
Computer Networks 108 (2016) 133–147

Contents lists available at ScienceDirect

Computer Networks

journal homepage: www.elsevier.com/locate/comnet

Security policy enforcement for networked smart objects

Sabrina Sicari a , ∗, Alessandra Rizzardi a , Daniele Miorandi b , Cinzia Cappiello

c ,
Alberto Coen-Porisini a

a Dipartimento di Scienze Teoriche e Applicate, Università degli Studi dell’Insubria, via Mazzini 5 - 21100 Varese, Italy
b U-Hopper srl, via A. da Trento 8/2, 38122 Trento, Italy
c Politecnico di Milano, Piazza Leonardo da Vinci 32, 20133 Milano, Italy

a r t i c l e i n f o

Article history:

Received 19 November 2015

Revised 29 March 2016

Accepted 14 August 2016

Available online 16 August 2016

Keywords:

Internet of things

Security

Data quality

Policy enforcement

Middleware

Prototype

a b s t r a c t

In the Internet of Things (IoT) heterogeneous technologies concur to the provisioning of customized ser-

vices able to bridge the gap between the physical and digital realms. Security, privacy and data quality

are acknowledged to represent key issues to be tackled in order to foster the large-scale adoption of IoT

systems and technologies. One instrumental aspect concerns the ability of the system to preserve security

in the presence of external attacks. In such a scenario, the integration of a flexible IoT middleware, able to

handle a large number of data streams and of interconnected devices, with a flexible policy enforcement

framework is needed and presented in this paper. The proposed solution aims to ease the management

of interactions across different realms and policy conflicts. Its effectiveness is validated by means of a

lightweight and cross-domain prototypical implementation.

© 2016 Elsevier B.V. All rights reserved.

1

t

g

i

a

t

c

i

n

a

p

o

a

m

m

o

p

t

u

c

P

p

h

t

m

w

t

s

s

t

n

v

i

i

c

i

n

t

s

d

F

h

1

. Introduction

The Internet of Things (IoT) [1] represents a vision of future

echnological ubiquity, where the ability of devices to connect to a

lobal infrastructure enables to bridge the gap between the phys-

cal and digital realms. The diffusion of the IoT paradigm would

llow the implementation and the diffusion of innovative and cus-

omized services in several applications fields. From a technologi-

al point of view, the term ‘things’ is used to denote various phys-

cal everyday objects that embed electronics (e.g., wireless sensor

odes, actuators, RFIDs, and so on) to make them smart and suit-

ble to be part of a global networked infrastructure. From a logical

oint of view, an IoT system can be characterised as a collection

f smart devices which interact on a collaborative basis to fulfill

 common goal, acquiring data from and acting upon the environ-

ent they are in.

In such a context, security & privacy represent critical require-

ents, which can hinder the large scale adoption and diffusion

f IoT applications [1–6] . Traditional security countermeasures and

rivacy solutions cannot be directly applied to IoT scenarios due

o various reasons, including, but not limited to, energy and com-
∗ Corresponding author.

E-mail addresses: sabrina.sicari@uninsubria.it (S. Sicari), a.rizzardi@

ninsubria.it (A. Rizzardi), daniele.miorandi@u-hopper.com (D. Miorandi), cinzia.

appiello@polimi.it (C. Cappiello), alberto.coenporisini@uninsubria.it (A. Coen-

orisini).

o

a

a

p

w

ttp://dx.doi.org/10.1016/j.comnet.2016.08.014

389-1286/© 2016 Elsevier B.V. All rights reserved.
uting constraints, scalability etc. Moreover, adaptation and self-

ealing play a key role in IoT infrastructures, which must be able

o face sudden and unexpected changes in the operational environ-

ent. Accordingly, privacy and security issues should be treated

ith a high degree of flexibility [7,8] . Together with the conven-

ional security solutions, there is also the need to provide built-in

ecurity in the devices themselves (i.e., embedded) in order to pur-

ue dynamic prevention, detection, diagnosis, isolation and coun-

ermeasures against successful breaches [9] .

Security and privacy are two pillars for ensuring the effective-

ess of IoT services, the third one being data quality. IoT ser-

ices should provide correct, complete and updated information:

n some scenarios indeed errors or missing values might have crit-

cal impact on actions or decisions [10] . Keeping in mind the cru-

ial role of the satisfaction of these security, privacy and data qual-

ty requirements, it is important to remark that in IoT context the

umber of violation attempts is high [2] . In other words, in order

o deal with the huge amount of critical situations typical of the

haring approach of IoT paradigm, it is fundamental to adopt well-

efined enforcement mechanisms able to successfully tackle them.

urthermore, IoT deployments are characterized by a high degree

f heterogeneity in terms of architectures and technologies, so that

 suitable security framework should be highly flexible in order to

dapt to various deployment features.

In order to address such emerging issues, in this work we pro-

ose to integrate an existing flexible and distributed IoT middle-

are, called NetwOrked Smart objects (NOS) [11] , with a policy

http://dx.doi.org/10.1016/j.comnet.2016.08.014
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.08.014&domain=pdf
mailto:sabrina.sicari@uninsubria.it
mailto:a.rizzardi@uninsubria.it
mailto:daniele.miorandi@u-hopper.com
mailto:cinzia.cappiello@polimi.it
mailto:alberto.coenporisini@uninsubria.it
http://dx.doi.org/10.1016/j.comnet.2016.08.014

134 S. Sicari et al. / Computer Networks 108 (2016) 133–147

M

d

a

o

f

t

c

G

b

i

w

M

d

I

t

p

w

a

a

n

(

c

i

c

p

fi

t

i

w

i

f

c

s

o

t

f

n

f

n

s

I

s

i

s

e

v

n

s

t

u

p

i

t

u

r

m

l

i

c

t

s

enforcement framework. More in detail, the extended middleware

has to provide a policy enforcement system able to manage the

resources in a secure way and to handle attacks and violation at-

tempts. NOS is represented, in a previous work, as a security-and

quality-aware system architecture [12] , and is based upon the con-

cept of a computationally powerful smart nodes’ layer acting as a

distributed database able to manage IoT-generated data. The basic

idea underpinning NOS is of bringing processing, security and data

qualification closer to the actual data sources. To ease the devel-

opment of applications and the management of such a system, in

[11] , the NOS middleware has been designed and prototyped. It in-

cludes provisioning for users and applications to dynamically spec-

ify the levels of security and data quality suitable for their own

purpose.

However, the original NOS architecture does not define support-

ing mechanisms for: (i) controlling the access of both users and

data sources; (ii) the data provision to users. An enforcement sys-

tem would allow to overcome such limitations. As regards the en-

forcement mechanisms, few efforts are currently made by the sci-

entific community [2,13] . To the best of the authors’ knowledge,

no specific enforcement solution for IoT is currently available, al-

though it is essential to ensure a safe deployment of IoT paradigm.

To address such shortcoming, in this paper we propose a policy

enforcement system specifically tailored to IoT, able to manage the

interactions among the involved entities under well-defined poli-

cies. The proposed solution is able to guarantee data quality, secu-

rity and privacy also in the presence of policy violation attempts.

The paper is organized as follows. Section 2 reviews the rele-

vant state of the art. Section 3 presents the NOS architecture, with

a specific focus on data management aspects. Section 4 describes

the proposed enforcement framework. Sections 5 and 6 present the

prototypical implementation of the NOS policy enforcement frame-

work and its validation, in order to demonstrate the feasibility of

the proposed approach in a real IoT context. Section 7 concludes

the paper and provides some hints for future works.

2. Related works

The most crucial challenge in building an IoT system lies in the

lack of common, standardised and interoperable software frame-

works. In order to fill this gap, the scientific community has started

several interesting research initiatives. For example, in recent years,

the availability of web service solutions has provided a common

frame for building systems able to leverage the services of an-

other one according to the principles of Service Oriented Architec-

tures (SOA). Service-oriented Communications (SOC) technologies

emerged as a way to manage web services by creating a virtual

network and adapting applications to the specific needs of users

rather than forcing users to adapt to the available functionality of

applications [14,15] . Although the decision of adopting SOA archi-

tecture in IoT is shared by the majority of scientific community, at

the moment the state of the art in this area is mostly limited to

research and innovation activities [16,17] with limited commercial

uptake.

Furthermore, due to the very large number of heterogeneous

technologies normally co-existing within IoT deployments, several

middleware layers are employed to enforce the integration and

the security of devices and data within the same information net-

work. Within such middlewares, data must be exchanged respect-

ing strict protection constraints. Moreover, in middleware design

and development, different communication protocols shall be sup-

ported: while many smart devices can natively support IPv6 com-

munications [18,19] , existing deployments might not support the

IP protocol within the local area scope, thus requiring ad hoc gate-

ways and supporting middlewares [20] . Recent works on IoT mid-

dlewares are: VIRTUS [21] , which relies on the open eXtensible
essaging and Presence Protocol (XMPP) to provide secure event-

riven communications; Otsopack [22] and Naming, Addressing

nd Profile Server (NAPS) [23] are data-centric frameworks based

n HTTP and REpresentational State Transfer interfaces. We dif-

erentiate from them since: (i) Conzon et al. [21] focus only on

he application of an authentication system and on securing the

ommunication channel by means of encryption mechanisms; (ii)

ømez-Goiri et al. [22] and Liu et al. [23] address, respectively, am-

ient intelligence in constrained environments and resources nam-

ng management, without dealing with security issues.

