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a b s t r a c t 

With the increases of P2P applications and their users, the malicious attacks also increased significantly, 

which negatively impacts on the availability of the P2P networks and their users’ experience. This paper 

presents an outlier mining-based malicious node detection model for hybrid P2P networks. We first ex- 

tract the local nodes’ frequent patterns from the nodes’ behavior patterns in subnets using the frequent 

behavior pattern mining approach, and then we produce and update the nodes’ global frequent behavior 

patterns by incrementally propagating and aggregating the local frequent behavior patterns. Finally, we 

identify outliers (i.e. the malicious nodes) using the local frequent behavior patterns and the global fre- 

quent behavior patterns. We also discuss how to recognize the different types of malicious nodes from 

outliers. Simulation results show that our strategy could detect malicious nodes with low false positive 

rate and low false negative rate. 

© 2016 Elsevier B.V. All rights reserved. 
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. Introduction 

To strengthen the reliability and security of P2P networks,

esearchers have proposed a lot of approaches, in which the

eedback-based trust models take the major part [1–10] . In a

eedback-based trust model, a peer’s credibility is computed by us-

ng the feedbacks on the peer’s past services. However, the ex-

stence of a lot of false feedbacks makes such trust models un-

ble to effectively and efficiently curb malicious behavior, such as

he collusion attacks and the Sybil attacks. Though we could use

he false feedback filtering mechanisms in such trust models, since

ome of the authentic feedbacks are also screened out at the same

ime, the effectiveness of the trust models cannot be guaranteed

8] . Moreover, the feedback-based trust models usually set a trust

r weight for each peer [6] , which is used to determine how cred-

ble the peer is, without identifying what category the peer be-

ongs to. Hence, it is difficult for such trust models to effectively

nd efficiently curb malicious behavior. To tackle the problems, re-

earchers have proposed the trust-based malicious peer separation

pproaches, PeerMate [11] and SMART [12] . However, since a peer’s

rust is calculated by using globally collected feedbacks, these two

lgorithms suffer from the same shortcomings as those mentioned

bove. Particularly, since the two approaches only use two values

f 0 and 1 as the detection results, which make it difficult to fur-

her identify the types of the malicious peers. 
∗ Corresponding author. 

E-mail address: xfmeng@dlut.edu.cn (X. Meng). 

 

t  

t

ttp://dx.doi.org/10.1016/j.comnet.2016.07.008 

389-1286/© 2016 Elsevier B.V. All rights reserved. 
In a hybrid P2P network, all the nodes are classified into two

ategories, one is the super node and another is the ordinary node.

nder each super node, there are several ordinary nodes with

hich the super node forms a subnet. Each super node stores its

eighbor super nodes’ list, so as to ease the communications be-

ween subnets. In a subnet, the super node is responsible for man-

ging the interaction data among the ordinary peers. Meanwhile,

ll the super nodes are in charge of managing the interaction data

mong the subnets. Based on the finding that each malicious peer

as the specific characteristic of outlier [1] , this paper proposes a

alicious node detection model using outlier mining approach in

he hybrid P2P networks. Our main work is the following. 

1) We make use of the interaction data kept in the super nodes to

detect malicious nodes, which could eliminate the false feed-

back problem existed in the feedback-based P2P trust models. 

2) We extract local frequent behavior patterns for each subnet,

and achieve the global frequent behavior patterns by incremen-

tally propagating and aggregating the local frequent behavior

patterns coming from the super nodes, by which the outliers

(i.e. the malicious nodes) could be detected. 

3) We present the algorithm of recognizing different types of ma-

licious nodes based on the local frequent behavior patterns and

the global frequent behavior patterns, which could help peers

curb malicious attacks better. 

