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a b s t r a c t 

In this paper, we address the problem of embedding dynamically-arriving workflow requests in data cen- 

ters. Workflows pose challenges due to data precedence and time disjointness among tasks, thus driving 

the need for intelligent methods to embed workflows in data centers while improving the bandwidth ef- 

ficiency as well as guaranteeing the application performance. We first formulate an integer programming 

optimization model for the embedding problem that minimizes the amount of bandwidth required for 

workflow execution. We then develop two algorithms namely Critical Path Workflow Embedding (CPWE) 

and Edge Priority Workflow Embedding (EPWE) to solve this problem. We consider two data center net- 

work architectures: packet switching electrical networks and circuit switching optical wavelength division 

multiplexed (WDM) networks. While WDM-based optical networks have much larger bandwidth capacity 

to meet the ever-growing traffic demand in data centers, they pose challenges due to wavelength conti- 

nuity constraint and the nature of circuit switching. We thus additionally propose methods for selecting 

appropriate Top-of-the-Rack (ToR) switches and wavelengths during the embedding process so as to in- 

crease the chance of accommodating many requests that span over multiple ToRs. We evaluate CPWE 

and EPWE through comprehensive simulations. The results show that CPWE and EPWE significantly re- 

duce the bandwidth required for a workflow request by up to 66% for random workflows and 80% for 

realistic-application workflows compared to baseline algorithms. The results also show that the proposed 

methods for ToR selection and wavelength selection in optical data centers outperform other methods 

by reducing the rejection ratio by up to 47% with dynamic reconfiguration of lightpaths and 40% with 

incremental configuration of lightpaths. 

© 2016 Elsevier B.V. All rights reserved. 
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1. Introduction 

Cloud data centers have become an attractive candidate to

meet resource demands of individual users and institutions. In-

stead of setting up a local infrastructure that costs a lot for de-

vice purchases and maintenance services, users nowadays are ex-

ploiting public clouds, which provide immense computing capac-

ity, quasi-unlimited storage space and broad access network con-

nections. Many large-scale and data-intensive applications have

been migrated to the cloud to be able to handle a big amount

of data as well as heavy computations. These applications gen-

erate a huge traffic demands mainly remaining within data cen-

ters as reported in [2] . This huge traffic demands force data cen-
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was carried out when Vishal Girisagar was affiliated with NUS. 
∗ Corresponding author. 

E-mail addresses: eletht@nus.edu.sg (T. Truong-Huu), elegm@nus.edu.sg (M. Gu- 

rusamy), vishalgirisagar801@gmail.com (V. Girisagar). 

p  

e  

a  

s  

r

http://dx.doi.org/10.1016/j.comnet.2016.08.018 

1389-1286/© 2016 Elsevier B.V. All rights reserved. 
ers look for the means for not only increasing the network capac-

ty but also improving network resource utilization. While electri-

al packet-switched networks still keep their important role, us-

ng WDM-based optical networks in data centers is becoming a

rend to meet the network capacity challenge. In comparison with

lectrical packet-switched networks, WDM-based optical networks

ave much larger bandwidth capacity with low power consump-

ion and cabling complexity. Dynamic reconfiguration of lightpaths

lso brings in the flexibility for network management and traf-

c engineering. However, in addition to the limitations of circuit-

witching, the wavelength continuity constraint due to the dy-

amic arrival of resource requests and high degree of the optical

witch, which interconnects multiple ToR switches, has high im-

act on resource usage efficiency, making the problem of request

mbedding more challenging. Thus, intelligent methods for ToR

nd wavelength selection are needed to embed resource requests

o as to use the servers under ToRs and bandwidth (or wavelength)

esources between ToRs efficiently. 
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Considering both electrical and optical network data centers,

n this paper, we address the problem of embedding workflow

equests, which usually require large amount of computing re-

ources and guaranteed bandwidth for applications such as de-

ecting gravitational-waves [3] , weather forecasting [4] , predicting

arthquakes [5] . A workflow resource request is represented by a

et of computing tasks and a set of edges that represent the data

ependencies among the tasks. Each computing task requires a

umber of virtual machines (VMs) to run the application for a cer-

ain duration and each edge requires a specific network bandwidth

or data transmission between the VMs allocated to dependant

asks. Unlike the traditional virtual network requests [6] , in which

ll requested resources including bandwidth and virtual machines

re needed during the entire lifetime of the request, workflow re-

uests have specific resource requirements at different times. Due

o the task dependencies, some workflow tasks can execute con-

urrently while others have to run sequentially. VMs and band-

idth requested for a task may not be utilized before its preceding

asks finish their execution. Furthermore, due to large resource de-

ands, workflow tasks are likely to be embedded across multiple

oRs of data centers, making the impact of the wavelength con-

inuity constraint more pronounced in optical data centers. Thus,

mbedding of workflow requests in optical data centers needs to

onsider not only the lifetime of the tasks but also the ToR and

avelength selection to ensure high connectivity between ToRs

ith wavelength-continuous paths. 

Given a workflow resource request, cloud providers need to em-

ed this request in physical servers in data centers, considering the

apacity of physical servers and network links as well as the net-

ork topology. The embedding process consists of allocating VMs

n physical servers under ToR switches and reserving bandwidth

n the links of the data center to guarantee the performance of

orkflow applications. While the amount of computing resources

annot be optimized, i.e., the number of VMs requested needs to

e always satisfied, the bandwidth consumption for workflow ex-

cution is affected by the embedding solution. If a physical server

as sufficient VMs to host all the requested VMs of two adjacent

asks in the workflow, then the execution of these two tasks will

ot consume link bandwidth. Otherwise, a certain amount of band-

idth of the link connecting two physical servers hosting the VMs

f the two tasks needs to be reserved. Since the network band-

idth is limited, minimizing the bandwidth consumption during

he execution of a workflow allows providers to accept more work-

ow resource requests, thereby increasing the revenue from the

sers who pay for resource usage. An intelligent embedding tech-

ique is therefore needed to help providers optimize the resource

tilization in data centers. 

Since workflow requests are different from the traditional vir-

ual network requests due to data precedence and time disjoint-

ess among workflow tasks, existing virtual network embedding

lgorithms such as those presented in [7,8] are no longer applica-

le for embedding workflow requests in data centers. In this paper,

e present a novel model for embedding workflow resource re-

uests in data centers, considering the above challenges. We first

ormulate an integer programming optimization problem, which

ims at minimizing the amount of bandwidth required for the ex-

cution of a workflow while guaranteeing its computing and net-

ork resource demands. Solving such an optimization problem and

ts variations has been shown to be computationally hard due to

heir N P -complete nature [9] . We therefore develop two heuristic

lgorithms namely Critical Path Workflow Embedding (CPWE) and

dge Priority Workflow Embedding (EPWE) to solve the embedding

roblem efficiently. 

Algorithm CPWE tries to embed all the VMs requested by the

asks on the critical path of the workflow on to the same physi-

al server. We define the critical path as the path from the entry
ask to the exit task of the workflow for which the total bandwidth

onsumed on the links is the highest. Algorithm CPWE therefore

eeds an initial phase that determines the critical path before do-

ng the embedding. Algorithm EPWE is computationally simpler

han CPWE. It first sorts the edges in the workflow in the descend-

ng order of bandwidth requirement, and then starts embedding

he tasks following the specified order. In both cases, it may not

e successful to embed the entire critical path or the edge with

he highest bandwidth requirement on the same physical server.

lgorithms CPWE and EPWE then try to embed the requests in

ifferent servers so as to reduce the bandwidth consumption. To

ddress the specific challenges of optical networks, we propose a

ethod for ToR selection based on a connectivity-index function,

hich defines how well a ToR is connected with other ToRs with

ree wavelength-continuous paths so as to increase the chance

f accommodating many future requests that span over multiple

oRs. We also propose a function that computes the goodness

alue for each wavelength between a pair of ToRs to choose the

est wavelength for a lightpath. These two methods are integrated

nto CPWE and EPWE when realizing workflow request embedding

n optical data centers. We evaluate the performance of the pro-

osed algorithms through comprehensive simulations and compare

heir performance against baseline algorithms to demonstrate their

ffectiveness. 

The rest of the paper is organized as follows. We discuss the re-

ated works in Section 2 . We present the system model and math-

matical formulations in Section 3 . We present the proposed algo-

ithms in Section 4 . We present the methods for ToR and wave-

ength selection in Section 5 . We carry out performance study and

nalyze the simulation results in Section 6 before concluding the

aper in Section 7 . 

