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a b s t r a c t 

Sensor deployment is an important aspect of network architecture for Wireless Sensor Networks (WSNs).

Although many solutions to mobile sensors deployment have been proposed, controlling mobile sensors

with directional sensing ability towards optimal coverage remains to be an open problem. In this paper,

we take the initiative to handle the Coverage Maximizing Mobile Sensor Deployment Problem (CMMSDP)

with directional and arbitrarily oriented sensors. Our proposal consists of two algorithms. The first one,

Concurrent Rotation and Motion Control (CRMC), is a localized iterative algorithm derived from optimality

conditions, so it aims at reaching local maximum. The second algorithm, Staged Rotation and Motion Con- 

trol (SRMC), decouples rotation and motion controls in order to reduce the computation complexity with

slight sacrifice in optimality. We derive optimality and complexity results for both algorithms. We also

implement our algorithms in TOSSIM and evaluate them against commonly used metrics. The promising

results confirm the absolute feasibility of our proposals.

© 2016 Elsevier B.V. All rights reserved.
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1. Introduction

The deployment of sensor nodes is very crucial to the function-

alities of Wireless Sensor Networks (WSNs) [1] . Specifically, a de-

ployment should guarantee area of interest is largely covered. How-

ever, a well arranged deployment, on one hand, leads to a pro-

hibitive cost due to the large scale of a WSN, and on the other

hand, is lack of adaptability to the monitoring of time-variant

events, which has forced many of WSN related proposals to resort

to random deployments. Although random deployments may sat-

isfy certain coverage requirements given an over-provisioned node

density, the incurred cost is huge, while the lack of adaptability to

event dynamics remains to be an inevitable issue. 

To tackle these challenges, we adopt sensor nodes that are

equipped with mobility mechanisms, e.g., wheels driven by DC

motors, compass and bumper [2,3] . As sensor nodes can move to-
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ards desirable locations, the initial random deployments can be

mproved by properly adjusting the locations of the nodes [4–6] .

uch an autonomous deployment strategy with the help of mo-

ile sensor nodes enables flexible re-deployment when the phys-

cal phenomena of interest vary during surveillance, or the net-

ork condition changes (e.g., in the face of node failures). How-

ver, the existing proposals on autonomous deployment only con-

ider sensor nodes with omnidirectional sensors and boolean sens-

ng ranges, hence a disk centered at each node is used to charac-

erize the coverage of that node [4,5,7,8] . As real sensors may have

ertain directional features (e.g., radar or acoustic sensors [9,10] )

nd the sensing capability of a sensor often decreases continuously

ith an increasing distance from the sensor rather than remaining

onstant but suddenly becoming zero somewhere [11] , specific de-

loyment mechanism is expected. 

In this paper, we take the initiative to deal with the Cover-

ge Maximizing Mobile Sensor Deployment Problem (CMMSDP), un-

er the assumptions of directional sensors with a general sensi-

ivity distribution function. We aim at moving nodes to maximize

overage, which is indicated by an objective function. For omni-

irectional sensors, this optimization problem is partially handled

y Centroidal Voronoi Tessellations (CVT) [11–13] . However, direc-

ional sensors with arbitrary orientations lead to a Voronoi tessel-

ation consisting of non-convex and even disconnected (in topolog-

cal sense) cells with curved boundaries. This has made it highly
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1 Our solution is readily extensible to 3D surface or volume in theory, but our 

scope is restricted to 2D planes in this paper. 
ontrivial to obtain CVT through a localized control algorithm, and

he optimality of CVT may also become questionable. 

In response to these challenges, we propose two autonomous

eployment algorithms to control the node movements and orien-

ations using only local information, based on a characterization

f the optimal solutions to CMMSDP. Our first algorithm is CRMC

 Concurrent Rotation and Motion Control ), it simultaneously tunes

he orientations and locations of nodes through a localized itera-

ion, so that it terminates with a local maximum coverage. In order

o improve the algorithm efficiency, our second algorithm SRMC

 Staged Rotation and Motion Control ) first unifies the orientations of

he sensor nodes and then conducts the motions of the nodes. As

 result, SRMC is more efficient in terms of computations. To the

est of our knowledge, our proposal is the first to handle CMMSDP

ith directional and arbitrarily oriented sensors. 

The remaining of this paper is organized as follows. We discuss

xisting literature in Section 2 . Then we present our model and

efine our problems in Section 3 , and analyze the theoretical char-

cterization of the optimal solution in Section 4 . We present CRMC

nd SRMC in Sections 5 and 6 , respectively. We evaluate the perfor-

ance of our algorithms and compare them with another possible

olution in Section 7 . Finally, we conclude our paper in Section 8 . 

. Related work 

There is a vast body of recent work related to sensor deploy-

ents for area coverage, including joint coverage and connectivity

olutions to static sensor deployments (e.g., [14–16] ) and intermit-

ent coverage with mobile nodes (e.g. [17–19] ). However, we focus

nly on those about deploying WSNs for better constant coverage

sing mobile nodes. 

.1. Moving node for improving coverage 

This set of proposals aim at mobile deployment to only achieve

etter coverage, assuming (implicitly or explicitly) that the trans-

ission range is sufficiently large so that coverage implies connec-

ivity. Howard et al., [20] are among the first to devise the virtual

orce approach for mobile deployment. The idea is motivated by the

ttributes of electromagnetic particles: they push each other away

hen too close, while attracting each other when too far. This idea

as extended by later proposals to combat its oscillatory behav-

or [5] . Wang et al., [4] pioneered in applying Voronoi diagrams to

ontrol mobility. They propose two methods, VOR and Minimax:

hile the former moves a node towards the farthest Voronoi ver-

ex, the latter makes a node stop at the Chebyshev center (the cen-

er of the smallest circumscribed circle of the Voronoi cell). The

xperiments in [4] show that Voronoi-based approaches often per-

orm better than the virtual force approach. CVT has recently been

xtended in [21] by jointly optimizing coverage and (the sensor

odes’) moving distances in each iteration for the purpose of en-

rgy efficiency. Similarly, we also design our algorithm to carefully

etermine the step sizes of each iteration, aiming to ensure cover-

ge optimality as well as affordable energy cost in moving nodes

see Section 5.3 ). 

