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a b s t r a c t 

Predicting the expected throughput of TCP is important for several aspects such as e.g. determining han- 

dover criteria for future multihomed mobile nodes or determining the expected throughput of a given 

MPTCP subflow for load-balancing reasons. However, this is challenging due to time varying behavior 

of the underlying network characteristics. In this paper, we present a genetic-algorithm-based prediction 

model for estimating TCP throughput values. Our approach tries to find the best matching combination of 

mathematical functions that approximate a given time series that accounts for the TCP throughput sam- 

ples using genetic algorithm. Based on collected historical datapoints about measured TCP throughput 

samples, our algorithm estimates expected throughput over time. We evaluate the quality of the predic- 

tion using different selection and diversity strategies for creating new chromosomes. Also, we explore 

the use of different fitness functions in order to evaluate the goodness of a chromosome. The goal is to 

show how different tuning on the genetic algorithm may have an impact on the prediction. Using exten- 

sive simulations over several TCP throughput traces, we find that the genetic algorithm successfully finds 

reasonable matching mathematical functions that allow to describe the TCP sampled throughput values 

with good fidelity. We also explore the effectiveness of predicting time series throughput samples for a 

given prediction horizon and estimate the prediction error and confidence. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Achieving the best network performance is one of the main

oals for the computer network research community. Many re-

earchers have been focusing on studying and forecasting band-

idth demands so as to properly use and distribute the avail-

ble resources. As many applications have been shifting towards

CP/IP based networks [1] , the need for further research on TCP/IP

hroughput prediction is evident. Also, nowadays multi-homing ca-

abilities enable concurrent data transmissions over different inter-

aces. To enhance this capability, protocols such as Multipath TCP

MPTCP) can be used to improve the throughput by sending differ-

nt flows on each interface simultaneously. The main drawback is

o determine in which subflows should the next packets be sent

ver in order to efficiently use several interfaces simultaneously

2,3] . Moreover, the limited power capacity of mobile devices re-

uires an efficient use of vertical handover (VHO) (i.e., handover

etween one interface to the other). Forecasting the TCP through-
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ut may improve decision making during a VHO as well as using

everal interfaces simultaneously and efficiently [4] . 

In the literature, several methods exist to estimate the end-to-

nd TCP throughput. For example, model based techniques try to

odel the TCP throughput as a function of e.g. packet loss rate,

ound-trip-time (RTT) and maximum segment size (MSS) [5,6] . In

rder to predict the TCP throughput over time, one needs to ob-

ain predictions of e.g. loss rate and RTT, which is quite difficult

o achieve. On the other hand, using probe based techniques [7,8] ,

CP throughput may be estimated by sending a train of probing

ackets (typically using packet pair techniques) to the destination.

owever, a prediction over time requires frequent packet pairs to

e sent which may translate into high overhead and low predic-

ion quality. Finally, history based techniques try to model the TCP

hroughput evolution over time as a time series and apply tools

uch as neural networks to find patterns [1] . Based on such pat-

erns, one tries to predict future TCP throughput over time. 

The application of Genetic Algorithms (GA) to optimise pro-

esses and solve complex problems is widely used in computer

etworks thanks to its easy applicability to a specific problem.

A can solve large optimization problems with large search spaces

nd it has been used e.g. to solve routing problems [9,10] and for

etwork traffic prediction [11–13] . An important feature of GA is

hat it provides a near-optimal solution in quick time. Time-series
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modelling can be combined with GA in order to extend GA’s

domain of optimisation and apply it for forecasting. Authors in

[14] applies this technique to predict the traffic demands for next-

generation wireless networks in a cognitive wireless setting with

primary and secondary users, which is of chaotic nature. Based on

a time series model, the authors devise a GA that tries to fit a com-

bination of mathematical expressions to model the time series of

the traffic demands. After tuning the best combination of expres-

sions, the GA can predict future traffic demands with reasonable fi-

delity. However, authors in [14] formulate a rather simple GA with

a standard fitness function and selection strategy, which provides

poor results when applied to TCP throughput prediction because of

several TCP related issues such as slow start and congestion avoid-

ance phases [6] . 

In this paper we take a similar approach in order to predict the

estimated TCP throughput over time by using historical samples of

observed throughput. Those samples are modelled as a time series

and prediction techniques based on GA are applied to estimate the

future TCP throughput sample values. Different from [14] , we ad-

dress the TCP prediction by introducing some modifications on the

GA. The main goal is to show the impact of several tuning param-

eters in the GA over the reliability of the TCP prediction. To this

end and to keep the study easy to understand, we focus on two

representative TCP traces obtained in a Wireless LAN environment.

Several fitness functions and selection methods of the GA are an-

alyzed and combined in order to fully understand their impact on

the prediction in two scenarios: one with a regular pattern and

another one with abrupt changes in the trend 

1 . 

The main contributions of this paper can be summarized as fol-

lows: 

• We tackle the problem of predicting the TCP expected through-

put as a mathematical optimisation problem to match a com-

bination of mathematical expressions to a time series that is

composed of measured TCP throughput sample values . 

• In contrast to [14] , we customise the GA by applying different

selection and diversity strategies to find the equation that best

fits the sampled TCP throughput. 

• We evaluate the reliability of several fitness functions in cal-

culating the suitability of a given chromosome. 

• We assess the impact of the proposed modifications of the

GA in two scenarios based on extensive simulations. 

• Finally, we explore the possibility of reducing the frequency of

retraining , thus showing the trade-off between the prediction

error and the time to solve the GA. 

The proposed algorithm may be beneficial in several context.

For example, with our approach, a better MPTCP subflow schedul-

ing method could be designed taking into account the expected

throughput of each subflow over time. Also, it could help mobile

users to improve their experience by assessing them during han-

dover decision (e.g., to which AP one should connect while moving

in a given area, which technology will provide the highest through-

put in the near future in a HetNet scenario, etc.). 

The remainder of the paper is structured as follows.

Section 2 introduces the background on GAs, time series and

forecasting method, together with a review of the related work.

