the last example, we explain complex incremental job, in-

crementally computing the set of IP addresses active over the last

hour, updated every minute. 

Traditional large-scale batch, as well as stream processing sys-

tems, offer two different approaches to solve this problem. One ap-

proach is that for every minute, the last hour is queried and the ac-

tive set of IP addresses is computed. This approach is similar to the

previous example and can be useful in certain situations, especially

if performance is not crucial e.g., on small amounts of data. Since

the same minute of data is scanned over and over again, 60 times

in the given example, this approach can become very resource in-

tensive if data is large. Another approach is to keep all unique IP

addresses encountered in the last hour along with a timestamp in

memory, representing an intermediate state. This approach is very
Please cite this article as: A. Baer et al., DBStream: A holistic approach

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.04.020 
fficient regarding the processing time, but the active set has to

tay in memory. In case the system is stopped or crashes due to a

ardware failure or power outage, the in-memory state has to be

ebuilt from past data, which might not be available anymore. In

ddition, in most Domain Specific Languages (DSLs), unlike in CEL,

his type of jobs is not available out-of-the-box. Typically, User De-

ned Functions (UDFs) have to be used for implementing such be-

avior. 

In the job implementation shown in Algorithm 3 , we show how

n incremental job can be used to calculate the set of IP addresses

ctive over the last hour, updated every minute. This is achieved

y using the past output of the job as an input, delayed by one

inute. As we show in Section 5 , this approach is much more effi-

ient than the traditional ones. In addition, such a query stores all

ntermediate state on disk and can therefore be restarted at any

ime by just loading one minute of output data. 

The input to this query is C which holds the IP addresses of ac-

ive terminals. We now want to transform CT C into a new CT Y

hich contains for each minute, the distinct set of IP addresses ac-

ive in the last hour. Therefore, we first add a timestamp called

ast to Y storing the time of the last activity of an IP address.

ext, from the current minute of C, we generate a new tuple for

ach unique IP and set the last activity to the start of the win-

ow using the __STARTTS keyword. From the previous minute

f the output stream Y, we select all IP addresses that where ac-

ive less then 60 minutes ago. Finally, we merge both results us-

ng the SQL UNION ALL operator and we select from the result

for each distinct IP address) the current time, that is the max-

mum value of the last activity, and the IP itself. This feedback

oop allows us to efficiently compute the set of IP addresses active

n the last hour every minute, without keeping any explicit state

nformation. The windows used in this computation are shown

n Fig. 4 b. 

. Performance evaluation 

In this section, we compare the performance of DBStream to

he state-of-the-art Big Data processing framework Spark. 

.1. Spark Overview 

Spark is an open-source MapReduce solution proposed by

he UC Berkley AMPLab. It utilizes Resilient Distributed Datasets

RDDs), i.e., a distributed data abstraction which allows in-memory

perations on large clusters in a fault-tolerant manner [16] .

his approach has been demonstrated to be particularly effi-

ient [31] enabling both iterative and interactive applications in

cala, Java and Python. Moreover, an application does not strictly
 to large-scale network traffic monitoring and analysis, Computer 
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Fig. 5. Tstat plus DBStream. 
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2 The Maxmind Orgname database provides a mapping between IPs and Organi- 

zation names; see www.maxmind.com . 
equire the presence of a Hadoop cluster to take advantage of

park. In fact, the system offers a resource manager and supports

ifferent data access mechanisms. However, it is most commonly

sed in combination with Hadoop and the Hadoop Distributed File

ystem (HDFS). Please refer to [29] for a detailed description of

he implementation of the benchmark described in this section

n Spark. Also the reasons for selecting Spark without the Spark

treaming extension are given there. 

