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a b s t r a c t 

Considering the temporal and spatial correlations of sensor readings in wireless sensor networks (WSNs), 

this paper develops a clustered spatio-temporal compression scheme by integrating network coding (NC), 

compressed sensing (CS) and spatio-temporal compression for correlated data. The proper selection of 

NC coefficients and measurement matrix is investigated for this scheme. This design ensures successful 

reconstruction of original data with a considerably high probability and enables successful deployment of 

NC and CS in a real field. Moreover, in contrast to other spatio-temporal schemes with the same computa- 

tional complexity, the proposed scheme possesses lower reconstruction error by employing independent 

encoding in each sensor node (including the cluster head nodes) and joint decoding in the sink node. In 

order to further reduce the reconstruction error, we construct a new optimization model of reconstruc- 

tion error for the clustered spatio-temporal compression scheme. A distributed algorithm is developed 

to iteratively determine the optimal solution. Finally, simulation results verify that the clustered spatio- 

temporal compression scheme outperforms other two categories of compression schemes significantly in 

terms of recovery error and compression gain and the distributed algorithm converges to the optimal 

solution with a fast and stable speed. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Wireless sensor networks (WSNs) consisting of one (or few)

ink node(s) and a large number of sensor nodes are usually

eployed in a large region to monitor physical or environmental

onditions, such as temperature, light, humidity, etc. Since the

ime-series data of a sensor node usually have temporal depen-

ency, and the observed data of nearby nodes monitoring the

ame region at the same time slot are highly correlated, the sen-

or readings usually have both temporal and spatial correlations.

xploiting these correlations can reduce the number of transmis-

ions, and therefore, decrease the energy consumption in WSNs.

owever, there exist challenges as sensor nodes have limited
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nergy and low computational capability. Fortunately, compressed

ensing (CS) [1–3] transfers most of the computational complexity

nto the sink node (i.e., reduces the computational burden of

ensor nodes), and is considered an effective tool to explore the

utual correlation of sensor readings. Using CS, information can

e reconstructed with a high probability of success from a small

ollection of measurements, which means it can prolong the

ifetime of WSNs effectively. 

On the other hand, network coding (NC) [4] allows the inter-

ediate nodes to encode the incoming packets rather than simply

orwarding them. This powerful theory can improve the network

oad and enhance network robustness by employing path diversity.

o, in addition to prolonging the lifetime of WSNs, NC improves

ata security. As a result, combining NC and CS for exploiting the

orrelations of sensor readings in WSNs has become an attractive

opic. 

The existent research regarding the temporal and spatial corre-

ations in WSNs can be classified into the following four categories.

The first category consists of schemes which exploit either tem-

oral or spatial correlation but not both, such as [5–9] . Xie et al.
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[5] used hybrid CS method to propose an analytical model and

centralized clustering algorithm for obtaining the minimum num-

ber of transmissions in sensor networks. However, the sensing data

have considerable redundancy in temporal dimension, and they do

not exploit it. The works [6–9] investigated the correlation of sens-

ing data by combining the NC and CS. Luo et al. [6] proposed a

compressive NC for approximate sensor data gathering via explor-

ing the temporal correlation of sensing data. This paper overcomes

the all-or-nothing property of NC and achieves graceful degrada-

tion in data precisions. Yang et al. [7] designed a compressed

NC-based distributed data storage scheme by utilizing the spatial

correlation of sensor readings. This scheme possesses an energy-

efficient property by reducing the total number of transmissions

and receptions. Nabaee et al. [8,9] constructed a data gathering

technique by mining the spatial correlation of sensor data. This

technique can achieve a good approximation of the original data

with small amount of data received. Similarly, these four works do

not consider the temporal and spatial correlations simultaneously

which has a significant impact on network efficiency. 

The second category includes schemes which study the joint

sparsity model-based (JSM-based) spatio-temporal correlations

[10–12] , where the temporal and spatial correlations are inte-

grated. In [10] , the authors presented a balanced spatio-temporal

compression scheme for WSNs. This scheme can reduce energy

consumption and prevent overloading of nodes. Chen et al. [11] de-

veloped a compressive NC for error control in WSNs. This encoding

mechanism can achieve considerable compression ratio and toler-

ate finite erasures and errors at the same time. In [12] , Kong et al.

proposed a novel CS-based approach to reconstruct the massive

missing data and develop an environmental space time improved

CS algorithm to enhance the reconstruction accuracy. The feature

of the second category is that the spatial and temporal signals are

transformed into a long vector. Although the spatial and tempo-

ral correlations are exploited fully, the computational complexity

of reconstruction process is high. 

The works [13,14] belong to the third category where the spa-

tial and temporal correlations are both considered and investigated

separately. Feizi et al. [13] conceived a power efficient sensing

scheme by combining source channel NC and CS. The main mer-

its of this scheme are the low decoding complexity, independent

structure and the continuous rate distortion performance. Never-

theless, it assumes that the sampling data of original time-series

data still have spatial dependency which is not enough to be con-

vincing. This assumption was eliminated in [14] , in which Lee et al.

constructed a low complexity sensing for spatio-temporal data. The

principle of this scheme is that it samples time-series data in the

temporal dimension randomly, and then measures the data in the

spatial dimension. It is simple and easy to implement. However,

the reconstruction error of this scheme will not be low if the

sensor readings fluctuate remarkably among faraway nodes in the

same time slot. 

Gong et al. [15] formulated the fourth category scheme where

the spatial and temporal correlations are both considered and in-

vestigated as a unity. The NC scheme in [15] is a spatiotempo-

ral compressive scheme for distributed data storage in WSNs. This

scheme can reduce the number of transmissions and receptions,

but involves a high computational complexity in the reconstruc-

tion process. 

Despite the fact that the schemes mentioned above did a lot of

meaningful research work in exploration of correlations of sensor

readings, all of them (except [6] ) only focus on the design of en-

coding/decoding methods and neglect the optimization of network

resource allocation which can improve the network performance

significantly. 

The network optimization scenario considered in this paper is

similar with the resource optimization schemes in NC-based wire-
ess network. Currently, the existing works on optimization of NC-

ased network resource mainly address the problems of achieving

he maximum throughput [16,17] , the maximum lifetime [18] , the

inimum energy consumption [19,20] , the minimum packet delay

21] and the tradeoff between two randomly former metrics [22–

4] . 

In [16,17] , the maximum throughput of networks was studied

y developing joint congestion control and scheduling with NC.

an et al. in [18] maximized the network lifetime by optimiz-

ng the network flow control and video encoding bit rate jointly.

he main goal of works [19,20] is to minimize the network en-

rgy consumption. The work [21] minimized the packet delay in a

DMA-based wireless networks by utilizing NC and successive in-

erference cancelation techniques. The authors in [22] attempted

o make a tradeoff between network throughput and energy con-

umption. In [23] , the issue of throughput-delay tradeoff in NC

as studied. Also, the tradeoff between network throughput and

ifetime was investigated in [24] . These schemes mainly optimize

he conventional network performance metrics, however, the more

enefits will be obtained when the networks formulate new op-

imization objective by combining the conventional performance

etrics with CS theory. Based on the compressive NC scheme, the

ork [6] constructed a new optimization objective to improve the

erformance of compressive NC flows. Although it achieves the op-

imal network utility, wireless interference will be a big challenge

or this scheme. 