The simulation results showed that our approach outperforms

he models of EigenTrust [2] , PeerMate [11] and SMART [12] in

erms of the false positive rate and the false negative rate. 

http://dx.doi.org/10.1016/j.comnet.2016.07.008
http://www.ScienceDirect.com
http://www.elsevier.com/locate/comnet
http://crossmark.crossref.org/dialog/?doi=10.1016/j.comnet.2016.07.008&domain=pdf
mailto:xfmeng@dlut.edu.cn
http://dx.doi.org/10.1016/j.comnet.2016.07.008
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The remainder of the paper is organized as follows. Section

2 presents the related work on the P2P trust models and the

P2P malicious node detection approaches. Section 3 presents the

network structure and the definitions. The frequent behavior pat-

tern mining-based malicious peer detection model is detailed in

Section 4 , and the examples of applying our model to detect col-

lusion, Sybil and file pollution attacks are described in Section 5 .

Section 6 evaluates our model’s effectiveness with simulations. Fi-

nally, Section 7 concludes the paper and gives our future research

focus. 

2. Related work 

P2P trust models can be classified into the local trust model

and the global trust model. The former usually uses the locally col-

lected feedback information to calculate a peer’s credibility [2] , and

the latter computes a peer’s credibility mainly by aggregating the

direct trust owned by the evaluation peer and the indirect trust

calculated by using the globally collected feedbacks [1–5] . Eigen-

Trust [2] is a typical global trust model. In EigenTrust, every peer

i owns a unique global trust, and any peer which has received

services from peer i holds its local trust. This model aggregates

all the peers’ local trust to calculate peer i ’s unique global trust.

However, when applied to a large scale network, EigenTrust suf-

fers from the problems of bad scalability, slow convergence and

high computational complexity. Furthermore, EigenTrust assumes

the existence of some pre-trusted peers, which is an obstacle to

applying the trust model in the real world P2P networks. Douwen

[5] presented the global trust model based on feedbacks, expect-

ing to eliminate the convergence problem of trust iteration existed

in EigenTrust. However, since its effectiveness relies heavily on the

feedbacks, this strategy could not work well under the situation

that there are false feedbacks or insufficient feedbacks. Meanwhile,

such feedback-based trust models would in turn incur the mali-

cious attacks, such as collusion attack [1,6] , Sybil attack [7] and

false feedback [8] . 

The existing approaches used to resist malicious behavior can

be classified into two types. The first type is to set a trust or

weight for each peer [6] , which is used to determine how to treat

the peer, without identifying what category the peer belongs to.

Because this type of approach could not identify the categories of

malicious peers, it is difficult to effectively and efficiently curb ma-

licious behavior. Most existing trust models belong to this type.

The second type is that it could identify the categories of mali-

cious behavior. This type of approach could further be divided into

two kinds according to what detection method it uses. In [1,6] and

[9] , the authors used the bottom-up method to detect malicious

behavior, which requires a certain amount of prior knowledge or

experience to sum up the conditions of judging malicious behavior.

The peers satisfying a set of given conditions are taken to be the

malicious peers. Lian et al. [1] derives the characteristics of col-

lusion behavior from analyzing the users’ log file, and based on

which to identify collusion attacks. It has also concluded that the

peers which behave collusively are outliers. This kind of method is

effective in curbing specific malicious attack, but it is difficult to

use such method to resist complex or mixed attacks. Mekouar et

al. [9] detects the peers of providing false feedbacks by comparing

the difference of the feedbacks given by the two sides of a trans-

action. If the difference is significant, the two peers are considered

to be suspicious in providing false feedbacks. In [ 8 , 10 ] and [11] ,

the authors used the top-down method to curb malicious behav-

ior. This kind of approach first distinguishes abnormal peers and

then analyzes and curbs the malicious peers. Cai et al. [10] pre-

sented a collusion detection trust model based on peers’ behavior

similarity. The model assumes that the peers in a collusive group

have the similar behavior patterns, and if the number of peers in
 group is big enough and the similarity of the peers’ behavior is

reater than a threshold, then the group is taken to be the collu-

ive group. However, how to determine the threshold is a difficult

ask. PeerMate [11] used Multiscale Principal Component Analysis

MSPCA) method to separate malicious peers. However, it could not

dentify a part of Sybil nodes which have the similar behavior to

he normal peers, leading to the problem that some of the normal

eers are mistakenly identified as the malicious peers. Wei et al.