. Related work 

.1. Workflow execution in clouds 

Recently, research on workflows has received significant atten-

ion specially for the complex applications, which require large

mount of data and computationally complex resources. Various

ystems such as MOTEUR [10] and Kepler [11] are used to inter-

ret the workflow applications and submit the workflow tasks to a

omputing infrastructure for execution. These systems request only

he computing resources for the workflows but they do not con-

ider the bandwidth requirements between the dependent tasks in

 workflow. In [12] , the authors focused on cost minimization for

mbedding workflow application on data centers but they also did

ot consider bandwidth requirements. In [13] , the authors aimed

t minimizing the amount of computing resources, i.e., the num-

er of VMs needed to execute workflows while ensuring their exe-

ution deadline. Depending on the number of remaining tasks and

he available time before the deadline, the algorithm dynamically

cales the number of VMs: increasing the number of VMs to meet

he deadline or decreasing the number of VMs to reduce the usage

ost. This work assumed that the required bandwidth is available

n the links. This may not be practical in data centers since multi-

le tenant requests arrive at the same time and share the residual

andwidth on the links. 

.2. Workflow embedding and scheduling 

Workflow embedding and scheduling has received significant

ttention from research communities [12,14–17] . In [16] , the au-

hors presented the Myopic algorithm that maps each individ-

al task of the workflow on a first suitable computing resource.

his simple algorithm did not consider the dependencies between

orkflow tasks, leading to high bandwidth consumption. Three
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Table 1 

Mathematical notations. 

Notation Description 

W Number of wavelengths carried in a fiber 

M Number of ToR switches in the data center 

N Number of physical servers connected to a ToR switch 

C vm Number of VMs can be hosted in a server 

C eband Capacity of server-ToR links 

C cband Capacity of a lightpath in the optical data center or ToR-core 

links in the electrical data center 

C vm 
i, j,t 

Number of VMs available at time slot t on server j connected 

to ToR switch i 

C cband 
i,t 

Residual bandwidth of the ToR-core link connecting ToR switch 

i to the core switch at time slot t in the electrical data center 

C cband 
i,i ′ ,t Residual bandwidth of the lightpath connecting ToR switch i 

and ToR switch i ′ at time slot t in the optical data center 

C eband 
i, j,t 

Residual bandwidth of the server-ToR link connecting ToR 

switch i and server j at time slot t 

R vm 
k 

Number of VMs requested by task k 

D k Execution time of task k defined as multiple time slots 

R band 
k,k ′ Required bandwidth for the edge between task k and k ′ 

D(K × T ) Resource usage duration of workflow tasks 

M Embedding solution defined as a matrix M (K × M × N) 

Q 0 (M ) Total bandwidth consumed on server-ToR links for a workflow 

request 

Q 1 (M ) Total bandwidth consumed on ToR-core links or lightpaths for 

a workflow request 

Q (M ) Total bandwidth consumed for a workflow 

... ... ... ...

Core 

ToR ToR ToR ToR

(a) Electrical data center.

... ... ... ...

Server Mux/DMuxOptic fiber Optical switch

Core 

ToR ToR ToR ToR

(b) Optical data center.

Fig. 1. Two-tier data center architecture. 
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heuristic algorithms have also been proposed in the literature [14] .

These algorithms schedule workflow tasks based on their prior-

ity, e.g., execution deadline. The high priority task will then be

mapped first on available computing resources. Yet, these algo-

rithms did not consider the bandwidth consumption for data trans-

mission between tasks. A genetic algorithm has been proposed

in [18] to solve the problem of workflow scheduling within the

deadline and execution cost constraints. A cost fitness function and

a time fitness function have been designed respectively to com-

pute the performance of the scheduling solution. While the cost

fitness function considers only the cost of computing resources, the

time fitness function considers only the execution time of work-

flow tasks on computing resources. The data transmission time and

cost of bandwidth are ignored in this work, which is the key fea-

ture of our proposal. 

In our recent work [1] , we carried out initial study on the prob-

lem of workflow embedding in electrical data centers to minimize

bandwidth consumption. We extend this work further to study the

embedding problem in both electrical and optical data centers. Em-

bedding workflow requests to optical data centers needs to deal

with specific characteristic of optical networks such as the wave-

length continuity constraint and wavelength selection. 

2.3. Virtual network embedding (VNE) 

Embedding of VM groups with bandwidth requests and virtual

network requests in data centers has been studied in the litera-

ture [19–21] . Both works presented in [19] and [20] studied the

problem of VM placement in data centers to reduce cross network

traffic by embedding communicating VMs in the same server or

rack. In [21] , the problem of VM placement and bandwidth re-

duction for an application graph of VM clusters has been studied.

In [8] , the authors addressed the problem of allocation of com-

puting and network resources in multi-tenant data centers with

the assumption of knowledge of VM to VM bandwidth require-

ments, represented as a traffic matrix. These works considered

fixed amount of bandwidth requirement between VMs for the en-

tire lifetime of the request whereas workflows have different band-

width requirements at different times. To the best of our knowl-

edge, the problem of embedding workflow requests considering

both VM placement and guaranteed bandwidth has not been ad-

dressed before. We try to minimize the bandwidth allocated for

the requests while guaranteeing the availability of VMs and band-

width for the application performance. 

Virtual network embedding in optical networks has been

recently studied [6,22–24] . While [22] and [23] studied the

VNE problem in all-optical networks but not data centers,

[6] and [24] considered this problem in hybrid optical-electrical

data centers. The work presented in [24] additionally considered

the capability of dynamic wavelength grouping of optical network

architecture. These works however do not consider the complex re-

source requests like workflow resource requests, which is the fo-

cus of our work. Our work also differs from the works presented

in [25,26] , which focused more on the architecture design of opti-

cal networks rather than on the VNE problem. 

3. System model 

We now present the system model of our work. We first in-

troduce the architecture of the data centers where our model

can be applied. We then describe the workflow resource request

model before we present the optimization problem to minimize

the amount of bandwidth required for workflow execution and to

improve the bandwidth efficiency in data centers. All the mathe-

matical notations used throughout the paper are summarized in

Table 1 . 
.1. Data center architecture and resources 

In this paper, we consider a two-tier data center architecture

s shown in Fig. 1 where Fig. 1 a presents the architecture of a

acket-switched electrical data center and Fig. 1 b presents that of

 circuit-switched optical data center. In both architectures, the

ottom most level contains physical servers that host VMs. The

ost for communication between the VMs in the same physical

erver is zero as they do not need link bandwidth. Multiple physi-

al servers are connected to a ToR switch by server-ToR links, form-

ng a Performance Optimized Data center. The difference between

he electrical data center and optical data center is the connection
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Fig. 2. Bronze Standard workflow and its resource request model. 
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etween ToRs and the core switch. In the electrical data center, the

oRs are connected to the core packet switch by the ToR-core links

hile in the optical data center, the ToRs are connected to the core

optical) switch in the next level by multi-wavelength links. Each

ber can carry up to W wavelengths, meaning that a ToR switch

an simultaneously reach up to W other ToR switches through op-

ical paths or lightpaths. In the absence of wavelength converters,

he lightpath between two ToR switches traversing through the op-

ical switch needs to be wavelength-continuous. If VMs, which are

osted in different physical servers in the same rack, communi-

ate with each other, the communication cost will incur only on

erver-ToR links. If VMs, which are hosted on different racks, com-

unicate with each other, the communication cost will incur on

oth server-ToR links, and ToR-core links or lightpaths. 

Let M denote the number of ToR switches in a data center. Each

oR switch can connect a maximum of N servers. For each server,

p to C vm VMs can be deployed to satisfy the user’s requirement.

hus, the total computing capacity of the data center is M × N ×
 

vm VMs. We assume that all servers are homogeneous and users

equest for the same type of VMs for their applications. On the

etwork resources, we also assume that all the links in the same

evel have the same capacity. The capacity of server-ToR links is

 

eband units and that of ToR-core links or lightpaths is C cband units.

he maximum capacity of a fiber in the optical data center is then

 × C cband . 

We discretize the time horizon of the resource request into

dentically sized slots. At time slot t , let C vm 

i, j,t 
denote the number of

Ms available on server j connected to ToR switch i . For the electri-

al data center, we denote C cband 
i,t 

as the residual bandwidth of the

oR-core link connecting ToR switch i to the core switch at time

lot t . For the optical data center, we denote C cband 
i,i ′ ,t as the residual

andwidth of the lightpath connecting ToR switch i and ToR switch

 

′ at time slot t . Finally, the residual bandwidth on the server-ToR

ink connecting ToR switch i and server j at time slot t is denoted

s C eband 
i, j,t 

. Initially, at time slot t = 0 , C vm 

i, j, 0 
= C vm , C cband 

i, 0 
= C cband 

nd C eband 
i, j, 0 

= C eband with i = 1 . . . M and j = 1 . . . N. 