Many relevant activities have taken place within the frame-

ork of EU R&D actions. The FP7 COMPOSE (Collaborative Open

arket to Place Objects at your Service) project [24] aims to

esign and develop an open marketplace, in which data from

nternet-connected objects can be easily published, shared and in-

egrated into services and applications. The basic concept under-

inning such an approach is to treat smart objects as services,

hich can be managed using standard service-oriented computing

pproaches and can be dynamically composed to provide value-

dded applications to end users.

The iCORE project (iCORE) [25] aims to empower IoT with cog-

itive technologies and is focused on the concept of virtual objects

VOs). VOs are semantically enriched virtual representations of the

apabilities/resources provided by real world objects. Through the

nception of VOs it becomes possible to easily re-use Internet-

onnected objects through different applications/services, also sup-

orting their mash-up into composite services. VOs provide a uni-

ed representation for smart objects, hiding from the applica-

ion/service developers low-level details as well as from underly-

ng technological heterogeneity. They also provide a standardised

ay to access objects’ capabilities and resources. One key element

n the iCORE project is the use of advanced cognitive techniques

or managing and composing VOs in order to improve IoT appli-

ations and better match user/stakeholder requirements. The con-

idered application scenarios include ambient assisted living, smart

ffice, transportation and supply chain management.

A dynamic architecture for services orchestration and adapta-

ion has been proposed in IoT.EST (Internet of Things Environment

or Service Creation and Testing) [26] . The project defines a dy-

amic service creation environment that gathers and exploits data

rom sensors and actuators that use different communication tech-

ologies and formats. Such an architecture deals with different is-

ues such as composition of business services based on re-usable

oT service components, automated configuration and testing of

ervices for “things”, abstraction of the heterogeneity of underly-

ng technologies to ensure interoperability.

Focusing on semantic web services, the Ebbits project [27] de-

igned a SOA platform based on open protocols and middleware,

ffectively transforming every subsystem or device into a web ser-

ice with semantic resolution capability. The goal is to allow busi-

esses to semantically integrate the IoT into mainstream enterprise

ystems and support interoperable end-to-end business applica-

ions.

Finally, security, privacy and trust issues are addressed by the

TRUSTit [28] and the Butler [29] projects. The former one is a

roject integrating the user directly in the trust chain, guarantee-

ng transparency in the underlying security and reliability proper-

ies of the IoT. If successful, uTRUSTit aims to enable system man-

facturers and system integrators to express the underlying secu-

ity concepts to users in a comprehensible way, allowing them to

ake valid judgments on the trustworthiness of such systems. But-

er aims to allow users to manage their distributed profile allow-

ng data duplication and identities control over distributed appli-

ations. The final purpose is to implement a framework able to in-

egrate user dynamic data (i.e., location, behaviour) in privacy and

ecurity protocols.

S. Sicari et al. / Computer Networks 108 (2016) 133–147 135

g

o

h

l

[

t

a

o

o

t

d

t

i

p

v

v

a

d

v

o

f

a

s

v

c

s

e

t

m

a

t

e

p

t

i

a

i

d

a

f

k

a

p

c

s

p

l

a

b

d

o

d

b

c

e

o

r

s

m

d

h

a

c

m

m

w

m

n

d

a

t

t

t

c

t

c

[

b

f

s

p

f

f

d

a

t

e

n

m

c

t

U

i

(

c

n

g

o

s

a

t

d

u

c

e

a

h

m

t

d

p

t

i

z

e

a

t

a

I

p

T

T

t

c

f
Besides security and privacy levels, which means ability to

uarantee confidentiality, integrity and anonymity requirements, in

rder to allow a real diffusion of IoT paradigm also data quality

as to be addressed. As regards data quality, several scientific pub-

ications recognize its pivotal role in the IoT research landscape. In

30] , authors claim the need of controlling data sources to ensure

heir validity, information accuracy and credibility. Data accuracy is

lso covered in [31] , where the authors observe that the presence

f many data sources raises the need to understand the quality

f data. In particular, they state that the data quality dimensions

o consider are accuracy, timeliness and the trustworthiness of the

ata providers. Anomaly detection techniques are widely employed

o remove noise and inaccurate data in order to improve data qual-

ty. The huge number of data sources is considered a positive as-

ect for data fusion mechanisms and for the provisioning of ad-

anced services. Besides temporal aspects (i.e., currency) and data

alidity, a related work adds another important dimension such

s availability [32] , with focus on pervasive environments. Authors

efined new metrics for the cited quality dimensions in the IoT en-

ironment and evaluate the quality of the real-world data available

n an open IoT platform. They show that data quality problems are

requent and they should be addressed or, at least, users should be

ware of the poor quality of the data sources being used.

The definition of security and data quality policies may be not

ufficient for satisfying the requirements of an IoT system, because

iolation attempts should also be considered. This requires the in-

lusion of policy enforcement mechanisms, which define how the

ystem shall reach in such cases. More in detail, policies are op-

rating rules which need to be enforced for the purpose of main-

aining data order, security, and consistency. The policy enforce-

ent assures that the security tasks can only be fulfilled if they

re in accordance with the underlying security policies, consulting

he policy decision component and deciding whether to allow an

ntity to perform an operation on a system resource. This aspect is

oorly covered in existing literature, which mostly focuses on how

o manage policy enforcement.

Wu and Lang [33] present a simulation environment for var-

ous policy languages, such as WS-Policy (Web Services-Policy)

nd XACML (eXtensible Access Control Markup Language), used

n different systems. Low-level enforcement mechanisms may in-

eed vary from system to system. Thus, it is difficult to enforce

 policy across domain boundaries or over multiple domains. Be-

ore applying policies across domain boundaries, it is desirable to

now which policies can be supported by other domains, which

re partially supported, and which are not supported. For exam-

le, in a healthcare environment, the cooperation and communi-

ation among pharmacies, hospitals and medical schools are es-

ential. They have their own policy enforcement mechanisms to

rotect their own proprietary data and patients records. The prob-

em is that there are lots of collaborations and communications

mong these actors, therefore a cross-domain policy enforcement

ecomes an essential component. However, in most cases, these

omains use different policy languages. When a new interaction

r communication is required between two separate domains, we

o not know how many rules from one domain can be enforced

y current enforcement mechanisms. So in most cases, the techni-

al departments from these two domains have to work together to

valuate whether or not it is possible to make their systems inter-

perating. The same problem also exists in social networking envi-

onment (e.g., Facebook, Linkedin). Most existing social networking

ites have privacy configurations based on their own enforcement

echanisms. When two social networking sites or two healthcare

omains need to communicate or collaborate with each other, they

ave to rebuild or reconfigure their systems to make sure these

ctivities are consistent with their own and their partners poli-

ies. In [33] a simulation environment is proposed, using semantic
odel mapping and translation for policy enforcement across do-

ain boundaries by means of the Web Ontology Language (OWL),

hich can be used to model both policy languages and enforce-

ent mechanisms. Therefore, a configurable middle-level compo-

ent is presented for the mapping process among such different

omains.

In [34] the languages regarding the definition of obligations

nd policies are classified into two categories. On the one hand,

here are policy enforcement languages, which generally simplify

he specification and interpretation of policies; however, they lack

he formal semantics needed to allow the verification of the poli-

ies themselves by means of formal proofs. On the other hand,

here are policy analysis languages, which allow the formal poli-

ies analysis and the expression of a large variety of obligations. In

34] , the authors introduce a policy language which aims at com-

ining the advantages of both approaches. Formalizing policy en-

orcement has several advantages: it reduces the gap between the

pecified policies and their deployment, thus it ensures that the

olicies are correctly applied in the system. To formalize policy en-

orcement, the target system should be modeled and then the ef-

ects of the application of the policies should be described. More in

etails, policies are enforced using reference monitors, and a set of

ctive rules specifies that a set of actions should be executed after

he detection of some events, if some conditions are met. How-

ver, such a language does not provide the operational semantics

eeded to dynamically enforce and manage obligations in a policy

anaged system.

In [35] a novel access control framework, named Policy Ma-

hine (PM), is proposed. It is composed by the following basic en-

ities: authorized users, objects, system operations, and processes.

sers may be either human beings or system users; objects spec-

fy system entities which are controlled under one or more policies

e.g., records, files, e-mails); operations identify the actions that

an be performed on such resources (e.g., read, write, delete); fi-

ally, users submit access requests through processes. Policies are

rouped in classes according to their attributes and, therefore, an

bject may be protected under more than one policy class, and,

imilarly, a user may belong to more than one policy class. In such

 way, PM is a general purpose protection machine, since it is able

o configure many types of access control policies, and it is in-

ependent from the different operating systems and applications;

sers need to login only to PM in order to interact with the se-

ure framework. [35] demonstrates the PM ability to express and

nforce the policy objectives of RBAC [36] , Chinese Wall [37] , MAC

nd DAC models [38] . Moreover, PM is able to face many Trojan

orse attacks, to which DAC and RBAC are vulnerable.