.2. System setup and datasets 

We installed Spark on a set of eleven machines with the fol-

owing identical hardware: a 6 core XEON E5 2640, 32 GB of RAM

nd 5 disks of 3 TB each. One of those eleven machines has been

edicated to DBStream, recombining four of the available disks in a

AID10. We use PostgreSQL version 9.2.4 as the underlying DBMS.

he remaining 10 machines compose a Hadoop cluster. The clus-

er runs Cloudera Distribution Including Apache Hadoop (CDH) 4.6

ith the MapReduce v1 Job Tracker enabled. On the cluster we also

nstalled Spark v1.0.0 but we were only able to use the standalone

esource manager. 

All machines are located within the same rack connected

hrough a 1 Gb/s switch. The rack also contains a 40 TB Network-

tt ached Storage (NAS) used to collect historical data. In partic-

lar, in this work we use four, five day-long datasets, each col-

ected at a different vantage point in a real ISP network from the

rd to the 7th of February 2014. Each vantage point is instru-

ented with Tstat [3] to produce per-flow text log files from mon-

toring the traffic of more than 20,0 0 0 Asymmetric Digital Sub-

criber Line (ADSL) households. For each TCP connection, Tstat re-

orts more than 100 network statistics and generates a new log file

ach hour. Overall, each of the four dataset corresponds to approxi-

ately 160 GB of raw data, about 5 times the memory available on

 single cluster node. In total, the four datasets sum up to approx-

mately 650 GB, which is about twice as large as the total amount

f memory available in the whole cluster. An overview of the setup

long with the locations of some example widely adopted Internet

ervices is given in Fig. 5 . 

.3. Job definition 

Based on our experience in the design of network monitoring

pplications and benchmarks for large-scale data processing sys-
Please cite this article as: A. Baer et al., DBStream: A holistic approach

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.04.020 
ems, we define a set of seven jobs that are representative of the

aily operations we perform on our production Hadoop cluster. 

Import imports the data into the system from the NAS, where

aw data is stored in files of one hour each. 

J1 for every 10 minutes i) map each destination IP address to its

rganization name through the Maxmind Orgname 2 database and

i) for each found organization, compute aggregated traffic statis-

ics, i.e. min/max/avg Round Trip Time, number of distinct server

P addresses, total number of uploaded/downloaded bytes. 

J2 for every hour, i) compute the organization name-IP mapping

s in J1, ii) collect all data having organization names related to the

kamai CDN, and iii) compute some statistics, i.e. min/max/average

ound-Trip Time (RTT), aggregated for the whole Akamai service. 

J3 for every hour, i) compute the organization name-IP mapping

s in J1, and ii) select the top 10 organization names having the

ighest number of distinct IP addresses connecting to them. 

J4 for every hour, i) transform the destination IP address into a

24 subnet, and ii) select the top 10/24 subnets having the highest

umber of flows. 

J5 for every minute, for each source IP address, compute the

otal number of uploaded/downloaded bytes and the number of

ows. 

J6 for every minute, i) find the set of distinct destination IP ad-

resses, and ii) use it to update the set of IP addresses that were

ctive over the past 60 minutes. 

J7 for every minute, i) compute the total uploaded/downloaded

ytes for each source IP address, and ii) compute the rolling aver-

ge over the past 60 min. 

Overall, these jobs define network statistics related to Content

elivery Networks (CDNs) and other organizations (J1 to J4), statis-

ics related to the monitored households (J5) and two incremental

ueries (J6 and J7) computing aggregated statistics over rolling sets

f IP addresses. 

.4. DBStream benchmark implementation 

All queries are implemented in the Continuous Execution Lan-

uage (CEL) of DBStream, described in Section 4 . The fact that the

utput of a job is stored on disk and can be used as input to an-

ther job is exploited to achieve increased processing performance.

ig. 6 shows the resulting job dependencies, where the nodes rep-

esent the jobs and an arrow from e.g., job J1 to J2 means that

he output of J1 is used as input to J2 . The number next to each

rrow indicates the size of the input window in minutes. For ex-
 to large-scale network traffic monitoring and analysis, Computer 
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Fig. 7. Comparison of DBStream and Apache Spark. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. DBStream task execution over time for FIFO and Shared scheduling. 
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ample, in order to compute the results of J6 we first gather the set

of active IP addresses per minute in J6 prepare. Then, J6 uses J6
prepare and its own past output as input for the computation

of the next output time window. This is indicated by the reflexive

arrow starting from and going back into J6 . A detailed example of

the used CEL job underlying J6 is given in Section 4.3.2 . 