.2. Workflow resource request model 

A workflow application is defined through a workflow graph,

hich is usually a Directed Acyclic Graph (DAG), featuring the ap-

lication services to be executed (workflow tasks) and the data de-

endencies between these services (edges). In Fig. 2 , we present

n example of a workflow that is a medical image processing ap-
lication, namely Bronze Standard [27] . It includes 6 image pro-

essing algorithms with names as shown in the figure. Based on

he amount of input data, e.g., the number of images to be pro-

essed for the Bronze Standard application, users need to reserve

loud resources. For task k , let R vm 

k 
denote the number of VMs re-

uested for its execution for a duration denoted as D k . We assume

hat the execution time of workflow tasks is specified as multiple

ime slots. If there exists a data dependency between task k and

ask k ′ , i.e., output of task k is input of task k ′ , let R band 
k,k ′ denote

he amount of bandwidth required between each VM pair of task

 and task k ′ . Based on the resource requests and the dependen-

ies between tasks of the workflow, we construct matrix D(K × T )

epresenting the resource usage during the entire execution of the

orkflow where K is the number of tasks in the workflow and T

s the workflow makespan , which is defined as the total number of

ime slots needed to complete its execution. The value of D k,t is

et to 1 if task k needs resources in time slot t and D k,t is set to 0

therwise. 

The construction of matrix D(K × T ) is based only on the ap-

lication logic and the execution time of workflow tasks. Due to

he data precedence among workflow tasks, the application logic

eeds to be known in advance to determine which tasks require

esources first to execute and produce data for other tasks. The ex-

cution time of workflow tasks allows the users to determine the

esource usage duration to request from cloud data centers. A con-

entional construction guarantees that there will be no delay in

he execution of workflow tasks. A task will be scheduled immedi-

tely one after the other as soon as its input data is available, i.e.,

ts preceding tasks have finished. We refer this construction to as

 fixed construction. 

Practically, a user may have his own time constraint, i.e., the

rocessing deadline, workflow tasks thus do not have to be sched-

led immediately one after the other as long as the time con-

traint is still preserved. In such a case, the construction of ma-

rix D(K × T ) additionally considers the time constraint by which a

ask can be deferred by one or more time slots. Thus, we can have

ultiple variants of matrix D(K × T ) to represent the resource us-

ge times of all tasks. We refer this construction to as a deferrable

onstruction. We will study the design of deferrable construction

lgorithm for matrix D(K × T ) and the problem of selecting the

est variant in our future work. In this paper, we assume that ma-

rix D has already been formed and given as an input parameter

or the problem. 

It is noted that the discretization of tasks over time for re-

ource allocation might lead to idle times of resources. If the du-

ation of each time slot is too long, some workflow tasks may al-

eady finish the execution but the VMs for succeeding tasks are

ot ready for execution. The expertises on the application logic and

xecution time of tasks are therefore important for resource uti-

ization in general and resource usage cost if running in commer-

ial clouds. We also assume that the time slot is sufficient small

nd the tasks are sufficient longer to reduce the waste due to idle

ime. It is worth mentioning that this characteristic of workflows

llows users to refine resource requirements for their execution.

he workflow model is attractive because it allows the users to re-

erve different amount of resources at different execution time of

he workflow instead of reserving fixed amount of resources based

n the worst case requirement for the workflow makespan. 

.3. Workflow embedding for bandwidth minimization 

We now formulate the optimization problem to generate the

mbedding solution that minimizes the bandwidth consumption

or workflow execution. We first present the objective function and

hen the constraints applied in case of electrical data centers or

ptical data centers. 
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3.3.1. Objective function 

Let M (K × M × N) denote the embedding matrix where each

element M k,i, j is the number of VMs allocated for task k em-

bedded in ToR i hosting server j with k = 1 . . . K, i = 1 . . . M and

j = 1 . . . N. Given an embedding matrix, the amount of bandwidth

consumed on ToR-core links of the electrical data center or light-

paths of the optical data center for workflow execution, denoted as

Q 1 (M ) , is defined as follows: 

Q 1 (M ) = 

T ∑ 

t=1 

K ∑ 

k =1 

K ∑ 

k ′ =1 

M ∑ 

i =1 

M ∑ 

i ′ =1 ,i ′ � = i 

N ∑ 

j=1 

N ∑ 

j ′ =1 

D k,t R 

band 
k,k ′ M k,i, j M k ′ ,i ′ , j ′ . (1)

This equation means that bandwidth will be consumed for every

adjacent task pair k and k ′ if their requested VMs are embedded in

two servers j and j ′ , which are connected to different ToR switches

i and i ′ , respectively. Similarly, let Q 0 (M ) denote the total amount

of bandwidth consumed on server-ToR links, which is computed as

follows: 

Q 0 (M ) = 

T ∑ 

t=1 

K ∑ 

k =1 

K ∑ 

k ′ =1 

M ∑ 

i =1 

M ∑ 

i ′ =1 

N ∑ 

j=1 

N ∑ 

j ′ =1 

D k,t R 

band 
k,k ′ M k,i, j M k ′ ,i ′ , j ′ 

−
T ∑ 

t=1 

K ∑ 

k =1 

K ∑ 

k ′ =1 

M ∑ 

i =1 

N ∑ 

j=1 

D k,t R 

band 
k,k ′ M k,i, j M k ′ ,i, j (2)

where the first term is the total amount of bandwidth on server-

oR links consumed for all the adjacent task pairs. Since there may

exist several adjacent task pairs whose VMs are allocated on the

same server. The communication cost will be zero. Thus, the sec-

ond term in Eq. (2) computes the bandwidth that will be deducted.

The total bandwidth required for workflow execution, which we

aim to minimize, for an embedding solution is as follows: 

Q (M ) = Q 0 (M ) + Q 1 (M ) . (3)

It is to be noted that depending on the architecture of the data

center network, the total bandwidth consumption is calculated dif-

ferently given an embedding solution, i.e., the number of elements

in Eq. (3) may be different. For instance, in this paper, we consider

a two-tier data center so that the bandwidth consumption may in-

cur on the server-ToR and ToR-core links. If there exists the aggre-

gation level, then the bandwidth consumption may also incur on

the links that connect the aggregate switches to the core switch.

It is also worth mentioning that considering a two-tier data cen-

ter with single links among network entities, i.e., between servers

and ToR switches, and between ToR switches and the core switch,

simplifies the problem but still reflects realistic scenarios. We be-

lieve that generalizing the problem to a different data center net-

work is straightforward but it may make the problem more com-

plex in some cases. For instance, considering a full data center net-

work with redundant links requires solving the routing problem,

i.e., computing the optimal paths for data transmission among VMs

or ToR switches. In this paper, we focus on the embedding prob-

lem, workflow task dependencies and two-tier data center archi-

tecture. This can be extended to three-tier data center architecture

with a routing algorithm. 