Section 3 describes the problem statement and the approach

followed in this work. The setup for the numerical evaluation

is detailed in Section 4 , together with an investigation on the

performance of the proposed GA using different scenarios and

algorithmic settings. Finally, Section 5 concludes the paper. 
1 We explicitly acknowledge the fact that a larger set of TCP traces would be 

needed if one wants to assess the accuracy of a given configuration of the GA. In- 

stead, several configurations of the GA are explored in this work, which allows the 

use of a smaller set of input data. 

d  

t  

o  

p  

s  
. Background and related work 

For several application scenarios, gaining information before-

and on the throughput that a TCP connection may provide in

he near future may lead to a better planning of the network re-

ources and thus to an improvement in the network performance.

he TCP throughput evolution over time depends on several fac-

ors and is influenced by the TCP congestion control algorithm us-

ng packet loss detection to control and adapt the sending rate.

s already mentioned, several approaches for the prediction of the

CP throughput can be found in the literature. Formula-based ap-

roaches attempt to mathematically model the TCP throughput ac-

ording to some parameters. This approach requires an accurate

odel in order to find the correlation between the model param-

ters and the TCP throughput, or instead large measurement cam-

aigns to find out the corresponding relation. However, such ap-

roach can be applied easily to different scenarios under the model

ssumptions. For instance, authors in [15] use the available band-

idth, while authors in [16] use the congestion window’s evolution

f long-lived TCP flows. 

On the other hand, history-based techniques attempt to predict

CP throughput over time from saved measurement data using his-

orical data series. The benefit of history-based techniques is that

hey can predict TCP throughput only by analysing the time series

ehavior using some algorithm or tool such as GA or neural net-

ork, in order to detect patterns in the time series that these tech-

iques exploit for the prediction. Such approach does not require

he information about specific TCP related parameters such as MSS

r packet loss statistics, which may be difficult to obtain. How-

ver, history based techniques typically work on a small dataset so

t is difficult to generalize the findings from the measurement to

ther scenarios without measuring the TCP throughput again. Pre-

ious studies, such as the ones carried out by Mirza et al. [17] and

18] , demonstrate that history-based techniques are more accurate

han formula-based. Authors in [19] claim and demonstrate that

ormula-based techniques are only accurate when the TCP flow

oes not saturate the path, and that using history-based predic-

ion is only feasible when measurements of the system are avail-

ble. Unlike us, the authors in [20] construct a time series based on

easured segment windows at the receiver to predict future TCP

hroughput using different linear regressions. Other authors at-

empted to model TCP throughput as time-series using other tools

or prediction, such as Support Vector Regression [17] , neural net-

orks [21,22] , autoregresive and linear regression models [23,24] .

o the best of our knowledge, there are no other similar works

odeling TCP throughput as time-series and using GA for forecast-

ng. 

Current mobile terminals have several interfaces to connect to

ifferent networks such as WLAN and 2G/3G/4G. Although cellular

etworks such as 4G has a wide coverage area and can be seamless

hen performing horizontal handover, still the available capacity

s often inadequate or it has a higher cost in terms of energy. On

he other hand, WLAN provides higher data rates in its small radio

overage. When having multiple interfaces available, an important

ecision to make is when to change from one interface to another,

hich is called VHO. Protocols such as 802.21 or 802.11u uses VHO

or seamless handover between networks of different types [25] .

or example, when moving out of the coverage area of a WLAN

ccess point (AP), the throughput typically goes down with the

istance to that AP. At some point, the throughput will be zero

nd ideally, a handover occurs to e.g. a 4G network. Such han-

over can be based on SNR or achievable throughput. When the

hroughput goes down, one would like to initiate a handover in

rder to always be connected to the network providing the highest

erformance [26] . However, such handover strategy implies to have

ome knowledge of throughput estimates and ideally be able to
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redict TCP throughput evolution over time. Moreover, mobile ap-

lications with throughput requirements such as video streaming

an benefit from the predicted information to adapt their bitrate

lgorithms [27] . The problem lies in the difficulty to achieve this

stimation due to many factors such as unpredictable link quality,

nexpected interference situation or unknown traffic from other

sers who may be congesting the AP. 

In a wireless environment, packet loss may occur due to non

ongestion-related effects such as biterrors, fading, wireless inter-

erence, etc., which are to a large extent hard to predict. Through-

ut studies and several measuring tools have been proposed for

CP in wireless environments. Franceschinis et al. [28] present a

omprehensive study of the performance impact of TCP parameters

uch as the maximum congestion window. Bruno et al. [29,30] pro-

ose an analytical model and measurements for a WLAN persistent

CP-controlled download and upload data transfer and a wide-

cope study of collision avoidance mechanisms of MAC protocols

nd TCP, respectively. Several forecast models have been proposed

or WLAN and cellular networks: the autoregressive integrated

oving average (ARIMA) model is the most commonly used for its

implicity [31] ; however, algorithms based on the mean through-

ut [32] or neural networks [13,33] can also be used. In relation to

omputer networks, GA has many applications to serve as a meta

euristic for optimization purposes. For example in [14] , the GA is

sed to calculate the best fit of a set of functions to a time series

odel which is used to describe the number of calls per minute

f a switch centre with the aim of properly using the available re-

ources for cognitive radio applications. Hence, the GA is used to

nd the best set of functions that relate past sample values with

he future state of the network. Also, GA has also been applied in

iFi environments for different purposes such as for scheduling

34] , congestion control [35] and optimization of wireless applica-

ions [36] . 

Therefore, in this paper we take the history-based approach to

CP throughput prediction. This is because we want to be inde-

endent of TCP intrinsic behavior and just use a history of mea-

ured samples of TCP throughput values over time in order to pre-

ict future throughput evolution. We apply GA based prediction

echniques in order to best fit a set of functions to the given his-

oric time series of measured TCP throughput values. Based on the

As calculated best fit, we use the set of functions then to pre-

ict the TCP throughput over time. This work is a continuation of

37] where simulated traces where used to forecast TCP available

andwidth and study its relation to MAC busy time on different

N-OFF patterns governed by birth-death Makovian process. The

ood results obtained in the previous work on the prediction of

imulated traces motivated us to use the GA tool from this work,

mprove it and use real traces to evaluate the prediction impact

hen several tuning parameters are changed; furthermore, differ-

nt from [37] , in this paper we study the possibility to reduce the

requency of retraining. 

