
Computer Networks 108 (2016) 55–65 

Contents lists available at ScienceDirect 

Computer Networks 

journal homepage: www.elsevier.com/locate/comnet 

When are network coding based dynamic multi-homing techniques 

beneficial? 

Carlos Pereira 

a , ∗, Ana Aguiar a , Daniel E. Lucani b 

a Instituto de Telecomunicações, University of Porto, Porto, Portugal 
b Department of Electronic Systems, Aalborg University, Aalborg, Denmark 

a r t i c l e i n f o 

Article history: 

Received 31 October 2015 

Revised 17 June 2016 

Accepted 1 August 2016 

Available online 3 August 2016 

Keywords: 

Multi-homing 

Network coding 

Wireless networks 

Time-varying channels 

Resource allocation 

a b s t r a c t 

Mechanisms that can cope with unreliable wireless channels in an efficient manner are required due to 

the increasing number of resource constrained devices. Concurrent use of multiple communications tech- 

nologies can be instrumental towards improving services to mobile devices in heterogeneous networks. 

In our previous work, we developed an optimization framework to generate channel-aware transmission 

policies for multi-homed devices under different cost criteria. Our formulation considers network coding 

as a key technique that simplifies load allocation across multiple channels and provides high resiliency 

under time-varying channel conditions. This paper seeks to explore the parameter space and identify the 

operating regions where dynamic coded policies offer most improvement over static ones in terms of 

energy consumption and channel utilization. We leverage meta-heuristics to find different local optima, 

while also tracking the intermediate solutions to map operating regions above 3 dB and 5 dB. Our re- 

sults show a large set of relevant configurations where high resource efficiency can be obtained with the 

proposed transmission mechanisms. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

Nowadays mobile devices are equipped with a multitude of het-

rogeneous wireless interfaces that offer diverse bandwidth, re-

iability, and latency at different ener gy and economic costs. In

his scenario of convergence of heterogeneous radio access tech-

ologies, multi-homing allows end devices to be simultaneously

onnected to and exchange data on multiple network interfaces,

hereby increasing reliability and quality of service (QoS) of con-

ent delivery [1] . 

Typically, only one interface is used at a time, chosen accord-

ng to static, pre-defined priorities: use Wi-Fi if possible, 3G other-

ise, and Bluetooth for specific applications. This approach is con-

istent with today’s business model for mobile connectivity, but

t is not efficient in terms of managing network resources, or de-

reasing economic costs [2] . The interface to use should be chosen

ccording to application and user requirements, as well as device

nd network context. 

Current proposals, recently reviewed in [3] , include network

entric [4–7] , user centric [8–12] and hybrid [13,14] approaches

hat trigger vertical handovers in heterogeneous wireless networks
∗ Corresponding author. 
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sing a variety of techniques, e.g., stochastic linear programming

4] , game theory [5] , multiple-attribute decision making [15,16] ,

rey relationship analysis [10] , as well as concepts borrowed from

conomic modelling like profit [12] , surplus [11] , or utility func-

ions [7] . Context-aware frameworks for vertical handovers have

lso been proposed [17–20] ; however, they do not consider simul-

aneous use of more than one radio technology, which is a com-

on limitation present in network selection work [21,22] . 

The emergence of multi-homing and the feasibility of unicast

ommunication over multiple paths [23] opens up the possibility

o use different interfaces simultaneously. In [24] , the authors pro-

ose a scheme for choosing the access technology to use for each

ew flow upon arrival partitioning the flows over multiple radio

ccess technologies. A framework for simultaneous use of 3G and

LAN by multi-homed devices is proposed in [25] , considering the

pecificities of multilayer HTTP and video traffic, but the approach

eparates the traffic into multiple flows and makes a static alloca-

ion of those flows. These and similar proposals provide little or no

daptability to the inherent channel quality variations of wireless

ystems [26–31] . 

Adaptive resource allocation algorithms that choose which data

o send/request through each available interface based on net-

ork conditions, traffic load, available energy, among other con-

traints are thus instrumental to leverage the full potential of con-

erged heterogeneous wireless communications [32–34] . We note

http://dx.doi.org/10.1016/j.comnet.2016.08.002
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.08.002&domain=pdf
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56 C. Pereira et al. / Computer Networks 108 (2016) 55–65 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

c  

v  

c  

u  

i  

e

 

m  

l  

w  

S  

s  

f  

u  

o

2

 

a  

d  

c  

a  

n  

w  

e  

m  

s

 

n  

c  

t  

j  

c  

i  

b  

m  

t  

g

 

 

e  

i

 

s

a  

d  

t  

c  

t  

t

π  

T

U  

 ∑
 

o i  

1 This framework can easily be generalized to more than 2 channels. 
that none of these works provide a framework for exploring the

parameter space and evaluating achievable gains, nor do they con-

sider network coding exploring opportunistic transmissions in the

context of multiple paths in converged heterogeneous wireless net-

works with time-varying channels. 