3.3.2. Computing resource constraints 

Given an embedding solution, M , it is feasible if and only if

it satisfies the two following computing resource constraints. First,

it must ensure that, for every workflow task, the number of VMs

allocated in the data center is equal to the requested amount: 

M ∑ 

i =1 

N ∑ 

j=1 

M k,i, j = R 

vm 

k , k = 1 . . . K. (4)

Second, at a given time slot t , the total number of VMs allocated

to the workflow at server j connected to ToR i should be less than
he number of VMs available in this server. This constraint is rep-

esented as follows: 

K 
 

k =1 

D k,t M k,i, j � C vm 

i, j,t , i = 1 . . . M, j = 1 . . . N. (5)

.3.3. Network resource constraints 

The embedding solution also needs to satisfy the constraints of

etwork resources on server-ToR links, and ToR-core links or light-

aths depending on type of data center network. At a given time

lot t , the total bandwidth consumed by the workflow on every

erver-ToR link should also be less than its residual capacity. This

onstraint is mathematically represented as follows: 

K 
 

k =1 

K ∑ 

k ′ =1 

M ∑ 

i ′ =1 

N ∑ 

j ′ =1 

D k,t R 

band 
k,k ′ M k,i, j M k ′ ,i ′ , j ′ 

−
K ∑ 

k =1 

K ∑ 

k ′ =1 

D k,t R 

band 
k,k ′ M k,i, j M k ′ ,i, j � C eband 

i, j,t , 

i = 1 . . . M, j = 1 . . . N. (6)

For the bandwidth constraint on the links connecting the ToRs

ia the core switch, we separately describe this constraint for elec-

rical data centers and optical data centers. While this contraint is

imple in electrical data centers, it is more tricky in optical data

enters since lightpaths can be dynamically created during the

mbedding process. 

oR-core Link Constraint in Electrical Networks. At a given time slot

 , the total bandwidth consumed by the workflow on every ToR-

ore link should be less than its residual capacity. This constraint

s represented as follows: 

K 
 

k =1 

K ∑ 

k ′ =1 

M ∑ 

i ′ =1 ,i ′ � = i 

N ∑ 

j=1 

N ∑ 

j ′ =1 

D k,t R 

band 
k,k ′ M k,i, j M k ′ ,i ′ , j ′ � C cband 

i,t , 

i = 1 . . . M. (7)

avelength Continuity Constraint in Optical Networks. At a given

ime slot t , the total bandwidth consumed by the workflow on

he lightpaths that connect ToR switches i and i ′ is computed as

ollows: 

 

cband 
i,i ′ ,t = 

K ∑ 

k =1 

K ∑ 

k ′ =1 

N ∑ 

j=1 

N ∑ 

j ′ =1 

D k,t R 

band 
k,k ′ M k,i, j M k ′ ,i ′ , j ′ , 

i = 1 . . . M, i ′ = 1 . . . M, i � = i ′ . (8)

he embedding solution is feasible if the total residual bandwidth

f the established lightpaths between ToR i and ToR i ′ is sufficient,

.e., R cband 
i,i ′ ,t � C cband 

i,i ′ ,t . However, it is not similar to electrical networks

here requests will be rejected if the residual bandwidth is not

ufficient, the capacity of the link between two ToR switches in op-

ical networks can be elastically added by establishing new light-

aths with different wavelengths if they are available on the fibers

onnecting those two ToRs to the core switch. 

For ToR i , let A i, l be a binary variable indicating that wavelength

 has been used to connect ToR i to one of other ToRs, i.e., A i,l = 1

f wavelength l has been used and A i,l = 0 , otherwise. Given the

bsence of wavelength converters, a new lightpath can be estab-

ished between two ToRs if there exists a common wavelength that

as not been used by both ToRs. The maximum bandwidth amount

hat can be added to the link between two ToRs i and i ′ is com-

uted as follows: 

W 

 

l=1 

(1 − A i,l )(1 − A i ′ ,l ) C cband . (9)
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he bandwidth constraint of lightpaths is represented as follows

or i = 1 . . . M and i ′ = 1 . . . M: 

 

cband 
i,i ′ ,t � 

W ∑ 

l=1 

(1 − A i,l )(1 − A i ′ ,l ) C cband + C cband 
i,i ′ ,t . (10)

It is worth mentioning that when new lightpath(s) need to be

reated to provide required bandwidth, it is not necessary that all

vailable common wavelengths between the two ToRs will be used.

nstead, sufficient number of lightpaths will be created and re-

erves the remaining wavelengths for future usage. Selecting the

est wavelengths for lightpath creation therefore has an impact on

he connectivity of the network and the utilization of wavelengths.

e present our wavelength selection method in Section 5 . 

.3.4. Problem statement and formulation 

We now give the formal problem statement and its integer pro-

ramming formulation of the workflow resource request embed-

ing as follows. “Given a workflow request and the available resource

apacity of a data center, find an embedding matrix M such that the

otal bandwidth consumed for the workflow execution on the links in

he data center is minimized.”

inimize: Q (M ) = Q 0 (M ) + Q 1 (M ) (11) 

ubject to: (4) , (5) , (6) and (8) or (10) , (12) 

here constraints (8) and (10) are used exclusively depending on

he type of the network of the data center. 

.3.5. Problem complexity 

Solving such a non-linear optimization problem is computation-

lly prohibitive since simpler virtual network embedding problems

ave been shown to be N P -complete [9] . Indeed, while existing

orks claim their N P -completeness nature [6,22,24] , they have

ade several assumptions making the problem much more sim-

ler such as (i) they do not consider capacity physical servers and

ssume that the ToR switches have sufficient VMs to embed a vir-

ual node, and (ii) a virtual node can be embedded in only one ToR

nstead of being divided into multiple groups as done in our work.

uch problems can be considered as special cases of the workflow

equest embedding problem since we do not make such assump-

ion and the workflow resource requests are more complex. 

Given this consideration, obtaining the optimal solution of our

roblem even for a reasonable small size is still unaffordable be-

ause of the non-linearity nature of the problem and large num-

er of decision variables involved. For instance, if we consider a

orkflow with 6 tasks and a data center with 6 ToR switches,

ach connects 4 physical servers, we will deal with a problem

ith 6 × 6 × 4 = 144 decision variables. It is to be noted that mak-

ng assumptions simplifies the problem but it makes the problem

o longer reflect the realistic scenarios as we aim in our work. It

s worth mentioning again that the workflow requests have more

omplexity in resource requirements due to the data dependencies

nd time disjointness between workflow tasks. These specific re-

uirements complicate the problem formulation and make it hard

o obtain the optimal solution. 

Nevertheless, the non-linear integer programming formulated

bove gives us better description of the embedding problem and

etter understanding of the problem complexity. It shows that it is

ery essential for us to devise efficient heuristic algorithms to solve

he problem. However, developing efficient heuristic algorithms is

 difficult task. Consider the example shown in Fig. 3 where there

xist many heuristic embedding solutions. Given the workflow re-

uest ( Fig. 3 a) with three tasks: 1, 2 and 3, each requires 1 VM for

 time slot. The required bandwidth between task 1 and task 2 is

0 Mbps and that between task 1 and task 3 is 5 Mbps. The data
enter has 2 ToR switches, each has 1 server. Each server has 1 VM,

hich is available for 2 consecutive time slots as shown in Fig. 3 b.

he embedding solution shown in Fig. 3 c, which embeds task 1

nd task 2 in the same server under ToR 1 and then embeds task

 in the server under ToR 2, requires only 5 Mbps on the links

raversed. The embedding solution shown in Fig. 3 d, which em-

eds task 1 and task 3 in the same server under ToR 1 and then

mbeds task 2 in the server under ToR 2, is an inferior solution

hat requires 10 Mbps on the links traversed. In the next section,

e develop two heuristic algorithms, namely Critical Path Work-

ow Embedding (CPWE) and Edge Priority Workflow Embedding

EPWE), to determine a feasible mapping for workflow resource re-

uests while minimizing the bandwidth used for workflow in data

enters. 

. Workflow embedding algorithms 

Generally, data transmission happens when two workflow tasks

re dependent. Since these two tasks execute sequentially, the VMs

equested by the preceding task can be reused for the succeed-

ng task. Thus, these VMs can be embedded in the same physi-

al server, thereby nullifying the bandwidth required on the links.

he critical path based on bandwidth is a path from the entry task

f the workflow to the exit task of the workflow with the high-

st bandwidth. Algorithm CPWE tries to embed the entire critical

ath in the same physical server, thereby minimizing the band-

idth needed. On the other hand, algorithm EPWE is computation-

lly simpler since it is based only on a single edge. It sorts all the

dges of the workflow in the descending order of consumed band-

idth and then repeatedly embeds each edge until all the edges

re embedded. It may so happen that both algorithms CPWE and

PWE cannot embed the critical path or an edge in the same phys-

cal server, they then look for the way to embed the request in

ifferent servers. We now present the detailed description of these

lgorithms. 

.1. Critical Path Workflow Embedding 

The pseudo code of algorithm CPWE is presented in

lgorithm 1 . The input parameter of algorithm CPWE is the

vailability status of data center resources in the time horizon, i.e.,

ime slots t, t + 1 , . . . and a workflow request that arrives at time

lot t . The output of algorithm CPWE is the embedding matrix in

he case the workflow has been admitted or a rejection status,

therwise. 