.1. Time series analysis 

Time series analysis [38–43] can be used to predict future

alues in a dynamic system. The theorem proposed by Takens

44] states that a non-linear chaotic dynamic system can be re-

onstructed from a sequence of observations. Therefore, having

he following scalar time series { x 1 , x 2 , x 3 , . . . , x N samples 
} , obtained

rom observations during constant time intervals, it is possible to

econstruct a vector with embedding dimension m , into an m -

imensional space [45–47] , as follows: 

Z i ( m ) = 

(
x i , x i + τ , . . . , x i + ( m −1 ) τ

)
, Z i ε R 

m 

i = 1 , 2 , . . . , N samp les − ( m − 1 ) τ
(1) 
Here, Z i is the reconstructed vector with the embedding dimen-

ion m, x i is the observed discrete value at time i, τ is the time de-

ay or embedding time and N samples is the length of the historical

ata series. The m coordinates of each Z i and x i are samples from

he time series separated by a fixed τ . The result is a series of

ectors 

 = Z 1 , Z 2 , .., Z N samples −(m −1) τ (2)

The idea of such reconstruction is to capture the original system

tates at each observation of the system output. 

Applying this theorem to the problem to predict TCP avail-

ble bandwidth, we assume that we are given a number of TCP

hroughput values sampled at different time instants as a sequence

f discrete data points { x t }, in chronological order. The aim is to

tudy the time series behaviour in order to forecast the future evo-

ution of the TCP throughput, up to a certain time horizon (also

alled prediction horizon). 

.2. Genetic algorithm 

GA is a stochastic search method based on Darwins theory on

atural selection and survival of the fittest. It has been applied

o solve different optimisation problems without the necessity of

nding an equation or series of steps to solve each problem. GA

ses historical data, such as given by a time series, to find new

oints of search for an optimal solution of a problem, trying to

mprove the results and to converge into the best solution. The

A meta heuristic has three main processes or operators: selec-

ion, crossover and mutation. They are in charge of manipulating

he current population in order to create optimal solutions for the

roblem to solve. These optimal solutions are tested over a set of

ime series samples called training set. Besides these operators,

he fitness function plays an important role in the evaluation of

he chromosomes because it influences the GA behaviour and its

volution. Fitness functions can be defined by several metrics that

elp to evaluate the goodness of the solutions over a training set. 

The main general structure of the GA procedure is described in

he following steps: 

• Step 1: Randomly generate an initial population. 

• Step 2: Evaluate each individual by means of the fitness func-

tion and sort them according to the selection method (i.e., by

their fitness, calculated on the error from the real data). 

• Step 3: Select the individuals for the reproduction (i.e., those

with less error). 

• Step 4: Through means of the crossover and mutation, new so-

lutions are generated. 

• Step 5: Evaluate the new population and repeat from step 3

until the termination criteria are met. 

Once the algorithm terminates, the chromosome with the high-

st fitness within the current population is selected as the best so-

ution to the original problem. 

.3. Forecasting 

In this step, we look for a dependence of x t on its N past val-

es { x t−1 , x t−2 , . . . , x t−N } . The forecasting is done using time series

nalysis. Having an univariate time series { x 1 , x 2 , . . . , x t } represent-

ng the observations (e.g. TCP throughput samples over time), it

s possible to predict the next n points of this series (i.e., predic-

ion horizon ( ph ), as the time interval { t + 1 , t + 2 , . . . , t + n } with

 subset T of the previous samples (i.e., called the training set (ts))

39,44,48] . 

The forecasting method used in this paper is the direct

ultistep-ahead prediction of several points, also known as inde-

endent value prediction in [49] or direct strategy in [50] . We ap-

ly Takens theorem [44] for the forecasting of the next samples,
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Fig. 1. Approach overview. 
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applying GA to look for an optimal function f (). The aim is to find

a pattern in the past values { x t−τ , x t−2 τ , . . . , x t−mτ } and use it to

predict the future samples ˆ x 
j 
t , as follows: 

ˆ x j t = f j ( x t−τ , x t−2 τ , ..., x t−mτ ) 

mτ + 1 ≤ t ≤ T 1 ≤ j ≤ N 

(3)

Here, ˆ x 
j 
t represents the predicted sample at time instant t for

the chromosome j in the current population; T is the length of the

training set created from the time series of length (m − 1) τ and

N represents the maximum number of chromosomes in the popu-

lation. 

We choose the direct prediction strategy because the error is

not summing up in each iteration. When using the iteration pre-

diction [50] instead, the predicted sample is included in every iter-

ation and hence, the inherited error is added for the next predic-

tion [49] . Although the direct strategy does not have this problem,

it implies more computational resources because when increasing

ph a larger ts is required to obtain a good prediction. The approach

proposed in this paper is the combination of the time series anal-

ysis, GA and the forecasting method presented in Fig. 1 . 

3. Problem statement and approach 

In a wireless scenario, different users using other wireless tech-

nologies in the same frequency band may cause interference. A

prediction over the future state of the network may help to take

appropriate decisions and ensure optimum use of available re-

sources. The problem in a real environment lies in several factors

that are affecting the TCP throughput such as multipath, shadow

fading and interference. Therefore, it becomes difficult to model

and predict with good accuracy the next state of the network us-

ing traditional time series models. Hence, it is important to select

an appropriate tool to find a function that models the network be-

haviour in this dynamic and chaotic system. The GA was used be-

fore in chaotic settings such as [14] , which motivated us to apply

a similar technique to model and predict available TCP through-

put from a time series of measurement samples. The idea is to let

the GA find the best set of functions that when combined properly

match the given time series in the best way and use that set of

functions in order to predict future TCP throughput evolution over

time. 

In order to find the best matching functions, each potential

solution is encoded in a chromosome that represents an individ-

ual in a population. The GA attempts to find a solution inside

this search space where the chromosomes are manipulated by the

GA operators (like crossover, mutation, etc.). Therefore, the first

step is to define the rules to encode a chromosome through a
et of functions. We have to create a valid mathematical expres-

ion which is able to evolve in the GA domain and once decoded

an be verified to be a valid solution. As in [14] , we use a com-

ination of arguments (numerical values or past samples), func-

ions ( cos ( θ ), sin ( θ ), ln ( x ), e x ) and arithmetic operations ( + , −, ×, ÷).

oreover, the expressions are created using the reverse Polish no-

ation [51] or also called postfix . Once the composition of the math-

matical expression is defined, some rules must be followed in the

ncoded function in order to be able to decode these expressions

14] : 

• The first and second position of the chromosome must be an

argument and the last one an operator; 

• At any position of the chromosome the number of arguments

on the left must be greater than the operators; 

• The chromosome must have the same number of arguments as

operators plus 1. 

The GA generates randomly an initial population of N chromo-

omes following the aforementioned rules. Yet, as these solutions

re generated randomly, it is necessary to verify if they meet the

ules and otherwise repair them. The verification and repair pro-

esses are also repeated after the crossover and mutation steps as

n [14] . 