Network coding, initially proposed in [35] , constitutes a disrup-

tive paradigm that relies on mixing (coding) packets end-to-end or

at intermediate nodes in the network rather than storing and for-

warding them [36,37] . Random linear combinations are sufficient

to achieve the maximum capacity of a network with probability

exponentially approaching 1 with the code length [38] while at-

taining minimum delay [39,40] . From a receiver’s perspective, it

is no longer crucial to focus on gathering specific packets, but to

gather enough linearly independent coded packets to recover the

original information. This enables network coding to exploit mul-

tiple routes and/or network topologies seamlessly by dynamically

shifting traffic between different paths, without concerning about

coordination or packet scheduling problems. By exploring redun-

dant network capacity, network coding reduces the need for com-

plex management schemes, allows decentralised operation, and in-

creases the robustness and resilience to topology/network changes

and even link failures [38,41] . 

For transmissions in packet erasure channels, network coding

provides robustness against packet losses and highly dynamic net-

work conditions [36,38,42,43] . These traits make network coding

very appealing for the volatile environments typical of heteroge-

neous wireless networks, especially when data may be transmitted

simultaneously using different technologies as is enabled by multi-

homing. 

Network coding is a block-coding operation where each block

represents a generation. Other block-based codes used on packet

erasure channels such as Automatic Repeat reQuest (ARQ) error-

control codes [44] , although achieving optimal throughput, have

increased delay [36] , and end-to-end Forward Error Correction

(FEC) codes [45] do not achieve the optimal throughput due to the

inherent redundancy adaptation to the end-to-end loss rate [36] .

Digital fountain codes, such as Luby Transform (LT) codes [46] or

Raptor codes [47] which are based on LT codes, low-density parity-

check (LDPC) codes [48] , turbo codes [49] and even Reed-Solomon

codes [50] are examples of FEC codes. Usually, large block sizes are

required to maximize capacity which add extra delay; less delay

comes with the expense of a less efficient code. As FEC codes are

used end-to-end, since intermediate nodes do not perform coding

operations and confine themselves to relay packets, in [51] the au-

thors propose the use of network-embedded FEC; however, nodes

need to wait until sufficient packets are received for decode and

further re-encode of a new data segment which adds extra delay

to the system, while network coding would allow the immediate

decode and re-encode of each packet. 

Recent work on network coding has considered the use of mul-

tiple interfaces to improve Quality of Experience [52] with an eco-

nomical cost objective and to minimize completion time of a file

transfer [53] . In [54] our goal was to leverage network coding

techniques optimising how to share load among the available in-

terfaces between multi-homed devices over heterogeneous, time-

varying wireless networks. Thereby we focused on a user-centric

approach, formulating and solving a resource allocation problem

for deciding when and under which conditions the offered traffic

load should be transmitted on each available path. The numeri-

cal results proved that dynamic allocation policies using network

coding improved resource usage efficiency by reducing energy con-

sumption and/or channel utilization in some selected (and specific)

scenarios. 

In this article we extend and generalise that work by evaluat-

ing the actual potential impact of the proposed optimal policies.

This work uses Simulated Annealing (SA) meta-heuristics to effi-
iently explore the parameter space and fully understand the ad-

antages of dynamic allocation policies that adapt to the volatile

hannel characteristics; we compare their performance with the

se of static policies, as are common in state-of-the-art devices,

dentifying under which operating conditions the reduction of en-

rgy consumption and channel utilization are most significant. 

The rest of this article is organized as follows. Section 2 sum-

arizes from [54] our mathematical framework for the prob-

em, the static and dynamic allocation policies for heterogeneous

ireless networks, and the metrics for performance evaluation.

ection 3 presents our meta-heuristics to explore the parameter

pace. In Section 4 we present the best operating regions obtained

or the performance of the proposed policies using numerical eval-

ations. In Section 5 we discuss the results, and Section 6 presents

ur conclusions. 

. Framework 

We consider the problem of transmission of data packets from

 source to a destination in a time-slotted system, where two in-

ependent channels are available 1 . Both source and destination

an be relay nodes in a network. Our framework determines the

mount of offered traffic load that should be sent on each chan-

el. At each time slot, the source can transmit random linear net-

ork coded packets [38] through both channels (sending a differ-

nt coded packet in each), one channel, or can decide not to trans-

it in that time slot. Given that packets arrive randomly at the

ender, we consider an online network coding approach [37,55] . 

We assume an independent Gilbert–Elliott model for the chan-

el [56,57] . Fig. 1 illustrates the scenario. We consider that each

hannel i can transmit using a combination of a set of modula-

ion and (physical-layer) coding pairs, M 〉 . M i j ∈ M 〉 represents the

 th available modulation and physical-layer coding pair available to

hannel i. D ( M ij ) represents the fraction of useful information bits

n a slot when transmitting with M ij . Packet erasure (loss) proba-

ilities on the i th channel for the good and bad channel state for

odulation M i, j are represented by e (i,g,M i j ) 
and e (i,b,M i j ) 

, respec-

ively. The probability of channel i to remain in state c ∈ { b, g } is

iven by p (i ) 
c . 