12] made an improvement on PeerMate, and proposed the algo-

ithm of SMART. Though SMART could separate Sybil peers, not a

ew normal peers are mistakenly identified as the malicious ones.

ince these two algorithms are both based on peers’ global trust

hich is calculated by using the globally collected feedbacks, the

orrectness of the computed peers’ trust is difficult to be guaran-

eed under malicious attacks. Particularly, the two strategies only

se two values of 1 and 0 as the detection results, which are hard

o be used to further identify the types of the malicious peers and

hus negatively impact on the effectiveness of curbing malicious

ehavior. 

Li et al. [13] proposed a distributed detection model for curbing

alicious peers. Each peer is responsible for detecting its neighbor

eers. Initially, all the peers are in the indefinite peer set, which

eans each peer is indefinite on whether it is malicious or not. A

eer determines its neighbor peer’s status based on the determi-

ation of the status of the peer’s neighbor peer set. By performing

terative operations, this strategy could gradually move the peers

n the indefinite peer set to the normal peer set and the malicious

eer set. However, it suffers from the problem of high computa-

ional complexity due to the iterative operations. 

Outlier mining is a hot research topic in data mining area,

hich is mainly used in noise elimination and knowledge discov-

ry in database, as well as fraud detection and intrusion detection

n network. Outlier detection can be classified into several classes,

uch as classification-based, depth-based, cluster-based, distance-

ased and density-based [14] . He et al. [15] presented the fre-

uent pattern based outlier detection approach, and pointed out

hat the discovered frequent patterns reflect the “common fea-

ures” in dataset. In other words, if a data object contains more

requent patterns, then it means this data object is unlikely to

e an outlier because it possesses the “common features” of the

ataset. However, this algorithm neglects the impact of the length

f the frequent patterns on the evaluation of the outlier factor, and

lso it has higher computational complexity. Zhou et al. [16] made

n improvement on the frequent pattern based outlier detection

pproach, which makes use of the weight of frequent patterns to

etermine the importance of different frequent patterns in finding

utliers. 

Agrawal et al. [17] proposed the concept of frequent pattern

ining for the first time, aiming at analyzing the market basket

ith association rule mining. Apriori [18] computed frequent item

ets by using layer-wise iterative operations, based on which to ob-

ain the association rules. It produces a lot of candidate item sets,

nd meanwhile needs to scan database many times. Therefore, it

uffers from the problems of high computational complexity and

ad spatial scalability. To tackle the problems, Han et al. [19] pro-

osed the algorithm of FT-growth, which could directly generate

he frequent patterns without producing the candidate item sets.

owever, the above mentioned frequent pattern mining algorithms

equire the users to set the parameter of min _support , the mini-

um support threshold which is used for choosing the frequent

atterns. This is an obstacle to using such algorithms. To avoid

he problem, AbdusSalam et al. [20] proposed a top- k mining al-

orithm, which needs not set the parameter of min _support . Also,

t only needs to scan the database once and produces 2-item sets.

uch merits make it suitable to be applied to many fields, such as

utlier mining in P2P networks. 
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. Descriptions of network structure and related definitions 

In this section, we describe the network structure on which our

odel is implemented, and we also present the related definitions.

n the following descriptions, we will use the words of peer and

ode interchangeably. 

.1. The network structure 

To effectively and sufficiently make use of the peers’ hetero-

eneity, we implement our model on a hybrid P2P network. All the

eers in the network are classified into two layers, one layer con-

ists of super peers and another layer is with ordinary peers. Under

ach super peer, there are several ordinary peers with which the

uper peer forms a subnet. Each super node maintains its neighbor

uper nodes’ list, so as to ease the communications between sub-

ets. There are two things each super peer should do in our model.

n a subnet, the super node is responsible for managing the inter-

ction data among the ordinary peers to establish ordinary peers’

ehavior patterns, mine the local frequent behavior patterns and

alculate the outlier factors used to detect malicious peers. Among

he subnets, each super peer is in charge of propagating and ag-

regating messages related to each subnet’s frequent behavior pat-

erns and thus gradually establishes the global frequent behavior

atterns. 