One of the most important tasks is the definition of an appro-

riate fitness function to properly evaluate the different solutions

iven by the meta heuristic. This is because different criteria and

etrics can be used to set the fitness function and attempt to es-

imate the error or difference between the real and the predicted

ample. While [14] uses a simple fitness function, we use several

nes from the literature and analyze the impact of different fitness

unctions on the prediction quality. The main structure of a GA is

epicted in Fig. 2 , where the boxes in grey represent the functions

hat have been extended and evaluated in this paper. 

.1. Selection methods 

The selection operator within the GA selects pairs of chromo-

omes in the population for reproduction. This is randomly done

y favouring those chromosomes that have a better fitness. Several

election methods exist in literature such as the roulette-wheel

election (RWS) [52] , rank-based roulette wheel selection (RRWS)

53] , tournament selection [52] and exponential ranking wheel se-

ection (ERWS) [54] , among others. The authors in [14] used the

WS as the selection method even though the solution may not be

he optimal one, because of its drawbacks such as the lower diver-

ity and premature convergence of the population. For this reason,

n Section 4.3 we will compare the prediction quality for different

election methods such as RWS, RRWS and ERWS. 
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Fig. 2. GA structure approach. The functions extended and analyzed in this work are highlighted in grey. 
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The probability of selection (P RW S 
j 

) of a chromosome j using the

WS method is based on the fitness function of each chromosome

nd is calculated as: 

 

RW S 
j = 

F F j ∑ n 
j=1 F F j 

(4) 

here FF j is the fitness function of the chromosome j .

ection 3.5 provides the details on how to calculate the fitness

unction. 

The probability of a chromosome j to be selected using the

RWS (P RRW S 
j 

) and ERWS (P ERW S 
j 

) , the rank value is used as a fit-

ess value. These two methods solve the problem when few chro-

osomes occupy most of the roulette wheel portion causing a big

isadvantage for the remaining chromosomes. The probability of

RWS method [53] can be calculated as: 

P RRWS 
j = 

2 − SP + 

(
2 ∗ ( SP − 1 ) 

( Po s j −1 ) 
( N−1 ) 

)
∑ N 

j=1 

[ 
2 − SP + 

(
2 ∗ ( SP − 1 ) 

( Po s j −1 ) 
( N−1 ) 

)] 
1 . 0 ≤ SP ≤ 2 . 0 

(5) 

Here, Pos j is the position of the chromosome j, N the number

f chromosomes, and SP the selection pressure. The position of the
hromosome is obtained by sorting the population by their fitness

alue, where the fittest chromosomes will be in the first position

nd the least fit in the last position of the list. 

The ERWS method uses as selection pressure the exponential

eight ( C ), which controls the exponential degree. Therefore, the

RWS method tries to address the low convergence and the high

iversity that RRWS presents due to the lower probability differ-

nce between the fittest and the least fit chromosomes: 

P ERWS 
j = 

C N−Po s j ∑ n 
j=1 C 

N−Po s j 

0 < C < 1 

(6) 

The SP and C control the probability to select the chromosomes

ith higher or lower chance depending on their rank. However, a

igher exponential weight ( C ) implies more equality while a higher

P implies lower equality (i.e., lower probabilities to be selected for

he chromosomes with a lower rank). The main advantage and

rawbacks of using these selection methods are detailed in Table 1 .

he selection method to use is a trade-off between computational

ime i.e. the number of generations to converge, diversity of solu-

ions and the feasibility or accuracy of the solution. 
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Table 1 

Overview on selection methods. 

Advantage Disadvantage 

RWS Probability depends on the fitness Low diversity and 

as occurs in nature premature convergence 

Simple and widely used Scaling problems 

RRWS High diversity Low convergence 

No scaling problems Computational resources 

ERWS Medium diversity Low/medium convergence 

No scaling problems Computational resources 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Table 2 

Metrics for fitness function. 

Metric Acronym Formula 

Mean square error MSE MSE = 

1 
P 

∑ T 
t= mτ+1 (X j t − x t ) 

2 

Mean absolute percent error MAPE MAPE = 

1 
P 

∑ T 
t= mτ+1 | X 

j 
t −x t 
x t 

| 
Normalized mean square error NMSE NMSE = 

∑ T 
t= mτ+1 (X j t − x t ) 

2 

∑ T 
t= mτ+1 (x t − x t+1 ) 

2 

Prediction on change POCID POCID = 

100 
P 

∑ T 
t= mτ+1 D j 

in direction D j = 

{
1 (x j t − X j 

t−1 
)(x t − x t−1 ) > 0 

0 otherwise 

Average relative variance ARV ARV j = 

∑ T 
t= mτ+1 (X j t − x t ) 

2 

∑ T 
t= mτ+1 (X j t − x̄ ) 2 
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3.2. Elitism 

The elitism operator keeps the best chromosomes during the

crossover and mutation process, thus guaranteeing that the best

chromosomes are going to survive and be present in the next gen-

eration [55] . This process takes the K best chromosomes as: 

K = N · elitism rate ε N o (7)

where elitism rate is the percentage of elitism that ranges from 0 to

1. 

3.3. Crossover 

The crossover operator allows the exchange of features from

one generation to the next and thereby the evolution of the

species. The main objective is to get an improvement in the fit-

ness for the next generation (offspring). During the crossover, the

chromosomes selected for reproduction are paired up and crossed

over. The crossover operator randomly selects one position along

the chromosome and exchanges the part of the chromosome be-

fore and after that point of the two chromosomes to create the

new offspring. This process is performed with a given probability,

which fixes the number of chromosomes that are crossed over and

therefore, the number of parents that will not survive. 

3.4. Mutation 

Once the crossover operator is finished, the mutation process is

carried out to preserve and introduce diversity, i.e. to avoid pre-

mature convergence. This process ensures that the GA is not stuck

in local minima, avoiding two consecutive populations to be very

similar, and therefore allowing to diversify the solutions. The mu-

tation process involves a number of random genes with a certain

probability of mutation by randomly interchanging two values of a

chromosome. 

3.5. Fitness function 

The fitness function in our use case evaluates the goodness of

each chromosome by calculating the error between the real data

samples from the time series and the training set (in our case this

is the TCP expected bandwidth on the training set). The fitness

function has a big impact on the solution quality because it deter-

mines at the end which chromosomes will survive. Several fitness

functions have been proposed in the literature [38] and Table 2

summarizes the most frequently used metrics. In Section 4.3 we

evaluate the performance of the prediction quality using different

fitness functions as described below. 