Whereas the aforementioned proposals always assume a circu-

ar sensing area with identical radius for all node, Bartolini et al.,

5] apply Voronoi-Laguerre geometry [22] to deal with heteroge-

ous sensing radius. Under heterogeneous sensing ranges, the op-

imality of Voronoi partition for fixed sensor locations [23] is com-

romised under Euclidean metric. Fortunately, by redefining the

istance as power distance [24] (hence leading to Voronoi diagram

n Laguerre geometry [22] ), Bartolini et al., are able to retain cer-

ain properties of Voronoi diagram, and they hence reuse the Mini-

ax method [4] to control mobility. Our later proposal is similar to

5] , in the sense that we also exploit directional features of sensing
odel such that classical theories/algorithms for standard Voronoi

iagrams can be applied. 

Different from the above proposals assuming omnidirectional

ensors (hence circular sensing areas), [25] proposes mobility con-

rol algorithms to address the area coverage problem under a

ector-based directional sensing model. It sticks to boolean sens-

ng range and has the orientations of the directional sensors fixed

n the deployment strategy; thereby lacking of practicality and op-

imality. In contrast, we present in this paper a more practical and

eneric sensing model, such that we can take into account both

he continuity and directionality of sensing ranges, while guaran-

eeing the resolvability and optimality of our proposed solutions to

he area coverage problem. 

.2. Integrated coverage and connectivity 

When transmission range is roughly in the same scale of sens-

ng range, the mobility control algorithm has to take network con-

ectivity into account. However, as connectivity is a global prop-

rty of a WSN, it cannot be reliably maintained by a localized algo-

ithm without introducing redundancy (hence sacrificing coverage)

26] . As a result, the existing proposals all rely on certain global

oordination mechanism and/or a geographic lattice known to all

odes (e.g., [7,27] ). In particular, an underlying spanning topology

a backbone or tree) is constructed to maintain a global connectiv-

ty with, for example, a sink [27] . In addition, a coordinate system

nd a related lattice structure (hexagonal lattice for [27] and par-

llel lines for [7] ) is maintained and is globally known; this helps

o gradually “grow” a regular node deployment. 

Although using a spanning topology is meaningful as the whole

SN always needs to connect to a sink, the requirement on a

lobal coordinate system demands an expensive localization sys-

em that is not always possible. As our solution leads to an almost

egular node deployment, connectivity is guaranteed by properly

hoosing a node density during the initial random deployment.

therwise a spanning topology can be maintained along with our

obility control algorithms. Therefore, we do not involve connec-

ivity in our optimization framework, though we still deal with the

roblems resulting from a limited transmission range. 

. Model, problem, and theory 

We first present our system model in Section 3.1 . We then re-

iew the basic theories for optimal deployment of omnidirectional

ensors in Section 3.2 , before formally formulating our optimiza-

ion problem for maximizing coverage using directional mobile

ensors in Section 3.3 . 

.1. System model 

We assume a WSN consisting of a set N = { n 1 , . . . , n N } of sen-

or nodes, and |N | = N. The nodes are initially deployed arbitrarily

n a 2D targeted area A . 1 We also make the following assumptions

n sensor nodes: 

A1: Each node is equipped with certain mechanisms (e.g., mo-

tors plus wheels) to gradually changes its location [2] as well

as bumper sensors to detect and avoid obstacles in the tar-

geted area [3] . 

A2: We hereby focus on a more practical sensing model where

the sensing capability of a sensor is attenuated continuously

with increasing distance [11] and the attenuation is sup-

posed to be anisotropic [28] (Section 5.2.4: Variogram mod-

els, p70). Therefore, to characterize such a sensing model,
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Fig. 1. Two sensing models for sensor nodes. 
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t  
we define a Sensitivity Distribution Function (SDF) for the

i th sensor at location u i ∈ A as f (‖ v − u i ‖ 2 P i 
) , where v ∈ A ,

‖ v − u i ‖ 2 P i 
= (v − u i ) 

T P T 
i 

P i (v − u i ) , and 

P i = 

[
a 0 

0 b 

]
·
[

cos θi sin θi 

− sin θi cos θi 

]
, (1)

with a , b > 0 and θ i ∈ [0, π ) being the sensor orientation .

In fact, ‖ v − u i ‖ 2 P i 
can be treated as the distance from u i to v

under a directional metric P i . We assume that f ( ·) is a non-

increasing function with respect to ‖ v − u i ‖ 2 P i 
, to imply the

attenuation of the sensing capability of node n i according

to increasing distance. Note that, we only require a SDF f ( ·)
to be non-increasing, so it also includes the boolean-range

sensing model as a special case, where f ( ·) is an indicator

function of the sensing range. We illustrate a SDF in Fig. 1 (a).

If a = b, P T 
i 

P i = a 2 I where I is the identity matrix. The sen-

sor becomes omnidirectional, as shown by Fig. 1 (b). It can

be viewed as a generalization of continuous omnidirectional

sensing model with both directional feature and analytical

tractability especially for our area coverage problem. 

A3: Nodes all have an identical transmission range r , and we de-

note by N (n i ) the nodes within the transmission range of

node n i , i.e., N (n i ) is the set of one-hop neighbors of node

n i . 

A4: A node n i has a gyroscope to get aware of its orientation θ i .

It can use ranging information of N (n i ) to construct a local

coordinate system for mobility control (e.g. [29] ). 

3.2. Preliminary theories for omnidirectional sensors 

As mentioned above, the omnidirectional sensing model actu-

ally can be treated as a special case of our directional one. There-

fore, before diving into our problem formulation based on our

directional sensing model, we first review some basic theories

closely related to omnidirectional sensors. 