Motivated by the shortcomings of prior literatures on mining

he spatial and temporal correlations and optimizing the network

esources, we propose a clustered spatio-temporal compression

cheme by combining the NC and CS in WSNs and formulate a new

ptimization model to make link capacity assignment. The main

ontributions can be summarized as follows. 

One main contribution of our work is that we integrate the

S, NC and spatio-temporal compression into an unified and new

ystem, the NC coefficients and measurement matrix are designed

roperly for this new system. This design ensures successful recon-

truction of original data with a considerably high probability and

nables successful deployment of NC and CS in a real field. 

The second main contribution is that in contrast to other

patio-temporal schemes with the same computational complex-

ty, the proposed scheme demonstrates lower reconstruction error

y developing a new spatio-temporal coding method which em-

loying independent encoding in each sensor node (including the

luster head nodes) and joint decoding in the sink node. At the

ame time, it has lower computational complexity as compared

ith JSM-based spatio-temporal scheme and the fourth category

cheme by exploiting the temporal and spatial correlations of orig-

nal sensing data step by step. 

Our third main contribution is that we construct a new opti-

ization model for minimizing reconstruction error of the pro-

osed clustered spatio-temporal compression scheme, in which the

nreliability of wireless links and the effect of wireless interference

re taken into account. The minimization of reconstruction error

an be achieved in a distributed manner by utilizing dual decom-

osition, subgradient algorithm and low-pass filtering method. 

Finally, the proposed compression scheme has been verified to

ave considerable compression gain and lower reconstruction er-

or, and the optimization problem has been validated to converge

o the optimal solution with a fast and stable speed. 

The remainder of this paper is organized as follows. In

ection 2 , we introduce basic theory of CS. The network model

s defined in Section 3 . In Section 4 , the proposed compression

cheme is given in detail. Section 5 formulates the optimiza-

ion problem with the goal of minimizing reconstruction error. In

ection 6 , we analyze the performance of the proposed scheme.

inally, conclusions are drawn in Section 7 . 
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Fig. 1. Data collection in a clustered WSN with spatio-temporal compression. 
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. Compressed sensing background 

The basic fundamental of CS is that the information can be

ompressed into a small amount of equivalent information, and

hen reconstructed successfully with a high probability. For exam-

le, consider a signal x of length N that can be represented as

 = �θ for a given matrix � ∈ R N × N and column vector θ ∈ R N .

he vector θ is called the coefficient vector. To measure the sig-

al x , we obtain a sampling vector y ∈ R n by means of a n × N

easurement (projection) matrix �

 = �x = ��θ = �θ (1)

here n � N . 

Now the objective is to reconstruct the original signal x accu-

ately or approximately given y, � and � . The reconstruction is

erformed by finding the solution of the following l 0 minimization

roblem 

˜ = arg min 

θ
‖ 

θ‖ 0 s.t. �θ = y. (2) 

After obtaining ˜ θ, the reconstructed signal can be calculated as

˜ 
 = � ˜ θ. (3) 

Many algorithms have been proposed recently to solve this

inimization problem, Some examples are Orthogonal Matching

ursuit (OMP) [25] and Stage-wise Orthogonal Matching Pursuit

StOMP) [26] . 

Next, three definitions are given below. 

efinition 1. Sparse signal [27] : we define that signal x is s -sparse

ver dictionary � when coefficient vector θ has at most s non-zero

alues, i.e., ‖ θ‖ 0 ≤ s , where ‖‖ 0 counts the number of non-zero

lements. 

efinition 2. Compressible signal [27] : we define that signal x is

 -compressible if its sorted coefficient magnitudes in dictionary �

ecay rapidly, i.e., signal x can be well-approximated by a s -sparse

ignal which can be shown to satisfy 

 

x − x s ‖ 2 ≤ κ (4) 

here κ denotes a small number and x s is a s -sparse signal. 

efinition 3. Let � be a n × N matrix and let s < N be an integer.

here exists a constant δs that holds the following condition for all

 -sparse vectors x ∈ R N 

(1 − δs ) ‖ 

x ‖ 

2 
2 ≤ ‖ 

�x ‖ 

2 
2 ≤ (1 + δs ) ‖ 

x ‖ 

2 
2 (5)

hen the matrix � satisfies the restricted isometry property (RIP)

ith restricted isometry constants (RIC) δs [28] . 

. Network model 

In this section, we define the network structure and describe

he function of different type nodes. 

In our network scenario, we construct a clustered wireless sen-

or network where a sink node is used to collect the sensing data

bserved by sensor nodes. The whole sensor network has multiple

lusters, and the nearby sensor nodes are allocated into the same

luster where each cluster has a cluster head node. A sensor node

n one cluster which has the highest residual energy will be se-

ected as cluster head node. Each sensor node has the power to

ample the data and obtain the sampling data by exploiting the

emporal correlation of the original data. 
The cluster head nodes are responsible for collecting sampled

ata from their inner sensor nodes. At the same time, they also

ct as relay nodes for forwarding data from other cluster head

odes. Because the observed data of nearby sensors often exhibit

patial correlation, the cluster head nodes generate random projec-

ions of the sampled data of sensor nodes for transmitting instead

f transmitting the original sampled data. We exploit the tempo-

al and spatial correlations of original data simultaneously in our

etwork model, but the temporal and spatial correlations are con-

idered step by step. 

The linear NC is performed before the cluster head nodes for-

ard their own and the incoming packets. The NC operation is per-

ormed over a real field. Finally, the cluster head nodes transmit

he encoded data to the sink node via a one hop or multihop man-

er. The whole transmission process of sensing data are showed in

ig. 1 . 

In this network scenario, we only consider communication with

ne sink node for simplicity, but the proposed scheme can be gen-

ralized to multiple sink nodes. The topology of the cluster head

odes and sink node is represented by the directed graph G ( V, E ) ,

here V is the set of cluster head nodes and the sink node, and E

s the set of directed links. Let �+ (k ) be the links emanated from a

ode k , and �−(k ) be the links entering into a node k . Meanwhile,

e define that there are L clusters in the network, and each cluster

as M sensor nodes where the original data length (i.e., temporal

imension) of each sensor node is N . The data transmitted over

ink e at time t can be denoted by h t ( e ). 

. Clustered spatio-temporal compression scheme 

A clustered spatio-temporal compression scheme is developed

y extending the work in [8] to a more realistic scenario where

ensor readings exhibit both spatial and temporal correlations. The

S, NC and spatio-temporal compression are integrated into an

nified and new system. The proper design of NC encoding co-

fficients and measurement matrix ensures successful reconstruc-

ion of original data with a considerably high probability. Mean-

hile, the reconstruction error and computational complexity of

his scheme is lower due to employing independent encoding in

ach sensor node and joint decoding in sink node. The processing

nd transmitting of original data in this compression scheme are

llustrated in Fig. 2 . 

In the proposed framework, each sensor projects its original

ignal to a lower dimensional space by exploiting the temporal cor-

elation of the original signal. Also, the cluster head node randomly

rojects the sampled signals of its inner sensors to a lower dimen-

ional space by exploiting the spatial correlation. The linear NC is

erformed in the communication between different cluster head

odes. The sink node uses the CS-based spatial and temporal de-

oding algorithms to reconstruct the original signals. 
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Fig. 2. Clustered spatio-temporal compression framework. 
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4.1. Independent encoding 

In this subsection, the encoding methods for sensor nodes and

cluster head nodes are presented, and the preconditions for suc-

cessful decoding in the sink node are also described. 