5.5. System comparison 

In Fig. 7 , we compare the performance of Spark and DBStream

in terms of makespan 3 . In DBStream, the total execution time is

measured from the start of the import of the first hour of data un-

til all jobs finished processing the last hour of data. For Spark, all

jobs were started at the same time in parallel. We report the total

execution time of the job finishing last, which was J6 in this ex-

periment. Since for Spark, the import is done before the jobs start

processing the data, we also report the job processing time plus

the time it takes to import the data separately. 

For the jobs J1 to J5 Spark offers great performance and the

whole cluster is perfectly able to parallelize the processing, leading

to very good results. Job J6 and J7 although, are not processed

very fast. This comes from two factors: one the one hand, espe-

cially J6 can not be parallelized very well, since data has to be

synchronized and merged in one single node after each minute. On

the other hand, distinct sets have to be computed for which huge

amounts of data have to be moved around in the reduce phase.

Please refer to [29] for the full details of the performance compar-

ison . In the future, we plan to evaluate tools like Spotify Luigi 4 

which are able to store intermediate results to speed up jobs like

J6 and J7 in Spark. 

For DBStream, the execution time increases nearly linearly with

the number of Vantage Points (VPs) and therefore the amount of

data to process. In contrast, for Spark the main factor is the ex-

ecution time of J6 . The total execution time does not increase

much with more VPs since multiple instances of J6 run in parallel.

Therefore, Spark is able to utilize its parallel nature better the more

jobs are running, whereas DBStream shows better performance for

incremental jobs. For the one VP case, Spark, running on a 10 node

cluster takes 2.6 times longer than DBStream running on a single

node of the same hardware, to finish importing and processing the

data. 
3 In operations research, makespan is the total time that has elapsed from the 

beginning of a certain project to its end. Here by makespan we mean the time until 

all jobs have been completed. 
4 https://github.com/spotify/luigi 
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Please cite this article as: A. Baer et al., DBStream: A holistic approach

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.04.020 
. Improving performance with intelligent scheduling 

In the setup considered for the performance comparison, the

ain bottleneck of the DBStream system is disk I/O. However, we

ill show that it is possible to minimize disk I/O overhead by in-

elligent tasks scheduling. In this section, we give an introduction

o a more general scheduling problem found in disk-based contin-

ous processing systems executing shared worflows. The automa-

ion of the scheduling presented here is part of future work and

 first step towards this automation has already been published in

32] . 

Typically, tasks are scheduled in first-in-first-out (FIFO) order

n DBStream. Since we have set the number of parallel tasks to

4, FIFO effectively results in all tasks being executed as soon as

he input data is ready. The effect of the FIFO scheduling is shown

n Fig. 8 (top), where each point in the plot corresponds to the

xecution of one window. The x-axis of this figure corresponds to

he time after the start of the experiment at which a certain task

nished execution. The y-axis corresponds to the time when the

ata item was created by the vantage point, normalized to the start

f the whole dataset. Since some jobs process faster than others, in

he FIFO case, the time distance between those jobs increases over

he run of the experiment. The first step is the data import, which

ot only puts data onto the disk, but also into the disk cache of

he Operating System (OS). As soon as the difference in progress of

ifferent jobs needing the same input gets too big, the data of the

nput drops out of the cache and has to be read from disk again.

his increases the I/O overhead and, at the same time, decreases

he overall system performance of DBStream. 