With omnidirectional sensors, we do not have to take into ac-

count { θ i }, such that the deployment problem actually is simpler

than the case of directional ones. In order to allocate sensors to

properly cover the given targeted region A , the basic thread of de-

ploying omnidirectional sensors is first to partition A into disjoint

area {A i } i =1 , ... ,N such that A = 

⋃ 

i A i and A i 

⋂ 

A j = ∅ (with i � = j ),

and then to allocate each sensor node n i to one of the areas. We

assign an Event Density Function (EDF) ψ : A → R + upon the tar-

geted region A ; it indicates the importance of different parts in A .

According to our definition of SDF, our aim is to maximize the fol-
owing coverage function 

 omni ({A i } , { u i } ) = 

N ∑ 

i =1 

∫ 
A i 

f (‖ v − u i ‖ 

2 
� 2 

) ψ(v ) dv 

here ‖ · ‖ 2 � 2 
denotes Euclidean norm as a = b for individual sensor

odes in this case. 

The optimal solutions thus can be characterized by the follow-

ng two propositions [12,13] . 

roposition 1. If we fix the sensor locations { u i }, the optimal parti-

ion of A is the Voronoi partition V (A ) = {V 1 , . . . , V N } generated by

 u i }, 

 i = 

{
v ∈ A|‖ v − u i ‖ 

2 
� 2 

≤ ‖ v − u j ‖ 

2 
� 2 

, ∀ j � = i 
}
. 

While this proposition states the optimality of Voronoi parti-

ion given fixed sensor locations, the next one pinpoints the best

oronoi partitions, under rather restrictive conditions. 

roposition 2. Let f (x ) = −x, and define the centroid C V of a region

 ∈ R 

d (d ≥ 2) as 
[∫ 

V ψ(v ) dv 
]−1 [∫ 

V v ψ(v ) dv 
]

then C omni ({V i } , { u i } )
s maximized only if {V i } is generated by { u i = C V i } for i = 1 , . . . , N. 

These two properties motivate the well known Lloyd’s iteration

nd its gradient-based extensions [12] , which basically repeat the

wo steps of (i) Voronoi partition generated by { u i } and (ii) moving

 u i } to (or towards with a fractional step size) { C V i } . We illustrate

he initial and optimal deployments in Fig. 2 . However, as the op-

imality requires f (x ) = −x, we need to tackle this issue (even for

mnidirectional sensors) in order to apply general SDFs. 

.3. Problem formulation 

We hereby formulate our Coverage Maximizing Mobile Sensor De-

loyment Problem (CMMSDP) under our directional sensing model.

imilar with the above case of handling omnidirectional sensors,

e partition the targeted region A into a set of N disjoint areas

A i } i =1 , ... ,N . We allocate node n i into A i (tune its location u i ∈ A i 

nd orientation θ i ) and let it take care of sensing A i . We define

he coverage function C (·) for directional sensing model as 

 ({A i } , { u i } , { θi } ) = 

N ∑ 

i =1 

∫ 
A i 

f (‖ v − u i ‖ 

2 
P i 
) ψ(v ) dv , (2)

ence our CMMSDP is given by 

aximize 
{A i } , { u i } , { θi } 

C ({A i } , { u i } , { θi } ) (3)

ubject to 

⋃ 

i 
A i = A; A i 

⋂ 

A j = ∅; u i ∈ A i (4)

he aim is to determine the variables {A i } , { u i } and { θ i } such that

he coverage to the targeted area is maximized. 

Although our CMMSDP falls into the so-called location optimiza-

ion framework [23] , the introduction of sensor orientations θ i re-

ults in a new distance measure ‖ v − u i ‖ 2 P i 
to replace the com-

only used Euclidean metric, which makes our problem fairly

nique and useful, especially considering the resulting sensing

odel is more generic and thus can convey better sensing charac-

eristics than omnidirectional or binary sensing models. Neverthe-

ess, as we will show in later sections, the new variables { θ i } also

ead to considerable challenges, which we have to address when

esigning specific algorithms. 

. The optimal solutions for directional sensors 

Inspired by the theories of designing optimal deployment solu-

ions for omnidirectional sensors, we present characterizations for



F. Li et al. / Computer Networks 108 (2016) 120–132 123 

Fig. 2. Voronoi cells for omnidirectional sensors. 

Fig. 3. For an arbitrary area, the centroid C V i does not guarantee a zero inner in- 

tegration (a). However, if an area is rotational symmetry of order 2, the inner in- 

tegration equals zero for any S ( φ) (b). Therefore, if the symmetry is preserved by 

additional operator (e.g., f ( ·) or P i ), the centroid remains intact under these opera- 

tions. 

d  

i  

o  

o  

i

4

 

a

P  

2  

a  

1

P  

i

∫

W

v  

w  

[  

[  

u  

t  

c∫

f  

T  

C

 

i  

c  

[  

q  

i  

t

4

 

C  

m  

V  

s

P  

t  

V

V

 

i  

P  

d

P  

t  

C  

u

P  

C∫

W  

1  
irectional sensors in this section, in order to motivate our theoret-

cal results and algorithms for CMMSDP. As the objective function

f CMMSDP C ({A i } , { u i } , { θi } ) is generally not concave even with

mnidirectional sensors, we are interested in deriving a local max-

mum which is sufficient for practical use. 

.1. Arbitrary SDFs 

We first show that, under certain conditions, the centroids { C V i }
lso maximize C ({V i } , { u i } ) with an arbitrary f ( x ). 

roposition 3. If, for i = 1 , . . . , N, V i is rotational symmetry of order

 and the centroid C V i is the rotocenter, C ({V i } , { u i } ) is maximized for

n arbitrary f ( x ) only if {V i } is generated by { u i } and u i = C V i , ∀ i =
 , . . . , N. 

roof. The necessary condition for { u ∗
i 
} to maximize C ({V i } , { u i } )

s 

 

V i 
f ′ 
(‖ v − u i ‖ 

2 
� 2 

)
(v − u i ) ψ(v ) dv 

∣∣∣∣
u i = u ∗i 

= 0 , ∀ i = 1 , . . . , N. 

e also know that 
∫ 
V i 

(v − C V i ) ψ(v ) dv = 0 or 
∫ π

0 

∫ 
S(φ) 

 r,φψ(v r,φ ) rdrdφ = 0 under polar coordinates centered at C V i ,
here S(φ) is a pair of sectors in V i between [ φ, φ + dφ) and