Sensor node: the original signal of sensor node i in cluster k ∈
{ 1 , 2 , . . . , L } can be denoted as 

x k,i = [ x k,i 1 x k,i 2 . . . x k,iN ] 
T (6)

where x k, ij represents original data (temporal dimension) of sensor

node i at time j and the sensor node i belongs to cluster k , and x k, i

∈ R N × 1 . 

Then sensor node i samples its original signal by measurement

matrix � ∈ R n × N ( n � N ) to obtain 

y k,i = �x k,i (7)

where matrix � consists of n rows selected randomly from an N ×
N identity matrix, and y k, i ∈ R n × 1 . 

Finally, sensor node i sends its sampling signal y k, i to the clus-

ter head node k . 

Cluster head node: we assume that cluster head node k re-

ceives M sampled signals from its M inner cluster sensor nodes,

and these received signals are organized into a matrix. The cluster

head node uses a measurement matrix �′ 
k 

to measure these re-

ceived signals, the measurement result of j th ( j ∈ { 1 , 2 , . . . , n } ) col-

umn of that matrix can be shown as 

z ′ k, j = [ z k, 1 j z k, 2 j · · · z k,m j ] 
T = �′ 

k y 
′ 
k, j 

= �′ 
k [ y k, 1 j y k, 2 j · · · y k,M j ] 

T , �′ 
k ∈ R 

m ×M (8)

where y k, ij represents the j th sampled data of sensor node i and

the sensor node i belongs to cluster k , y ′ 
k, j 

∈ R M×1 and z ′ 
k, j 

∈ R m ×1 . 

As the relay node, the output data of cluster head node k over

link e during time slot t can be represented by 

h t (e ) = 

∑ 

e ′ ∈ �−(k ) 

βt (e, e ′ ) . h t−1 (e ′ ) + 

∑ 

i ∈{ 1 , 2 , ... ,m } 
αt (e, i ) . z k,i (9)

where z k,i = [ z k,i 1 z k,i 2 · · · z k,in ] , the links e and e ′ denote

the outgoing and incoming links of cluster head node k respec-

tively, and β t ( e, e ′ ) and αt ( e, i ) are the linear combination coeffi-

cients of NC at time slot t which are chosen from real numbers.

The cluster head node k ’s signals are included in the encoding

process. In order to track the transformation process of NC en-

coding coefficients, we append the [(k − 1) m + i ] th row of a L.m -

dimensional identity matrix to the transmitted packet of z k, i . 

According to Nabaee and Labeau [8] , the transmitting data of all

links at time slot t can be written as 

h t = B t . h t−1 + A t .Z (10)
here the matrices B t ∈ R | E | × | E | , A t ∈ R | E | × Lm and Z ∈ R Lm × n can

e respectively represented as 

 t : { B t (e, e ′ ) } = 

{
βt (e, e ′ ) , e ′ ∈ �−(k )& e ∈ �+ (k ) , k ∈ V 

0 , otherwise 
(11)

 t : { A t (e, i ) } = 

{
αt (e, i ) , e ∈ �+ (k ) , k ∈ V, i ∈ { 1 , 2 , . . . , m } 

0 , otherwise 
(12)

 = 

⎡ 

⎢ ⎢ ⎢ ⎣ 

z ′ 1 , 1 z ′ 1 , 2 . . . z ′ 1 ,n 
z ′ 2 , 1 z ′ 2 , 2 · · · z ′ 2 ,n 

. . . 
. . . 

. . . 
. . . 

z ′ L, 1 z ′ L, 2 · · · z ′ L,n 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. (13)

Sink node: from (10) , the received data of the sink node at time

lot t can be organized as follows: 

 t = 

[
h t (e ) : e ∈ �−(D ) 

]
= F . h t 

= F . B t . h t−1 + F . A t .Z 

= �t .Z (14)

here u t denotes the received data, and the matrices F and �t are

espectively defined as 

 : { F (e, i ) } = 

{
1 , i denotes data index of e, e ∈ �−(D ) 

0 , otherwise 
(15)

t = F . 

t ∑ 

t ′ =1 

t ∏ 

t ′′ = t ′ +1 

B t ′′ . A t ′ . (16)

eanwhile, we can find out that the value of �t can be obtained

y retrieving the appended L.m -dimensional matrix from the re-

eived packets. 

Thus the whole real data which the sink node receives can be

iven by 

 = 

⎡ 

⎢ ⎢ ⎣ 

u 1 

u 2 

. . . 
u t 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

�1 

�2 

. . . 
�t 

⎤ 

⎥ ⎥ ⎦ 

.Z 

= 

⎡ 

⎢ ⎢ ⎣ 

�1 

�2 

. . . 
�t 

⎤ 

⎥ ⎥ ⎦ 

. 

⎡ 

⎢ ⎢ ⎢ ⎣ 

�′ 
1 0 · · · 0 

0 �′ 
2 0 

. . . 
. . . 0 

. . . 0 

0 · · · 0 �′ 
L 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

⎡ 

⎢ ⎢ ⎣ 

y ′ 1 , 1 y ′ 1 , 2 · · · y ′ 1 ,n 
y ′ 2 , 1 y ′ 2 , 2 · · · y ′ 2 ,n 

. . . 
. . . 

. . . 
. . . 

y ′ L, 1 y ′ L, 2 · · · y ′ L,n 

⎤ 

⎥ ⎥ ⎦ 

= 

⎡ 

⎢ ⎢ ⎣ 

�1 

�2 

. . . 
�t 

⎤ 

⎥ ⎥ ⎦ 

. 

⎡ 

⎢ ⎢ ⎢ ⎣ 

�′ 
1 0 · · · 0 

0 �′ 
2 0 

. . . 
. . . 0 

. . . 0 

0 · · · 0 �′ 
L 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 

⎡ 

⎢ ⎢ ⎢ ⎣ 

� ′ 
1 0 · · · 0 

0 � ′ 
2 0 

. . . 
. . . 0 

. . . 0 

0 · · · 0 � ′ 
L 

⎤ 

⎥ ⎥ ⎥ ⎦ 

. 
[
θ ′ 

1 θ ′ 
2 · · · θ ′ 

n 

]

= �. �′ . � ′ . 
[
θ ′ 

1 θ ′ 
2 · · · θ ′ 

n 

]
= �. � ′ . 

[
θ ′ 

1 θ ′ 
2 · · · θ ′ 

n 

]
(17)
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Table 1 

Notations. 

E The set of network links 

E C The set of network cliques 

V The set of cluster head nodes and sink node 

g l Total flow rate of flow l 

H l A routing matrix of data flow l 

p ij The probability of link being reliable ( i, j ) 

f l 
i j 

The transmission rate of flow l over link ( i, j ) 

C ij The associated capacity of link ( i, j ) 
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here the matrix �′ is a block-diagonal matrix which is com-

osed of L measurement matrices, � ′ is also a block-diagonal

atrix which is composed of L orthonormal bases, the signal

 y ′ 1 ,i y ′ 2 ,i . . . y ′ L,i ] T , i ∈ { 1 , 2 , . . . , n } is a batch of com-

ressible signals over � ′ , and θ ′ 
i is the coefficient vector. 

heorem 1. Suppose that the entries of measurement matrix �′ 
k 
, k ∈

 1 , 2 , . . . , L } and coding coefficients β t ( e, e ′ ) are selected indepen-

ently from a zero-mean Gaussian distribution, and αt (e, i ) = 0 , t >

 , then the entries of matrix � are independent zero-mean Gaussian

ariables. 

roof. If the coding coefficient β t ( e, e ′ ) are selected independently

rom a zero-mean Gaussian distribution, and αt (e, i ) = 0 , t > 1 ,

imilar to the proof of Theorem 3.1 in [8] , we can show that the

ntries of � are zero-mean Gaussian random variables, and the en-

ries of different rows are independent. 