Let us explain the underlying processes in more detail. For ex-

mple, imagine the import has a fixed size of 8 GB per hour of

ata and takes 1 minute to finish processing. Let’s assume as well,

hat there are only two jobs, A and B, defined on top of the im-

ort, and A needs one minute to process and B two minutes. Now

e start the experiment and the first job which can execute is the

mport which needs one minute to finish. Then, both jobs A and

 start to process hour one and the import starts processing hour

wo. All those three tasks are executed in parallel in DBStream. Af-

er another minute has passed, the import has finished hour two

nd starts processing hour three. Job A has finished hour one and

ow starts processing hour two. Since the import and job A have

he same processing time, their progress will only get, in the worst

ase, one hour apart form each other. 

In the upper example, we defined hour of data to have the size

f 8 GB. In a computer system with 16 GB of RAM available for

isk cache, this will lead to the following situation. After the im-

ort has finished processing hour one, this hour automatically is
 to large-scale network traffic monitoring and analysis, Computer 
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Fig. 9. Simplified overview of a 3G network including a monitoring system, e.g., 

METAWIN, and the data export to DBStream. 
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vailable in the cache from where it can be used by job A. Since

he import and job A never get more then one hour apart from

ach other, no data has to be read from disk twice. In contrast, for

ob B, the situation is very different. Since the processing time of

ob B is two minutes and therefore twice as long as the import, for

very imported hour, the time difference between job B and the

mport increases by one hour. Therefore as soon as this difference

ets longer than two hours, the imported data does not fit in the

isk cache any more and has to be fetched from disk again when it

s needed by job B. This results in an increased I/O overhead since

ata need to be read from disk multiple times, thus decreasing the

erformance of the whole system. 

Fig. 8 (bottom) shows execution of the same set of jobs using

 “shared” scheduling strategy. In the “shared” case, a new hour

s only imported if the difference in time between the imported

our t i and the hour t j for which all jobs have finished processing

s smaller than x . 

 i − t j < x (1) 

n this case, data stays in the OS cache and fewer I/O operations

re needed to complete the experiment. By setting x = 1 , we are

ble to reduce the execution time of 4 VPs by a factor of 45% from

08 minutes to 446 minutes. 

. Experience from NTMA projects 

DBStream has been adopted in several research projects for

unning a number of NTMA applications. To provide a concrete

xample, we report in Section 7.1 several statistics from run-

ing DBStream in the network monitoring project DARWIN4 [33] ,

here it has been used as central analysis system. In addition, in

ection 8 we present the M2M TRAffic Classification (MTRAC) ap-

roach [34] as one prominent advanced analytics application of

BStream. 

Besides these illustrative examples, there exist a number of

TMA projects, where DBStream has been fruitfully deployed,

hich we briefly summarize in the following for completeness.

he authors of [35] describe DBStream as part of the general ar-

hitecture for network monitoring envisioned in the European FP7

roject mPlane [36] . In this project, DBStream has been integrated

ith the network monitoring system Tstat [3] to store the data it

enerates. Those data are then processed by analysis modules as

escribed in detail in [37] . 

In [38] several performance impairments of the CDNs host-

ng Facebook and YouTube are analyzed using DBStream. An early

tudy of performance degradations in YouTube is given in [39] ,

hich was later further detailed in [40] . Classification of HTTP traf-

c have been conducted in [41] and [42] using TicketDB [43] , the

redecessor system of DBStream. Most recently a characterization

f the well-known Whatsapp chat service was studied in [44] us-

ng DBStream. 

These examples show how easily DBStream can be deployed

nd instrumented to run diverse network traffic monitoring and

nalysis applications. 

.1. Operating DBStream at scale 

In this section, we present several statistics gathered from the

BStream installation operated in the Austrian nationally funded

ARWIN4 [33] project. Those statistics give an overview of the

cale at which DBStream can be operated although it is based on

 classical database system and not the Hadoop stack. The focus

f the project was on the development of innovative methods for

) detecting congestion in 2G/3G/4G mobile cellular network sig-

alling capacity, ii) anomalies induced by macroscopic attacks, iii)
Please cite this article as: A. Baer et al., DBStream: A holistic approach

Networks (2016), http://dx.doi.org/10.1016/j.comnet.2016.04.020 
alfunction of network equipment, as well as iv) the detection of

ighly synchronised M2M devices. 