 π + φ, π + φ + dφ) , and v r, φ contains both [ r cos φ, r sin φ] and

 r cos (π + φ) , r sin (π + φ)] . We illustrate the latter integration

nder polar coordinates in Fig. 3 (a). When V i is rotational symme-

ry of order 2 and C V i is at the rotocenter, we have (under polar
oordinates centered at C V i ) 
 

S(φ) 
f ′ (‖ v r,φ‖ 

2 
� 2 

) v r,φψ(v r,φ ) rdr = 0 , 

or all i = 1 , . . . , N, which is roughly explained by Fig. 3 (b).

herefore, { u i } = { C V i } is the necessary condition for maximizing

 ({V i } , { u i } ) . �

Recall that, for omnidirectional sensors , the outcome of Lloyd’s

teration (and its variances) leads to almost symmetric Voronoi

ells [12,13] , especially when ψ( v ) is a constant (as assumed in

4] ), as shown by Fig. 2 (b). These suggest that the conditions re-

uired by Proposition 3 are almost always satisfied, thus Lloyd’s

teration does lead to local maximum or nearly maximum even if

he cells are slightly out of symmetry. 

.2. Optimality conditions 

We are now ready to characterize the optimal solutions of

MMSDP under directional sensing model, or equivalently the new

etric ‖ v − u i ‖ 2 P i 
. Firstly, we have the optimality statement for

oronoi partition under fixed sensor locations and orientations,

imilar to Proposition 1 . 

roposition 4. If we fix the sensor locations { u i } i =1 , ... ,N and orienta-

ions { θi } i =1 , ... ,N , the optimal partition of A is the Voronoi partition

 (A ) = {V 1 , . . . , V N } generated by { u i } i =1 , ... ,N under { P i } i =1 , ... ,N , i.e., 

 i = 

{
v ∈ A|‖ v − u i ‖ 

2 
P i 

≤ ‖ v − u j ‖ 

2 
P j 
, ∀ j � = i 

}
. 

We omit the proof as it immediately follows from that f ( ·)
s non-increasing in ‖ v − u i ‖ 2 P i 

. We also have the counterpart of

roposition 2 as follow, indicating the best Voronoi partitions un-

er a specific SDF. 

roposition 5. Assume V i is rotational symmetry of order 2 and

he centroid C V i is the rotocenter, then the objective function

 ({V i } , { u i } , { θi } ) is maximized only if {V i } is generated by { u i = C V i }
nder { P i }, for ∀ i = 1 , . . . , N. 

roof. The necessary condition for { u ∗
i 
} to maximize

 ({V i } , { u i } , { θi } ) is 
 

V i 
f ′ 
(‖ v − u i ‖ 

2 
P i 

)
P i (v − u i ) ψ(v ) dv 

∣∣∣∣
u i = u ∗i 

= 0 , ∀ i = 1 , . . . , N. 

e also have the centroidal condition 

∫ 
V i 

(v − C V i ) ψ(v ) dv = 0 , ∀ i =
 , . . . , N. Following a similar reasoning of the previous proof (for
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Proposition 3 ) and that P i preserves rotational symmetry of even

orders, we can show that the { u i } = { C V i } implies the necessary op-

timality condition if V i is rotational symmetry of order 2 and C V i is

at the rotocenter. �

This proposition differs from Proposition 2 in that it does not

assume a specific f ( ·) but demands a particular geometric property

of V i . 
The above results give us two optimality conditions: the opti-

mal partition with fixed node locations and orientations, as well

as the optimal node locations with fixed partition and orientations.

What are the optimal orientations given an optimal Voronoi parti-

tion and optimal sensor locations? 

Proposition 6. If we fix the sensor locations { u i } and the

Voronoi partition {V i } generated by { u i } such that u i = C V i , then

C ({V i } , { C V i } , { θi } ) is maximized only if 

∫ 
V i 

f ′ 
(‖ v − C V i ‖ 

2 
P i 

)∂‖ v − C V i ‖ 

2 
P i 

∂θi 

ψ(v ) dv 
∣∣∣∣
θi = θ ∗

i 

= 0 , (5)

for i = 1 , . . . , N, where ‖ v − C V i ‖ 2 P i 
is a scalar function of θ i . 

The proof is omitted as it is just the first-order optimality con-

dition with respect to θ i . However, this optimality condition de-

mands a careful interpretation, as it is far less straightforward as

the other two. If we combine f ′ (‖ v − C V i ‖ 2 P i 
) and ψ( v ) to form a

virtual EDF of the mass V i , the optimality condition states that the

centroid of V i is preserved under transform P i . Moreover, obtaining

θ ∗
i 

can be further simplified under certain geometric property of

V i . 

Definition 1. For a mass V i with an EDF ψ defined upon, if V i is

rotational symmetry of order 2 and the centroid C V i is the rotocen-

ter, then we term w i the main axis of V i if 

w i = arg max 
‖ w ‖ 

� 2 
=1 

∫ 
V i 
(w 

T (v − C V i )) 
2 ψ(v ) dv , (6)

and we denote by β i ∈ [0, π ) the orientation of w i . 

Proposition 7. If V i is rotational symmetry of order 2 and the cen-

troid C V i is the rotocenter, θ ∗
i 

= βi , ∀ i = 1 , . . . , N. 

Proof. Changing the integration to polar coordinates centered at

 V i , we have 

∫ 
V i 

f ′ 
(‖ v − C V i ‖ 

2 
P i 

)∂‖ v − C V i ‖ 

2 
P i 

∂θi 

ψ(v ) dv 

= 

∫ 
r 

r 3 
∫ 2 π

0 

f ′ 
(‖ v r,φ‖ 

2 
P i 

)
g(φ, θi ) ψ(v r,φ ) d rd φ, (7)

where v r,φ = [ r cos φ, r sin φ] , and g(φ, θi ) = (a 2 − b 2 ) sin 2(φ − θi ) .