Because the entries of matrix � are linear combinations of the

ntries of �′ , and a linear combination of independent Gaussian

andom variables is still a Gaussian variable; the entries of ma-

rix � are zero-mean Gaussian random variables as long as the en-

ries of matrix �′ 
k 
, k ∈ { 1 , 2 , . . . , L } are selected independently from

ero-mean Gaussian distribution. 

Subsequently, as the entries of different columns in matrix �

re obtained by linear combinations of variables from two inde-

endent columns of �′ , the entries of different columns in � are

ndependent. Furthermore, since the entries of same columns in

atrix � can be considered as the linear combinations of variables

rom two independent rows of �, the entries of the same columns

n � are independent. 

According to the above results, we can conclude that the entries

f matrix � are the independent zero-mean Gaussian variables. �

.2. Joint decoding 

The received data of sink node can be organized as in

q. (17) and then decoded jointly. 

Roughly speaking, a Gaussian matrix with independent zero-

ean entries is incoherent with regard to any orthogonal ba-

is. Moreover, the zero-mean Gaussian matrix with independently

nd identically distributed entries satisfies RIP with high proba-

ility [29] . So if matrix � satisfies the conditions described in

heorem 1 , then resulting �. � ′ will have the RIP with high prob-

bility. 

When the matrices �, � ′ and U are provided in the sink node,

nd the matrix � holds the conditions in Theorem 1 , an approxi-

ate value ˜ θ ′ 
i 

of θ ′ 
i 
, i ∈ { 1 , 2 , . . . , n } can be calculated by the recon-

truction algorithm of CS. 

After the approximate value ˜ θ ′ 
i 

is found, the approximate matrix

˜ 
 

′ of Y ′ can be easily recovered by computing 

˜ 
 

′ = � ′ . 
[

˜ θ ′ 
1 

˜ θ ′ 
2 · · · ˜ θ ′ 

n 

]
(18) 

here Y ′ = 

⎡ 

⎢ ⎢ ⎣ 

y ′ 1 , 1 y ′ 1 , 2 · · · y ′ 1 ,n 
y ′ 2 , 1 y ′ 2 , 2 · · · y ′ 2 ,n 

. 

. 

. 
. 
. 
. 

. . . 
. 
. 
. 

y ′ L, 1 y ′ L, 2 · · · y ′ L,n 

⎤ 

⎥ ⎥ ⎦ 

. 

Then we have the following equation 

 

′ = 

˜ Y ′ + E ′ (19) 

here E ′ denotes the error occurred in the reconstruction process

f Y ′ . 
Subsequently, we can obtain an equation as follows: 

 

′ 
(k −1) M+ i = 

˜ Y ′ (k −1) M+ i + E ′ (k −1) M+ i 

= 

[
�x k,i 

]T 
, k ∈ { 1 , 2 , . . . , L } , i ∈ { 1 , 2 , . . . , M} (20) 
here the subscript ( k -1) M + i denotes the [( k -1) M + i ]- th row of a

atrix. 

Eq. (20) can also be written as 

 k,i = 

[
˜ Y ′ (k −1) M+ i + E ′ (k −1) M+ i 

]T = �x k,i = ��θk,i (21) 

here y k, i is a batch of sampling data, which is compressible over

rthonormal basis � , and θ k, i is the coefficient vector. 

Afterward, an approximate value ˜ θk,i of θ k, i can be recovered

y the reconstruction algorithm of CS. Finally, the original signal

f sensor node i in cluster k can be obtained by calculating the

ollowing approximate value 

˜ 
 k,i = � ˜ θk,i , k ∈ { 1 , 2 , . . . , L } , i ∈ { 1 , 2 , . . . , M} . (22)

. Optimization design 

Reconstruction error is an important performance metric for

bove compression scheme. Currently, the existent publications

mprove the reconstruction error mainly by training the sparse dic-

ionary or optimizing the measurement matrix. These papers focus

n the design of sparsifying transform and deterministic measure-

ent matrix, which do not consider the network resources and

cenario that can impact the reconstruction error significantly. In

his section, we formulate a new model to optimize the recon-

truction error of the proposed compression scheme from the per-

pective of network resources. The focus of this optimization is

n the communication between cluster head nodes and one sink

ode, among which the cluster head nodes transmit data to the

ink node, in the meantime, they also take as intermediate for-

arders. In this network model, we only consider one sink node

or collecting sensor readings, but our design can be generalized to

ultiple sink nodes. The observed data of different sensor nodes

t a specific time slot is referred to as a data flow. The random

C operation implemented only among packets of the same flow

intra-flow NC). 

The notations used in our optimization problem are explained

n Table 1 . 

We assume that the data from cluster head nodes are transmit-

ed to the neighboring cluster head nodes through multiple links

nd transmitted to the sink node along a multipath network pre-

efined by a multipath routing protocol. The pair ( i, j ) denote the

ink from cluster head node i to its neighboring node j . Also H 

l 
i j 

= 1

ndicates that the flow l traverses link ( i, j ), on the contrary, H 

l 
i j 

= 0

ndicates that the flow l doesn’t traverse link ( i, j ). The different

inks may interfere with each other due to overlapping in the com-

unication range, so we define a clique as a basic conflict set that

onsists of several links which interfere with each other and at

ost one of them can carry data at the same time and avoid the

nterference. The set E C consists of all the cliques in the network,

.e., a random clique E S 
C 

is an element of E C . 

Due to the unreliability of wireless links, we assume that the

luster head nodes forward their encoded data over links success-

ully with a certain probability, i.e., each link ( i, j ), i, j ∈ V has a

eliability probability p ij , e.g., p ij = 0.9 means that only 90% of the
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transmitted data over link ( i, j ) can be received successfully by the

next hop node. The transmission rate f l 
i j 

varies from link to link. 

5.1. Optimization problem formulation 

In this optimization model, we will minimize the reconstruc-

tion error for a group flow G from above proposed compression

scheme. As we known, the reconstruction error of a CS algorithm

is determined by the amount of final received measurements and

compressible (or sparse) degree of original data over orthonormal

basis when the measurement matrix satisfies the RIP. According

to [30] , the average squared reconstruction error of spatial com-

pression in data flow l ∈ G is upper bounded by a constant times

(Lm/ log LM) −2 μl where μl governs the compression degree of spa-

tial dimension of data flow l . In addition, we assume that different

data flows from G are all compressible signals in spatial dimension,

i.e., different data flows from G have the same compression degree.

Therefore, we define the reconstruction error of spatial compres-

sion in data flow l as a function which can be written as 

R ( g l ) = C 0 ( g 
l ) −2 μ (23)

where the constant C 0 > 0, μ= μl ≥ 0 is a constant related to the

compression degree of data, and g l is the total flow rate of flow l

which is measured as the amount of received measurements per

unit of time in the sink node. 