In the DARWIN4 project, many different data sources have been

sed, ranging from in-network passive probes to logs from the

ore network devices. Therefore, DBStream has been operated with

everal import modules. In particular, the project relied on the

etwork monitoring system Measurement and Traffic Analysis in

ireless Networks (METAWIN) [45] , tailored for passively moni-

oring operational mobile networks and capable of monitoring all

inks in the core of a Third Generation (3G) network. Fig. 9 shows

he setup when the monitoring system is connected to the Gn in-

erface. 

DBStream was successfully used to identify and analyze multi-

le network anomalies and to run many continuous analysis tasks

n parallel. In fact, it has been used as the main analysis system

n the project, and was the base for a near real-time alarming sys-

em relying on the availability of aggregate traffic statistics. Un-

ortunately, due to the non disclosure agreement constraints with

he network operator, we are not allowed to present further de-

ails about the applications running on top of DBStream in the

ARWIN4 with the exception of the MTRAC approach presented

n Section 8 . Therefore, we report here several statistics about the

eneral performance of DBStream. 

DBStream was installed on a high performance server machine,

osting four AMD 6380 CPUs, running at 2.5 GHz. Each CPU houses

6 cores, resulting in a total of 64 cores. In total, we installed 256

B of RAM. The disk subsystem in it’s final state consists of four

ber-channel attached RAID arrays, each with 12x 2TB disks form-

ng a RAID10. In addition, the 24 internal disks are split into two

isks for the OS, running a RAID1, the other 22x 2TB disks form a

arge RAID6. All disks except those used for the OS are PostgreSQL

ables spaces and are used by DBStream to store imported data

nd analysis results. To date, the DBStream installation operated in

ARWIN4 is the largest one we are aware about. 

In total, DBStream was operated for 385 days. On the final day

f operation, the table partitioning resulted in 984,0 0 0 tables. No-

ice that this is a very high number of tables, considering that

ost databases use several hundreds and a typical database ad-

inistrator knows most of them by name. Those tables stored a

otal of 67 TB of network monitoring data and processing results.

lease note that these statistics, as well as the number of tables,

re only a snapshot and include only those tables and amounts of

ata which were not already deleted by the DBStream retention

odule. 

In total, over the whole run time, 9.482 million DBStream tasks

each corresponding to a PostgreSQL query) were executed. That

s, on average, each 3.5 s a new task, updating a time window, was

xecuted. Those tasks produced a total of 1.999 trillion result rows.

lease note that in the current version of DBStream it is not possi-

le to track the number of rows imported into DBStream, therefore

his number should be considered as a lower bound and the actual

umber might be more than twice as high. 
 to large-scale network traffic monitoring and analysis, Computer 
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5 For example, the AT&T specialty vertical devices template at http://www.rfwel. 

com/support/hw-support/ATT _ SpecialtyVerticalDevices.pdf . 
8. MTRAC - M2M traffic classification 

In this Section we describe the MTRAC as one of the most im-

portant applications of DBStream not under Non-Disclosure Agree-

ment (NDA) constraints. 

Machine-to-Machine (M2M) traffic has become a major share

of today’s mobile networks and will grow even further in the

near future. The quickly increasing number of M2M devices in-

troduces unprecedented traffic patterns and fosters the interest of

mobile operators, who whish to discover and track those devices

in their networks. MTRAC enables the discovery of M2M devices

relying on the analysis of coarse-grained network statistics by ap-

plying several different ML algorithms. Notice, that the use of very

simple traffic descriptors makes MTRAC robust against traffic en-

cryption techniques, and improve its portability to other types of

networks or usage scenarios. We have designed and implemented

MTRAC on top of DBStream using data from the network moni-

toring system METAWIN. Utilizing DBStream allowed us to clas-

sify M2M devices in near real time, using different time and ses-

sion based network traffic aggregation methods. We report the

performance of MTRAC for online classification of more than two

months of traffic observed in an operational, nationwide mobile

network. 