Several authors propose to use the sum squared error (SSE) be-

tween the prediction and the original sample [14,39,40] . Similarly,

one can use the mean square error (MSE) for calculating the fitness

according to: 

F F 1 j = 

1 

1 + MSE 
(8)
While both fitness functions are very simple to evaluate, they

ay result in poor results due to the scarcity of the forecasted

odel information. One of the problems encountered using F F 1 
j 

s when two or more chromosomes have the same fitness value

ut when different trends can be observed. In this situation the

A may select one of them randomly without taking into account

he trend of the solution which may lead to large errors. 

By considering the Prediction Of Change In Direction (POCID)

etric, Eq. (9) takes into consideration not only the error between

he original sample and the prediction using the MSE, but also the

rend of the model: 

 F 2 j = 

P OCID 

1 + MSE 
(9)

The Normalized Mean Square Error (NMSE) can provide infor-

ation regarding the deviations between predicted and measured

alues. Such information may contribute to point out the most no-

iceable differences among models. Therefore, another possibility is

o use the NMSE instead of the MSE in Eq. (9) : 

 F 3 j = 

P OCID 

1 + NMSE 
(10)

The feasibility of the results can be improved when combin-

ng both the use of individual metrics (i.e., MSE, NSME) and POCID

long with other metrics as the Mean Absolute Percent Error

MAPE) and the Average Relative Variance (ARV), as in the follow-

ng expression: 

 F 4 j = 

P OCID 

1 + MSE + MAP E + NMSE + ARV 

(11)

However, Eq. (11) may lead to dissimilar results because of the

ifficulty to satisfy the requirement of all metrics at the same time,

.g. high POCID, but low MSE and NMSE, etc. 

Finally, the resulting fitness of each chromosome is multiplied

y an exponential expression, Eq. (12) , that depends on the num-

er of historical samples ( X total ) that the functions depend upon

nd the number of preferred samples ( l z ). This exponential ex-

ression [14] results in a maximum of 1 when the chromosomes

onform to the preferred number of historical samples. Otherwise,

he exponential expression results in a number smaller than 1 and

herefore, it reduces the fitness of those chromosomes that do not

ave the preferred number of historical samples. For example, by

electing a low l z , we prefer chromosomes (functions) that only

epend on a few number of historical samples. As a consequence,

hromosomes that have less or more historical samples than l z will

e penalized more. 

 F j = F F j ∗ exp −abs (X total −l z ) (12)

.6. Diversity 

Diversity is necessary in a GA since it introduces new solutions

n the current population. Increasing the probability in the muta-

ion process may lead to a random search because both the fittest
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Table 3 

GA default parameters. 

Parameters Description Value 

p c Crossover probability (Single point) 0 .7 

p m Mutation probability (Single point) 0 .05 

elitism Elitism percentage 0 .1 

generation Number of generations 100 

N Number of population 100 

T Length of the ts (samples) 10 or 30 

l z Number of preferred time series 1 

values in the chromosome 

mating pool Mating pool size 0 .8 
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nd least fit chromosomes may be affected by the randomness.

herefore, two diversity methods are implemented in this work to

rovide new potential solutions without compromising the proper

A functionality. One of the methods consists in the selection of

he least fit D random chromosomes of the last population and in-

ecting them into the current population [56] . In the other one,

 random chromosomes are removed from the current population,

nd later new D random chromosomes are generated and intro-

uced to the current population to be part again of the N popula-

ion. The D random chromosomes are calculated as follows: 

 = N − (of f spring + K) ∈ N (13)

here offspring is the number of offspring created in the crossover

rocess and K is the number of elitism chromosomes. 

.7. Stopping criteria 

The stopping criteria defines the condition, when the GA termi-

ates. In this paper, we use two different stopping criteria. The first

ne is when the maximum number of generations is reached. For

he second one, we calculate the maximum tolerable error based

n the MAPE. In our case, we terminate the GA if we can find a

ood enough solution (a solution which has an error smaller than

 given threshold) or when we reach the maximum number of it-

rations as given by the maximum number of generations. 

.8. Use of feedback during the forecasting 

The use of updated information (e.g. based on actual measure-

ents during the predictions) may help the GA to improve the

uality. However, it may happen that it is not possible to include

he measured samples or that they can be added only after a cer-

ain time. The update time (i.e., the time that the system needs to

et the real predicted samples) may affect the reliability of future

redictions. When we try to predict further ahead (i.e., the predic-

ion horizon is greater than the training set) and take the predicted

amples ˆ x as an input for future predictions, the error may be sum-

ing up and, therefore, the quality of the prediction may decrease.

t may be more beneficial to use the measured samples rather than

he predicted sample as input for future predictions. For example,

f one tries to predict with ts = T and ph = n where x t−T is the

ldest sample that the system can take from the whole time series

 x 1 , x 2 , . . . , x t } , at time t + n the system may collect real data based

n actual measurements { x t+1 , x t+2 , . . . , x t+ n −1 } and use it as input

ata to function f j for the next prediction at time t + n + 1 : 

ˆ 
 

j 
t+ n +1 

= f j (x t , x t+1 , . . . , x t+ n ) (14)

We will evaluate the impact of feedback based forecasting on

he prediction quality in the evaluation section. 

.9. Retraining 

As described in Section 2 , GA has been used for short-term

orecasting with reliable results in order to match a given set of

unctions to a time series of sampled measurement points. Typi-

ally, once the set of functions is found, those equations can be

sed to forecast or predict future time series points. However, the

haracteristic of the time series may change over time so that a

nce found set of functions may be not a good fit for the time

eries in future instances. To increase the accuracy of the predic-

ion, we may apply a retraining scheme, for which the GA may

ompute the best matching set of equations every δt . Clearly, re-

raining more frequently leads to a more computationally heavy

cheme leading to a potential better match between the real mea-

ured data and the predicted ones. We will evaluate the impact of

etraining on the prediction quality in the evaluation section. 
. Numerical evaluation 

In this section, we perform a series of numerical evaluations

arying, among others, fitness functions and selection methods de-

cribed in Section 3 . First, we provide the details of the scenario

nd the evaluation setup in Section 4.1 . Then, we discuss our re-

ults and study the effect of different settings on the prediction

uality. 