Based on the network scenario defined above and the objective

of our optimization problem, we can formulate the reconstruction

error minimization problem of compression flows as follows: 

min 

g, f 

∑ 

l∈ G 
R ( g l ) 

Subject to g l = 

∑ 

i ∈ V 
g l i , ∀ l ∈ G 

∑ 

j: H l 
i j 
=1 

p i j f 
l 
i j −

∑ 

j: H l 
ji 
=1 

p ji f 
l 
ji = σ l 

i , ∀ i ∈ V, ∀ l ∈ G 

∑ 

l∈ G 
∑ 

(i, j) ∈ E S 
C 

f l 
i j 

C i j 

≤ 1 , ∀ E S C ∈ E C 

g l , g l i , f 
l 
i j ≥ 0 , ∀ i, j ∈ V, ∀ l ∈ G. (24)

The first constraint demonstrates that the total flow rate of re-

ceived flow l at the sink node equals to the sum of the flow rates

of all cluster head nodes, where the flow rate g l 
D 

= 0 , and D de-

notes the sink node. 

The second constraint is a flow conservation law that needs to

be satisfied for transmitting data. Roughly speaking, the sum of in-

coming flow rates should be equal to the total outgoing flow rates,

but the source and sink nodes are two exceptions. Because all the

cluster head nodes are source nodes, the value of σ l 
i 

is given by 

σ l 
i = 

{
g l 

i 
, i f i ∈ { V − D } 

−g l , i f i = D 

(25)

where f l 
D j 

= 0 , j ∈ V, and D denotes the sink node. 

Intra-flow coding allows the same flow from different cluster

head nodes within a link to share capacity by coding together.

Meanwhile, the sum of the transmission rate of all flows l ∈ G

over link ( i, j ) should not exceed the overall capacity of link ( i, j ).

It means that this optimization model should satisfy the following

constraint ∑ 

l∈ G 
f l i j ≤ C i j , ∀ i ∈ V. (26)

However, the third constraint applies a more strict restriction

on variable f l 
i j 

to take into account the effect of wireless inter-

ference. This constraint indicates that the mutual interfering links
annot transmit the information at the same time, i.e., the sum of

ccupancy rate of all links belonging to the same clique E S 
C 

must

ot exceed unity. This constraint also expresses the requirement

hat each cluster head node cannot transmit and receive data si-

ultaneously, but it can either transmit or receive data at the

ame time. The symbol C ij in the third constraint denotes the ca-

acity of random link (i, j) ∈ E S 
C 
, and we assume that all links of

etwork have equal capacity in this network scenario. 

The other constraints are simple, g l , g l 
i 

and f l 
i j 

are defined as

on-negative. 

.2. Distributed algorithm 

Since the objective function of the above optimization problem

s a continuous and strictly convex function, and the constraints

re linear, the optimization problem (24) is a convex optimization

roblem. Therefore, there is no duality gap, and we apply a dual

ecomposition method to solve this optimization problem. Firstly,

e relax the second and third constraints in (24) to construct a

agrangian function with multipliers λl 
i 

and ε 
E S 

C 
as follows: 

 (g, f, λ, ε) 

= 

∑ 

l∈ G 
R ( g l ) −

∑ 

i ∈ V,l∈ G 
λl 

i 

⎛ 

⎝ 

∑ 

j: H l 
i j 
=1 

p i j f 
l 
i j −

∑ 

j: H l 
ji 
=1 

p ji f 
l 
ji − σ l 

i 

⎞ 

⎠ 

−
∑ 

E S 
C 
∈ E C 

ε E S 
C 

[ ( ∑ 

l∈ G 

∑ 

(i, j) ∈ E S 
C 

f l i j 

) /
C i j − 1 

] 

= 

∑ 

l∈ G 

[ 

R 

( ∑ 

i ∈ V 
g l i 

) 

+ 

∑ 

i ∈{ V −D } 
λl 

i g 
l 
i − λl 

D 

∑ 

i ∈ V 
g l i 

] 

+ 

∑ 

l∈ G 

⎧ ⎨ 

⎩ 

∑ 

i ∈ V 

∑ 

j: H l 
i j 
=1 

p i j f 
l 
i j (λ

l 
j − λl 

i ) 

−
∑ 

E S 
C 
∈ E C 

[ ( ∑ 

(i, j) ∈ E S 
C 

ε E S 
C 

f l i j 

) /
C i j 

] } 

+ 

∑ 

E S 
C 
∈ E C 

ε E S 
C 

(27)

here the Lagrange multipliers λl 
i 

and ε 
E S 

C 
can be interpreted as

he congestion price and interference price, respectively. 

Next, the primal optimization problem can be formulated as

ollows: 

 (λ, ε) = min 

g, f≥0 
L (g, f, λ, ε) . (28)

In order to solve the above primal problem we define the fol-

owing dual problem. 

ax 
λ,ε 

D (λ, ε) 

ubject to λ ≥ 0 ; ε ≥ 0 . (29)

Based on the separable property of Lagrange function and the

efinition of D ( λ, ε), D ( λ, ε) can be decomposed into two sub-

roblems. The first subproblem can be considered as a congestion

ontrol problem which is written as 

in 

g 
L 1 (g, λ) 

 min 

g 
R 

( ∑ 

i ∈ V 
g l i 

) 

+ 

∑ 

i ∈{ V −D } 
λl 

i g 
l 
i − λl 

D 

∑ 

i ∈ V 
g l i 

ubject to g l ≥ 0 . (30)
i 
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The second subproblem represents the combined constraints

ow conservation and wireless interference, and it can be written

s 

in 

f 
L 2 ( f, λ, ε) 

 min 

f 

∑ 

i ∈ V 

∑ 

j: H l 
i j 
=1 

p i j f 
l 
i j (λ

l 
j − λl 

i ) −
∑ 

E S 
C 
∈ E C 

[ ( ∑ 

(i, j) ∈ E S 
C 

ε E S 
C 

f l i j 

) /
C i j 

] 

ubject to f l i j ≥ 0 . (31) 

The dual problem (29) can be solved by utilizing a subgradient

lgorithm. The dual variables can be updated as follows: 

l 
i (r + 1) 

= 

⎡ 

⎣ λl 
i (r) + ρλ

⎛ 

⎝ 

∑ 

j: H l 
i j 
=1 

p i j f 
l 
i j (r) −

∑ 

j: H l 
ji 
=1 

p ji f 
l 
ji (r) − σ l 

i (r) 

⎞ 

⎠ 

⎤ 

⎦ 

+ 

(32) 

 E S 
C 
(r + 1) = 

[ 

ε E S 
C 
(r) + ρε 

( ∑ 

l∈ G 
∑ 

(i, j) ∈ E S 
C 

f l 
i j 
(r) 

C i j 

− 1 

) ] + 

(33) 

here the values of g l 
i 
(r) and f l 

i j 
(r) are selected from the optimal

olution of subproblems (30) and (31) at the r th iteration, ρλ and

ε are small step sizes corresponding to the dual variables, and

 g] + = g when g is a non-negative value, otherwise 0. 

The solution of the above subproblems are described in the fol-

owing parts. 