We assume that a genie indicates the joint channel state C =
(c 1 , c 2 ) of the two channels, i.e., the probabilities of packet loss in

ach channel, at each time slot. However, the event of a packet loss

s not known a priori to the genie. 

We define P r (i,C,M i j ) 
and α(i,C,M i j ) 

as the probability of transmis-

ion through channel i during the joint channel state C using M ij 

nd the fraction of the data to be transmitted through channel i

uring the joint channel state C using M ij , respectively. πC consti-

utes the stationary probability of the joint channel state C , which

an be easily determined through standard finite Markov chain

echniques using p (i ) 
g and p (i ) 

b 
for i = 1 , 2 . The stationary probabili-

ies π g and πb for each channel are obtained by: 

(i ) 
g = 

1 − p (i ) 
b 

2 − p (i ) 
g − p (i ) 

b 

; π(i ) 
b 

= 

1 − p (i ) 
g 

2 − p (i ) 
g − p (i ) 

b 

. (1)

he utilization of channel i in our system is given by 

 i ([ P r (i,C,M i j ) ]) = 

∑ 

M i j ∈ M 〉 ,C∈{ b,g} 2 
P r (i,C,M i j ) πC . (2)

We define the total channel utilization of the system as U =
 

i U i , although other metrics can be used as cost functions for our

ptimization problem, e.g., minimizing the maximum of the U ’s.
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Fig. 1. Source (mobile device) can connect to two different channel interfaces to transmit random linear network coded packets in a time-slotted system to a destination. 

Both source and destination can be relay nodes in a network. An independent Gilbert–Elliott model and only one modulation and (physical-layer) coding pairs are assumed 

for each channel. 

Table 1 

Notations. 

Notation Definition 

λ Source rate 

Pr (i,C,M i j ) Probability of transmission through channel i during the channel state C using M ij 

α(i,C,M i j ) Fraction of the data to be transmitted through channel i during the channel state C using M ij 

e i,g,M i j 
Packet erasure probability for the good state of i th channel using the j th available modulation and physical-layer coding pair 

e i,b,M i j 
Packet erasure probability for the bad state of i th channel using the j th available modulation and physical-layer coding pair 

π(i ) 
g Stationary probability of the good state of i th channel 

π(i ) 
b 

Stationary probability of the bad state of i th channel 

M ij The j th available modulation and physical-layer coding pair available to i th channel 

D ( M ij ) The fraction of useful information bits in a slot when transmitting with M ij 

E i Energy consumption of i th channel 

U i Utilization of i th channel 

ξ i Energy cost per slot of i th channel 

I  

s

ξ  

a  ∑
 

F

[

s

 

c  

l  

λ

 

λ  

t  

a  

n  

m  

g  

m  

l  

t  

e  

d  
f the use of channel i has an associated energy cost, the energy

pent per slot in channel i is given by 

i ([ P r (i,C,M i j ) ]) = 

∑ 

M i j ∈ M 〉 ,C∈{ b,g} 2 
E i P r (i,C,M i j ) πC (3)

nd the total energy cost per slot of the system is given by E =
 

i ξi . Table 1 summarises the notations used in this work. 

The resource optimization problem for a desired cost function

from our framework using network coding is given by: 

min 

 Pr (i,C,M i j ) 
] 

F (4) 

ubject to 

∑ 

M i j ∈M 

P r (i,C,M i j ) ∈ [0 , 1] , ∀ C ∈ { g, b} 2 , i ∈ { 1 , 2 } 
∑ 

M i j ∈M ,i ∈{ 1 , 2 } ,C∈{ g,b} 2 
α(i,C,M i j ) = 1 
((1 − e (i,c i ,M i j ) ) D (M i j )) P r (i,C,M i j ) πC = λα(i,C,M i j ) , 

∀ C = (c 1 , c 2 ) ∈ { g, b} 2 , i ∈ { 1 , 2 } , M i j ∈ M . 

The last condition captures the fact that the probability of

hannel i transmitting in a given channel state using M ij is

inked to the mean usage of the channel during that state, e.g.,

α(1 ,C,M 1 j ) 
/ [ D (M 1 j )(1 − e (1 ,c 1 ) 

)] for channel 1. 

The optimal policy for a given channel state C and source rate

is given by the vector [ P r (i,C,M i j ) 
] that results from this optimiza-

ion. Note that the probability of transmitting through channel 1

nd channel 2 is independent, thus transmission over two chan-

els or no channels at each time slot is possible. In this work we

ake the assumption of transmission of data flows, avoiding the

ranularity of data packets. In addition, we assume that we trans-

it the least possible redundancy per original data packet over a

ong period of time, which requires infinite queue size [58] . While

here is a performance degradation in terms of delay from adding

xtra information, assuming transmission of a finite number of

ata packets may not allow us to reach the same performance as
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Algorithm 1: SA algorithm. 