8.1. Obtaining network descriptors from METAWIN 

In the considered setup, the METAWIN monitoring system is

connected to the Gn interface (see Fig. 9 ). At this interface data

from large parts of the network are concentrated, making it a suit-

able vantage point for network-wide analysis. In the METAWIN sys-

tem, data is first captured at line-speed at the monitoring probe,

equipped with one or more Endace capture cards [46] . Still on

the monitoring probe, aggregations are generated for certain pro-

tocols, e.g., Transmission Control Protocol (TCP), Hypertext Trans-

fer Protocol (HTTP) or DNS without applying any packet sam-

pling. For MTRAC, network statistics aggregated at short time in-

tervals in the minute range are used. Those network statistics

are buffered locally on the monitoring probe using RAID arrays

for optimized I/O. Finally, the statistics are fetched by the sepa-

rate DBStream server and imported into the underlying PostgrSQL

database. 

8.2. DBStream weka integration 

To enable online classification based on ML algorithms in DB-

Stream, we added a new module able to interface DBStream with

Weka [47] . Weka is a collection of machine learning algorithms

for data mining tasks, and contains tools for data pre-processing,

classification, regression, clustering, association rules, and visual-

ization. It is also well-suited for developing new machine learning

schemes. 

The developed module enables users to write DBStream jobs

which take a table of feature vectors as input and output a new ta-

ble containing the classification results. This is achieved by the ap-

plication of classification models, previously trained using Weka, to

the table of feature vectors. This module can be used for any classi-

fication purpose. Generally speaking, Weka is instrumented to clas-

sify an exported time window of data use the pre-trained model.

Then, the classification results are imported back into DBStream.

As soon as the time window is imported, it becomes available to

other DBStream jobs for further processing or visualization. Since

the module is executed as a DBStream job, the DBStream sched-

uler automatically takes care of executing it for each new window

of data. 
Please cite this article as: A. Baer et al., DBStream: A holistic approach
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.3. TAC-based ground truth 

Supervised classifiers need to be trained on a dataset containing

he real class of the devices, i.e., the ground truth. Getting access

o such labeled datasets is generally a very cumbersome process,

specially in the case of an operational network. One standard ap-

roach followed by mobile network operators to identify a M2M

evice is by its hardware model [27] , which can be obtained from

ts Type Allocation Code (TAC), using the TAC databases of the GSM

ssociation. The hardware model information is generally comple-

ented with cellular operator templates which provide a catego-

ization of M2M devices, based on the device type (e.g., laptop,

odem, POS, router, telemetry, etc.) 5 . This TAC-based approach im-

oses several limitations to the classification and discovery of M2M

evices, such as: i) the need of manual gathering of TAC informa-

ion whenever new devices appear in the network, and ii) incom-

leteness of the available TAC databases. We then train classifiers

sing only those devices for which the real class is known. Finally,

his ground truth has been used to compute the accuracy of the

ifferent ML algorithms in terms of True Positive (TP) and the False

ositive (FP) ratios. 

.3.1. Online M2M classification 

In this section, we show how the features described in detail

n [34] are used by MTRAC to identify M2M devices in the op-

rational mobile network of a European Internet Service Provider

ISP). The features extracted form the session data of each device

re stored along with the corresponding ground truth of the de-

ice, obtained by the TAC-based approach of Section 8.3 . Part of

hese data are used to build the ML-based classification models,

raining different classifiers using Weka. The trained models are fi-

ally installed into DBStream, and used in an online basis to assign

 class to each of the monitored devices. Recall that our classifica-

ion problem is a dichotomic one, in which a device is either clas-

ified as M2M or non M2M. As discussed in detail in Section 8.3.3 ,

e use multiple ML-based approaches to improve the classification

erformance of MTRAC. 