Subproblem (30) : According to the objective function of sub-

roblem L 1 ( g, λ), the optimal flow rate l of cluster head node

 ∈ { V − D } can be denoted as 

 

l∗
i = arg min 

g 
L 1 (g, λ) 

= arg min 

g 

[ 

R 

( ∑ 

i ∈{ V −D } 
g l i 

) 

+ 

∑ 

i ∈{ V −D } 
λl 

i g 
l 
i − λl 

D 

∑ 

i ∈{ V −D } 
g l i 

] 

. (34) 

At the r th iteration, the cluster head node i ∈ { V − D } adjusts its

ow rate l according to the congestion prices λl 
i 
(r) , λl 

D 
(r) and the

ow rate g l ( r ), and the optimization problem (34) can be solved by

he following method. 

As explained in [31] , the low-pass filtering method can remove

scillation and accelerate the convergence speed. So, we use the

ame concept to solve the optimization problem (34) . In this way,

he cluster head node i ∈ { V − D } applies the following low-pass

ltering method to update the flow rate g l 
i 
. 

 

l 
i (r + 1) = 

⎧ ⎨ 

⎩ 

(1 − γ1 ) g 
l 
i (r) + γ1 ̄g 

l 
i (r) + γ1 

⎡ 

⎣ C 0 

( ∑ 

i ∈{ V −D } 
g l i (r) 

) −2 μ−1

+ λl 
i (r) − λl 

D (r) 

⎤ 

⎦ 

⎫ ⎬ 

⎭ 

+ 

(35

¯
 

l 
i (r + 1) = (1 − γ1 ) ̄g 

l 
i (r) + γ1 g 

l 
i (r) (36)

here the augmented variable ḡ l 
i 

is defined as the optimal estima-

ion of g l 
i 
, and γ 1 is a small step size. Finally, to calculate the g l :

 

l (r + 1) = 

∑ 

i ∈{ V −D } 
g l i (r + 1) . (37)
c

Subproblem (31) : According to the objective function of sub-

roblem L 2 ( f, λ, ε), the optimal transmission rate of flow l over

ink ( i, j ) can be denoted as 

f l∗i j = arg min 

f 
L 2 ( f, λ, ε) 

= arg min 

f 

⎧ ⎨ 

⎩ 

∑ 

i ∈ V 

∑ 

j: H l 
i j 
=1 

p i j f 
l 
i j (λ

l 
j − λl 

i ) 

−
∑ 

E S 
C 
∈ E C 

[ ( ∑ 

(i, j) ∈ E S 
C 

ε E S 
C 

f l i j 

) /
C i j 

] } 

. (38) 

At the r th iteration, each link ( i, j ) adjusts its transmission rate

f flow l according to the congestion prices λl 
i 
(r) , λl 

j 
(r) and in-

erference price ε 
E S 

C 
(r) , and the optimization problem (38) can be

olved by the following joint method. 

First, we obtain the partial derivative of function L 2 ( f, λ, ε) with

espect to the variable f l 
i j 

: 

∂ L 2 ( f, λ, ε) 

∂ f l 
i j 

= p i j (λ
l 
j − λl 

i ) − ε E S 
C 
/ C i j (39) 

nd then we construct a joint method by employing the first-order

agrangian algorithm and low-pass filtering method. Finally, the

ink ( i, j ) updates the transmission rate of flow l in the following

ormat 

f l i j (r + 1) = { (1 − γ2 ) f 
l 
i j (r) + γ2 f̄ 

l 
i j (r) 

+ γ2 [ p i j (λ
l 
j (r) − λl 

i (r)) − ε E S 
C 
(r) / C i j ] } + 

H l 
i j 
=1 , (i, j) ∈ E S 

C 

(40) 

f̄ l i j (r + 1) = (1 − γ2 ) ̄f 
l 
i j (r) + γ2 f 

l 
i j (r) (41)

here the augmented variable f̄ l 
i j 

is defined as the optimal estima-

ion of f l 
i j 
, and γ 2 is a small step size. 

Integrating the content described above, we can obtain the fol-

owing distributed optimization algorithm. 

lgorithm 1. r = 1, 2, 3,… , when the r th iteration is executing,

his distributed optimization algorithm can be shown as 

(1) Cluster head node i ∈ { V − D } solves the optimization prob-

lem (34) according to the congestion prices λl 
i 
(r) , λl 

D 
(r) and

the flow rate g l ( r ); 

(2) Each link ( i, j ), i ∈ { V − D } solves the optimization problem

(38) according to the congestion prices λl 
i 
(r) , λl 

j 
(r) and in- 

terference price ε 
E S 

C 
(r) ; 

(3) Each link ( i, j ), i ∈ V updates the congestion price λl 
i 
(r + 1)

according to Eq. (32) and the solutions of step (1) and (2); 

(4) Cluster head node i updates the interference price ε 
E S 

C 
(r + 1)

according to Eq. (33) and the solution of step (2); 

(5) Setting r = r +1, then the procedure goes back to step (1) and

executes repeatedly until iterations end. 

Although Algorithm 1 is a distributed algorithm, it still needs

ome feedback messages. For example, in order to solve the opti-

ization problem (38) , the transmission rates of i ’s neighbor nodes

hould be sent to cluster head node i , and the congestion price
l 
j 
(r) of next hop node j should be fed back to node i . Fortu-

ately, the communication cost of feedback messages is low for

nly transmitting a small amount of digits and most of messages

an be included in ACK packet. 
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5.3. Convergence analysis 

In this subsection, we analyze the convergence of Algorithm 1 .

Assume that ( λ∗, ε ∗) denotes the optimal solution of dual prob-

lem, and ( g ∗, f ∗) denotes the optimal solution of primal problem.

We have the following convergence result by employing the con-

vergence analysis method in [32] . 

Theorem 2. If step sizes ρλ and ρε are sufficiently small, and the

initial values of g, f , λ and ε are all not less than 0, then the dual

variables of Algorithm 1 converge statistically to the optimal solution

( λ∗, ε ∗) of dual problem (29) . 

Proof. We define the ∇( r ) as the subgradient vector of dual prob-

lem (29) , then ∇ 

l 
i 
(r) and ∇ 

E S 
C 
(r) can be shown as 

∇ 

l 
i (r) = 

∑ 

j: H l 
i j 
=1 

p i j f 
l 
i j (r) −

∑ 

j: H l 
ji 
=1 

p ji f 
l 
ji (r) − σ l 

i (r) (42)

∇ E S 
C 
(r) = 

∑ 

l∈ G 
∑ 

(i, j) ∈ E S 
C 

f l 
i j 
(r) 

C i j 

− 1 . (43)

Meanwhile, we define the Lyapunov function as follows: 

˙ 
 (λ(r) , ε(r)) = 

1 

2 ρλ

∑ 

i,l 

(λl∗
i − λl 

i (r)) 
2 + 

1 

2 ρε 

∑ 

E S 
C 

(ε ∗
E S 

C 

− ε E S 
C 
(r)) 

2 
. 