Our model could be directly applied to the existing hybrid P2P

etworks, such as the networks mentioned in [21–25] . In these

etworks, the super peers (e.g. the SuperNodes in KaZaA [21] , the

ervers in eDonkey [22] and the UltraPeers in Gnutella 0.6 [23] )

re usually composed of the peers with stronger processing capac-

ty [22,24] , high bandwidth [22,25] , huge storage [ 24 , 25 ] and long

nline time [26] . Also, all the super peers construct an overlay net-

ork. As for the network with no super peers, we could first con-

truct a hybrid P2P network with super peers, and then apply our

odel to curb malicious behavior. 

In [24] and [25] , the authors pointed out that the super peers

n a hybrid P2P network usually consist of the peers with high re-

iability since they play the important roles in data management

nd control. Without loss of generality, this paper assumes that all

he super peers are credible and reliable, which means they behave

onestly and normally in calculations, managements and commu-

ications without making malicious attacks on other peers. If we

ant to use an ordinary peer as the super peer, we can choose

he peer with high credibility as the super peer by using the algo-

ithms proposed in [24,25] . 

.2. Related definitions 

efinition 1. (Behavior pattern). A peer’s behavior pattern, de-

oted by BP , refers to the ordered key-value set derived from the

eer’s interaction data with other peers, which is used to quantify

he peer’s behavioral manner. 

For any peer i , its BP is represented by BP i ={ ( I 1 
v i 

1 

) , ( 
I 2 
v i 

2 

) , · · · , ( 
I s 

v i s 
) } ,

here I = { I 1 , I 2 , ���, I s } stands for the set of keys reflecting the fea-

ures of peer i ’s interaction behavior, and v i 
j 
(1 ≤ j ≤ s ) is the value

f key I j . An arbitrary non-empty subset of BP i is called a behavior

attern of peer i . For example, { ( I 1 
v i 

1 

) } and { ( I 1 
v i 

1 

) , ( 
I 3 
v i 

3 

) } are both peer

 ’s behavior patterns. BP ’s length refers to the number of items in

P , denoted by || BP ||. Note that the behavior patterns mentioned

ere are called the initial behavior patterns which are not directly

sed for the malicious peer detection. 

We take the P2P file sharing network as an example to set the

alue of BP for detecting collusion peers. According to [1] , the set
f keys can be set to I = {duplication degree, pair-wise degree, PM

atio, traffic concentration degree}, where duplication degree is the

atio of total upload traffic (bytes) to the amount of non-duplicated

ata (bytes); pair-wise degree is the ratio of total traffic between

wo peers to the sum of all traffic uploaded by both peers; PM ra-

io is the ratio of number of peers to the number of machines to

escribe how densely a peer’s clients are distributed across differ-

nt physical machines; traffic concentration degree is the ratio of a

eer’s highest upload traffic to a single machine to its total upload

raffic. We assume that peer i takes the values of 10, 0.87, 1 and

.93 in each key respectively, then peer i ’s initial behavior pattern

an be represented by BP i ={ ( I 1 
10 

) , ( 
I 2 

0 . 87 
) , ( 

I 3 
1 
) , ( 

I 4 
0 . 93 

) } . The non-emp ty

ubsets of BP i , such as { ( I 1 
10 

) , ( 
I 2 

0 . 87 
) } and { ( I 3 

1 
) } , are the initial behav-

or patterns to which peer i conforms, and their length is respec-

ively 2 and 1. 

efinition 2. (Local database). The dataset of peers’ behavior pat-

erns stored in the super node (SN) of a subnet is called the local

atabase of the subnet, denoted by D SN . 

efinition 3. (Global database). All the local databases managed

y the super peers construct the global database, denoted by D . 

efinition 4. (Frequent behavior pattern). Frequent behavior pat-

ern refers to the behavior pattern frequently occurred in a peer’s

ehavior pattern set, denoted by FP . 

efinition 5. (Local frequent behavior pattern). Local frequent be-

avior pattern refers to the frequent behavior pattern occurred in

ocal database, denoted by LocalFP. 

efinition 6. (Global frequent behavior pattern). Global frequent

ehavior pattern refers to the frequent behavior pattern occurred

n global database, denoted by GlobalFP. 