1 begin 

2 t ← 0; /* Time */ 

3 initialize T; /* Temperature */ 

4 select a current point v c at random; /* v c is composed 
by λ, e (i,c i ,M i, j ) 

, πC , E i , for 

∀ C = (c 1 , c 2 ) ∈ { g, b} 2 , i ∈ { 1 , 2 } , M i j ∈ M . */ 

5 evaluate v c ; 
/* Evaluation is performed by obtaining the value 

corresponding to the minimum between a dynamic 

policy and other policies. */ 

6 v b ← v c ; 
7 repeat 

8 repeat 

9 Select a new point v n in the neighbourhood of 

v c ; /* Change randomly a single parameter 
according to a predefined step. */ 

10 if evaluation( v n ) > e v aluation (v c ) then 

11 v c ← v n ; 
12 if evaluation( v c ) > e v aluation (v b ) then 

13 v b ← v c ; 
14 else 

15 if random [0 , 1) < 

exp 

(
− e v aluation (v c ) − e v aluation (v n ) 

T 

)
then 

16 v c ← v n ; 
17 end 

18 until termination condition /* termination condition 

- Max # of iterations is not reached. */ ; 

19 T ← f(T,t); /* Cooling Ratio */ 

20 t ← t+1; 

21 until halting condition /* halting condition - Max # of 

times v c is not changed. */ ; 

22 end 

i  

l  

A  

t  

[  

b  

t  

s

 

r  

c  

a  

o  

c

 

m  

t  

o  

i  

p  

i  

m  

o  

u  

c  

(  

e  

t  
transmission of data flows. We consider our approach a good ap-

proximation as online network coding allows the creation of large

windows of coded packets, which approximate a flow. Our frame-

work can perform an optimal resource allocation, as the infinite

queue size allows to store the coded packets while awaiting a good

channel. 

2.1. Comparison policies 

We define the following two fixed policies in the transmission

of packets: 

• Fixed policy channel 1 (FP1) - Policy where all available re-

sources (time slots) from channel 1 are used before allocating

slots for transmission from channel 2. If the arrival rate is low

enough, only channel 1 will be active. 

• Fixed policy channel 2 (FP2) - Same as FPC1 policy except re-

sources (time slots) from channel 2 are used first and resources

from channel 1 are used only if needed to support a given data

rate. 

and the two dynamic policies: 

• Dynamic policy optimizing channel utilization (DPOCU) - Op-

timal policy in terms of reduction of channel utilization, where

the channel assignments are decided by solving problem (4) for

the cost function: F = 

∑ 

i U i (P r (i,C,M i j ) 
) . 

• Dynamic policy optimizing energy consumption (DPOEC) - Op-

timal policy in terms of reduction of energy consumption,

where the channel assignments are decided by solving problem

(4) for the cost function: F = 

∑ 

i E i U i (P r (i,C,M i j ) 
) . 

2.2. Metrics 

We define two metrics to quantify the advantages of using dy-

namic policies rather than fixed policies. 

• Channel Utilization Gap of DPOCU: is the difference of chan-

nel utilization between a policy P i and channel utiliza-

tion optimal policy DPOCU for the same channel conditions.

The value is presented in decibel (dB) and is calculated as

10 log 
(
U P i 

/U DPOCU 

)
. 

• Energy Consumption Gap of DPOEC: is the difference of energy

consumption between a policy P i and the energy optimal pol-

icy DPOEC, under the same channel conditions. The value is ex-

pressed in decibel (dB) and is calculated as 10 log 
(
ξP i 

/ξDPOEC 

)
. 

As an example, consider that the Channel Utilization Gap of

DPOCU is 3 dB when compared to FP1. This means that DPOCU

uses the channel 50% less than FP1. A larger value of the gap is

associated with a larger reduction in channel utilization achievable

by the DPOCU policy. The same logic applies for the energy con-

sumption metric. 

3. Simulated Annealing meta-heuristics 

The optimization framework and the dynamic network coding

policies proved to provide efficient, channel-aware load allocation

for multi-homed devices under different cost criteria in our pre-

vious work [54] . However, every parameter had to be manually

adjusted in an attempt to find a combination that provided con-

siderable gains. It is impossible to understand which areas of the

parameter space can provide better results following that method-

ology. Therefore, it is imperative to explore the parameter space

automatically. 

Traditional problem solving strategies either guarantee to find

the global solution, but are too expensive in terms of computa-

tion, e.g., memory usage or processing time, or they get caught
n local optima. Recent algorithms are capable of escaping the

ocal optima while searching for the global optimum. Simulated

nnealing (SA) is a probabilistic method for efficiently exploring

he search space in order to find near optimal (global) solutions

59,60] . Meta-heuristics, such as SA, generally find good solutions

y exploring a large set of the feasible solutions, which allow us

o explore the areas of the parameter space that provide better re-

ults. 

This work uses SA meta-heuristics to efficiently explore the pa-

ameter space to fully understand the advantages of resource allo-

ation policies that dynamically adapt to the volatile channel char-

cteristics and identify under which operating conditions, i.e., areas

f the parameter space, the reduction of energy consumption and

hannel utilization are most significant. 