Rao et al. [39] introduce a semantic web framework and a

eta-control model to orchestrate policy reasoning with the iden-

ification and access of information sources. In open domains in-

eed enforcing context-sensitive policies requires the ability to op-

ortunistically interleave policy reasoning with the dynamic iden-

ification, selection, and access of relevant sources of contextual

nformation. Each entity (i.e., user, sensor, application or organi-

ation) relies on one or more agents responsible for enforcing rel-

vant policies in response to incoming requests. The framework is

pplicable to a number of domains where policy reasoning requires

he automatic discovery and access of external sources.

Langar et al. [40] introduces a formal and modular framework

llowing to enforce a security policy on a given concurrent system.

n fact, one of the important goals of the software development

rocess is to prove that the system always meets its requirements.

o deal with this problem, two different approaches are proposed.

he former is a conservative enforcement: the program should be

erminated as soon as it violates the security policy even if the

urrent run could be partially completed. The latter is a liberal en-

orcement: the execution of the process is not aborted if it could

136 S. Sicari et al. / Computer Networks 108 (2016) 133–147

i

I

g

p

a

3

t

w

t

a

t

t

c

s

s

p

b

t

t

f

l

a

a

o

m

t

i

c

a

i

v

r

d

s

s

w

l

(

t

s

r

d

d

c

d

t

c

i

p

i

a

i

m

i

(

m

s

o

s

i
be partially satisfied. With this approach, more properties are en-

forced than with the conservative one, but the program may termi-

nate without fully satisfying the security policy. Therefore, the con-

servative enforcement will generate false negatives, while the lib-

eral enforcement will generate false positives and no one of them

reach the desired result. In [40] an extended version of Algebra for

Communicating Process (ACP) [41] , designed for specifying concur-

rent systems behaviour, and Basic Process Algebra (BPA) language

for the specification of security policies are used. To achieve the

goal, ACP is enhanced with an enforcement operator, whose ac-

tions run in parallel with the system, in order to monitor the re-

quests and the satisfaction of the related policies.

Macfarlane et al. [42] provides an overview of network secu-

rity, security policies, policy enforcement and firewall policy man-

agement systems. As far as policy enforcement is concerned, it

proposes to use security services such as authentication, encryp-

tion, antivirus softwares and firewalls in order to protect the data

confidentiality, integrity, and availability. In contrast, the authors

of [43] present a framework able to prove whether the code im-

plementing access control respects access control policy specifica-

tions.

Expressing security policies to govern distributed systems is a

complex and error-prone task. Because of their complexity and of

the different degrees of trust among locations in which code is de-

ployed and executed, it is challenging to make these systems se-

cure. Moreover, policies are hard to understand, often expressed

with unfriendly syntax, making it difficult for security adminis-

trators and for business analysts to create intelligible specifica-

tions. In [44] a Hierarchical Policy Language for Distributed Sys-

tems (HiPoLDS) is introduced; it has been designed to enable the

specification of security policies in distributed systems in a con-

cise, readable and extensible way. HiPoLDS design focuses on de-

centralized execution environments under the control of multiple

stakeholders. It represents policy enforcement through the use of

distributed reference monitors, which control the flow of informa-

tion among services and are in charge of putting into action the

directives output by the decision engines. For example, an enforce-

ment engine should be able to add or remove security metadata

such as signatures or message authentication codes, encrypt confi-

dential information, or decrypt it when it is the case. DellÆAmico

et al. [44] does not specify how the distributed system behaves and

manages policy reconfiguration (e.g., if a reboot is required).

The authors of [45] state that the application logic, embodied

in the system components, should be separated from the related

policies. Therefore, they propose an infrastructure which can en-

able policy, representing high-level (i.e., user) or systems entities,

able to drive the system functionality in a distributed environment.

To this end, a middleware, able to support a secure and dynamic

reconfiguration and to provide a policy enforcement mechanism

across system components, is introduced. However, neither a case

study nor a working implementation is presented.

Summarizing, there are no available solutions able to handle

both security & privacy and data quality requirements in IoT en-

vironments at the same time. In fact, Wu and Lang [33] and Singh

et al. [45] mainly address cross-domain policy issues, Elrakaiby

et al. [34] and DellÆAmico et al. [44] focus on a policy language

definition, Ferraiolo and Gavrila [35] , as well as Rao et al. [39] , en-

force only access control policies, [40] and [42] are about a formal

proof of the correct behavior of a system with not well defined se-

curity rules. A first attempt to consider both the issues is presented

in [10–12] . In the first, a general UML conceptual model for IoT ar-

chitecture is defined, while in the second oen a high level design of

such an architecture is detailed. In the third, a real implementation

of the architecture is presented, which, in this work, is integrated

with an enforcement engine able to manage the defined policies

and the interactions among the involved entities. Note that the
dentification of the enforcement solutions suitable for the specific

oT context is fundamental, finding a suitable tradeoff between the

uarantee of security, privacy and data quality issues and the com-

uting effort s. The enf orcement framework proposed in this paper

ims to fill this gap.

. Architecture and prototype

In a generic IoT system we can identify two main entities: (i)

he nodes, heterogeneous devices (e.g., RFID, NFC, sensors etc.)

hich generate data (ii) the users, who interact with the IoT sys-

em through services making use of IoT-generated data, typically

ccessing them by means of a mobile device (e.g., smartphone,

ablet) connected to the Internet (through, e.g., WiFi, 3G, Blue-

ooth). The NOS layer has been introduced in [11] in order to pro-

ess such a huge amount of data closer to the sources and to better

erve the user in terms of quality and security. NOSs are networked

mart nodes without strict constraints in terms of energy and com-

utational capabilities. They have self-organizing features and can

e deployed where and when needed, in a distributed manner;

hrough their interface with enterprise platforms and IoT enabling

echnologies, they can be used to extend existing software plat-

orms, making them able to interact with the physical world fol-

owing well-defined templates and rules. In general, a NOS would

ct as a gateway with built-in processing capabilities, able to man-

ge a number of IoT data sources. Multiple NOSs may co-exist, each

f them serving a subset of the IoT devices present in the environ-

ent.

A high-level architecture of NOS is presented in Fig. 1 [12] . In

he remainder of this section we present the various components

n detail.

NOSs aim to handle in near real-time the large amount of data

oming from heterogeneous IoT devices. Following a bottom-up

nalysis of the architecture, we start from the southbound NOS

nterface, which are used by NOS to collect data from IoT de-

ices. NOSs are able to deal with both registered as well as non-

egistered sources. NOSs provide a specific REST endpoint for han-

ling source registration. The information related to the registered

ources is put into the storage unit named Sources . Registered

ources may specify an encryption scheme for their interactions

ith NOSs. For each incoming data unit, the NOS extracts the fol-

owing fields: (i) the data source, which describes the kind of node

e.g., sensor node, actuator, RFID); (ii) the communication mode,

hat is, the way in which the data is collected (e.g., discrete or

treaming communication); (iii) the data model in use, which rep-

esents the type (e.g., number, text) and the format of the received

ata; (iv) the data itself; (v) the timestamp registering when the

ata arrived to NOS. HTTP is assumed to be used for communi-

ation among the NOS and the data sources. Since the received

ata are of different types and formats, NOSs initially put them in

he Raw Data collection. Data in such collection is periodically pro-

essed, in a batch way, according to the two-phases scheme shown

n Fig. 1 . Data goes through the Data Normalization and Analyzers

hases in order to obtain a uniform representation of data, includ-

ng, as specified in the following, metadata useful for optimsing

nd customising the service provision.

First, the data stored in Raw Data is put in the format specified

n Fig. 2 by the Data Normalization module and stored in the Nor-

alized Data unit. This represents a sort of pre-processing phase

n which the unnecessary information is removed from the data

where the ‘unnecessary’ depends on the specific application do-

ain) and a uniform representation thereof is built; at this stage,

ecurity and quality metadata fields are still empty. Then, a sec-

nd module, consisting of a set of Analyzers , periodically extract

uch data from the Normalized Data storage unit and elaborates it

n terms of security and data quality properties). Such an analysis

S. Sicari et al. / Computer Networks 108 (2016) 133–147 137

Fig. 1. System architecture.

Fig. 2. NOS data format.

i

s

s

c

u

c

s

n

s

m

r

e

c

d

n

S

a

p

p

m

h

a

a

a

K

t

a

t

N

p

o

e

p

d

b

p

e

t

r

t

n

a

s

s

p

t

1 https://www.elastic.co/webinars/introduction- elk- stack .
mplies that the data are annotated with a set of metadata (i.e., a

core for each security and quality level). A sample semantic de-

cription of the data content is shown in Fig. 2 . The data thus pro-

essed is ready to be used for providing services to the interested

sers. Therefore, in order to achieve such a goal, the NOSs layer

an be connected to IP-based networks (i.e., Internet, intranet).