. Frequent behavior pattern mining-based malicious peer 

etection model 

.1. Peers’ behavior patterns and their management 

Each super node takes T as the period to establish peers’ local

ehavior patterns, and saves all the BP data within time window

. Here, τ ={ T 1 , T 2 , ���, T m 

}, and m is the number of periods a

ime window τ consists of. The local database of the subnet su-

er peer SN is in can be represented by D SN =[ D 

T 1 
SN 

, D 

T 2 
SN 

, · · · , D 

T m 
SN 

] ,

here T 1 ∼ T m 

are the consecutive periods in time window τ ,

nd D 

T x 
SN 

( 1 ≤ x ≤ m ) is the BP set of the subnet super peer SN is

n within period T x . 

In the end of any period T x within time window τ , the super

eer SN creates D 

T x 
SN 

based on its managed peers’ interaction data.

he procedure of creating D 

T x 
SN 

is as follows. 

1) Data pre-processing 

To guarantee the correctness and integrity of the interaction

data, this step is used to eliminate the incomplete and im-

properly formatted interaction data. 

2) Calculation of the initial behavior patterns 

Super peer SN calculates the value of each key of all the peers

in the subnet, and obtains the local data of D 

T x 
SN 

as follows. 

D 

T x 
SN 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

BP T x 
1 

BP T x 
2 
. . . 

T x 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

v 1 , T x 
1 

v 2 , T x 
1 
. . . 

n, T x 

v 1 , T x 
2 

v 2 , T x 
2 
. . . 

n, T x 

· · ·
· · ·

· · ·

v 1 , T x s 

v 2 , T x s 

. . . 
n, T x 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(1) 
BP n v 
1 

v 
2 

v s 
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where v i, T x 
j 

( 1 ≤ j ≤ s, 1 ≤ i ≤ n ) is the value of key I j peer i

gets in period T x . 

3) Normalization of the initial behavior patterns 

Before mining outliers, we first normalize peers’ initial BP data,

so as to ease the mining and analyzing process. Suppose the range

of the k th column (i.e. the k th key) in D 

T x 
SN 

is [min, max] and we

want to divide the range into h intervals. Then, the length of each

interval is d = (max-min)/h, and thus the range of each interval is

[min, min + d), [min + d, min + 2d), …, [min + (h-1)d, max]. We use

0 for the data in the first interval of [min, min + d), 1 for the data

in the second interval of [min + d, min + 2d), …, h-1 for the data in

the last interval of [min + (h-1)d, max] to recalculate D 

T x 
SN 

, as shown

in Formula ( 2 ). 

D 

T x 
SN 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

BP T x 
1 

BP T x 
2 
. . . 

BP T x n 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

C 1 , T x 
1 

C 2 , T x 
1 
. . . 

C n, T x 
1 

C 1 , T x 
2 

C 2 , T x 
2 
. . . 

C n, T x 
2 

· · ·
· · ·

· · ·

C 1 , T x s 

C 2 , T x s 

. . . 

C n, T x 
s 

⎞ 

⎟ ⎟ ⎟ ⎠ 

(2)

where C i, T x 
j 

( 1 ≤ j ≤ s, 1 ≤ i ≤ n ) is the number of interval v i, T x 
j 

be-

longs to. 

4.2. FP mining process with a distributed approach 

To curb malicious peers, we should first mine the normal peers’

behavior patterns, and based on which to find outliers. In this sec-

tion, we detail the mining processes of LocalFP and GlobalFP. 

4.2.1. The mining process of LocalFP 

(1) Conditions of triggering the mining of LocalFP 

To reduce the complexity, we first need to determine when the

LocalFP mining should be triggered. When the first time window

elapsed, we trigger the mining of LocalFP to obtain the initial lo-

cal frequent behavior patterns of each subnet. In the end of subse-

quent time window, we compare peers’ BPs of the current time

window with those of the previous time window to determine

whether to trigger the mining of LocalFP or not. 

Let BP τ
i 

represent the average value of peer i ’s BP in time win-

dow τ , D 

τ
SN 

stand for the average value of D SN in time window τ .

Then, D 

τ
SN 

can be calculated with Formula ( 3 ). 