.3.2. Aggregating sessions per device 

The main challenge when aggregating sessions per device is to

nd a timing which still leads to results in an acceptable short

ime, but gathers enough data to achieve good classification re-

ults. In an offline setting, one can aggregate all sessions per device

vailable in the whole dataset and select only those devices which

eet certain criteria to perform the classification. For example, one

ight restrict the classification only to those devices for which a

inimum amount of at least N sessions have been observed. In

ontrast, in an operational online setting, the dataset does not have

 defined end. On the one hand, the amount of sessions used as in-

ut to the aggregation should be as high as possible. For example,

eatures based on the session inter-arrival time can only be gener-

ted if more than one session is available and many statistical fea-

ures benefit from more input data. On the other hand, the time

t takes until the classification results are available should be as

hort as possible, thus reducing the number of sessions available

n the aggregation period. As shown in Section 8.3.3 , the classifi-

ation performance increases with the number of aggregated ses-

ions. Therefore, the user of such a system is facing an interesting

iscrepancy. She can either wait longer time until more sessions

re available for aggregation and gain a higher classification perfor-

ance, or receive the results earlier and accept the resulting lower

lassification performance. 
 to large-scale network traffic monitoring and analysis, Computer 
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Fig. 10. FPR per day for selected classifiers. 
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We implemented two different session aggregation approaches

o visualize this trade off. The first approach is called SDA and

s based on time, meaning that we execute the aggregation from

essions to feature vectors, e.g., after 1, 2, ..., N days. The sec-

nd approach, called Threshold Based Aggregation (TBA), is based

n the number of sessions observed per device. The TBA ap-

roach is implemented using a rolling DBStream job (please re-

er to Section 4.3 for an example of rolling/incremental DBStream

obs). The job starts from a table A containing all sessions from all

evices as they are produced. We now want to produce a new ta-

le B in which all sessions are kept, until at least S sessions for

 single device have been gathered. For simplicity, let us assume

e update B only once a day. A new time window of B is thus

reated by the union over all sessions of the current day stored

n A , plus all sessions of all devices from the last time window of

 which have not reached S sessions yet. The result is that a ses-

ion is moved from the old to the new time window of B , until

here are S sessions available for that device. The session aggrega-

ion can now be applied on those devices of B , having at least S

essions and is stored in a new DBStream CT. 

.3.3. Evaluation of classification accuracy 

We have evaluated six different ML algorithms. 

Decision stump is a decision tree algorithm generating trees of

nly one level, therefore only a single feature is used to decide to

hich class a device belongs. 

J48 is an implementation of the well-known C4.5 decision tree

earner provided by the Weka toolkit. 

Random forest trains an ensemble of decision tree learners,

ach on a randomly selected subset of the given features using

ootstrapping to generate unique sample subsets for each tree. 

Hoeffding tree is a special decision tree learning algorithm. It

roduces classification models quickly, which can be updated dy-

amically as soon as new items arrive. 

Naive bayes is a statistical classifier based on Bayes’ theorem

ith a strong (naive) assumption that each feature is independent

rom each other feature. 

SVM is a non-probabilistic binary classifier. Support Vector Ma-

hines (SVMs) typically provide high classification performance at

he cost of long training phases. 

In Fig. 10 , we compare the FPR achieved by different classifica-

ion algorithms, aggregating device sessions through the 10 ses-

ion TBA approach. The days two to eight are used as a train-

ng set, therefore this period shows a decreased FPR, most promi-

ent for the random forest algorithm. In this classification problem,

omplex tree algorithms like the Hoeffding, J48 and random forest

chieve the lowest FPRs. The best performance is achieved by the

andom forest algorithm, at the cost of a very long training last-

ng several hours. The J48 algorithm provides the best balance be-

ween training time and classification performance. Therefore, we
Please cite this article as: A. Baer et al., DBStream: A holistic approach
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ave used the J48 algorithm in the following. We also trained a

VM model, which resulted in a very low performance classifier,

here nearly all the devices where classified as non M2M. 