The assessment of security and quality levels are based on a

et of rules stored in a proper format in another NOS storage unit,

amed Config . It is worth remarking that such rules are not the

ubject of this work, since the focus of this paper is on the enforce-

ent mechanism. Config contains all the configuration information

equired for the correct management of the IoT system (including,

.g., how to calculate quality properties, which attacks or security

ountermeasures to consider etc.). Rules in the Config store can be

ynamically configured at runtime by system administrators con-

ecting remotely to the NOS over a secure connection (e.g., HTTPS,

SL) without the need to re-start the NOS services. The usage of

 secure communication protocol is required in this case, as the

olicy adopted by the NOS for processing the IoT data has to be

rotected against external attacks. In this article we do not cover
onitoring and event reporting (e.g., registered sources, source be-

avior, NOS performances, service utilization, occurred violations)

spects, yet it is understood that they should be included as in

ny operational system. Given the distributed nature of NOS a vi-

ble solution is represented by the popular ELK (Elastic, Logstash,

ibana) stack. 1

Analyzers query the Config store to retrieve a list of the opera-

ions they are intended to carry out. However, we remark that the

ssignment of security and quality scores provides a handle for let-

ing the users filter directly by themselves the data processed by

OS according to their personal preferences. In fact, the choice to

rovide a score for each security and data quality dimension makes

ur approach extremely flexible and able to adapt to very differ-

nt application scenario requirements. For example, there exist ap-

lication scenarios (e.g., factory floor automation) in which only

ata with a high level of integrity and confidentiality shall be used,

ut there is no interest to satisfy privacy requirement. Another ap-

lication domain may aim to provide a service characterized by

rror-free data and high confidentiality scores; therefore the data

o be selected are those provided by sources able to satisfy these

equirements. Such a feature makes our solution suitable for adop-

ion in different contexts. In many situations indeed no description

either about the sources nor the acquired data may be available

 priori; at the moment this requires labour-intensive search and

election of which data sources to use. Our approach automates

uch a task, leaving to the system administrator to define scoring

olicies and to the service provider to specify the requirements on

he data to be used. The ability to support an automatic reasoning

https://www.elastic.co/webinars/introduction-elk-stack

138 S. Sicari et al. / Computer Networks 108 (2016) 133–147

q

s

a

F

v

s

P

a

c

i

(

a

P

a

c

r

t

d

T

t

b

b

b

f

n

s

N

p

t

t

i

m

i

m

s

u

c

s

b

i

s

f

N

p

t

t

s

o

i

t

i

m

c

r

s

t

o

i

k

b

t

g
about data quality and security is what makes our approach able

to deal properly with the scale and heterogeneity of IoT contexts.

NOS’ northbound interface is based on the Message Queue

Telemetry Transport (MQTT) protocol. It consists of a pub-

lish/subscribe mechanism, which aims to make the processed data

available for interested applications and/or users. In fact, the sys-

tem allows both the registration of users and of external applica-

tions, which authenticate to NOS and then make requests to the

services made available by the NOS itself. In case of application

registration, multiple users may register to such an application, in-

stead of registering to NOS.

MQTT is a lightweight publish/subscribe connectivity protocol

[46] specifically addressed for resource constrained devices. In IoT

context, it is widely used to enable communications among devices

using a publish/subscribe messaging approach. An MQTT client, as

that contained in NOS, exchanges messages using an MQTT bro-

ker by means of publications and subscriptions to a topic. Such a

mechanism is adopted to support interactions among services and

IoT devices. In particular, each NOS has a module in charge of as-

signing the corresponding topic to data and, then, to send them

to a MQTT client (module Publish Data in Topics in Fig. 1). The as-

signment of the topics depends on the application domain and is

out of the scope of this work, but it may need the definition of

an ontology able to represent the semantics of the managed re-

sources. In general, topics are multi-level structures separated by

a forward slash similar to a directory structure. An example of

a topic for publishing temperature information of a sensor with

identifier sensorId could be sensor/temperature/sensorId . Note that

subscribers may register for specific topics at runtime and NOS

provides a mechanism for dynamic subscription e unsubscription

to the topics. The MQTT client (Client MQTT in Fig. 1) publishes

messages to a MQTT broker.

In our prototypical implementation, which is openly accessi-

ble at https://bitbucket.org/alessandrarizzardi/nos.git we have used

the Mosquitto [47] open-source MQTT broker, Node.JS platform

[4 8] and MongoDB [4 9] for the data management part. In our im-

plementation, NOS modules interact among themselves through

RESTful interfaces. This allows us to add new modules or modify

the existing ones at runtime, since they are able to work in par-

allel in a non-blocking manner. The non-relational nature of Mon-

goDB allows the data model to evolve dynamically over time.

4. Policy enforcement

In order to effectively manage the available resources and to

handle possible violation attempts, NOSs have to be provided with

a set of well-defined policies, specifying the behaviour and the ac-

tions to be taken in a given situation. Accordingly, a fundamental

role is played by the enforcement framework integrated in the NOS

system, as it guarantees that the policies specified are correctly ap-

plied. In the NOS case, policies refer in particular to controlling ac-

cess to IoT data and managing communications. This comes from

the requirement to protect both data resources and user sensitive

information. Technically, the main challenge to be faced is how to

integrate an enforcement mechanism in the existing NOS architec-

ture, without affecting the existing functionality. In our approach,

as shown in Fig. 1 , the enforcement functionality is embedded in

a wrapper layer, able to control the NOS operations without re-

quiring major system-level modifications. In the remainder of this

section we analyse the functionality in detail.

4.1. Enforcement framework

The enforcement framework is in charge of handling access

control and service provisioning under well-defined security and
uality requirements. The framework is defined hereby to repre-

ent a redefinition of access control and data exchange in terms of

 common set of functions and roles suitable for IoT applications.

unctions and roles are dynamically configurable in order to pro-

ide the required level of flexibility to cover different application

cenarios.

Conventional access control enforcement frameworks include a

olicy Enforcement Point (PEP), a Policy Decision Point (PDP), and

 Policy Administration Point (PAP) [50] . PEP is in charge of inter-

epting any requests of access to resources from users, and of mak-

ng a decision request to PDP in order to obtain the access decision

i.e., approve or reject). Whenever a user or an application requests

ccess to a data, this is routed through a PEP and transferred to a

DP for evaluation and authorization decision. PDP evaluates the

ccess requests against the authorization policies in order to de-

ide whether the request shall be accepted. To this end, the PDP

efers to and queries a policies store. When the PDP completes

he evaluation, it returns a response to the PEP. Based on such a

ecision, PEP either permits or denies access to the user/resource.

he authorization policies are finally administered through a “cen-

ralized” PAP. The functions just described are usually performed

y an application software. In our case, where communication is

ased on the MQTT protocol, all requests are handled via the MQTT

roker (as also shown in Fig. 1). The architecture underlying the

ramework may comprise one ore more NOS and a huge amount of

odes, which act as data sources, and users, which act as data con-

umers (either directly or mediated by applications/services). Each

OS includes a PEP, a PDP and a PAP, while each user has an ap-

lication representing an interface for the user personal device and

he NOS. As far as nodes are concerned, a separate discussion has

o be made, since the system has to be able to deal both with reg-

stered and non-registered nodes (i.e., data sources), while users

ay be directly registered to NOS or to another application, which

s further registered to NOS. In the latter case, the application itself

anages all the interactions with NOS and establishes the levels of

ecurity and quality for the data to be provided to the interested

sers. While, in the former case, a user, besides logs on the appli-

ation running on his/her device using the provided GUI, opens a

ession, during which he/she can request for the services provided

y NOS on the basis of the accessible resources. All components

nteract with the underlying PEP.

The structure of the presented enforcement framework is

ketched in Fig. 3 . Although the figure shows only one NOS, the

ramework may be executed in a distributed manner on multiple

OS, whereby each NOS runs its own framework and a single ap-

lication/service may interact with a plurality of NOSs. Therefore,

he distribution of policies, their update and synchronization have

o be considered (let us recall that this means, roughly speaking, to

ynchronize the content of the various instances of the Config store

n multiple NOSs). We assume that, in the case of multiple NOSs

nteracting with each other, all NOSs within the same administra-

ive domain share the same security policies and each of them has

ts own policy enforcement component.

Our approach follows the Attribute Based Access Control (ABAC)

odel [51] . In such a mechanism, both the subject who want to ac-

ess or to provide the resources, and the objects (i.e., data), which

epresent the resources themselves, are described by means of

pecific attributes, which are used for the policies definition. At-

ributes can be based on the metadata fields natively supported in

ur data representation and control rules can be defined accord-

ng to the specific needs of the application domain. As widely ac-

nowledged in the relevant literature, ABAC presents better scala-

ility and flexibility than Role Based Access Control (RBAC) [52] .