We use SA to select parameter sets and evaluate them using the

athematical framework described in the previous section, and

hus SA is driven by a theoretical analysis. Algorithm 1 presents

ur SA formulation for the problem. The SA algorithm starts by

nitializing and assigning a random value to a parameter set com-

osed of source rate, erasure probabilities and stationary probabil-

ties to each channel. The stationary probabilities for each channel

ust sum up to 1 and, therefore, we just need to randomly assign

ne value to one state of each channel. The parameter set is eval-

ated according to the achievable gains of the dynamic network

oding policies, DPOCU or DPOEC, and the result of the evaluation

a solution) is the minimum of the Channel Utilization Gap or En-

rgy Consumption Gap. In other words, in the algorithm, a solu-

ion corresponds to the minimum of the Channel Utilization Gap
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Table 2 

Parameters range and counters values. 

Parameter Range/Value Step 

λ 0 . 1 − 2 0 .1 

e 1, g 0 . 01 − 0 . 20 0 .01 

e 1, b 0 . 21 − 0 . 90 0 .01 

e 2, g 0 . 01 − 0 . 20 0 .01 

e 2, b 0 . 21 − 0 . 90 0 .01 

π(1) 
g 0 . 05 − 0 . 95 0 .01 

π(1) 
b 

0 . 05 − 0 . 95 0 .01 

π(2) 
g 0 . 05 − 0 . 95 0 .01 

π(2) 
b 

0 . 05 − 0 . 95 0 .01 

E 1 1 − 8 0 .05 

E 2 1 –

Halting 500 –

Termination 360 –

Temperature 25 0 .025 
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(  

a  
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D  

t  

o  

b  

e  

c  

g  

a  

s  

t  

i  

t  

n  

i  
f DPOCU or the Energy Consumption Gap of DPOEC with respect

o any other policy. For example, if a parameter set results in a

hannel Utilization Gap of DPOCU with respect to FP1 of 2 dB, in

 Channel Utilization Gap of DPOCU with respect to FP2 of 3 dB,

nd in Channel Utilization Gap of DPOCU with respect to DPOEC of

 dB, the solution obtained is 2 dB which corresponds to the min-

mum between the three values, i.e., our results correspond to the

inimum achievable gain for each explored point of the parameter

pace. 

The initial parameter set us the Current Solution, v c , which cor-

esponds to the current solution to which other solutions in its pa-

ameters’ neighbourhood shall be compared to. At the beginning,

his solution also corresponds to the Best Solution, v b . The Best So-

ution is the best solution obtained so far, and, at the end of the al-

orithm, desirably it should yield the global optimum. In each step

f the algorithm, we select a new parameter set to be our Candi-

ate Solution, v n , originated from a change to a single parameter

n the Current Solution , and evaluate it. Therefore, the neighbour-

oods are composed of solutions around the Current Solution at the

istance of one change in one parameter, either decreasing or in-

reasing its value by a predefined step. If the Candidate Solution

rovides a better solution than the Current Solution , we accept it

s our new Current Solution . If it is the same or lower, we accept it

f random [0 , 1) < exp (− e v al uation ( v c ) −e v al uation ( v n ) 
Temperature ) , which is adjusted

y the parameter temperature. The reason why we record both

urrent Solution and Best Solution is because we can accept a Candi-

ate Solution as Current Solution even if it provides a worse solution

han the previous Current Solution . However, as we iterate over the

uter loop, the value of the temperature will decrease, and the ac-

eptance of worse solutions will be less frequent. At the beginning,

his algorithm resembles a random search, thus avoiding possible

ocal optima, and, at the end, it resembles a standard hill-climber.

o avoid infinite generation of iterations, we set a halting condi-

ion as the maximum number of times that the algorithm does

ot change the Current Solution , and a termination condition as the

aximum number of iterations the algorithm runs with the same

emperature value. Every time the algorithm changes the value of

urrent Solution , the counter of halting condition is reset, since the

lgorithm accepted a new solution and possibly new better and

ifferent solutions are reachable. Please note that different heuris-

ics could lead to different (higher or lower) results. 

. Results 

We focus our analysis in two different scenarios: (i) Channels

ith same energy consumptions where we have two different chan-

els with the same energy consumption and fixed data rate (e.g.,

ame modulation and coding pairs), but with different erasure and
tationary probabilities for each channel state; (ii) Channels with

ifferent energy consumptions where we have two different chan-

els, with the same fixed data rate, but with different erasure and

tationary probabilities for each channel state, and different en-

rgy consumptions. Therefore, the packet erasure probabilities on

he i-th channel for the good and bad channel state are from now

n represented by the terms e ( i, g ) and e ( i, b ) , respectively, and both

hannels send the same fraction of useful information bits in a slot

 D ( M ij )). 