(44)

According to Eqs. (32) and (33) , we have 

˙ 
 (λ(r +1 ) , ε(r +1 )) 

≤ 1 

2 ρλ

∑ 

i,l 

[ λl∗
i − λl 

i (r) − ρλ∇ 

l 
i (r)] 

2 

+ 

1 

2 ρε 

∑ 

E S 
C 

[ ε ∗
E S 

C 

− ε E S 
C 
(r) − ρε ∇ E S 

C 
(r)] 

2 

= 

1 

2 ρλ

∑ 

i,l 

{ [ λl∗
i − λl 

i (r)] 
2 − 2 ρλ∇ 

l 
i (r)[ λl∗

i − λl 
i (r)] + ρ2 

λ∇ 

l2 
i (r) } 

+ 

1 

2 ρε 

∑ 

E S 
C 

{ [ ε ∗
E S 

C 

− ε E S 
C 
(r)] 

2 − 2 ρε ∇ E S 
C 
(r)[ ε ∗

E S 
C 

− ε E S 
C 
(r)] 

+ ρ2 
ε ∇ 

2 
E S 

C 

(r) } 
= 

˙ V (λ(r) , ε(r)) + 

∑ 

i,l 

∇ 

l 
i (r)[ λl 

i (r) − λl∗
i ] 

+ 

∑ 

E S 
C 

∇ E S 
C 
(r)[ ε E S 

C 
(r) − ε ∗

E S 
C 

] 

+ 

∑ 

i,l 

ρλ

2 

∇ 

l2 
i (r) + 

∑ 

E S 
C 

ρε 

2 

∇ 

2 
E S 

C 

(r) . (45)

Based on the subgradient property, we can obtain ∑ 

i,l 

∇ 

l 
i (r)[ λl 

i (r) − λl∗
i ] + 

∑ 

E S 
C 

∇ E S 
C 
(r)[ ε E S 

C 
(r) − ε ∗

E S 
C 

] 

≤ D (λ(r) , ε(r)) − D ( λ∗, ε ∗) . (46)

Substituting the corresponding part with the formula (46) , then

the inequality (45) can be reformulated as 

˙ 
 (λ(r +1 ) , ε(r +1 )) 

≤ ˙ V (λ(r) , ε(r)) − [ D ( λ∗, ε ∗) − D (λ(r) , ε(r))] + 

ρλ

2 

Q 1 + 

ρε 

2 

Q 2 

(47)

where 
∑ 

i,l ∇ 

l2 
i 
(r) ≤ Q 1 and 

∑ 

E S 
C 
∇ 

2 
E S 

C 

(r) ≤ Q 2 . 
Utilizing the inequality recursively, the inequality (47) can be

ecast in the following form: 

˙ 
 (λ(r +1 ) , ε(r +1 )) 

≤ ˙ V (λ(1) , ε(1)) −
r ∑ 

τ=1 

[ D ( λ∗, ε ∗) − D (λ(τ ) , ε(τ ))] + 

ρλ

2 

r Q 1 

+ 

ρε 

2 

r Q 2 . (48)

By reason of ˙ V (λ(r +1 ) , ε(r +1 )) ≥ 0 , we have 

r ∑ 

=1 

[ D ( λ∗, ε ∗) − D (λ(τ ) , ε(τ ))] 

≤ ˙ V (λ(1) , ε(1)) + 

ρλ

2 

r Q 1 + 

ρε 

2 

r Q 2 . (49)

Furthermore, since D ( λ( τ ), ε( τ )) is a concave function with re-

pect to variables λ and ε, we can get the following inequality via

ensen’s inequality. 

 ( λ∗, ε ∗) − D ( ̄λ(r) , ε̄ (r)) ≤
˙ V (λ(1) , ε(1)) 

r 
+ 

ρλ

2 

Q 1 + 

ρε 

2 

Q 2 (50)

here λ̄(r) = 

1 
r 

∑ r 
τ=1 λ(r) and ε̄ (r) = 

1 
r 

∑ r 
τ=1 ε(r) . 

Finally, we can conclude that 

im sup 

t→∞ 

[ D ( λ∗, ε ∗) − D ( ̄λ(r) , ε̄ (r))] ≤ ρλ

2 

Q 1 + 

ρε 

2 

Q 2 . (51)

According to the definition of statistical convergence in [32] ,

iven the small enough step sizes ρλ and ρε , the dual variables

f Algorithm 1 converge statistically to the optimal solution ( λ∗,

 

∗) of dual problem (29) . �

Since the primal optimization problem (24) is a convex pro-

ramming problem, there is no duality gap. In other words, the

ptimization problems (34) and (38) converge statistically to the

ptimal solution ( g ∗, f ∗) of primal problem (24) when dual vari-

bles converge to the optimal solution ( λ∗, ε ∗). 

. Performance evaluation 

This section provides the performance analysis to show the ro-

ustness and efficiency of the proposed clustered spatio-temporal

ompression scheme and the distributed optimization model in the

revious sections. 

.1. Performance analysis: compression schemes 

In this subsection, we compare the simulation results of rel-

tive recovery error and compression gain of our method with

hose of two other categories of compression schemes. The algo-

ithm CoSaMP [33] is used as the reconstruction algorithm of CS

or spatial and temporal compression data in this simulation. The

imulation uses the real data collected by Intel Berkeley research

ab [34] . 40 × 500 (i.e., L.M × N ) temperature readings are selected

rom this WSN, where we divide these sensors into 4 clusters and

et the spatial and temporal readings as s and w -compressible sig-

als, respectively. We also assume that the value of s and w equals

o 5 and 60, respectively. 

In the simulation figures, ‘Spatial’ refers to the category of com-

ression schemes which only considers the spatial compression,

uch as [7–9] ; ‘Spatio-temporal’ denotes the category of compres-

ion schemes which considers the spatial and temporal compres-

ion separately, such as [13,14] ; ‘Clustered spatio-temporal’ denotes

he proposed scheme in this paper. 

The relative recovery error and compression gain are defined

o be ‖ x − ˜ x ‖ 2 / ‖ x ‖ 2 and (L.M.N) / [ L.m (n + L.m )] , respectively, where

he original 40 × 500 readings are reshaped into a 20,0 0 0 × 1
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Fig. 3. Relative recovery error with different overmeasuring factor. 
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Fig. 4. Compression gain with different overmeasuring factor. 
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(  
ector x , and ˜ x is an approximate reconstruction vector of x . The

vermeasuring factor n / w of temporal dimension varies from 1.5

o 4. 

In this simulation scenario, the orthonormal bases � and
′ 
i 
, i ∈ { 1 , 2 , . . . , L } are defined as discrete cosine transform. The

easurement matrix � consists of n rows selected randomly from

n N × N identity matrix. The elements of measurement matrix
′ 
i 
, i ∈ { 1 , 2 , . . . , L } are selected from Gaussian distribution N (0, 1).

he entries of � are drawn randomly from Gaussian distribution

 (0, 1/( L.m )). 

Fig. 3 displays the relationship between relative recovery error

nd overmeasuring factor in the temporal dimension when the row

ize of matrix �′ is fixed to 24. The curves show that the rela-

ive recovery error decreases gradually with the increase of value

 / w , and the reconstruction error will stay stable around a fixed

alue when the value of overmeasuring factor n / w is more than 3.

ince the selected sensor readings are compressible signals rather

han sparse signals, when the recovery error approaches a mini-

um value, further increase of the value of n / w will has a negligi-

le effect on the reconstruction error. 