.1. Evaluation setup 

We aim at evaluating the suitability for using GA to predict

vailable TCP bandwidth that is given by time series measure-

ents. We want to fit a set of mathematical equations that operate

n the time series in order to match the TCP available bandwidth

nd study the impact of different fitness functions, selection meth-

ds and prediction horizons. We implemented the GA in Matlab

nd set-up the GA with the standard values presented in [14,57,58] ,

ee Table 3 . All GA tests are run using the same common parame-

ers while the training set is varied ts depending on the scenario.

n addition, one selection method and one fitness function is se-

ected in each test to study the effect on the prediction quality.

e perform 50 repetitions for each test and calculate the average

ver all repetitions. 

We obtained real TCP throughput samples which are then used

y the GA as input to create the time series of samples that are

sed to fit a set of functions. To get the throughput sample values,

e used an IEEE 802.11 client in the public library in Karlstad uni-

ersity, where interference from other devices is common. The TCP

hroughput is measured every 100 ms at the client side (i.e., one

ample is equivalent to 100 ms in the rest of the paper). Among

he huge amount of data that we obtained, we selected two sets

f 60 samples of TCP throughput representing: 1) a scenario with

 more regular pattern (Scenario A, see Fig. 3 ) and 2) a scenario

ith abrupt changes in the trend (scenario B, see Fig. 4 ). These

cenarios are investigated in order to 1) test the ability of the pro-

osed GA to follow smoother or sudden changes in the through-

ut pattern, and 2) assess the prediction error using different set-

ings in the GA (e.g, selection methods, fitness functions, training

et, prediction horizon, etc.). The results of this first evaluation are

resented in Section 4.3 . Then, we select one fitness function, one

election method and one scenario and we further study the im-

act of using feedback during the prediction in Section 4.4 . Finally,

n Section 4.5 the impact of retraining on the prediction quality is

tudied. 

.2. Scenarios 

The two scenarios are depicted in Fig. 3 (scenario A) and in

ig. 4 (scenario B). The input data (measured TCP throughput as

 time series) is drawn with a blue solid line. The training set ( ts )

onstitutes 30 samples (from sample 1 to sample 30) and the pre-

iction horizon ( ph ) is also set to 30 samples (i.e., the GA predicts
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Fig. 3. Input data and GA output in Scenario A for F F 2 
j 

and RRWS. Different training sets are shown ( ts = 10 and ts = 30). 

Fig. 4. Input data and GA output in Scenario B for F F 2 
j 

and RRWS. Different training sets are shown ( ts = 10 and ts = 30). 

 

 

 

 

 

 

 

 

 

 

 

 

t  

T  

a  

d  

e

4

 

fi  

W  

i  
the next 30 samples of the TCP throughput, from sample 31 to

sample 60). The prediction obtained with F F 2 
j 

( Eq. (9) ) and with

RRWS as the selection method is also displayed (red dotted line)

for both scenarios. Further in the evaluation, we will also show the

case when the ph is set twice or four times the ts ; in that case, we

will predict from sample 31 to sample 90 or 150, respectively (for

simplicity, samples from 60 to 150 are omitted in Figs. 3 and 4 ).

Also, we will show results when ts is set to 10 samples; in that

case, the ts goes from sample 1 to sample 10. For a ph of 10, sam-

ples 11 to 20 are predicted, while we will predict up to sample 50

when the ph is four times the ts . 

As shown in Fig. 4 , the TCP throughput trend in scenario B is

increasing from sample 1 to 36 due to e.g. better conditions on

a

he wireless channel or lower interference conditions. Then, the

CP throughput decreases abruptly around sample 36 and, again,

round sample 50 due to e.g. more interference. It is important to

etect these changes in the trend. Also, it would be interesting to

stimate the duration of such changes. 

.3. Impact of the selection method and fitness function 

In this section, we evaluate the prediction error for the given

tness functions and selection methods (see Sections 3.1 and 3.5 ).

e select the MAPE as the evaluation metric since it is scale-

ndependent of the input data range and the calculation results in

 percentage expression. 
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Fig. 5. MAPE for different selection methods and fitness functions using a training set of 10 samples vs. 30 samples and for different prediction horizons (scenario A). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 

Fig. 6. MAPE for different selection methods and fitness functions using a training set of 10 samples vs. 30 samples and for different prediction horizons (scenario B). (For 

interpretation of the references to colour in this figure legend, the reader is referred to the web version of this article.) 
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Fig. 5 and 6 show the MAPE between the given input data and

he predicted samples for different settings of the GA in scenario

 and B, respectively. In the x axis, each fitness function (i.e., F F 1 
j 

o F F 4 
j 

) is evaluated for three selection methods (i.e., RRWS, RWS

nd ERWS). The four blue bars (darker bars in b/w printing) rep-

esent the MAPE when the ts is set to 10 samples; the first bar

i  
epresents the MAPE of the training set (i.e., the error between the

nput data and the output of the GA during the training), while the

econd bar depicts the MAPE of the prediction when the ph is set

o 10, as the ts . We can observe that, for scenario A, the MAPE of

he ts is always between 15% and 17%, while the MAPE of the pre-

iction is always higher (i.e., between 18% and 22%). Although it

s not clear whether one fitness function or one selection method
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performs better than the others, it seems that the combination of

F F 3 
j 

with ERWS shows a smaller overall gap. On the other hand,

scenario B shows better results regarding the training set: the

MAPE of the ts is always lower than 10% and that of the predic-

tion stays between 15% and 19%. 

Once the GA finds an equation that properly fits the training

set, the same amount of samples (i.e., ph = ts ) can be predicted

with good fidelity using that same equation; if one would like to

predict for longer horizons, it is recommended to either retrain the

GA [14,59] or increase the training set at the expense of higher

computational complexity. While the impact of retraining is fur-

ther investigated in Section 4.5 , in this section we analyze the im-

pact of using a larger prediction horizon, i.e. ph > ts . Using a large

prediction horizon raises the question what is the impact regarding

prediction quality of using a single equation for time series values

that are further away in the future. On the other hand it is not

clear, how far we can predict using the same equation with rea-

sonable fidelity. 

To further study those questions, we plot the MAPE when the

ph is twice the ts and when it is four time the ts in Fig. 5 and 6 for

each fitness function and for each selection method. As expected,

the MAPE increases with larger ph ; however, in the smoother sce-

nario A, when we predict for a horizon twice the ts , the increase in

the error is very small. For some combinations (i.e., F F 2 
j 
, and F F 3 

j 

with RWS or ERWS), the MAPE is almost the same for ph = ts and

ph = 2 ts . In Section 4.4 we will investigate further on this inter-

esting result and we will study the effects on the time needed for

the prediction. 