Having both channels with the same data rate allows us to

implify the analysis. If we had more configurations for the chan-

els, having the possibility of different data rates in each channel,

e would increase our parameter space, but we would also in-

rease the areas where the dynamic policies provide better perfor-

ance. The opportunities to transmit in good channel conditions

nd good data rates would possibly increase, and, ultimately, the

esults would stress even further the importance of the framework.

We performed 10 0 0 analyses for each scenario using MATLAB.

he analyses were performed in parallel in the Avalanche cluster

t the High Performance Computing at the Faculdade de Engen-

aria da Universidade do Porto [61] . The cluster has 29 nodes, each

ith 16 cores and between 64 GB and 128 GB of RAM; however,

ue to quota limitations, no more than 300 analyses could run at

he same time. The execution of all analyses lasted for two and

ne half days. Although the parameter space explored by Candidate

olution is larger, during analyses we only recorded the Best Solu-

ion and Current Solution values since the effort in terms of disk to

ecord all Candidate Solution was infeasible. 

The arrival rate, the parameters of the Gilbert–Elliot model, and

nergy consumption for each channel were allowed to vary accord-

ng to the values presented in Table 2 . The ranges of the values

ere selected to constitute a reasonable representation of possi-

le conditions. Channels can have an erasure probability between

.01 and 0.20 for the good states, 0.21 and 0.90 for the bad states,

nd stationary probabilities in each state between 0.05 and 0.95.

able 2 also presents the values chosen for the counters of the

alting and the termination conditions, and the temperature cool-

ng ratio. The tuning of these values was made in a trial and error

pproach and we selected the values that provided a good trade-

ff between the diversity of parameter space search and the du-

ation of the analyses. Each analysis sets the initial parameters at

andom within the ranges of Table 2 . Each generation of a new

eighbourhood is accomplished by a change to a single parameter

ccording to the step defined in that table. 

.1. Channels with same energy consumption 

When the two channels have the same energy consumption

 E 1 = E 2 ), the Channel Utilization Gap of DPOCU behaves the same

s the Energy Consumption Gap of DPOEC with respect to the fixed

olicies. Fig. 2 shows the distribution of the final Best Solution and

he corresponding parameters for the Channel Utilization Gap of

POCU. The results show that a large percentage of all Best Solu-

ion (83%) are approximately 5.4 dB and a significant percentage

f the Best Solution (14%) obtained are approximately 7 dB. The

est solutions of both Channel Utilization Gap of DPOCU and En-

rgy Consumption Gap of DPOEC with respect to the fixed poli-

ies are obtained with high and low erasure probabilities for the

ood and bad states of the channels, respectively, and with low

nd high stationary probabilities for the good and bad state, re-

pectively. The best results are obtained for small λ (0.2 or 0.3),

hat is, the best results are obtained when the offered traffic load

s low and the dynamic policies can take advantage of opportunis-

ic transmissions and select the best moment to transmit. The dy-

amic policies use the good states of both channels instead of us-

ng the bad states, and it is here where our dynamic policies have
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Fig. 2. Boxplot of the final best solutions on top and boxplot of the parameters on 

bottom, for the Channel Utilization Gap of DPOCU (same as Energy Consumption 

Gap of DPOEC) with respect to the fixed policies. Maximum Best Solution obtained 

is ≈ 7 dB, minimum Best Solution obtained, and equal to the median, is ≈ 5.43 dB, 

and the mean of the Best Solution is ≈ 5.67 dB. 

Fig. 4. Boxplot of the final best solutions and energy consumption of channel 1 on 

top and boxplot of the parameters on bottom, for the Energy Consumption Gap of 

DPOEC with respect both to the fixed policies and DPOCU. Maximum Best Solution 

obtained is ≈ 3.16 dB, minimum Best solution obtained is ≈ 0.65 dB, median is ≈
3.05 dB, and the mean of the Best Solution is ≈ 2.91 dB. 
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dvantage in comparison to the fixed policies. FP1 uses resources

time slots) from both good and bad states of channel 1 before us-

ng resources of the channel 2, and FP2 uses resources from both

ood and bad states of channel 2 before using resources of chan-

el 1. The higher the stationary probabilities of the bad states and

ower the stationary probabilities of the good states are, the more

ains DPOCU and DPOEC achieve with respect to the other policies

nd, thus, the higher the Channel Utilization Gap of DPOCU and

nergy Consumption Gap of DPOEC are. 

To have a visual perspective of the areas of the parameter

pace explored by all accepted Current Solution during analyses,

ig. 3 presents a spider chart with the solutions that provide a

hannel Utilization Gap of DPOCU (same as Energy Consumption

ap of DPOEC) with respect to the fixed policies above 3 dB, hav-

ng the figure sampled 1:10 0 0 for visualization purposes. In the

gure each individual solution is obtained by a unique combina-

ion of parameters. In the analyses we obtained around 3 mil-

ion solutions above 3 dB of gap (4.67% of all unique Current So-

ution accepted) and, approximately, 384,0 0 0 above 5 dB (0.6% of

ll unique Current Solution accepted). Fig. 3 includes in the edges

f each axis the range that each parameter varied in all accepted

urrent Solution . 