We also redefine the main axis under the polar coordinates cen-

tered at C V i as follows, 

βi = arg max 
θw 

∫ 
r 

r 3 
∫ 2 π

0 

cos 2 (φ − θw 

) d φd r 

where θw 

is the orientation of an arbitrary unit vector w . Then, ac-

cording to the first-order optimality condition with respect to θw 

,

we have ∫ 
r 

r 3 
∫ 2 π

0 

sin 2(φ − θw 

) ψ(v r,φ ) d rd φ

∣∣∣∣
θw = βi 

= 0 , (8)

As shown in Fig. 3 (b), both the above integrations (7) and (8) con-

sist of two parts: one within the inscribed disk of V i (the green

area) and another outside (e.g., along the red strips whose angles

are in [ γ1 , γ2 ] ∪ [ γ1 + π, γ2 + π ] ). Both the integrations upon the

former part are always zero, regardless of the variables θ and θw 

.
i 
or the second part, the inner integrations are carried out only

ithin [ γ1 , γ2 ] ∪ [ γ1 + π, γ2 + π ] . Given that f ( ·) preserves the ro-

ation symmetry of order 2, our careful derivation shows that this

art is zero for (7) and (8) if θi = θw 

= (γ1 + γ2 ) / 2 , hence we have
∗
i 

= βi . �

In Section 5 , we will apply these optimality conditions to de-

ign a localized iterative algorithm to obtain local maximum of

MMSDP. 

.3. Voronoi cells under new metric 

Under the new directional metric ‖ · ‖ 2 
P i 
, the representation of

oronoi cells is more complicated than their Euclidean counter-

arts. 

roposition 8. Under the metric ‖ · ‖ 2 P i 
, the boundaries of Voronoi

ells {V i } consist of piecewise hyperbolas. 

roof. Given two node locations, u i and u j , with orientation angles

i and θ j respectively. Let M i = P T 
i 

P i , the bisector between u i and

 j is given by the following quadratic equation 

(x ) = (x − u i ) 
T M i (x − u i ) − (x − u j ) 

T M j (x − u j ) = 0 . 

t is well known that, under the Cartesian coordinate system, the

urve of a quadratic equation in 2D is always a conic section . Fur-

hermore, a conic section can be classified as ellipse, parabola, or

yperbola, according to the sign of the determinant 
 ( <, = , >,

espectively). A careful derivation suggests 
 = 4(a − b) 2 sin 

2 (θi −
j ) ≥ 0 for our case. Therefore, the bisector of any two nodes is

 hyperbola. As there are two branches of a hyperbola, the branch

hat serves as the bisector is the one that “separates” u i and u j , i.e.,

(x − u i ) P 
T 
i 

P j (x − u j ) < 0 , for any x on the bisector. �

However, it is interesting to note that, by unifying the orienta-

ion, the computations for constructing Voronoi cells can be highly

implified. 

roposition 9. If all sensors have the same orientation, Voronoi cells

V i } generated according to ‖ · ‖ 2 
P i 

are all convex polytopes. 

roof. It follows from the above proof that, when θi = θ j , the

quation becomes x − u i = x − u j in a linearly transformed space

y P i . So the bisector is a line and the Voronoi cells are all convex

olytopes. �

We plot the Voronoi cells for both arbitrarily and uniformly

riented sensors in Fig. 4 . While arbitrary orientations may re-

ult in discontinuous distorted Voronoi cells: the hatching areas

n Fig. 4 (a), unifying the orientation leads to continuous polygonal

ells in Fig. 4 (b). Later in Section 6 , we use this property to devise

 light-weight solution to CMMSDP. 

. Concurrent rotation and motion control 

In this section, we derive a control law to concurrently drive

ensor rotation and motion. This control process is performed in

n iterative manner by each node, relying only on locally available

nformation (i.e., the information acquired from its neighbors). We

rst present the control process in Algorithm 1 , then explain it in

etail. 

.1. Building local coordinate systems 

According to assumption A4, a node n i can obtain the dis-

ances among nodes in N (n i ) through message exchanges, based

n which, a certain 2D embedding technique (e.g., [29] ) is applied

o construct a local coordinate system (line 2). This step is not nec-

ssary if other positioning devices (e.g. GPS) are equipped. 
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Fig. 4. Illustrating the directional Voronoi cells. The ellipses are only used to indicate directionality, rather than demarcating the sensing range. 
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.2. Voronoi partition for directional sensors 

In each iteration, every sensor node n i broadcasts its current

rientation θ i to its one-hop neighbors N (n i ) (line 3). Being aware

f location and orientation information, each node n i may calcu-

ate the bisectors between itself and it neighbors. According to

roposition 8 , the bisectors between directional sensors are hyper-

olas. Therefore, what a node calculates are the parametric forms

f the bisectors and their intersections. This information is suffi-

ient to characterize the Voronoi partition {V i } (line 4). This step is

otivated by the optimality condition stated in Proposition 4 . 

Similar with [4] , when certain bisectors are hidden from a node

 i because another node that determines this bisector is beyond

he communication range of n i , the node n i closes the open sides

f its Voronoi cell by using the transmission range as a boundary.

n the other hand, as we will shown in Section 5.3 , we carefully

ontrol the step sizes for the nodes to move towards the centroids;

ence this problem does not constitute a threat to the algorithm

onvergence. 