To ease interoperability and to actually enable the implementa-

ion of a policy enforcement system, a policy representation lan-

uage has to be chosen. Given the large number of IoT domain ap-

https://bitbucket.org/alessandrarizzardi/nos.git

S. Sicari et al. / Computer Networks 108 (2016) 133–147 139

Fig. 3. Enforcement system.

p

t

a

t

s

m

I

e

a

t

T

d

4

n

m

t

l

T

n

e

f

p

l

e

a

a

c

c

t

t

i

e

t

t

c

s

n

5

t

t

E

t

u

d

a

f

d

p

r

u

r

i

e

u

a

t

f

t

t

m

u

f

p

t

d

r

p

t

t

m

t

c

i

u

t

p

a

c

c

a

i

t

t

i

p

p

R

n

a

fi

t

s

w

C

t

i
lications, such a language has to be flexible enough to represent

he analyzed contexts both in a general-purpose and in a customiz-

ble way. The policy language proposed in this paper is specifically

ailored to the management of enforcement, and is written in JSON

yntax, being therefore suitable for the integration in the database

anagement system used in our implementation (i.e., MongoDB).

t allows to express the whole set of policies for each involved

ntity (i.e., nodes and users). Each of them has specific attributes,

s described in the following section. According to the defined at-

ributes, each entity can be allowed to perform different actions.

he system allows the runtime change of policies, which can be

ynamically loaded in the system through the aforementioned PAP.

.2. Enforcement engine

Security among the involved components (i.e., NOS, users,

odes) is guaranteed through the adoption of suitable encryption

echanisms. Another challenge is represented by the identifica-

ion of a minimal set of primitives able to specify and enforce a

arge variety of attribute-based security and data quality policies.

o this end, NOS are provided with an Enforcement Engine compo-

ent, which is in charge of managing such policies for all involved

ntities. The Enforcement Engine implements to the PDP and PAP

unctions shown in Fig. 3 . An important feature of the proposed

olicy framework is that the Enforcement Engine also supports the

oading of new policies at runtime, without disrupting service op-

rations. Such a feature increases the flexibility of the framework

nd makes it particular suitable for IoT applications, which require

 high degree of availability.

The advantage of the adopted policy-based control is that the

ontrolling unit of the system (i.e., Enforcement Engine) is kept de-

oupled from other management components (i.e., Data Normaliza-

ion and Analyzers phases). As a consequence, the system adminis-

rator can manage and change the system behaviour without mod-

fying the software or the user/node interfaces. Furthermore, the

ntire system is controlled by policies which specify the rules in-

erpreted and enforced by Enforcement Engine . Hence, if the condi-

ions change or new services or applications are added, only the

orresponding policy rules have to be adapted. Within NOS all the

ecurity related tasks are executed seamlessly so that services are

ot required to have explicit knowledge of security policies.
. Implementation of the enforcement framework

In this section we present a prototypical implementation of

he policy enforcement framework defined in the previous sec-

ion. The key component in the NOS architecture is for us the

nforcement Engine , which is in charge of ensuring that the sys-

em satisfies the security and quality requirements of authorized

sers/nodes. Policies are applied to two types of entities: data pro-

ucers (in our context: IoT devices or nodes, as we term them)

nd data consumers (users directly or applications). Six key actions

or which policies are specified have been identified and formally

escribed: node access control, node data transmission, node data

rocessing, user/application access control, user/application service

equest, and service provision. In line with the ABAC approach

sed, policies are specified as a set of key-value pairs, each pair

epresenting an attribute of the corresponding policy.

In our framework, a policy is composed of three main build-

ng blocks. The first one (input) defines the values that the NOS

xpects to receive in input from the requesting entity (nodes or

sers/applications) and that are used for evaluating the policy for

 specific action. The second one (security) defines the functions

o be executed on the provided inputs to assess the policy. Each

unction returns a value; such values are composed by means of

he logic specified in the third block (response) to define whether

he request shall be accepted or not.

In our implementation, the policies are represented in JSON for-

at and are stored in the Config storage unit. The character @ is

sed to indicate the value taken by the corresponding field. In the

ollowing, we present some sample policy specifications.

In our system three types of entities are present: users, ap-

lications and nodes. Users and applications consume data and

hey must be registered. Nodes generate data; as explained in

etail above the system accepts also data generated by non-

egistered (anonynmous) nodes. The user/application registration

hase takes place through an exchange of credentials between

he user/application and the NOS. In order to perform registra-

ion operations, a user/application must be authenticated with ad-

in privileges. From the operational perspective, we do expect

hat entities consuming data (i.e., users/applications) will, in most

ases, be registered by a system administration. When register-

ng, an identifier is assigned by the system to each registered

ser/application, along with a function, conceived as a set of at-

ributes used for filtering the access to resources (an example is

resented in Section 6). Note that such attributes and the related

ccess permissions are established by a system administrator, de-

oupled from NOS.

On the other hand, as already introduced in Section 3 , nodes

an optionally self-register with the NOS. Note that the NOS also

ssigns an identifier to the registered nodes, for which in the reg-

stration phase is specified the signature key used for encrypting

he data they send. Such credentials are eventually exchanged be-

ween the node and NOS through the proper Sources Registration

nterface.

Listing 1 describes a sample version of the NodeAccessControl

olicy, which covers nodes wanting to send data to the NOS. This

olicy is invoked by the NOS before inserting the data into the

aw Data storage unit. The Enforcement Engine verifies whether the

ode is transmitting, along with the data, the node identifier and

 signature key (specified as node inputs in Listing 1). The veri-

cation process is split in two branches. If the source is a regis-

ered one, the NOS receives in input the node identifier and the

ignature key and can perform a registrationCheck (i.e., checking

hether the identifier is known and valid) and the signaturekey-

heck (i.e, checking that the identifier and key are compliant for

he requesting node). Conversely, if the source is unknown, the key

s marked as undefined by the function signaturekeyUndefinedMark

140 S. Sicari et al. / Computer Networks 108 (2016) 133–147

Listing 1. Node access control sample policy.

Listing 2. Node data transmission sample policy.

Listing 3. Node data processing sample policy.

d

a

h

(

D

n

p

t

u

s

i

i

t

d

N

t

t

r

s

w

t

f

t

v

a

i

i

t

i

n

k

(

u

i

a

g

w

t

k

a

a

t
for the corresponding node. In case of a non-registered node, the

NOS keeps track of the source by assigning to it a pseudo-random

identifier at the first communication exchange; such an identifier

will be used in following interactions. This approach allows a NOS

to verify whether the node is a new or a known one just by look-

ing up its identifier. If registrationCheck and/or signaturekeyCheck

reveal that the credentials are not compliant with the requesting

source, then the enforcement engine prevents such a node from

interacting with NOS.

Once these checks have been passed and the node is allowed to

send data to the NOS, a pseudo-random session identifier is cre-

ated and assigned by the sessionAssignment function. Data quality

and security are assessed on a per-session basis.

Once the node has completed the access control phase, then it

can send data to NOS. Listing 2 highlights the requested inputs for

the corresponding policy, named NodeDataTransmission , which are:

the session identifier, previously assigned by the NOS to the node
uring the access control phase; the node identifier; the data itself

nd the data type. Note that at this stage no security operations

ave been performed yet: if all the requested inputs are present

i.e., requiredInformation action is true), the data are stored in Raw

ata storage unit (i.e., storeData action is activated for the actual

ode). Data gets discarded only if the transmitting node fails to

rovide the required information to the NOS (i.e., discardData ac-

ion is undertaken).

As detailed in Section 3 , in the NOS there are processing mod-

les that periodically fetch data from Raw Data or Normalized Data

torage units and process them. The policy invoked in this step

s called NodeDataProcessing and, as shown in Listing 3 , receives

n input the same values of the NodeDataTransmission policy, but

he action of data evaluation is enforced, before sending processed

ata to the publish/subscribe system. For registered sources, the

OS performs decryptionData and decryptionDatatype operations,

hus decrypting the data and the corresponding data type using

he key of the actual node. Hence, for both registered and non-

egistered sources, scoreAssessment is executed and a score for each

ecurity and quality property is assigned to the data.

Listing 4 refers to the access request from a user/application

ho wants to receive data from a NOS; such a request is sent

o the MQTT broker, which performs an access request to the En-

orcement Engine . The corresponding policy, named UserAccessCon-

rol , is invoked before sending any data to the requesting entity. It

erifies whether the user/application is registered, using for such

 purpose the following parameters: user name, user/application

dentifier, signature key and a function, previously specified dur-

ng the registration phase. The policy verification process includes

wo cases. If the user/application is registered, the NOS receives

n input the user/application identifier, the function and the sig-

ature key and can perform registrationCheck (i.e., the identifier is

nown and valid for the specified function) and signaturekeyCheck

i.e, identifier, function and key are compliant for the requesting

ser/application). If the user/application is unknown, then the key

s marked as undefined by the action signaturekeyUndefinedMark

nd the user/application is not authorized by the enforcement en-

ine to access the system. If a user/application tries to register

ith wrong credentials, for example with a function different from

he one declared during the registration phase or with a different

ey, then the enforcement engine generates a negative response,

lerts the user/application (see Fig. 6 in Section 6) and does not

llow any interactions with IoT system. Otherwise, in the case that

he checks have been passed, the user/application is allowed to

S. Sicari et al. / Computer Networks 108 (2016) 133–147 141

Listing 4. User access control sample policy.

i

s

p

b

L

i

b

p

n

v

i

t

a

t

a

p

R

p

o

i

i

q

e

g

s

q

s

f

S

v

Listing 5. User service request sample policy.

Listing 6. Service provision sample policy.

q

T

F

t

A

I

w

t
nteract with NOS and a pseudo-random session identifier is as-

igned by the sessionAssignment function.