Meanwhile, observe from this figure that the recovery error

f our proposed scheme is lower than other two schemes except

or n / w = 1.5. Since the compression ratio of temporal dimension

s too large when the overmeasuring factor n / w = 1.5, the recovery

rror of spatial compression scheme is lower than our proposed

cheme. However, with the increase of overmeasuring factor, the

roposed scheme shows lower recovery error. For example, while

he overmeasuring factor n / w ≥ 3, the relative recovery error of

ur scheme is around 0.0156 compared to 0.0308 of other schemes.

s the spatial correlation can be explored more completely and

eeply in clustered spatio-temporal compression scheme, the re-

overy error is much lower than conventional spatio-temporal

chemes [13,14] especially when the temperature readings fluctu-

te remarkably among faraway nodes in the same time slot. 

In addition, the proposed scheme holds another advantage in

hat it has lower computational complexity as compared with

SM-based spatio-temporal schemes [10–12] and the work [15] in

he reconstruction process of CS, because the temporal and spa-

ial correlations of original sensing data are explored step by

tep. Thereinto, the computational complexities of the proposed

cheme and the works [10–12,15] in the reconstruction process are

ax { O ( L 2 mM ), O ( nN )} and O ( L 2 mMnN ), respectively, and the pro-

osed scheme has the same computational complexity as the con-

entional spatio-temporal schemes [13,14] . 

With the growth of overmeasuring factor, there is diminishing

eturn in the compression gain as the number of measurements
ncreases. Fig. 4 demonstrates that the compression gain of spatio-

emporal compression scheme is higher than the spatial compres-

ion scheme as the spatial scheme only investigates the spatial cor-

elation. In this simulation scenario, the clustered spatio-temporal

cheme has the same compression gain as the conventional spatio-

emporal schemes [13,14] . 

Combining Figs. 3 and 4 we can derive that the relative re-

overy error of our scheme is much lower than the conventional

patio-temporal schemes [13,14] while they have the same com-

ression gain (also have the same computational complexity). Be-

ides, the performance of our scheme is better than spatial com-

ression schemes [7–9] in terms of both recovery error and com-

ression gain. Moreover, the decrease in the amount of redundant

nformation is considerable by utilizing the spatial and temporal

orrelations step by step. It also reveals that the clustered spatio-

emporal scheme can reduce the energy consumption of commu-

ications significantly. Although the transmission of NC encoding

oefficients will decrease the compression gain, this effect will be

eakened by extending the packet length. 

Overall, the clustered spatio-temporal compression scheme out-

erforms other two categories of compression schemes signifi-

antly in terms of recovery error and compression gain. 

.2. Performance analysis: optimization design 

In this subsection, we provide a certain network to test the con-

ergence of Algorithm 1 , and evaluate the effects of network and

ontrol parameters on performance. The considered network con-

ists of five cluster head nodes and one sink node as shown in

ig. 1 . The network has ten links and all links have equal capacity.

here are five cliques in the network. 

The parameters are initialized as follows. The step sizes of dif-

erent optimization problem are unified. The reliable probabilities

f different links are unified to be 0.9. The constant C 0 and μ are

qual to 1 (or 0.01) and 0.9, respectively. The initial prices are

et to be 1 for both congestion and interference prices. The ini-

ial value of transmission rates are set to be 0.2, 0.3, 0.3, 0.6, 0.6

or node 1 to 5, respectively. 

Figs. 5 and 6 show the evolution of congestion and interference

rices respectively with link capacity C ij = 1.5 and step size = 0.15.

t can be seen from both figures that the congestion and inter-

erence prices converge gradually along with the number of iter-

tions, and both of them approach the optimal value within 200

terations. Thus, the convergence speed of the dual problem is fast,

hich further confirms the validity of Theorem 2 . 

From Fig. 5 , we can find out that the congestion price of node 6

i.e., sink node) is bigger than other nodes. Since node 6 is the only



354 S. Chen et al. / Computer Networks 108 (2016) 345–356 

0 50 100 150 200 250 300 350 400 450 500

0.8

1

1.2

1.4

1.6

1.8

2

Iteration

C
on

ge
st

io
n 

pr
ic

e Node 1
Node 2
Node 3
Node 4
Node 5
Node 6

Fig. 5. Evolution of congestion prices with C ij = 1.5 and step size = 0.15. 
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Fig. 6. Evolution of interference prices with C ij = 1.5 and step size = 0.15. 
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Fig. 9. Evolution of flow rates with different step sizes. 
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Fig. 10. Evolution of flow rates with different link capacities. 
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sink node for collecting the data from all the cluster head nodes,

the links entering into node 6 are very busy which causes the

high congestion price of node 6. Similarly, the interference prices

of cliques 4 and 5 are high in Fig. 6 due to including node 6 in

their cliques. 

Figs. 7 and 8 plot the evolution of transmission rates and flow

rate with link capacity C ij = 1.5 and step size = 0.15. The conver-

gence speed of transmission rates and flow rate is fast, which is

similar to the evolution of congestion and interference prices in

Figs. 5 and 6 . Meanwhile, the transmission rates and flow rate

converge to the corresponding optimal value while the congestion

and interference prices approach the optimal value. This result also
onfirms the correctness of theory described in previous section

hat the primal variables ( g ∗, f ∗) is the optimal solution of primal

roblem when dual variables converge to the optimal solution ( λ∗,

 

∗). 

It can be also observed in Fig. 7 that the transmission rates of

odes 4 and 5 are higher than other nodes. This is due to the fact

hat nodes 4 and 5 are near the sink node and need to relay data

rom other nodes. 

Fig. 9 presents the effect of different step sizes on flow rate. It

hows that the larger the step size, the bigger the oscillation and

he faster the convergence speed. Although a small step size has

ower convergence speed, it will obtain a solution with higher ac-
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Fig. 11. Evolution of reconstruction errors with different C 0 and step sizes. 
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uracy. The users can dynamically set the step size, and select a

roper size by making a tradeoff between convergence speed and

recision of the optimal solution. 

Fig. 10 illustrates the evolution of flow rates with different link

apacities. Obviously, the flow rate will enhance with the increase

f link capacity. Under different link capacities, both flow rates can

onverge to optimal value which further confirms the stability of

lgorithm 1 . 

Fig. 11 shows the evolution of recovery errors with different C 0 
nd step sizes. Although the value of constant C 0 will affect the

alue of recovery error, the convergence property of recovery error

s constant. The curves demonstrate that the recovery error con-

erges to a stable value around 200 iterations, which also confirm

hat the objective function of primal problem (24) achieves the op-

imal value when the flow rate approaches the optimal value, i.e.,

he reconstruction error can be minimized by optimizing the net-

ork resource allocation. 

. Conclusion 

Based on the temporal and spatial correlations of sensor read-

ngs, this paper proposed a clustered spatio-temporal compression

cheme to reduce the number of transmissions and formulated a

ew optimization model to minimize the reconstruction error. The

ompression scheme could reduce the number of transmissions

ignificantly. In the meantime, the design of NC encoding coef-

cients and measurement matrix was given for guaranteeing the

econstruction of clustered compression data successfully with an

verwhelming probability. The proposed scheme also had lower re-

onstruction error and computational complexity by employing in-

ependent encoding in each sensor node and joint decoding in the

ink node. In addition, in order to minimize the reconstruction er-

or, a distributed algorithm was developed to achieve the optimal

olution. Finally, the simulation results further confirmed the prop-

rties of the clustered spatio-temporal compression scheme and

ptimization model. 
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