Another problem is the possible discontinuity in cells, as shown

n Fig. 4 (a). In general, the main component of V i (i.e., the one that

ontains u i ) is much larger than other components (should they

xist). Moreover, when the function f ( ·) decreases sufficiently over

 large distance, approximating a Voronoi cell by its main compo-

ent numerically introduces no error. As we will show in Section 7 ,

ur algorithm finally outputs a regular deployment where there is

o disconnected Voronoi cell. 
Algorithm 1: CRMC 

Input : For each n i ∈ N , initial position u 0 
i 

and orientation θ0 
i 

, 

step size α, stopping tolerance ε
Output : { u ∗

i 
} and { θ ∗

i 
} 

1 For every node n i ∈ N periodically (every τ ms): 

2 Construct a local coordinate system using the mutual 

distances among N (n i ) ∪ { n i } 
3 Broadcast θi to N (n i ) 

4 Compute the Voronoi cell V i , centroid C V i , and main axis 

orientation βi 

5 if | u i − C V i | > ε, C V i ,θi 
(u i ) > C V i ,θi 

[ u i + α(C V i − u i )] then 

u + 
i 

← u i + α(C V i − u i ) ; 

6 if | θi − βi | > ε, C V i ,u + i 
(θi ) > C V i ,u + i 

[ θi + α(βi − θi )] then 

θ+ 
i 

← θi + α(βi − θi ) ; 

p

5
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.3. Motion control towards centroids 

The motion control (lines 4 and 5) follows directly from the op-

imality condition stated in Proposition 5 . The major difference be-

ween our control process and the Centroidal Voronoi Tessellations

CVT) [13] for omnidirectional sensors is the following. For motion

ontrol based on CVT (which mostly assume f (x ) = −x ), the cen-

roid of V i is indeed the local maximum for each iteration. There-

ore, the control law proposed in [13] can be considered as a steep-

st descent approach . However, Proposition 5 is valid only for regu-

ar geometric shapes. Therefore, although we may use this propo-

ition to show the optimality at the algorithm termination (where

oronoi cells become regular), moving towards the centroids may

ot be a gradient direction (though it is likely to be close to the

radient) before termination. As a result, we need to test whether

 motion does increase the coverage (objective function) before an

ctual move (line 5). 

In a practical implementation, we use the Armijo rule to fine

une the step size α [30] . Basically, if the objective does not in-

rease with the current step size α, we backtrack the step size by
+ = ηα for 0 < η < 1. If the current sensor location is not a lo-

al maximum, there exists a point in its neighborhood that gives

 higher value of the objective. Therefore, the Armijo rule always

eads to a location change, unless the current location is already a

ocal maximum.Such a strategy of tuning step size in each itera-

ion not only guarantees the optimality of our algorithms, but also

revents sensor nodes from zigzag moving and hence serves the

urpose of energy efficiency. 

.4. Rotation control based on PCA 

Although the optimality condition given by Proposition 6 is

ufficiently general, it is too costly to solve the integral equation

5) . Therefore, we actually approximate θ ∗
i 

by the results given in

roposition 7 . The computation of the main axis (6) is essentially

 continuous version of Principal Component Analysis (PCA) [31] .

herefore, we use PCA to numerically compute the main axis of an

rbitrarily shaped Voronoi cell. Similar to the motion control, the

otation direction also may not be the gradient before termination.

herefore, we also need to test the variance in coverage before

otating (line 6). The Armijo rule, similar to the motion control,

s again used to adapt the step size. Note that, each sensor node

nly computes and broadcasts the orientation value to its one-hop

eighbors in every iteration, instead of mechanically rotating. Node
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n i adjusts its orientation to θ ∗
i 

and performs sensing task after our

algorithm achieves convergence at the end. 

5.5. Performance and complexity analysis 

We hereby sketch the important aspects of the algorithm per-

formance. The convergence of CRMC is guaranteed by the ascend-

ing feature of the iteration and boundedness of the coverage func-

tion C . As CRMC is a distributed version of a gradient-based ap-

proach, it converges linearly (or geometrically) [30] , in another

word, lim sup k →∞ 

| C k +1 − C ∗| / | C k − C ∗| < 1 . The (local) optimality

at the algorithm termination is achieved if the Voronoi cells sat-

isfy the symmetry property stated in Section 4 . As we will show

in Section 7 , the symmetry property is almost satisfied. Within

each iteration, the computational complexity is mostly incurred by

computing the centroids and main axes through numerical integra-

tions. Both the complexity and accuracy grow linearly in the num-

ber of finite elements used to approximate a space. 

6. Staged rotation and motion control 

Although manipulating Voronoi cells with curved boundaries

requires only basic arithmetic operations, we further simplify the

computation and propose SRMC as a more efficient alternative. The

basic idea is to leverage on the convex polytope cells by unifying

sensor orientations. As unifying orientations can be achieved by a

simple diffusion process, and Voronoi cells with linear boundaries

are easier to handle, we conclude that the algorithm incurs less

computational load than CRMC. 

6.1. Unifying orientations 

Given sensors with arbitrary orientations, what we need is a

consensus protocol to reconcile the difference. Based on the re-

sults reported in [32] , we devise a gossip-based protocol entail-

ing only localized message exchanges ( Algorithm 2 ); it reaches a

consensus on the average value of all the initial orientations. Let

� = [ θ1 , . . . , θN ] 
T and W = [ w i j ] , we know that the gossip-based

unification process �+ = W � converges iff 1 (i.e., the all-one vec-

tor) is the eigenvector (both left and right) of W corresponding to

the spectral radius 1 [32] . As our algorithm needs to be localized,

we take w i j = max −1 {|N (n i ) | , |N (n j ) |} and determine w ii accord-

ing to W 1 = 1 . Similar with CRMC, the rotation is performed me-

chanically only when the algorithm terminates. 

6.2. Voronoi partition and motion control 

The partition and control procedure here are similar to those

described in Sections 5.2 and 5.3 . However, due to the unified ori-

entations, computations incurred by the control process are greatly
Algorithm 2: Gossip-based orientation unification. 

Input : For each n i ∈ N , initial orientation θ0 
i 

, stopping 

tolerance ε
Output : Uniform orientation θ̄ = 

∑ 

i θ
0 
i 
/N 

1 For every node n i ∈ N periodically (every τ ms): 

2 Broadcast ; 

3 (θi ) to all n j ∈ N (n i ) 

4 upon Receive ; 

5 ( { θi } ) from all n j ∈ N (n i ) do : 

6 if | w ii θi + 

∑ 

n j ∈N (n i ) 
w i j θ j − θi | > ε then 

7 θ+ 
i 

← w ii θi + 

∑ 

n j ∈N (n i ) 
w i j θ j 

8 end 
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implified. For example, the bisectors are all lines: each passes the

idpoint of two neighboring nodes and is perpendicular to f ′ ( ·) at

hat point. Also, as all cells are convex polytopes, they are con-

ected, hence the main component is equal to the cell. Addition-

lly, it is much easier to calculate the centroids of the convex poly-

opes. The control law only deals with motion: it again moves a

ensor towards the centroid of its cell, while adapting the step

ize to keep increasing the coverage objective. Although the control

aw does not act on the orientations anymore, the motion control

nd Voronoi partition are actually adapting the shapes of the cells

hence their main axes) towards the unified orientation. 