Once the user/application has completed the access control

hase and is authenticated, then it can receive data from NOS

y activating the corresponding subscription to the MQTT broker.

isting 5 highlights the requested inputs for the corresponding pol-

cy, named ServiceRequest , which are: (i) a session identifier, given

y NOS to the user/application after the access control phase (com-

uted randomly at each access, as for the nodes); (ii) the user-

ame and the identifier; (iii) the function; (iv) the requested ser-

ice, along with the user preferences in terms of security and qual-

ty.

For the service invocation, as already discussed in Section 3 , we

reat a resource as an object identified by a hierarchical name (e.g.,

 URI). A service is conceived as a software able to fulfill a specific

ask making use of the available data. There is no direct interaction

mong users/applications and NOS resources, but a well-defined

rogramming interface is needed through a software application.

esources can be accessed by users/applications only once they are

ublished as object instances. Note that at this stage no security

perations are performed: the request is elaborated by the system

f all the inputs are valid (i.e., requiredInformation action is true);

f not, the request is discarded by the enforcement engine (i.e., re-

uiredInformation action is false). The security and quality prefer-

nces are not mandatory: if they are omitted, the enforcement en-

ine does not discard the request, but sets the corresponding con-

traints to the lowest admissible values.

Finally, the ServiceProvision policy is activated after a data re-

uest, in order to verify the matching between the request it-

elf and the requesting user/application, in terms of identifier and

unction, by performing serviceAccessVerification action (Listing 6).

uch a policy receives in input the same values of the Ser-

iceRequest policy. Note that the parameters describing the re-
uested data are sent encrypted by the requesting user/application.

herefore, the NOS has to decrypt it (i.e., decryptionRequest action).

rom the identifier, the NOS derives the signature key of the au-

henticated user/application and uses it to decrypt the message.

fter the verification step, the retrieveResults action is performed.

t retrieves the data corresponding to the requested service, for

hich the user/application is allowed to access. Before sending

hem back, the retrieved data are filtered on the basis of the se-

142 S. Sicari et al. / Computer Networks 108 (2016) 133–147

Table 1

Source parameters.

Parameters Source 1 Source 2 Source 3 Source 4 Source 5 Source 6

Authentication 1 1 0 1 0 0

Security schema score 10 6 0 2 0 0

Privacy schema score 10 6 0 2 0 0

Timeliness 9 8 6 3 9 7

Completeness 9 10 8 6 7 10

Accuracy 9 7 5 6 7 10

Precision 9 8 4 5 8 9

Fig. 4. User dashboard.

Fig. 5. Latency introduced by the NOS and the policy enforcement framework.

Fig. 6. Violation attempts of user access control.

M

a

w

s

w

N

p

R

a

b

t

m

m

r

i

t

o

t

t

t

F

t

h
curity and quality constraints. In case there is no matching among

the described parameters (i.e., the user with the specified identifier

and function is not allowed to access the requested service), the

enforcement engine blocks the data provision process and sends

an error message to the requesting entity.

6. Validation and evaluation

In order to verify the effectiveness of the proposed solution, we

developed a simple use case based on the usage of open IoT data

feeds. In particular, we relayed on six sensors measuring weather-

relevant parameters and co-located within the meteorological sta-

tion in the small town of Campodenno (Trentino, Italy) and can

be accessed through the Trentino Open Data portal. 2 The measure-

ments cover temperature, humidity, wind, energy consumption and

air quality parameters.

In the experimental setup, the prototypical NOS implementa-

tion is deployed on a Raspberry Pi. A laptop is used to emulate

the behaviour of a set of nodes, basically reading data from the

aforementioned feeds and sending them to the NOS as if they

came from six different nodes. Laptop and Raspberry communi-

cate via a WiFi network. The laptop runs also a simple visualization

service, which fetches, according to user-defined constraints, data

from the NOS and displays them. User can express constraints in

terms of the required security and quality levels, including aspects

such as confidentiality, integrity, privacy, authentication, complete-

ness, timeliness, and accuracy, as shown in the dashboard in Fig. 4 .

As an example, we assigned to the six different data sources con-

sidered the security and quality scores reported in Table 1 .

A first analysis carried out concerns the storage capacity re-

quired by the system for carrying out its operations. In this re-

spect, it is worth recalling that NOSs do not support persistent

storage of IoT-generated data. Rather, data are temporarily cached

on the NOS while being processed before being submitted to the
2 http://dati.trentino.it/dataset/raw-data-in-near-realtime-stazione-cmd001 .

q

o

c
QTT broker. NOS has therefore to provide only a temporary stor-

ge. When data are further pushed to or pulled from the server

hich handles the topics notification to subscribers, data can be

afely flushed from the NOS. In our prototypical implementation,

e used the in-memory capability of MongoDB for Raw Data and

ormalized Data collections, while Config and Sources databases are

ersistently stored on the local hard disk. Since NOS runs on a

aspberry Pi, the maximum storage capacity for IoT data with the

ctual technology corresponds to 1 gigabyte (i.e., the RAM provided

y Raspberry Pi 2 and 3). In our implementation, we include a rou-

ine in charge of removing from Raw Data the data already nor-

alized and from Normalized Data the data already published. We

easured the memory occupancy of NOS during operations, which

esulted in an average slightly less than 7 MB. Such a value is only

ndicative, as the memory occupancy depends on a number of fac-

ors, notably: (i) the frequency of data fetching from sources (in

ur example 10 packets per second); (ii) the frequency of execu-

ion of the routines for removing data from non-persistent collec-

ions (in our example every 5 min); (iii) the number of sources.

A further evaluation is performed in order to estimate the la-

ency introduced by NOS and the policy enforcement framework.

ig. 5 shows the results obtained from one run of one NOS proto-

ype with the six data sources just described over a period of one

our for two different reading data rates (i.e., how often the NOS

ueries the data sources to fetch data), 10 and 20 packets per sec-

nd, respectively. The graph shows that the mean delay is almost

onstant over time. Furthermore, the introduced latency does not

http://dati.trentino.it/dataset/raw-data-in-near-realtime-stazione-cmd001

S. Sicari et al. / Computer Networks 108 (2016) 133–147 143

Listing 7. Node access control - registered source.

Listing 8. Node access control - non-registered source.

e

a

d

h

(

d

f

o

a

f

r

i

W

n

s

S

n

t

t

a

Listing 9. Node data transmission.

Listing 10. Node data processing.

t

g

t

I

p

a

d

p

t

s

t

i

c

e

F

t

fi

a

u

m

t

H

s

t
xceed 6.5 ms in our test case, a promising result in terms of the

bility of the solution to deal with near real-time analysis of IoT

ata.

As regards the enforcement actions undertaken by NOS, we

ave analyzed: (i) the node access control for a registered source;

ii) the node access control for a non-registered source; (iii) the

ata transmission for a registered source; (iv) the data processing

or a registered source; (v) the user access control along with a vi-

lation attempt; (vi) a user service request along with a violation

ttempt; (vii) a user service provision.

Before sending their data to NOS, the registered sources per-

orm the access control operation. For example in Listing 7 is rep-

esented the policy activated for Source 1 : the request is valid

f the signature key is compliant with the one owned by NOS.

e suppose that the session identifier randomly generated by the

ode identifier and the actual timestamp is 2016-03-24 09:15:00 (as

hown in Listings 8 and 9).

In Listing 8 the same action is presented for the non-registered

ource 3 ; in this case the enforced action is the tracking of the

ode.

Now we suppose that the registered Source 1 transmits data

o NOS (Listing 9). Function encr specifies that the parameters of

he message are encrypted. The only difference between this node

nd a non-registered node is that, in the latter case, the parame-
ers of the message would not be encrypted. The enforcement en-

ine verifies whether the four requested values (i.e., session, iden-

ifier, data, datatype) are present in the message received by NOS.

f this is not the case, the NOS discards the message and, possibly,

revents other communications with the same source. Note that

 message sent from a node may include also other data (which

epend on the specific device) besides the ones requested by the

olicy (e.g., a timestamp, a location): the policy specifies condi-

ions on the mandatory ones only.

After validating such data, NOS can process them. Listing 10

hows the corresponding processing policy.

Now we suppose that the user Bob had registered himself to

he weather service with the username Bob and 473 as identifier,

n order to be notified about the measurements acquired in the

onsidered area for some monitoring actions he has to do for his

mployer. Therefore he registers himself with the role of Monitor .

irstly, he has to perform the access control: Listing 11 describes

he activated policy. We suppose that the generated session identi-

er is 13240 . If the credentials are not valid, it could be a violation

ttempts, then the enforcement engine forces the NOS to prevent

ser interactions, as illustrated in Fig. 6 .

Otherwise, if the credentials are correctly verified, the user can

ake the desired service requests. Listing 12 shows an example of

he corresponding policy invoked for requesting the service, named

umidity and Wind Speed Real Time Measurements , along with the

ecurity and quality constraints.

At this point, such a request has to be analyzed in order to es-

ablish if the user is entitled to receive the data corresponding to

144 S. Sicari et al. / Computer Networks 108 (2016) 133–147

Listing 11. User access control.

Listing 12. User service request.