Finally, we want to study the impact, in terms of the prediction

error, when longer training sets are used. Although more compu-

tational resources are needed, the authors in [60,61] demonstrate

that the longer the training set, the more accurate will be the

equation obtained with the GA during the training. Following the

statement given above, using a longer ts we expect a more accu-

rate prediction. Thus, we use a ts of 30 samples and compare the

results with those obtained with ts = 10. Fig. 5 and 6 show the re-

sults for ts = 30 in green (lighter grey scale in b/w printing). First,

we observe that in scenario A the MAPE of the ts when ts = 30

is always smaller or equal to that when ts = 10. Also, the MAPE of

the prediction with ph = ts is always smaller than the MAPE of

the ts , thus confirming what found in the literature. Also, when

the prediction horizon is increased, the performance drops dras-

tically. On the other hand, the results in scenario B are always

worst when the ts is increased from 10 to 30 and ph = ts . How-

ever, when using ph = 2 ts, there are some combination of the fit-

ness function and the selection method for which the performance

can even improve (i.e., F F 3 
j 
, and F F 4 

j 
with RRWS or RWS). Again,

with ph = 4 ts the performance drastically drops. However, when

ts = 30 and ph = 4ts, the absolute number of samples we try to

predict is much larger than compared to the case when ts = 10 and

ph = 4ts. From our results we can conclude that a longer training

set not always leads to better predictions, as this performance is

also tied to the trend in the dataset. While longer ts is preferred for

regular trends, a more irregular dataset may not necessarily benefit

from a longer training as the prediction errors are not significantly

reduced and more computational resources are required. 

4.4. Impact of limiting the sample set and of feedback 

[14] suggests to use the newest samples of the input data (i.e.,

most recent data) to validate the fitness of the equations on the

training set. Using the newest data should better follow the trend

of the input. In contrast, using old data may lead to erroneous

predictions. In this section we study whether imposing a limit on

how far in the past one can go (i.e., how old can be the samples
sed for the training phase) may have an impact on the quality

f the prediction. We set four different constraints: 10, 20, 30 and

0 samples; e.g., with a limitation of 10 samples (i.e., lim 10), the

A can take any sample among the 10 newest historical samples

o generate an equation. We compare the results with the case

here no limitation is used (i.e., no _ lim ), meaning that the GA can

ake any sample among the 150 newest samples. Also, from now

n, the fitness function is set to F F 2 
j 

and the selection method to

RWS; only scenario A is further investigated in this and the fol-

owing sections. Thus, the four blue bars presented in Fig. 5 for

 F 2 
j 

and RRWS and for ts equal to 10 now reappear in Fig. 7 as “No

im” (green ). The four bars in blue in Fig. 7 represent the MAPE

f lim 10 (dark blue), lim 20 (blue), lim 30 (turquoise), lim 40 (light

lue). The standard deviation (stdv) is also displayed for each bar.

n general, when a limitation is introduced, an improvement can be

bserved. With lim 10, the average MAPE and the stdv decrease if

ph = 2 ts, while the stdv increase for ph = 4 ts . When older sam-

les are included (i.e., lim 20 and lim 30), the MAPE and stdv de-

rease; however, when too old samples are included (i.e., lim 40)

he MAPE increases again, thus masking the benefits of the limita-

ion. 

Fig. 7 also shows the results when feedback is applied to the

A: lim 10 fdb (dark red), lim 20 fdb (crimson), lim 30 fdb (red), and

im 40 fdb (light red). That is, when the ts is set to 10 and at time

 = 0 we want to predict during ph = 2 ts = 20, at time t = ts the

ystem may have collected the real data based on actual measure-

ents during { 0 , 1 , 2 , . . . , ts − 1 } , so that it can use the real data

nstead of the predicted samples for further predicting the next ts

amples (i.e., from t = ts to t = 2 ts − 1 ). 

In this way, the prediction error does not accumulate, as ex-

lained in Section 3.8 . As shown in Fig. 7 , when ph = ts = 10 we

btain similar results when applying feedback or not, as expected.

n contrast, the more we try to predict the future (increase ph ),

he more using feedback reduces the MAPE and its standard de-

iation. For longer prediction horizons we can conclude that it is

orth limiting the sample set to the newest values (i.e., lim 10) if

eedback can be employed. 

.5. Impact of retraining 

Due to the high computational cost, it is essential to exploit as

uch as possible the resulting set of functions for predicting once

he GA has found a solution. However, the use of the same function

o predict over long-term periods may lead to a loss in prediction

uality and, therefore, an increase in the prediction error. We in-

end to study the evolution of the prediction error when the same

unction is employed to predict samples that are further away than

he prediction horizon (i.e., ph > ts ) and the impact of the retrain-

ng on the time needed to find a solution. 

We want to predict up to e.g. 80 samples (i.e., ph = 80, and

s = 10) applying different retraining schemes as follows: retrain

very 10, 20, 30 and 40 samples. When we retrain every 10 sam-

les ( ret 10), after the first 10 predictions are obtained, the GA is

rained again over the last 10 real data samples (i.e., feedback as

xplained in Section 4.4 ) which provides a new set of functions,

hich is then used to predict the next 10 samples. 

When lim 10 with feedback was selected, we could observe a

ositive effect on the quality of the prediction since unless there is

etraining, real samples are used every 10 samples instead of pre-

icted samples. When a retraining scheme of 20 samples ( ret 20) is

sed, after the first 20 predictions are obtained, the GA is trained

gain. However, as feedback is also applied, after the first 10 pre-

ictions the GA uses the last 10 real samples to feed its equation

nd predict the other 10 samples. Then, after retraining, the new

quation is used to predict the next 20 samples (10 plus 10 with
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Fig. 7. MAPE when applying a limit on the oldest sample (scenario A, F F 2 
j 
, RRWS, ts = 10). (For interpretation of the references to colour in this figure legend, the reader is 

referred to the web version of this article.) 

Fig. 8. Original and predicted samples using different retraining schemes with feedback (scenario A, F F 2 
j 
, RRWS, ts = 10). 
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eedback). Therefore, the feedback process is applied every 10 sam-

les for ret 20, ret 30 and ret 40. 