As shown in Fig. 11 , the fraction of M2M devices is small but

epresents definitely an important share of the devices in the net-

ork, and it further decreased over weekends. This is likely the

ain cause for the decrease in classification performance during

eekends, which results in the spikes of the FPR shown in Fig. 10 .

n fact, the correct identification of M2M devices becomes harder

s soon as the fraction of M2M devices becomes lower. 

In Fig. 12 , we compare the SDA to the TBA session aggregation

pproach, using J48 models in both cases. In Fig. 12 a we show the

PR for the SDA approach, aggregating sessions based on an in-

reasing number of days. For each aggregation we export the first

art, i.e., the first day, the first two days, etc., as training set for

he J48 classifier. The FPR decreases with longer aggregation in-

ervals, although aggregation intervals longer than seven days do

ot seem to decrease the FPR any further. Fig. 12 b shows the clas-

ification performance for the TBA approach. In general, the FPR

s lower than for the SDA. Also here, longer aggregation intervals

esult in a decreased FPR, which can get as low as 11.6% in av-

rage for S > 160. In total, the TBA approach performs consider-

bly better for longer aggregation intervals as compared to the SDA

pproach. 

Finally, it is interesting to analyse how long it takes until a de-

ice is classified, especially for the TBA approach. For this purpose,

ig. 13 shows the normalized cumulative amount of devices reach-

ng at least S sessions. The number of devices with more than S

essions grows slower for larger thresholds. For example, for the

 > 160 TBA approach, even after an investigation period of more

han two months, only 33.8% of devices pass this threshold. 

. Conclusion and future work 

In this paper, we presented DBStream, a Data Stream Ware-

ouse (DSW) tailored for, but not limited to, Network Traffic Mon-

toring and Analysis (NTMA) applications. We have shown, that if

nstrumented correctly, a PostgreSQL database engine can process

arge amounts of data in a fast and efficient way. 

In a performance study, we demonstrated that a single-node in-

tance of DBStream can outperform a cluster of 10 Spark nodes

y a factor of 2.6, running the same query workload on the same

ataset. 

The flexibility of DBStream was presented in another applica-

ion, where it was instrumented to run multiple complex machine

earning tasks. The resulting MTRAC approach, based only on the

nalysis of coarse-grained network descriptors, shows a very high

ccuracy for the continuous classification of M2M devices in a 3G

obile network. 

The current design of DBStream is the result of its usage for

everal NTMA applications and its deployment in a mobile oper-

tional network. This experience allowed us to derive useful in-
 to large-scale network traffic monitoring and analysis, Computer 
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sights on how to improve the system to offer increased perfor-

mance and higher flexibility at the same time. Although current

results indicate that DBStream is already very much suited sys-

tem for typical network monitoring applications, some technical

challenges and interesting research questions remain to be solved.

For example, we want to investigate the possibility of extending

DBStream by replacing the database engine PostgreSQL with ei-

ther the parallel database system Greenplum [48] , or a MapReduce

based large-scale data processing framework like, e.g., Spark [16] .

Indeed, this would be a logical extension of the current sin-

gle machine DBStream architecture to a cluster system, thus en-

abling scale-out properties found in modern big data processing

frameworks. 

Furthermore, we have deployed DBStream in the intelligent

transportation systems domain, and plan its adoption also in other

application domains with similar properties such as smart grid

and smart city. In fact, data from those application domains has

similar properties. Data arrive as high volume data streams and

the analytic questions can be addressed utilizing DBStreams CEL

language. Preliminary results show that DBStream can be used to

store and analyze data from those domains as successfully as from

computer networks. 
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