D 

τ
SN 

= 

⎛ 

⎜ ⎜ ⎜ ⎝ 

BP τ
1 

BP τ
2 

. . . 

BP τn 

⎞ 

⎟ ⎟ ⎟ ⎠ 

= 

⎛ 

⎜ ⎜ ⎜ ⎜ ⎝ 

C 1 ,τ
1 

C 2 ,τ
1 
. . . 

C n ,τ
1 

C 1 ,τ
2 

C 2 ,τ
2 
. . . 

C n ,τ
2 

· · ·
· · ·

· · ·

C 1 ,τs 

C 2 ,τs 

. . . 

C n ,τs 

⎞ 

⎟ ⎟ ⎟ ⎟ ⎠ 

(3)

where C i ,τ
j 

= 

1 
m 

m ∑ 

x =1 

C i, T x 
j 

and m is the number of periods time win-

dow τ has. Here, C i, T x 
j 

( 1 ≤ j ≤ s, 1 ≤ i ≤ n ) is the same as shown

in Formula ( 2 ). 

Based on the above calculations, the following two conditions

are used to trigger the mining of LocalFP. 

1) The total variation of peers’ FP-based triggering of mining Lo-

calFP 

Let τ be the current time window, τ ’ be the τ ’s previous time

window, V SN ( τ , τ ’) be the variation of D 

τ
SN 

and D 

τ ′ 
SN 

. Then,

V SN ( τ , τ ’) is calculated as follows. 

V SN ( τ, τ ′ ) = 

1 

n 

n ∑ 

ρ
(

BP τ
i 
, BP τ

′ 
i 

)
(4)
i =1 
t  
where n is the number of peers in the subnet super peer SN is

in, ρ( BP τ
i 

, BP τ
′ 

i 
) is the variation of BP τ

i 
and BP τ

′ 
i 

, as defined

below. 

ρ
(

BP τ
i 
, BP τ

′ 
i 

)
= 

√ 

s ∑ 

j=1 

(
C i ,τ

j 
− C i , τ

′ 
j 

)2 

(5)

where s = || I || is the number of keys, C i ,τ
j 

( 1 ≤ j ≤ s, 1 ≤ i ≤ n ) is

the same as mentioned in Formula ( 3 ). 

When V SN ( τ , τ ’) is greater than threshold μ1 , the mining pro-

cess of LocalFP should be triggered. 

2) The variation of individual peer’s FP-based triggering of mining

LocalFP 

Let τ represent the current time window, τ ’ stand for the previ-

ous time window of τ . Let MaxV SN ( τ , τ ’) represent the max-

imum variation of all peers’ FPs in time windows τ and τ ’.

Then, MaxV SN ( τ , τ ’) can be calculated as follows. 

M ax V SN 

(
τ, τ ′ ) = M ax 

{ 

ρ
(

BP τ
i 
, BP τ

′ 
i 

)
| 1 ≤ i ≤ n 

} 

(6)

When MaxV SN ( τ , τ ’) is greater than threshold μ2 , the mining

process of LocalFP should also be triggered. 

(2) The mining process of LocalFP 

Frequent behavior pattern mining is a hot research topic in data

ining area, and a lot of algorithms have been proposed. In this

aper, we adopt the algorithm presented in [20] to complete min-

ng LocalFP, since this algorithm only needs to scan the database

nce and needs not set the parameter of min _support when min-

ng top-k frequent behavior patterns. We briefly list the steps of

his algorithm as follows. 

1) Scan local database to produce all the 2-item set and save them

to matrix M , in which the value of each 2-item is the number

(i.e. the frequency) of the 2-items existed in the local database.

2) Change the frequencies of 2-item set in M to AR (association

ratio) values, where AR ( i, j ) = P ( x i , x j ) / ( 1 − P ( x i , x j ) ) and P ( x i ,

x j ) is the probability of the frequency that x i and x j occur si-

multaneously. 

3) Arrange the 2-item set in M in the descent order of AR values,

and save the ordered result into list L . 

4) Create AR graph from L , and produce the most frequent be-

havior patterns by using ASD-tree (all-path-source-destination

tree) according to AR graph. When the k most frequent behav-

ior patterns have been produced, the process ends. 