The impact of retraining and feedback using the different re-

rain schemes is illustrated in Fig. 8 . This figure shows the mean

redicted samples and the original data (Input data) when the re-

rain schemes of 10, 20, 30 and 40 samples are applied with feed-
ack. Note, that from sample 10 to 20 all schemes uses the same

unction, thus the predicted samples are the same for all schemes.

fter sample 20, ret 10 uses a new function to predict up to sam-

le 30 and the other schemes update the real predicted samples

rom sample 10 to 20. At sample 30, ret10 scheme uses a new

unction along with ret 20. Ret 30 and ret 40 use the new function
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Fig. 9. MAPE and required time for different retraining schemes with and without feedback (scenario A, F F 2 
j 
, RRWS, ts = 10). 

Fig. 10. 95% confidence interval and predicted interval for GA without retraining (scenario A, F F 2 
j 
, RRWS, ts = 10). 
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i  
at sample 40 and 50, respectively. When the retraining frequency

is reduced, the MAPE variation increases due to the decrease in the

prediction accuracy. Although better results are obtained with a re-

training scheme of 10 samples, the difference between the mean

MAPE of the retrain scheme of 10 samples and the retrain scheme

of 40 samples with feedback is only about 8%. Moreover, the dif-

ference between the mean MAPE of the retrain schemes with feed-

back does not exceed 4%. Therefore, when a retraining scheme is

selected along with feedback, the difference between 10 samples

retrain and 40 samples retrain is reduced. Despite this small dif-
erence below 1%, we can see that the difference in the prediction

nterval increases for these schemes. 

Fig. 9 shows the mean prediction time (the time to run the

lgorithm to find the solution) versus the MAPE and its stan-

ard deviation for the four retraining schemes and with or with-

ut feedback. When we use feedback, we need to update the

redicted samples by using the real measured samples. Adopt-

ng feedback consumes more CPU to calculate a solution. How-

ver, retraining needs more CPU resources and time than adopt-

ng a feedback method. Retraining very often (i.e., ret 10) requires
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Fig. 11. 95% of confidence and predicted intervals for GA with ret10, ret20_fdb, ret30_fdb and ret40_fdb (scenario A, F F 2 
j 
, RRWS, ts = 10). 
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he highest CPU time but results in the smallest MAPE. On the

ther hand, retraining every 40 samples consumes less time but

t the expense of a reduced prediction quality. Note, that ret 30

ith feedback provides a good tradeoff as the MAPE is com-

arable with the one in ret 10, while the time required to find

he solution is around 33% less than in ret 10. Also, it is evident

rom Fig. 9 that the feedback always benefits the accuracy of the

rediction. 

Finally, we were interested how confidence intervals over time

volve when using different retrain schemes and prediction inter-

als. As a consequence, we calculate the range of the mean predic-

ion samples given by the set of functions calculated by the GA.

e calculating the 95% confidence interval, i.e. the area where,

ith 95% confidence, the mean predicted samples will be located.

his statistical measure gives important information about the ac-

uracy of the prediction. On the other hand, the prediction interval

rovides information about the distribution of the predicted sam-

les. The prediction interval is based on the past observations and

hows, with a certain probability, where we can expect any future

ample. This range is always wider than confidence interval as it

onsiders the uncertainty on the mean value and its distribution

roperties. Fig. 10 shows the 95% confidence interval and the pre-

iction interval calculated from the resulted predictions when the

nput data from Fig. 8 is used. 
Fig. 11 a illustrates the effect on the confidence interval and pre-

iction interval when a retraining scheme of 10 samples is applied.

n this case, as can be compared with Fig. 10 , both confidence and

rediction interval are narrower since this retrain scheme provides

ore accurate results at the expense of more CPU resources to find

he soution (also compare Fig. 9 ). 

When we use the same function to predict further ahead we

an expect less accuracy and uncertainty on the results. For exam-

le, when the training set is composed of bandwidth samples that

onform to a more steady throughput, it will be hard to predict a

harp increase in available bandwidth later on. This can be seen

rom Fig. 11 where we show the confidence and predicted inter-

als for a retraining scheme using different samples (10, 20, 30 or

0). After sample 70, the TCP throughput starts to increase expo-

entially, which makes it hard to predict without proper retraining.

lthough the error increases significantly after sample 70, mostly

he prediction interval covers the input data, meaning that the al-

orithm is able to follow successfully the trend. 

When a retraining scheme of less frequency is selected (i.e.,

et 30 or ret 40) as in the case of 30 samples, depicted in Fig. 11 c),

he effect in the confidence and prediction intervals remain sim-

lar to the case of 20 samples, since the retraining has been ap-

lied from sample 60 and 70, i.e. before the TCP throughput rises

harply. When a retraining scheme of 40 samples is applied, the
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prediction band is consistent across all input samples as Fig. 11 d)

illustrates. In this scenario, the GA is retrained only once (i.e., at

sample 50). However, the prediction interval is quite wide, but

covering mostly all the input data, including the area where the

throughput rises sharply. Despite we are using a less frequent re-

training scheme compared to 20 or 30 samples, we can much bet-

ter follow the trend because the GA is retrained in a different area

(starting at sample 50). We conclude that even though retrain-

ing with higher frequency may reduce the uncertainty and provide

higher accuracy, it is important to retrain at specific time intervals

in order to capture changes in input statistics. 

5. Conclusion 

The difficulty of predicting the TCP throughput in interference

prone WiFi environments is challenging because of different un-

predictable effects such as interference, multipath or other users

traffic leading to collisions and unpredictable available capacity. In

this paper, we propose to model measured TCP throughput sam-

ples as a time series and apply the meta heuristic genetic algo-

rithm to match a set of mathematical functions to best represent

the time series. By using the set of functions one can predict fu-

ture samples, given the GA is trained properly. Using our strategy,

one can effectively predict TCP throughput evolution over time by

just looking at measured throughput samples without the need to

have information available from the TCP stack such as estimates on

e.g. round-trip-time or packet loss. We have evaluated the impact

of different fitness functions and selection algorithms on the ac-

curacy of predictions. When a more accurate prediction is needed,

different retraining schemes can be applied at the expense of more

computational power required to find the best set of matching

functions. Finally, we have demonstrated that the use of feedback

strategies always increases the accuracy of the prediction. In or-

der to improve the accuracy even more, a good strategy has to be

found that determines when retraining should be applied. 

As a future work, we intend to develop heuristics that guide

when a retraining should be executed, for example based on

knowledge about the TCP congestion control phase. Also, we want

to study the impact of different sampling intervals on prediction

quality as well as study more scenarios such as different interfer-

ence situations, different bottleneck links, etc. and their impact on

the quality of the prediction. 
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