.3. Performance and complexity analysis 

The linear convergence of SRMC is guaranteed by the same rea-

on as that of CRMC. Although we cannot claim optimality for

RMC at the algorithm termination (as it sacrifices one degree of

reedom in optimizing the coverage), its performance may not be

orse than CRMC: remember CRMC only reaches local maximums.

s we will demonstrate in Section 7 , the Voronoi cells tend to

dapt their main axes to the unified sensing orientation. Therefore,

t is highly possible that SRMC also leads to some local maximum.

hanks to the convex polytope cells induced by a uniform orienta-

ion, the computation load for each iteration is almost negligible. 

. Evaluation 

In this section, we perform extensive experiments to verify the

fficacy of our algorithms in TOSSIM [33] . We first briefly intro-

uce the simulation settings. We then study the convergence of

ur algorithms. Moreover, we evaluate our algorithms in terms of

overage and energy consumption, and finally illustrate the adap-

ivity of our algorithms to arbitrarily shaped targeted regions with

iverse density. 

.1. Simulation settings 

As our algorithms can be applied to any non-increasing SDF, we

dopt a Gaussian-like function f (x ) = exp (−cx/ 2) as the SDF for

ll simulations, where c represents the attenuation of the sensitiv-

ty. We first set the EDF ψ(v ) = 1 in Sections 7.2 and 7.3 , then we

se other EDFs in Section 7.4 to verify the adaptability of our al-

orithms. The two metrics that we adopt to evaluate the algorithm

erformances are (i) coverage , which is the value of the objective

unction C ({A i } , { u i } , { θi } ) and (ii) energy consumption , which is in

roportion to moving distance. Recall that the sensor nodes ad-

ust their orientations after the algorithm terminates; we thus omit

he cost induced by rotation as it only leads to O (1) energy con-

umption and is much less than the energy cost in moving. For

 nodes to cover an area of size |A| , considering our algorithms

sually lead to regular deployments, we empirically set a limited

ransmission range r = 2 . 5 
√ |A| / (πN) , such that each sensor node

as approximately 6 to 7 one-hop neighbors to ensure the network

onnectivity. In another word, this assumption can be in turn used

o determine the number of nodes with a certain communication

ange as a result of our algorithms. We also set the sensing direc-

ionality matrix P i (see Equation (1) ) such that the induced ellipse

 i (centered at u i and taking 1/ a and 1/ b as the major and minor

adii, respectively) has an area of |A| /N. In order to give sufficient

ime to conduct a movement, we set the communication round τ
s 10 second. 

Although we are the first to deal with directional sensors, exist-

ng algorithms for omnidirectional sensor, enhanced by our orien-

ation handling mechanism, may also be applicable. In the follow-

ng, we will compare our algorithms with SRMC-Minimax: a vari-

nce of our SRMC for which the motion direction is determined by
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Fig. 5. Initial deployment and the outcomes of different algorithms. 
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Fig. 6. Convergence of the three algorithms. 

s

a  

2 The bound is computed by considering every node covers the same area |A| /N

and by maximizing individual cell coverage over all possible geometric shapes 

(which leads to ellipse), i.e., 
∑ N ∫ 

e 
−‖ v −u i ‖ 2 P i 

/ 2 
dv . 
he minimax point (or Chebyshev center, see Section 2.1 and [4] for

etails) of a Voronoi cell. Though the original Minimax algorithm

4] is arguably the best control law for omnidirectional sensors, it

s not directly applicable to directional sensors, because it cannot

andle the rotation control (obviously) and does not converge even

f the orientations are unified. 

.2. Convergence 

As convergence results that we have obtained are all similar to

ach other, we hereby use only one such case for demonstration

urpose. We consider an area of 1 × 1 km 

2 , and 100 nodes are

nitially deployed close to the bottom-left corner of the area, as

hown by Fig. 5 (a). 

Then we show the outcomes of the three algorithms (assuming

 = 1 ) in the remaining sub-figures of Fig. 5 . It is obvious that both

RMC and SRMC lead to evenly distributed and mostly symmet-

ic Voronoi cells, confirming the optimality results we stated ear-

ier. On the contrary, SRMC-Minimax results in rather uneven and

symmetric cells, since the Chebyshev centers used in the context

f omnidirectional sensing model [4] do not have optimality for

ur CMMSDP. 

We also show the converging processes (coverage vs. commu-

ication rounds) of the three algorithms in Fig. 6 , assuming three

ifferent values of c . First, we use the black dotted line to repre-
ent the naive upper bound of global optimal coverage for c = 1 , 2 

nd we can observe that both CRMC and SRMC go very close to
i =1 E i 
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Fig. 7. Coverage of the three algorithms. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 8. Total overhead in deploying mobile nodes. 

Table 1 

Maximum energy consumption (Joule). 

# of nodes 20 60 100 140 180 

CRMC 354 .6 341 .1 328 .1 399 .7 485 .3 

SRMC 267 .9 616 .5 543 .1 752 .5 982 .7 

SRMC-Minimax 207 .3 464 .5 445 .1 746 .4 491 .2 
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the bound, which confirms the optimality of our algorithms. Sec-

ond, both SRMC and SRMC-Minimax converge faster than CRMC

during the first 40 rounds. This is due to the simplification in-

troduced by unifying the orientation before the motion control. In

the long run, SRMC-Minimax performs worse than the other two,

while CRMC is marginally better than SRMC. There is no surprise

as the centroidal direction used by both CRMC and SRMC stems

from an optimality condition (and CRMC further control rotations

based on another optimality condition), whereas SRMC-Minimax is

purely heuristic. The superiority of CRMC and SRMC is more con-

spicuous with larger c , because the impact of deployment strategy

on coverage becomes more significant for sensors with more lim-

ited sensitivity. 