.2. Channels with different energy consumptions 

In this scenario, channel 1 and channel 2 can have different en-

rgy consumptions. For a matter of efficiency, we fix the energy

onsumption of channel 2 to 1, i.e., E 2 = 1 , and let the energy con-

umption of channel 1 vary on values higher or equal than 1, i.e.,

 1 ≥ 1. Next, we present the results obtained for the Energy Con-

umption Gap of DPOEC with respect both to the fixed policies and

he dynamic DPOCU. Later, we present the results obtained for the

nergy Consumption Gap of DPOEC when it is compared only to

he fixed policies. 
.2.1. Energy Consumption Gap of DPOEC with respect both to the 

xed policies and DPOCU 

Fig. 4 shows the distribution of the final Best Solution and

he corresponding parameters for the Energy Consumption Gap of

POEC as well as the ranges of the energy consumption of chan-

el 1 in all analyses. Please note that the Energy Consumption Gap

f DPOEC here is compared both to the fixed and to the dynamic

POCU policies. The mean of all obtainable Best Solution is approx-

mately 2.9 dB, while the maximum and minimum Best Solution

re 3.16 and 0.65 dB, respectively. The best solutions are obtained

hen the energy consumption of channel 1 is E 1 ≈ 3 × E 2 and

ith high erasure probabilities for the good state of both channels

nd low erasure probabilities for the bad state of channel 2. We

ow observe a larger and higher distribution for the offered traffic

oad. 

For DPOEC to have advantage with respect to FP1, the fixed pol-

cy that transmits always first in both states of channel 1, which

onsumes more energy than channel 2, it suffices for DPOEC to use

hannel 1 and channel 2 in the good states. In order for DPOEC to

ave advantage with respect to FP2, the fixed policy that transmits

lways first in both states of channel 2, but consumes less energy

han channel 1, it is necessary that the stationary probability in the

ood state of channel 2 ( π(2) 
g ) is lower enough than the homolo-

ous of channel 1 ( π(1) 
g ). FP2 will always use channel 2 in both

tates, but will not benefit from channel 1 good state. 

For DPOEC to have advantage towards DPOCU it is necessary for

he erasure probability of channel 1 in the bad state ( e (1, b ) ) to be

etter (lower) than the erasure probability of channel 2 in the bad

tate ( e (2, b ) ); otherwise, DPOCU would choose channel 2, which

s the channel with the lowest energy consumption, and would

atch DPOEC. Furthermore, DPOCU chooses first a state of chan-

el 1 with the same erasure probabilities as channel 2 only when

hannel 1 has higher stationary probabilities in the good state. 



62 C. Pereira et al. / Computer Networks 108 (2016) 55–65 

Fig. 6. Boxplot of the final best solutions and energy consumption of channel 1 on 

top and boxplot of the parameters on bottom, for the Energy Consumption Gap of 

DPOEC with respect only to the fixed policies. Maximum Best Solution obtained is 

≈ 7.02 dB, minimum Best Solution obtained is ≈ 3.17 dB, median is ≈ 5.44 dB, and 

the mean of the Best Solution is ≈ 5.68 dB. 
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at the same time to two similar channels of the same technol- 
To have a visual perspective of the areas of the parameter

space explored by all accepted Current Solution during analyses,

Fig. 5 presents a spider chart with the ones that provide an Energy

Consumption Gap of DPOEC with respect only to the fixed policies

above 3 dB, having the figure sampled 1:10 0 0 for visualization pur-

poses. In the analyses we obtained over 1.4 million solutions above

3 dB of gap. The figure also includes in the edges of each axis the

range that each parameter varied in all accepted solutions. 
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Fig. 7. Relation between the maximum Best Solution of the Energy Consumption Gap of DP

1. The maximum is achieved for E1 = 1 . 05 × E 2 . The achievable Energy Consumption Gap
.2.2. Energy Consumption Gap of DPOEC with respect only to the 

xed policies 

Fig. 6 shows that the results obtained for the Energy Consump-

ion Gap of DPOEC with respect only to the fixed policies are dif-

erent from the results obtained in the previous section. In this

ase we obtain the maximum Energy Consumption Gap of DPOEC

n all scenarios with the value of 7.02 dB when the energy con-

umption of channel 1 is E 1 = 1 . 05 × E 2 . Nevertheless, it is clear

ow that, in the previous section, DPOCU prevented the algorithm

rom exploring solutions of the Energy Consumption Gap of DPOEC

here the energy consumption of channel 1 was low. When the

nergy consumptions of both channels are close, DPOEC has the

ame performance as DPOCU (see Section 4.1 ), which means the

lgorithm needed to find areas of the parameter space where

POEC had advantage when compared to DPOCU. Now that we ex-

lude DPOCU from the analysis, the results shows a similarity with

he ones obtained in Section 4.1 . 