Algorithm CPWE starts by adding two dummy tasks: an ENTRY
ask and an EXIT task, which are not accounted for in the exe-

ution and data transmission. The ENTRY task connects all tasks

hat do not have any preceding task, i.e., their input data is the

orkflow input. These tasks will execute immediately when the

orkflow is launched. The EXIT task connects all the tasks that

o not have succeeding tasks, i.e., their output is the final results
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Algorithm 1 Critical Path Workflow Embedding 

Input: Workflow resource request and resource availability status 

of the data center; 

Output: Embedding matrix if admitted or rejection; 

1: Add ENTRY and EXIT as dummy tasks to workflow; 

2: while Exist unmapped task do 

3: Determine the critical path denoted as CP ; 

4: SUCCESS ← 0 ; 

5: if Exist a server that can embed CP entirely then 

6: Embed CP on the selected server; 

7: Update M with embedding solution of CP ; 

8: if M satisfies (4) , (5) , (6) , (8) or (10) then 

9: SUCCESS ← 1 ; 

10: else 

11: Cancel the embedding solution of CP ; 

12: end if 

13: end if 

14: if SUCCESS = 0 then 

15: M 

CP ← Run Algorithm 3 with CP ; 

16: if M 

CP � = NUL then 

17: Update M with embedding solution M 

CP ; 

18: if M satisfies (4) , (5) , (6) , (8) or (10) then 

19: SUCCESS ← 1 ; 

20: else 

21: Cancel the embedding solution of CP ; 

22: end if 

23: end if 

24: end if 

25: if SUCCESS = 0 then 

26: return Rejected; 

27: else 

28: Mark all tasks on CP as embedded tasks; 

29: Set bandwidth required by CP to 0; 

30: end if 

31: end while 

32: return M ; 
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of the workflow. Adding these two tasks eases the phase of deter-

mining the critical path, which traverses a number of tasks from

the ENTRY task to the EXIT task. 

The main part of algorithm CPWE is the while loop, which will

repeat until all tasks in the workflow are embedded or a rejec-

tion status is obtained. For each iteration, algorithm CPWE deter-

mines the critical path of the workflow, denoted as CP as shown

in line 3. Since there have been many algorithms in the litera-

ture to compute the critical path in a workflow, we omit the de-

scription of such algorithm in this paper. We refer the readers

to [28] and [29] for the detailed descriptions of critical path selec-

tion algorithms. Given the critical path, CP , algorithm CPWE veri-

fies if there exists a server that can embed CP entirely, i.e., all VMs

requested by all the tasks on the critical path will be embedded

on that server. If such a server does not exist or the embedding

solution of CP does not satisfy all the constraints described in Eq.

(12) , CPWE then uses the procedure in Algorithm 3 to divide the

set of VMs requested by the tasks on the critical path into mul-

tiple partitions, each will be embedded on a different server. The

result of this step is stored in M 

CP as shown in line 15. We de-

scribe Algorithm 3 in detail in Section 4.3 . In the worst case, if

the critical path is not successfully embedded even it is divided,

the request is then rejected. Otherwise, all the tasks on the critical

path will be marked as embedded and all the edges on the critical

path are then updated to request a zero bandwidth (see lines 28

and 29). By setting the required bandwidth of the edges connect-
ng the embedded tasks to zero, these edges will not affect the

ritical path selection in the next iteration of the while loop. 

To verify whether there exists a server that can embed the crit-

cal path entirely or not, a practical implementation needs to con-

ider the availability status of the server in the time horizon of

ll the tasks on the critical path. A possible solution is to use a

hree-dimensional matrix S where S i, j, t indicates the number of

Ms available at time slot t on server j connected to ToR switch i ,

or i = 1 . . . M, j = 1 . . . N and t = 1 , 2 , . . . Given that task k requests

or R vm 

k 
VMs in the time horizon represented by vector D k,t , which

as set to 1 if task k requires resources at time slot t , we can align

 with D and R vm 

k 
for the verification purpose. 

.2. Edge Priority Workflow Embedding 

Algorithm EPWE is computationally simpler than algorithm

PWE since it does not need to compute the critical path. It em-

eds the workflow resource request using a greedy manner that

ives the priority for the two tasks whose edge consumes higher

andwidth. As shown in Algorithm 2 , EPWE sorts all the edges of

he workflow in the descending order based on the bandwidth re-

uirement. Similar to algorithm CPWE, for each edge in the sorted

ist, algorithm EPWE tries to embed the VMs requested by the two

asks in the same server. If it is not successful to do so, EPWE will

un Algorithm 3 to divide the requested VMs into multiple parti-

ions, each will be embedded in a different server. Obviously, there

ill be the case that an edge could not be embedded even though

ts requested VMs have been divided into multiple partitions. A re-

ection status is then announced. The input and output of algo-

ithm EPWE are similar to that of algorithm CPWE. 

lgorithm 2 Edge Priority Workflow Embedding 

nput: Workflow resource request and resource availability status

of the data center; 

utput: Embedding matrix if admitted or rejection; 

1: Sort all edges in the descending order of the bandwidth re-

quirement. Let E denote the sorted list of edges; 

2: for each e ∈ E do 

3: SUCCESS ← 0 ; 

4: if Exist a server that can embed e entirely then 

5: Embed e on the selected server; 

6: Update M with embedding solution of e ; 

7: if M satisfies (4) , (5) , (6) , (8) or (10) then 

8: SUCCESS ← 1 ; 

9: else 

10: Cancel the embedding solution of e ; 

11: end if 

12: end if 

13: if SUCCESS = 0 then 

14: M e ← Run Algorithm 3 with e ; 

15: if M e � = NUL then 

16: Update M with embedding solution M e ; 

17: if M satisfies (4) , (5) , (6) , (8) or (10) then 

18: SUCCESS ← 1 ; 

19: else 

0: Cancel the embedding solution of e ; 

21: end if 

2: end if 

3: end if 

24: if SUCCESS = 0 then 

5: return Rejected; 

6: end if 

27: end for 

8: return M ; 
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Algorithm 3 Task Embedding On Different Servers 

Input: Path P and resource availability status of the data center; 

Output: Embedding solution M P or rejection status; 

1: R max = max { R vm 

k 
, k ∈ P } ; 

2: G 2 ← 1 ; 

3: while G 2 � R max − 1 do 

4: G 1 = R max − G 2 ; 

5: for k ∈ P do 

6: R vm 

k, 1 
= min { R vm 

k 
, G 1 } ; 

7: R vm 

k, 2 
= R vm 

k 
− R vm 

k, 1 
; 

8: end for 

9: if Exist 2 servers that can embed R vm 

k, 1 
, R vm 

k, 2 
then 

10: Embed R vm 

k, 1 
and R vm 

k, 2 
on the selected servers; 

11: M P ← The solution of R vm 

k, 1 
and R vm 

k, 2 
; 

12: return M P ; 

13: end if 

14: G 2 ← G 2 + 1 ; 

15: end while 

16: M P ← NUL ; 

17: return M P ; 
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It is to be noted that while algorithm EPWE also uses the pro-

edure presented in Algorithm 3 for dividing a request into mul-

iple partitions to embed in different servers, the partitioning in-

olves only the VMs requested by the two tasks connected by the

dge. This partitioning is computationally less intensive compared

o the partitioning in algorithm CPWE, which may involve more

han one edge since the number of edges on the critical path de-

ends on the number of execution stages of the workflow. A stage

ontains the tasks that can execute concurrently. This makes algo-

ithm EPWE further simpler than algorithm CPWE. 

.3. Task embedding on different servers 

Given a critical path determined in algorithm CPWE or an edge

etermined in algorithm EPWE, there may not exist a server, which

an host all the VMs requested by the tasks. Since all the tasks on

he critical path or the edge execute sequentially, the cause of the

mbedding failure comes from the fact that there is at least one

ask, which requires a larger number of VMs than the available

Ms of the server at a specific time. For such a task, a possible so-

ution is to divide its requested VMs into multiple partitions, each

ill be embedded in a different server that has sufficient capacity.

owever, it is not straightforward to do so. Many issues need to

e considered to obtain an optimal partitioning such as the num-

er of partitions, the number of VMs in each partition and the

andwidth consumed for each partitioning. Exhaustively, we can

epeatedly divide the original request into two partitions. We ad-

ust the number of VMs in the first partition until it can be embed-

ed in a certain server. For the second partition, if there does not

xist a server, which can embed it, we will repeat again the pro-

edure to divide it into two partitions. The number of partitions is

hen not pre-determined, the partitioning procedure repeats until

ll requested VMs are embedded or the data center cannot accom-

odate the request. It is obvious that this method is computation-

lly intensive. In the worst case, for task k that requests for R vm 

k 

Ms, the complexity of the procedure is O( 
R vm 

k 
(R vm 

k 
+1) 

2 MN) where

 is the number of ToR switches, N is the number of servers con-

ected to each ToR switch. It is to be noted that while the number

f VMs required by workflow tasks may be in the order of several

ozen of VMs, the number of ToR switches and physical servers

s much larger, e.g. the number of ToR switches connected to a

ore switch can be up to 48 and similar for the number of physi-
al servers connected to a ToR switch. This makes it impossible to

terate through all possible partitions and determine the best. 