Listing 13. Service provision.

t

F

p

r

m

n

e

w

b

t

r

t

W

t

n

q

s

a

s

l

t

c

t

7

s

i

T

d

w

p

e

t

p
the service (Listing 13 represents a user which has access to re-

quested data).

There are two possible outcomes: (i) the user with Monitor

function is allowed by the sensors data administrator to access the

requested measurements for the monitoring scope; (ii) the user is

not allowed to access these data for the declared scope. In the for-

mer case, the dashboard shown to the user is the one represented

in Fig. 7 (d); from here, the user can also change dynamically the

security and quality settings as can be seen in Fig. 7 . If no security

or quality constraint is specified, all data is considered valid and

the resulting graphs for wind speed (in Km/h) and humidity (in %)

look as in Fig. 7 (a). In Fig. 7 (b) some security filters are applied;

in particular, the system shows to the user only the data (i) pro-

vided by authenticated sources, (ii) for which the integrity is veri-

fied, (iii), for which the level of privacy and confidentiality is equal

or higher than 6. Obviously in this case some data is dropped, as it

fails to meet the criteria specified by the user in terms of security

and quality of the data to use. The graph in Fig. 7 (c) is obtained

without any constraint specified on security, but considering valid

only data scoring at least 6 in completeness and timeliness, and 8

in accuracy and precision. In the latter case, it would be a viola-
ion attempt, then the response of the system is the one shown in

ig. 8 .

We remark that this represents only an example of a very sim-

le NOS application in a context characterised by the analysis of

eal-time data. Other possible applications include energy manage-

ent in a smart home/smart building scenario; monitoring of busi-

ess processes and productive activities in real time; smart retail

xperiences services and, more in general, any application/service

here decisions (either manual or automated) have to be taken

ased on IoT-generated data. This class of applications is expected

o play a key role in the adoption of IoT technologies across a va-

iety of vertical domains.

One aspect which deserves some further clarifications refers

o the fact that in our example we considered one single NOS.

hile indeed we aim to deploy the presented middleware in a dis-

ributed environment, from an analysis of NOS functionality it is

ot difficult to see that no NOS-to-NOS coordination is strictly re-

uired. In fact, NOSs are able to: (i) independently handle the data

ources, without the need to inform the other NOSs of their active

nd past interactions; (ii) be independently re-configured by IoT

ystem administrators; (iii) independently assign topics and pub-

ish data on the basis of the defined rules; (iv) enforce the applica-

ion of the policies defined for the IoT system. We can safely con-

lude therefore that considering a single NOS-scenario for valida-

ion purposes does not represent a limiting factor.

. Conclusions

Security and data quality issues represent potential show-

toppers for the market take-up of IoT-based products and services

n various operational scenarios and vertical application domains.

o tackle these issues, in this elsarticle we have introduced and

iscussed a flexible security and data quality enforcement frame-

ork, coherently integrated within a distributed IoT middleware

latform.

The presented framework supports security and data quality

nforcement policies, re-usable across different domains and able

o detect violation attempts. The feasibility and performance of the

roposed approach have been validated by means of a prototypical

S. Sicari et al. / Computer Networks 108 (2016) 133–147 145

Fig. 7. Results.

Fig. 8. Violation attempt of user service request.

i

u

m

b

i

R

mplementation and the development of a simple, yet real-world,

se case.

In the next future we will focus on the deployment of the

iddleware and the framework in a large-scale pilot focussed on

uilding automation, in order to test its robustness and scalability

n operational environment.

eferences

[1] D. Miorandi , S. Sicari , F. De Pellegrini , I. Chlamtac , Survey internet of things:

vision, applications and research challenges, Ad Hoc Netw. 10 (7) (2012)
1497–1516 .

[2] S. Sicari , A . Rizzardi , L.A . Grieco , A . Coen-Porisini , Security, privacy and trust in
internet of things: the road ahead, Computer Netw. 76 (2015) 146–164 .

[3] R.H. Weber , Internet of things - new security and privacy challenges, Comput.
Law Secur. Rev. 26 (1) (2010) 23–30 .

[4] H. Feng , W. Fu , Study of recent development about privacy and security of

the internet of things, in: 2010 International Conference on Web Information
Systems and Mining (WISM), Sanya, 2010, pp. 91–95 .

[5] R. Roman , J. Zhou , J. Lopez , On the features and challenges of security
and privacy in distributed internet of things, Comput. Netw. 57 (10) (2013)

2266–2279 .
[6] J. Anderson, L. Rainie, The internet of things will thrive by 2025, PewResearch

internet project, http://www.pewinternet.org/2014/05/14/internet- of- things/ ,
May 2014 (2014).

[7] S. Bandyopadhyay , M. Sengupta , S. Maiti , S. Dutta , A survey of middleware for
internet of things, in: Third International Conferences, WiMo 2011 and CoNeCo

2011, Ankara, Turkey, 2011, pp. 288–296 .
[8] M.A. Chaqfeh , N. Mohamed , Challenges in middleware solutions for the inter-

net of things, in: 2012 International Conference on Collaboration Technologies

and Systems (CTS), Denver, CO, 2012, pp. 21–26 .
[9] S. Babar , A. Stango , N. Prasad , J. Sen , R. Prasad , Proposed embedded security

framework for internet of things (iot), in: 2011 2nd International Conference
on Wireless Communication, Vehicular Technology, Information Theory and

Aerospace and Electronic Systems Technology, Wireless VITAE 2011, Chennai,
India, 2011, pp. 1–5 .

[10] S. Sicari , A. Rizzardi , C. Cappiello , A. Coen-Porisini , A NFP model for inter-

net of things applications, in: Proc. of IEEE WiMob, Larnaca, Cyprus, 2014,
pp. 164–171 .

[11] A. Rizzardi , D. Miorandi , S. Sicari , C. Cappiello , A. Coen-Porisini , Networked
smart objects: moving data processing closer to the source, in: 2nd EAI In-

ternational Conference on IoT as a Service, 2015 .
[12] S. Sicari , C. Cappiello , F.D. Pellegrini , D. Miorandi , A. Coen-Porisini , A securi-

ty-and quality-aware system architecture for internet of things, Inf. Syst. Front.

(2014) 1–13 .
[13] S. Sicari , S. Hailes , D. Turgut , S. Sharaffedine , D. U. , Security, privacy and trust

management in the internet of things era- SePriT, 11 (8), Special Issue of Ad
Hoc Networks, Elsevier, 2013 .

[14] M. Papazoglou , P. Traverso , S. Dustdar , F. Leymann , Service-oriented comput-
ing: state of the art and research challenges, Computer 40 (11) (2007) 38–45 .

[15] Q. Yu , X. Liu , A. Bouguettaya , B. Medjahed , Deploying and managing web ser-

vices: issues, solutions, and directions, The VLDB J. 17 (3) (2008) 537–572 .
[16] Peertrack, (http://cs.adelaide.edu.au/peertrack/).

[17] Perci (pervasiveservice interaction), (http://www.hcilab.org/projects/perci/
index.htm).

[18] M. Palattella , N. Accettura , X. Vilajosana , T. Watteyne , L. Grieco , G. Boggia ,
M. Dohler , Standardized protocol stack for the internet of (important) things,

Commun. Surv. Tut. IEEE 15 (3) (2013) 1389–1406 .

[19] I. Bagci , S. Raza , T. Chung , U. Roedig , T. Voigt , Combined secure storage and
communication for the internet of things, in: 2013 IEEE International Confer-

ence on Sensing, Communications and Networking, SECON 2013, New Orleans,
LA, United States, 2013, pp. 523–631 .

http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0001
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0002
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0003
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0004
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0005
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0005
http://www.pewinternet.org/2014/05/14/internet-of-things/
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0006
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0007
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0008
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0009
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0010
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0011
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0012
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0013
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0014
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0014
http://cs.adelaide.edu.au/peertrack/
http://www.hcilab.org/projects/perci/index.htm
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0015
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0016
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0016

146 S. Sicari et al. / Computer Networks 108 (2016) 133–147

[

[20] D. Boswarthick , O. Elloumi , O. Hersent , M2M Communications: A Systems Ap-
proach, 1st, Wiley Publishing, 2012 .

[21] D. Conzon , T. Bolognesi , P. Brizzi , A. Lotito , R. Tomasi , M. Spirito , The virtus
middleware: an xmpp based architecture for secure IoT communications, in:

2012 21st International Conference on Computer Communications and Net-
works, ICCCN 2012, Munich, Germany, 2012, pp. 1–6 .

[22] A. Gòmez-Goiri , P. Orduna , J. Diego , D.L. de Ipina , Otsopack: lightweight se-
mantic framework for interoperable ambient intelligence applications, Comput.

Human Behav. 30 (2014) 460–467 .

[23] C.H. Liu , B. Yang , T. Liu , Efficient naming, addressing and profile services in
internet-of-things sensory environments, Ad Hoc Netw. 18 (0) (2013) 85–101 .

[24] European FP7 IoT@Work project, (http://iot- at- work.eu).
[25] iCORE project, (http://www.iot-icore.eu).

[26] IOT-EST project, (http://ict-iotest.eu/iotest/).
[27] EBBITS project, (http://www.ebbits-project.eu/).

[28] Usable trust in the internet of things, (http://www.utrustit.eu/).