Fig. 7 shows the relation of the maximum Best Solution of the

nergy Consumption Gap of DPOEC with respect only to the fixed

olicies and the energy consumption of channel 1. We performed

n extra set of analyses where we set the energy consumption of

hannel 1 static at E 1 = 2 , 4 , 6 , 8 times the consumption of chan-

el 2, E 2 . In general, the increase of channel 1 energy consumption

eads to the reduction of the value of the Best Solution achievable,

hat is, to the reduction of the possible gains using a dynamic pol-

cy. When channel 1 consumes more energy and in higher quan-

ities than channel 2, the dynamic policy DPOEC cannot use the

ood state of channel 1 because it is very damaging in terms of

nergy cost, and, thus, DPOEC will choose both states of channel 2

nd will be similar to the fixed policy FP2. These results are some-

hat non intuitive, because it would be expected that, if one chan-

el consumes more energy, we would gain more in using dynamic

olicies; however, in fact, the best scenarios for the dynamic poli-

ies are when we can explore the use of the good state of both

hannels and both channels have roughly the same energy con-

umption. 

. Discussion 

From the results, we can conclude that the best savings over

xed policies come from situations where the device can connect
5 6 7 8

C versus Energy Consumption Channel 1

tion Channel 1

OEC with respect only to the fixed policies and the energy consumption of channel 

 of DPOEC decreases with the increase of the energy consumption of channel 1. 
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Table 3 

Maximum, mean, and median gains (in dB) obtained for the Channel Utilization 

Gap of DPOCU (same as Energy Consumption Gap of DPOEC when the two chan- 

nels have the same energy consumption) with respect to the fixed policies under 

good, medium, and bad channel conditions. 

Channel 1 Channel 2 Either channel Both channels 

Good Max 2 .0931 2 .0396 2 .0931 1 .4840 

Mean 0 .0798 0 .0795 0 .0877 0 .0599 

Median 0 0 0 0 

Medium Max 3 .9482 3 .9451 3 .9482 3 .8340 

Mean 0 .4726 0 .3841 0 .3881 0 .5806 

Median 0 .0639 0 .0202 0 .0163 0 .2264 

Bad Max 6 .9553 6 .9553 6 .9553 6 .9553 

Mean 1 .5284 1 .2813 1 .0934 2 .4875 

Median 0 .6371 0 .2399 0 .2164 2 .9796 
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gy/network, like for example two Wi-Fi links, two 3G links, be-

ause the achievable gains decrease with the difference in energy

eeds between the links. To allow the dynamic policies to explore

he best opportunities for transmission of the offered traffic load,

oth channels should have low error rates on the good state. High

rror rates or very high offered traffic load reduce these opportu-

ities. 

The dynamic policies outperform the fixed policies especially

or bad channel conditions, that is, for high stationary probabili-

ies of the bad states. To better analyse this, we define three chan-

el quality classes for each channel i ∈ {1, 2} according to the

tationary probabilities: good conditions occur for π(i ) 
g ∈ [2 / 3 , 1] ,

edium conditions occur for π(i ) 
g ∈ [1 / 3 , 2 / 3[ , and bad conditions

ccur for π(i ) 
g ∈ [0 , 1 / 3] . Table 3 provides another view of the

esults previously shown in Section 4.1 , showing the maximum,

ean, and median gains obtained for each class for the Channel

tilization Gap of DPOCU. The results are separated according to

hich channel has the channel conditions identified on the left, i.e.

epending on whether it is channel 1, channel 2, either channel, or

oth channels stationary probabilities that belong to the channel

uality class. 

We observe that having longer periods of medium or bad chan-

el conditions leads to higher gains, confirming the results from

ig. 2 . Conversely, when at least one of the channels is bad the

ains are on average above 1 dB, and when both channels are bad

he average gain is more than 2 dB. 

Bad channel conditions occur often in real wireless and cellular

etworks and often there is more than one possible communica-

ion link, e.g. dense Wi-Fi deployments or indoor cellular coverage.

ur results show that using network coding for taking advantage

f multiple available links enables using less resources, e.g. chan-

el time, to provide the desired service to the user. Better results

ccur for low offered traffic load since dynamic policies can take

dvantage of opportunistic transmissions and decide the best allo-

ation, while for high offered traffic load it is necessary to transmit

ven under bad channel conditions. 

. Conclusions 

In this paper we sought to identify the operating regions under

hich dynamic coded policies bring most benefits in terms of re-

ource efficiency. We proposed meta-heuristics to explore the pa-

ameter space, not only to find different local optima, but also to

ap areas whose performance is above a certain level. The results

emonstrated that opportunistic assignment of the traffic load over

eterogeneous time-varying channels can in fact achieve consid-

rable gains. In particular, dynamic network coding policies allow

nergy consumption and channel utilization savings over 5 dB with

espect to the best static policy in a large number of scenarios. Fu-
ure work shall focus on scheduling algorithms that can implement

he policies through single packet decisions, incorporate unreliable

stimates of the channel, and explicit trade-offs between delay, en-

rgy, and economic cost. 
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