In addition to the complexity of the partitioning procedure, the

mount of bandwidth consumed for the request might dominate.

s shown in [8] , dividing a request into more than 2 partitions may

dmit more requests but more link bandwidth may be needed to

atisfy the inter-partition communications, leading to the rejection

f the future arriving requests. Therefore, we limit the number of

artitions to 2 and develop an algorithm to perform the partition-

ng. The pseudo code of the partitioning procedure is presented in

lgorithm 3 . 

Let P be the input of Algorithm 3 where P can be critical path

P from CPWE or edge e from EPWE. Task k ∈ P requests for R vm 

k 
Ms. As shown in line 1, the algorithm starts by determining the

ask in P , which requires the highest number of VMs, denoted as

 

max , as this task can be the cause of failure when trying to embed

n the same server. While the VMs of this task are reused for its

ucceeding tasks once embedded sufficiently, it requires more VMs

part from the VMs released by its preceding task. 

Given R max , the algorithm tries all combinations of the two pos-

ible partitions of VMs, where the number of VMs in each parti-

ion is denoted and G 1 and G 2 , respectively. For instance, the first

rial considers the first partition has G 1 = R max − 1 VMs and the

econd partition has G 2 = 1 VM. For every task k in P , we then

ave the new resource requirement represented by two values,

 

vm 

k, 1 
= min { R vm 

k 
, G 1 } and R vm 

k, 2 
= R vm 

k 
− R vm 

k, 1 
, respectively. The algo-

ithm looks for two servers, which can entirely embed these two

artitions, respectively. In case, one of the partitions could not be

mbedded, the algorithm tries the next possible partitioning. These

teps are presented in the while loop (lines 3–15). In Fig. 4 , we

resent an example of the partitioning for the first three iterations.

f the algorithm has tried all combinations without success, the re-

uest is rejected. 

It is worth mentioning that integrating the proposed algorithms

nto realistic systems is feasible without complicating the cur-

ent system architecture of cloud data centers. It will not require

ny additional computing resources since every cloud infrastruc-

ure has a cloud resource manager that is responsible for receiving

sers’ requests and allocating resources to admitted requests. The

roposed algorithms should be implemented as a component of

he cloud resource manager to perform the embedding of work-

ow resource requests. Since the proposed algorithms are heuris-

ic and run in polynomial time, the overhead added to the cloud

anager is negligible. Furthermore, the information exchanged be-

ween the manager and computing servers is only the embedding

olutions. Therefore, the bandwidth used for such communication

an be ignored. 

.4. Computational complexity of algorithms 

In this section, we analyze the computational complexity of the

roposed algorithms. As mentioned in Section 4.3 , the complexity

f Algorithm 3 in the worst scenario is O( 
R vm 

k 
(R vm 

k 
+1) 

2 MN) where

 is the number of ToR switches, N is the number of servers con-
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Core

(a)

(b) (c)

λ1

λ1

λ2

λ2, λ3 λ1, λ3

Fig. 5. An example of wavelength selection: (a) Wavelength availability and light- 

path to be created. (b) Use of λ1 disconnects ToR 1 and ToR 3. (c) Use of λ2 ensures 

good connectivity among ToRs. 
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nected to each ToR switch. Algorithm 3 is used in Algorithms 1 and

2 , which have to iterate until all workflow tasks have been embed-

ded. Given that there is K tasks in a workflow request, for every it-

eration, Algorithm 1 needs to compute the critical path whose the

algorithm for finding the critical path in a workflow has a com-

plexity of O(| E| + | K | log | K | ) where | E | is the number of edges in

the workflow 

1 . The computational complexity of Algorithm 1 in

the worst scenario is therefore O( R 
vm (R vm +1) 

2 (| E| + | K | log | K | ) K MN)

whereas the complexity of Algorithm 2 is O( R 
vm (R vm +1) 

2 KMN)

where R vm is the maximum number of VMs required by a work-

flow task. As mentioned earlier, the most important components

that influence the algorithm complexity are the number of ToR

switches in the data center and the number of physical servers

connected to a ToR switch. The values of these two components

are much larger than the number of VMs required by each work-

flow task and the number of tasks in each workflow. 

It is to be noted that the task dependencies of workflow re-

quests do not affect the size of the optimization problem, i.e., the

non-linear integer programming problem defined in the previous

section since the number of decision variables depends only on the

number of tasks of the workflow, the number of ToR switches and

the number of physical servers under each ToR switch. However, it

actually affects the complexity of the proposed algorithms. Indeed,

the Critical Path Workflow Embedding needs to compute the criti-

cal path of the workflow based on bandwidth consumption of the

edges between tasks. The more complex the task dependencies,

the more complex the algorithm. Similarly, the Edge Priority Work-

flow Embedding needs more iterations for embedding an edge of

the workflow. Furthermore, with more edges in a workflow, the

algorithms needs more verifications for the bandwidth constraints

on both levels of links in data centers since two dependent tasks

are highly embedded on two different physical servers or ToRs. 

5. Dealing with optical network characteristics 

While our optimization formulation presented in Section 3 con-

siders how efficiently bandwidth of the links in data centers is

used, dealing with lightpath creation in optical data centers needs

new methods to: (i) select the ToR that has the feasibility to create

new lightpath when communication is required, and (ii) select the

wavelength to improve the wavelength utilization, thus increasing

the bandwidth efficiency. In this section, we present our proposed

methods to solve these issues. 

5.1. Top-of-the-Rack selection 

In electrical packet-switched data centers, a request will be re-

jected if required bandwidth is not available on the links connect-

ing ToRs. In optical data centers, for such cases, we need to check

whether it is possible to create a new lightpath between the ToRs

before rejecting the request. A ToR with “good” connectivity with

others will likely reduce the rejection ratio of the requests. Thus,

selecting a ToR with the highest connectivity, i.e., the one with the

highest possibility of reaching out to other ToRs, is a good choice

among the ToRs. We define a function to compute the connectivity

index of a ToR depending on the number of available wavelengths

and its reachability to other ToRs in the data center. For ToR i , the

connectivity index function is defined as follows: 

F (i ) = 

∑ M 

j =1 , j � = i G( i, j) 

M − 1 

, (13)
1 Finding the critical path in a workflow is the inverse problem of finding the 

shortest path in a graph. Thus, to compute the critical path, we adopt the Dijkstra 

algorithm that has a complexity of O(| E| + | V | log | V | ) where | E | is the number of 

edges and | V | is the number of nodes in the graph. 

n  

r  

t  

A  

w  
here F ( i ) is the connectivity index of ToR i , G(i, j) is the num-

er of lightpaths that can be created between ToR switches i and

 , i.e., the number of available wavelengths that are common be-

ween the two ToR switches, and M is the total number of ToRs in

he data center. By choosing the ToR with the highest connectiv-

ty index, we can ensure high reachability among ToRs upon creat-

ng a new lightpath from this ToR. Furthermore, this function also

nsures a good balancing of wavelengths with many wavelength-

ontinuous paths among ToRs. The rationale for using this func-

ion is to keep high degree of connectivity among ToR switches

nd avoid that ToR switches are disconnected even though wave-

engths are available. 

.2. Wavelength selection for lightpath creation 

When a lightpath needs to be created between two ToRs, selec-

ion of a wavelength is an important problem to maximize wave-

ength utilization. Within a data center, the dynamic arrival of re-

ource requests and high degree of the optical switch make the

mpact of the continuity constraint more pronounced. Consider an

xample shown in Fig. 5 where a lightpath between ToR 1 and

oR 2 needs to be created. Since they have two common wave-

engths, i.e., λ1 and λ2 , one of them can be used for the new light-

ath. However, if λ1 is used, ToR 1 cannot reach ToR 3 in future if

ommunication is required between ToR 1 and ToR 3 (see Fig. 5 b).

hus, it is better to use λ2 to connect ToR 1 and ToR 2 and re-

erve λ1 for the future as shown in Fig. 5 c. To solve this prob-

em, we propose a function that computes the goodness value for

ach wavelength between a given pair of ToRs to choose the wave-

ength with the highest goodness value for a lightpath. The good-

ess function for a common wavelength λ between ToR i and ToR

 is defined as follows: 

 (λ) = 

1 

R (λ) 
(14)

here R ( λ) is the number of fibers on which wavelength λ is avail-

ble. This is equivalent to choosing a wavelength that is used on

ost of the fibers, ensuring the highest connectivity of ToRs. 