[29] BUTLER project, (http://www.iot-butler.eu).
[30] B. Guo , D. Zhang , Z. Wang , Z. Yu , X. Zhou , Opportunistic iot: Exploring the

harmonious interaction between human and the internet of things, J. Netw.
Comput. Appl. 36 (6) (2013) 1531–1539 .

[31] A. Metzger , C.-H. Chi , Y. Engel , A. Marconi , Research challenges on online ser-
vice quality prediction for proactive adaptation, in: Software Services and Sys-

tems Research - Results and Challenges (S-Cube), 2012 Workshop on European,

2012, pp. 51–57 .
[32] F. Li , S. Nastic , S. Dustdar , Data quality observation in pervasive environments,

in: Proceedings of the 2012 IEEE 15th International Conference on Computa-
tional Science and Engineering, IEEE Computer Society, 2012, pp. 602–609 .

[33] Z. Wu , L. Wang , An innovative simulation environment for cross-domain policy
enforcement, Simulat. Model. Practice Theor. 19 (7) (2011) 1558–1583 .

[34] Y. Elrakaiby , F. Cuppens , N. Cuppens-Boulahia , Formal enforcement and man-

agement of obligation policies, Data Knowl. Eng. 71 (1) (2012) 127–147 .
[35] D. Ferraiolo , V.A. ans S. Gavrila , The policy machine: A novel architecture and

framework for access control policy specification and enforcement, J. Syst.
Arch. 57 (4) (2011) 412–424 .

[36] R. Sandhu , E. Coyne , H. Feinstein , C. Youman , Role-based access control mod-
els, IEEE Comput. 29 (2) (1996) 38–47 .
[37] D. Brewer , M. Nash , The chinese wall security policy, in: Proceedings., 1989
IEEE Symposium on Security and Privacy, Oakland, CA, 1989, pp. 206–214 .

[38] M. Bishop , Computer Security: Art and Science, Addison Wesley, 2003 .
[39] J. Rao , A. Sardinha , N. Sadeh , A meta-control architecture for orchestrating pol-

icy enforcement across heterogeneous information sources, Web Semantics 7
(1) (2009) 40–56 .

[40] M. Langar , M. Mejri , K. Adi , Formal enforcement of security policies on con-
current systems, J. Symbol. Comput. 46 (9) (2011) 997–1016 .

[41] J. Baeten , A brief history of process algebra, Theoret. Comput. Sci. 335 (2–3)

(2005) 131–146 .
[42] R. Macfarlane , W. Buchanan , E. Ekonomou , O. Uthmani , L. Fan , O. Lo , Formal

security policy implementations in network firewalls, Comput. Secur. 31 (2)
(2012) 253–270 .

[43] J.A . Pavlich-Mariscal , S.A . Demurjian , L.D. Michel , A framework for security
assurance of access control enforcement code, Comput. Secur. 29 (7) (2010)

770–784 .

44] M. Dell’Amico , M.S.I. G. Serme , A.S. de Oliveira , Y. Roudier , Hipolds: a hierar-
chical security policy language for distributed systems, Inf. Secur. Tech. Rep. 17

(3) (2013) 81–92 .
[45] J. Singh , J. Bacon , D. Eyers , Policy enforcement within emerging distributed,

event-based systems, in: DEBS 2014 - Proceedings of the 8th ACM Interna-
tional Conference on Distributed Event-Based Systems, 2014, pp. 246–255 .

[46] Ibm and eurotech, ”mqtt v3.1 protocol specification”, (http://public.dhe.ibm.

com/software/dw/webservices/ws- mqtt/mqtt- v3r1.html).
[47] Mosquitto, ”an open source mqtt v3.1/v3.1.1 broker”, (http://mosquitto.org).

[48] Node.JS, (http://nodejs.org/).
[49] MongoDB, (http://www.mongodb.org/).

[50] N. Ulltveit-Moe , V. Oleshchuk , Decision-cache based XACML authorisation
and anonymisation for XML documents, Comput. Stand. Interf. 34 (6) (2012)

527–534 .

[51] V. Goyal , O. Pandey , A. Sahai , B. Waters , Attribute-based encryption for fine–
grained access control of encrypted data, in: Proceedings of the 13th ACM Con-

ference on Computer and Communications Security, 2006, pp. 89–98 .
[52] R.S. Sandhu , Role-based access control, 46, Elsevier, 1998, pp. 237–286 .

http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0017
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0018
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0019
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0020
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0020
http://iot-at-work.eu
http://www.iot-icore.eu
http://ict-iotest.eu/iotest/
http://www.ebbits-project.eu/
http://www.utrustit.eu/
http://www.iot-butler.eu
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0021
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0022
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0023
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0024
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0025
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0026
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0027
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0028
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0029
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0030
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0031
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0032
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0033
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0034
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0035
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0036
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0036
http://public.dhe.ibm.com/software/dw/webservices/ws-mqtt/mqtt-v3r1.html
http://mosquitto.org
http://nodejs.org/
http://www.mongodb.org/
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0037
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0038
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0039
http://refhub.elsevier.com/S1389-1286(16)30266-3/sbref0039

S. Sicari et al. / Computer Networks 108 (2016) 133–147 147

iversita’ degli Studi dell’Insubria (Italy). She received her master degree in Electronical

ommunications Engineering in 2006 from Universita’ degli Studi di Catania (Italy). From

 scholar at Politecnico di Milano. Since May 2006 she works at Universita’ degli Studi

rch interests are on wireless sensor networks (WSN), risk assessment methodology and

 of Computer Network (Elsevier). She is the general co-chair of S-Cube’09, a steering
d S-Cube’14, guest editor for the ACM Monet Special Issue, named “Sensor, System and

nd Trust Management in Internet of Things era (SePriT), TPC member and reviewer for

MS degree in Computer Sciences with 110/110 cum laude at University of Insubria (Italy)

s, she began working in the research group of Prof. Alberto Coen-Porisini and Dr. Sabrina
 University of Insubria under the guidance of Dr. Sabrina Sicari. Her research activity is

 internet of things, in particular on security and privacy issues in IoT.

 at U-Hopper. He received a PhD in Communications Engineering from Univ. of Padova,

lling and performance analysis of large-scale networked systems, ICT platforms for socio-
 grids. Dr. Miorandi has co-authored more than 120 papers in internationally refereed

ittee of various international events, for some of which he was a co-founder (Autonomics
ferences in the networking and computing fields. He is a member of ACM, ISOC and ICST.

 computer engineering at the Politecnico di Milano (Italy) from which she holds a Ph.D.
regard data and information quality aspects in service-based and Web applications, Web

topics, she published papers in international journals and conferences. Cinzia is Associate

. She has been co-chair of the workshops “Quality in Databases” in conjuction with VLDB
AiSE 2005, “Quality in Web Engineering” in conjuction with ICWE 2010–2013, and of the

of MCIS 2012 and “Data and Information quality” of ECIS 2008.

Dr. Eng. degree and Ph.D in Computer Engineering from Politecnico di Milano (Italy) in
Engineering at Universita’ degli Studi dell’Insubria (Italy) since 2001, Dean of the School

udi dell’Insubria since 2012. Prior to that he was Associated Professor at Universita’ degli
ico di Milano (1993–2001) and Visiting Researcher with the Computer Security Group at

ain research interests are in the field of specification and design of real-time systems,
Sabrina Sicari Sabrina Sicari is Assistant Professor at Un

Engineering in 2002 and her Ph.D. in Computer and Telec
September 2004 to March 2006 she has been a research

dell’Insubria in the software engineering group. Her resea

privacy models. She is a member of the Editorial Board
committee member of S-Cube’10, S-Cube’11, S-Cube’13 an

Software” and Ad Hoc Special Issue on Security, Privacy a
many journals and conferences.

Alessandra Rizzardi Alessandra Rizzardi received BS and

in 2011 and 2013 respectively. Since 2011 for her MS thesi
Sicari. From November 2013 she is a Ph.D. student at the

focused on issues related to wireless sensor networks and

Daniele Miorandi Daniele Miorandi is Executive VP R&D

Italy, in 2005. His current research interests include mode
technical systems and distributed optimisation for smart

journals and conferences. He serves on the Steering Comm
and ValueTools). He also serves on the TPC of leading con

Cinzia Cappiello Cinzia Cappiello is Assistant Professor in
in Information Technology (2005). Her research interests

services, sensor data management, and Green IT. On such

Editor of the ACM Journal of Data and Information Quality
2010, “Data and Information Quality” in conjuction with C

tracks “Information Quality Management in Innovative IS”

Alberto Coen-Porisini Alberto Coen Porisini received his
1987 and 1992, respectively. He is Professor of Software

of Science from 2006 and Dean of the Universita’ degli St
Studi di Lecce (1998–2001), Assistant Professor at Politecn

University of California, Santa Barbara (1992–1993). His m
privacy models and wireless sensor networks.

	Security policy enforcement for networked smart objects
	1 Introduction
	2 Related works
	3 Architecture and prototype
	4 Policy enforcement
	4.1 Enforcement framework
	4.2 Enforcement engine

	5 Implementation of the enforcement framework
	6 Validation and evaluation
	7 Conclusions
	 References