It can be observed that both CRMC and SRMC converge in

about 120 rounds. Considering CC2420 radio has transmit power

52.5 mW and receiving power 56.4 mW [34] and each trans-

mitting/receiving operation takes around 20 ms, each sensor node

spends only about 0.3 Joule on communication by running our al-

gorithms. Moreover, although SRMC-Minimax reaches convergence

in around 70 rounds (faster than CRMC and SRMC), the rounds

need to interpreted differently from those in [4] . As the Minimax

algorithm used in [4] (to deal with omnidirectional sensors) di-

rectly moves nodes to the minimax points of their current cells,

while our algorithms adopt Armijo rule to tune the step size, the

convergence of the Minimax algorithm is faster in terms of rounds.

However, such a full step size leads to oscillation in mobility con-

trol for directional sensors, so we adopt a fractional step size that

adapts to the geometry of current cells through backtracking (see

Section 5.3 ). Consequently, more rounds in our case is not meant

to much higher energy consumption (which we will illustrate in

Section 7.3 ). 

7.3. Coverage and energy consumption 

In this section, we fix the area as 1 × 1 km 

2 and the SDF as

f (x ) = exp (−x/ 2) , but we vary the network size from 20 to 180.

We show the coverage of the three algorithms in Fig. 7 . As we scale

the sensing directionality matrix P i according to |A| /N, increasing

network size should slightly increase the optimal coverage (analo-

gous to the ellipse packing with a decreasing size of each ellipse).

This is clearly shown by both CRMC and SRMC in Fig. 7 . More-

over, the abnormal decrease in coverage for SRMC-Minimax again

confirms the non-optimality of this heuristic. Finally, as CRMC and

SRMC may both converge to local maximums, one cannot be con-

stantly superior to another. 
We also evaluate the overall energy consumption by demon-

trating the total moving distance until the algorithm terminations

or these three algorithms. The results are shown in Fig. 8 . It is

bvious that, whereas CRMC and SRMC-Minimax have comparable

otal moving distance, SRMC moves longer than the other two al-

orithms. Recall that CRMC has to deal with curved Voronoi cells,

he outperformance in moving distance can compensate the ex-

ense in computations to some extent. Furthermore, considering

he significant advantage of SRMC over SRMC-Minimax in cover-

ge, there is no surprising as a cost has to be paid to earn the

ptimality. 

Additionally, we evaluate the maximum energy consump-

ion on moving the sensor nodes in Table 1 , which is driven

y realistic power consumption data. We hereby assume that a

obile sensor node is equipped with a Micromo coreless DC mo-

ors ( http://www.micromo.com/products/dc-motors/coreless-dc- 

otors- data- sheets ). The power consumption of this motor is

20 mW and it may move a MicaZ Mote in a speed of 0.2 m/s.

onsidering a 2450 mAh Energizer ( www.energizer.com ) AA bat-

ery contains 33 kJ, the maximum individual node consumption

nly accounts for a small fraction of the node’s power storage, as

hown in Table 1 . 

.4. Adapting to obstacles and variable density 

In this section, we verify the performance of the three algo-

ithms in adapting to a density function ψ , as well as to obsta-

les in a network region. Among many experiments we have per-

ormed, we choose to exhibit two scenarios by Figs. 9 and 10 , re-

pectively. We hereby use a color spectrum on the network re-

ion to represent ψ ∈ [0, 1], with blue and red representing the

owest and highest importance, respectively. The “holes” within a

etwork region are obstacles that nodes cannot move upon. In or-

er to make the numbers comparable to each other, we normalize

he two targeted regions to 1 km 

2 areas respectively. The figures

http://www.micromo.com/products/dc-motors/coreless-dc-motors-data-sheets
http://www.energizer.com
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Fig. 9. Adaptability to obstacles and variable densities I. 

Table 2 

Coverage functions for two targeted areas with obstacles 

and variable densities. 

CRMC SRMC SRMC-Minimax 

Deployment I 9.58e-2 9.42e-2 6.05e-2 

Deployment II 9.88e-2 1.04e-1 7.03e-2 
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learly show that our CRMC and SRMC both adapt well to vari-

ble densities and obstacles: they achieve almost the same cover-

ge and more sensor nodes are located in the area with high den-

ity value. However, the performance of SRMC-Minimax is far from

atisfactory. 

Moreover, we use the values of coverage functions to evaluate

he three deployment strategies in Table 2 . Table 2 confirms the

isual results from Figs. 9 and 10 . Similar to the results in Fig. 7 ,

here is no significant gap between CRMC and SRMC in terms of

overage quality, as they both converge to local minima. Mean-

hile, it is obvious that CRMC and SRMC result in much better

overage than SRMC-Minimax. 

Our results confirm the statement made in [7] about the inabil-

ty of previous Voronoi-based approaches (e.g., [4] ) to obstacles in
he sensing field. It is also demonstrated that a good coverage can

e achieved with movements guided by only local information, in-

tead of using a global geometrical structure to guide the deploy-

ent (as did in [7] ). 

. Conclusion 

In this paper, we address a challenging problem on maximiz-

ng the sensing coverage using mobile sensor. The contribution

e make in this paper is first-of-its-kind in modelling the sens-

ng capability as a directional distribution function which leads to

roposing two optimal and practically realisable autonomous de-

loyment strategies, CRMC and SRMC to solve the optimization

roblem in a localized fashion. Our theoretical analysis and ex-

eriment results have shown that, both CRMC and SRMC achieve

local) optimal coverage and adapt well to obstacles and variable

ensities in the region under surveillance with affordable energy

nd time cost. 

It may be noted that, in this paper, connectivity is guaranteed

y a proper density for the initial deployment, such that our al-

orithms lead to connected WSN deployments. One immediate ex-

ension to this paper would be on investigating the joint coverage

nd connectivity problem under low density. 
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Fig. 10. Adaptability to obstacles and variable densities II. 
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