.3. Integration into embedding algorithms 

The ToR selection method and the wavelength selection method

eed to be integrated into the algorithms described in Section 4 to

ealize the embedding in optical data centers. The ToR selec-

ion method will be invoked by line 5 in Algorithm 1 , line 4 in

lgorithm 2 and line 9 in Algorithm 3 where the algorithms check

hether there exist a candidate server for embedding a critical



T. Truong-Huu et al. / Computer Networks 108 (2016) 184–198 193 

p  

e  

t  

d  

t  

t  

o  

o  

d  

t  

s  

o

 

m  

A  

E  

l  

w

6

 

a  

a  

l

6

 

w  

1  

s  

i  

c  

I  

t  

1  

b  

i

 

T  

[  

f  

t

6

 

g  

t  

t

6

 

p

 

 

 

 

t

 

 

 0

 0.1

 0.2

 0.3

 0.4

 0.5

 0.6

 0.7

 0.8

 0  2  4  6  8  10

R
ej

ec
tio

n 
ra

tio

Number of requests per time slot

FFWE
RWE

BA-RWE
BA-FFWE

EPWE
CPWE

Fig. 6. Rejection ratio for random workflows. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

s  

e  

p  

a  

b  

i  

w  

f

6

P  

j  

i  

s  

r  

c  

a  

R  

t  

i  

t  

V  

w  

c  

c  

f  
ath, an edge or a partition of the critical path or edge. If there

xist multiple candidate servers, the ToR selection method is used

o determine the best ToR that hosts the best server for embed-

ing. It is to be noted that ToR selection in packet-switched elec-

rical data centers is much simpler since it needs to verify only

he availability of computing resources (VMs) and the bandwidth

f the links. In optical data centers, as discussed earlier, selection

f a ToR has an impact on the future connectivity of the network

ue to the wavelength continuity constraint. Thus, in addition to

he verification of the availability of computing and network re-

ources, the algorithm also needs to verify the future connectivity

f the network caused by the selection of ToR. 

Similar to the ToR selection method, the wavelength selection

ethod is integrated into line 18 of Algorithm 1 and line 17 of

lgorithm 2 during the verification of the constraint presented in

q. (10) . As presented in Section 3 , there may be multiple wave-

engths available for lightpath creation, we need to select the best

avelength(s) to provide sufficient bandwidth for the request. 

. Performance study 

In this section, we evaluate the performance of the proposed

lgorithms. We first describe the settings of simulation parameters

nd the baseline algorithms for comparison purpose then we ana-

yze the obtained results. 

.1. Parameter settings 

We consider the electrical data center and optical data center

ith the architecture as shown in Fig. 1 . The core switch connects

6 ToR switches. The number of servers connected to each ToR is

et to 16. The number of VMs, which can be hosted in each server,

s set to 64. The maximum number of VMs available in the data

enter is 16384. We set the capacity of server-ToR links to 1 Gbps.

n the electrical data center, the capacity of ToR-core links is set

o 10 Gbps. In the optical data center, each fiber can carry up to

0 wavelengths with wavelength capacity set to 1 Gbps. Thus, in

oth electrical and optical data centers, the over-subscription ratio

s 1: 1.6. 

Workflow requests are generated randomly by a DAG generator.

he total number of tasks in a workflow is chosen randomly from

3, 25]. The number of VMs required by a task is chosen randomly

rom [10, 20]. The bandwidth requirement between two dependant

asks is assumed to be in the range of [600, 800] Kbps. 

.2. Performance of CPWE and EPWE 

In this section, we evaluate the performance of embedding al-

orithms: CPWE and EPWE. We consider the electrical data center

o eliminate the impact of the wavelength continuity constraint on

he performance. 

.2.1. Performance metrics and Comparison 

We use the two following performance metrics to evaluate the

roposed algorithms. 

• Average bandwidth required per accepted request: We compute

the total bandwidth consumption then divide for the number of

accepted requests; 

• Average rejection ratio: The ratio between the number of rejec-

tions and the number of requests arrived. 

We compare the performance of the proposed algorithms to

hat of the four following baseline algorithms. 

• First Fit Workflow Embedding (FFWE) looks for the first fit

server that has sufficient VMs to embed a certain workflow
task. It repeats the same process until all tasks have been em-

bedded. If no server is available for a certain task, the request

is rejected. 

• Random Workflow Embedding (RWE) randomly selects a server

that has sufficient VMs for a workflow task. If the selected

server cannot accommodate, RWE removes this server from the

list then selects another server. In the worst case, if no server

is available for the task, the request is rejected. 

• Bandwidth-aware First Fit Workflow Embedding (BA-FFWE) is

similar to FFWE when selecting a server. It additionally veri-

fies whether the links connecting the servers can accommodate

the bandwidth requirement if all the successors of the task are

spread over different servers, i.e., the maximum bandwidth re-

quired by the task in the worst embedding, termed as the upper

bound bandwidth requirement. 

• Bandwidth-aware Random Workflow Embedding (BA-RWE) is 

similar to RWE in the way to select a server but it addition-

ally considers the upper bound bandwidth requirement as in

BA-FFWE. 

It is to be noted that algorithm FFWE is the simplest algorithm

imilar to Myopic algorithm [16] . Algorithm RWE is also consid-

red as a well-known baseline algorithm for performance com-

arison in many previous works [30,31] . While algorithms FFWE

nd RWE embed workflow tasks naively without considering the

andwidth consumption for data transmission between tasks, we

mprove these two algorithms by adding the upper bound band-

idth requirement, resulting in algorithms BA-FFWE and BA-RWE

or comparison purpose. 

.2.2. Analysis of results 

erformance with Random Workflows. In Fig. 6 , we present the re-

ection ratio of all the algorithms with respect to the arrival rate,

.e., the number of workflow resource requests that arrive per time

lot. It is observed that algorithms FFWE and RWE reject many

equests even at a low arrival rate while other algorithms, which

onsider bandwidth requirement, perform better and do not reject

ny request. This is explained by the fact that algorithms FFWE and

WE do not consider the bandwidth requirement of the edges be-

ween a preceeding task and its succeeding tasks while determin-

ng the physical server for the preceeding tasks. Thus, even though

he physical server selected for the preceeding task has sufficient

Ms, the link connecting the physical server to the ToR switch as

ell as the link connecting the corresponding ToR switch to the

ore switch may not have sufficient bandwidth if later on the suc-

eeding tasks are embedded on different physical servers or dif-

erent ToRs. It is to be noted that due to the complexity of the
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embedding problem, the algorithms do not perform the iteration

to verify all possible embedding solutions. The request will be re-

jected if the first trial fails. Since it is obvious that algorithms FFWE

and RWE always have the worst performance, we omit their pre-

sentations hereafter. 

Fig. 7 presents the average bandwidth required per accepted re-

quest with respect to the arrival rate. The results show that CPWE

and EPWE outperform the baseline algorithms. While CPWE has

a global view about the bandwidth consumption by analyzing the

critical path, EPWE gives the priority for the edge with the highest

required bandwidth. Embedding the critical path or such edge in

the same server reduces the bandwidth consumption significantly.

As shown in Fig. 7 , EPWE reduces the bandwidth required per ac-

cepted request by about 40% compared to BA-FFWE and 50% com-

pared to BA-RWE. Algorithm CPWE performs even better reducing

the bandwidth required per accepted workflow request by up to

55% compared to BA-FFWE and 66% compared to BA-RWE. Com-

paring CPWE and EPWE, we observe that, when the arrival rate is

low, entire critical path is well accommodated in the same server.

Thus, CPWE outperforms EPWE. However, at high arrival rate, em-

bedding the entire critical path in the same server is more diffi-

cult, the critical path is then spread over different servers, making

the bandwidth consumption increases drastically. Thus, EPWE per-

forms better than CPWE. 

Since CPWE and EPWE use less bandwidth for each workflow

while guaranteeing the bandwidth requirement, they can accom-

modate more requests compared to the baseline algorithms. Con-

sequently, CPWE and EPWE start rejecting resource requests much

later than the baseline algorithms as shown in Fig. 8 . While the

baseline algorithms start rejecting the request at the arrival rate of

16, EPWE and CPWE start rejecting the request at the arrival rate

of 24 and 26, respectively. 

Performance with Real Application Workflows. We also evaluate the

proposed algorithms using realistic-application workflows: a medi-

cal image analysis [15] , an Alzheimer’s disease case study [32] and

a protein structure annotation workflow [13] . For each time slot,

we generate a number of requests for these three workflows. We

obtain the same behavior as we obtained in the case of random

workflows. Fig. 9 presents the average bandwidth required per ac-

cepted request. It is observed that algorithm CPWE saves up to 70%

and 80% of bandwidth required for a workflow compared to BA-

FFWE and BA-RWE, respectively. EPWE has similar performance by

reducing about 65% and 78% of bandwidth allocated to a workflow

compared to BA-FFWE and BA-RWE, respectively. We also observe

that large variation of bandwidth requirement on the edges of
ealistic-application workflows makes EPWE performs better than

PWE at high arrival rate. Fig. 10 presents the rejection ratio of the

roposed algorithms compared to the baseline algorithms. The re-

ults show that algorithms CPWE and EPWE can accommodate up

o 22 concurrent requests while BA-RWM and BA-FFWM can af-

ord up to 10 and 16 concurrent requests, respectively. It is to be

oted that we increase the loads, i.e., the number of workflow re-

ource requests, gradually to evaluate the performance of the algo-

ithms from small loads to high loads. Since we used the realistic
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orkflow applications for the performance study, e.g., a medical

mage processing application [15,33] , the number of input param-

ters, i.e., the number of images provided by the patients, creates

he workflow instances submitted to the data center for execution.

uch a scaling behavior represents the number of patients whose

mages are processed concurrently by the workflow applications in

he data center. 

.3. Performance of algorithms in optical data centers 

As shown in previous section, CPWE has the best performance

or workflow embedding in data centers. Thus, we use CPWE to

valuate the performance of the proposed methods that deal with

he challenging issues of optical data centers: ToR and wavelength

election methods. 

.3.1. Performance of ToR selection method 

We compare the performance of the proposed ToR selection

ethod that uses the highest connectivity ToR first denoted as

CF-ToR. We compare the performance of HCF-ToR with that of the

ollowing baseline methods: 

• First-fit ToR (denoted as FF-ToR) selects the first ToR that has

sufficient VMs to embed the request; 

• Largest-wavelength First ToR (denoted as LWF-ToR) selects the

ToR based on the number of available wavelengths. The ToR

with the highest number of available wavelengths is selected

to host VMs; 

• Highest Connectivity ToR First with Lowest Bandwidth Path

(HCF-ToR-LBP) uses the connectivity index function to deter-

mine the ToR and embed the path with the lowest bandwidth

consumption. 

The results in Fig. 11 show that the FF-ToR method has the

orst performance. Our method, HCF-ToR, which uses the high-

st connectivity ToR first, reduces the rejection ratio significantly.

hen the arrival rate is 20 requests per time slot, HCF-ToR

chieves a performance gain of 25% in terms of reduction of re-

ection ratio compared to LWF-ToR. The results also show that us-

ng the critical path based embedding achieves better performance.

ompared to HCF-ToR-LBP, which gives priority to the path with

he lowest bandwidth consumption, HCF-ToR achieves a perfor-

ance gain of 47% in terms of reduction of rejection ratio. 

.3.2. Performance of wavelength selection method 

In this simulation, we evaluate the performance of the wave-

ength selection method. We compare the performance when us-

ng the proposed goodness function for wavelength selection called
est Fit Wavelength selection (BF-WL) with that of the following

aseline methods. All use HCF for ToR selection and critical-path

ased embedding. 

• First-fit wavelength method denoted as FF-WL; 

• Random wavelength method denoted as RAND-WL. 

Results in Fig. 12 show that using the goodness function has

etter performance than other methods by achieving a perfor-

ance gain of up to 15% in terms of reduction of rejection ratio. 

.3.3. Dynamic reconfiguration of lightpaths 

The flexibility of optical switch brings in the dynamic reconfig-

ration of lightpaths where a lightpath can be removed dynami-

ally when no longer required. However, dynamic reconfiguration

ncurs additional overhead. We carry out reconfiguration at the

nd of each time slot and the average number of reconfigurations

er time slot is shown in Fig. 13 . It is observed that at the ar-

ival rate of 20, only about 2 lightpaths are removed. With such

 small number of reconfigurations, we achieve a significant per-

ormance improvement by reconfiguration as shown in Fig. 14 . The

ejection ratio in the data center without dynamic reconfiguration

f lightpaths increases drastically. At the arrival rate of 20, the re-

ection ratio reaches 0.4% with no reconfiguration, while that of

he data center with dynamic reconfiguration of lightpaths and the

lectrical packet-switched data center are only 0.072% and 0.036%,

espectively. 
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6.3.4. Performance without dynamic reconfiguration 

We observe a similar behavior when evaluating the perfor-

mance of the ToR selection method and the wavelength selection

method in the case of no dynamic reconfiguration of lightpaths,

i.e., lightpaths are incrementally configured. In Fig. 15 , we present

the performance of the ToR selection method. The FF-ToR method

again has the worst performance by rejecting roughly 10% of re-

quests when the arrival rate is 20 requests per time slot. The HCF-

oR method has the best performance by reducing the rejection

ratio to 0.4% while that of the LWF-ToR method is 0.65%, corre-

sponding to a performance of 40%. 

6.4. Optical vs electrical data centers 

We evaluate the impact of the wavelength continuity constraint

by comparing the rejection ratio when embedding workflow re-

source requests in electrical and optical data centers. The capac-

ity of the links, which connect ToR switches to the core switch

in the electrical data center, is set to 10 Gbps. This is equivalent

to the case of optical data center with 10 wavelengths per fiber,

each has bandwidth capacity of 1 Gbps. In Fig. 16 , we present the

performance in terms of rejection ratio for optical and electrical

data centers. It is observed that at the arrival rate of 20 requests

per time slot, the rejection ratio of the optical data center reaches

0.072% while that of the electrical data center is only 0.036%. The

performance of the optical data center is improved when wave-

length conversion is used, where the rejection ratio decreases to

0.052% at the arrival rate of 20, corresponding to a reduction of

28%. This is due to the wavelength continuity constraint in the
ptical network. Indeed, while a ToR switch in the electrical net-

ork can reach any other ToR switch as long as there is avail-

ble bandwidth in the links that connect the two ToR switches

o the core switch, a ToR in the optical network can simultane-

usly reach maximum a number of ToRs depending the number of

avelengths carried by the fiber that connects the ToR switch to

he core optical switch. This leads to the fact that two ToRs may

till have sufficient VMs for allocating to two dependant workflow

asks but they cannot connect with each other since they have no

ore available (and common in case of no wavelength converter)

avelength to establish the lightpath even though the bandwidth

rovided by other wavelengths is not fully utilized. This additional

onstraint of optical networks makes them perform poorer than

lectrical networks. 

We note that for electrical networks, we considered an ideal

ase where a single link with aggregate capacity of number of

avelengths multiplied by capacity per wavelength. This ideal case

s not feasible when the number of wavelengths per fiber in-

reases, i.e., it is impractical (even impossible) to fabricate a copper

able with capacity of 100 Gbps. In such a case, a complex network

tructure with more fibers and switches will be required in packet-

witched networks. 

. Conclusion 

In this paper, we addressed the problem of embedding work-

ow resource requests in packet-switched and circuit-switched op-

ical data centers with the consideration of bandwidth require-

ents. We formulated the embedding problem as an optimization

rogramming model that minimizes the bandwidth required for

orkflow execution. Since the optimization problem is computa-

ionally prohibitive, we developed two heuristic algorithms namely

PWE and EPWE to solve this problem. To deal with the specific

haracteristic of optical networks, we additionally proposed the

ethods for ToR selection and wavelength selection to improve

he connectivity of optical networks and wavelength utilization.

he validation was performed through simulations with random

orkflows as well as workflows of realistic applications. The sim-

lation results demonstrate the effectiveness of the proposed algo-

ithms by reducing up to 66% of bandwidth required for random

orkflows and 80% of bandwidth required for realistic-application

orkflows compared to the baseline algorithms. The results also

how that the ToR selection method and the wavelength selection

ethod applied in optical data centers outperform other methods

y reducing the rejection ratio up to 47% with dynamic reconfig-

ration of lightpaths and 40% with incremental configuration of

ightpaths. 
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