To enhance the portability of our model, we take the FP mining

lgorithm as a black box. So, we can use any existing FP mining

lgorithm, such as Apriori [18] , FPgrowth [19] , and so on. 

When the LocalFP mining process is triggered in the super node

f a subnet, we use Update.inc to represent the newly added FPs

nd Update.del to stand for the BPs which are no longer frequent

atterns based on the comparison between the newly achieved

ocalFPs and the old ones. Update.inc and Update.del reflect the

hange of LocalFPs and will be used to incrementally update the

lobalFPs as described in Section 4.2.2 . 

Based on the above descriptions, we present the local frequent

ehavior pattern mining algorithm in Algorithm 1 . 

.2.2. Establishment of GlobalFPs 

The local frequent behavior patterns only reflect the peers’ be-

avior in a subnet, which could not reflect the features of peers’

ehavior in the overall P2P network. If a subnet is controlled by a

ollusion group, we could not use the local frequent behavior pat-

erns to identify the malicious nodes. In such situation, we should
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Table 1 

Definitions of message structure. 

Sender’s address Super node’s IP address 

Update.Inc Update . Inc : { ( F P 1 , IF ) , ( F P 2 , IF ) , · · · , ( F P N Inc 
, IF ) } 

Update.Del Update . Del : { ( F P 1 , IF ) , ( F P 2 , IF ) , · · · , ( F P N Del 
, IF ) } 
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ake use of the global frequent behavior patterns to remedy the

aw. 

GlobalFPs are established by incrementally propagating and ag-

regating the LocalFPs among the super nodes. This process is

ompleted by using the messages propagated among the super

odes, as described below. 

(1) Message structure definition used for incrementally propa-

ating LocalFPs 

Initially, the LocalFPs of a subnet are the GlobalFPs of the sub-

et, which are managed by the super node of the subnet. When

he super node of a subnet completed the mining process of Lo-

alFPs, the super node would send a message with Update.inc and

pdate.del to its neighboring super nodes, the neighboring super

odes continue this process until the message reaches all the super

odes. By this process, the GlobalFPs in each subnet are updated,

hich could be used for identifying malicious peers. 

When the super node of a subnet creates Update.inc and Up-

ate.del, it adds an impact factor to each FP in Update.inc and Up-

ate.del, which reflects the importance of the FP for evaluating the

utliers. The impact factor of an FP is calculated as follows. 

F ( F P ) = 

1 

s 
× ‖ 

F P ‖ 

× subNetSize ( SN ) (7) 

here s = || I ||, and subNetSize(SN) is the number of peers in the

ubnet super peer SN is in. From Formula ( 7 ), we see that the more

he number of peers in the subnet is and the more the number of

tems in an FP is, the higher the value of the impact factor of the FP

s. This is because the higher number of peers in a subnet and the

igher number of items in an FP indicate the higher importance of

uch FP for reflecting the normal peers’ behavior features. 

In order to incrementally propagating LocalFPs among the super

odes, we define the message structure as follows. 

In Table 1 , FP i is the frequent behavior pattern, and IF is the

mpact factor of the corresponding FP . 

Each super node is both the sender and the receiver of the mes-

ages. When a super node has received the messages more than

hreshold δ, it initiates the update operation of GlobalFPs. In the

nitial phase, the update should be frequent to construct GlobalFPs,

nd thus the δ should be set to a smaller value. As the time goes

n, the δ should be set to a higher value, since the GlobalFPs in

ach super node tend to be no significant difference from each

ther. In such situation, it is no need to frequently update Glob-

lFPs. Based on this consideration, we calculate threshold δ as fol-

ows. 

t = 

(
1 − e −( 1+ t−t 0 ) 

)
× N (8) 

here N is the number of super peers in the network, t 0 is the

ime at which the super node received the first message. 

(2) The update of GlobalFPs 

The update process of GlobalFPs is as follows. 

1) Message aggregation 

Let Q SN represent the message set received by super node SN .

If there exist multiple records of an FP in Q SN , we aggre-

gate these records to produce one record for the FP . In other

words, we only keep one record for each FP in Q SN . As shown

in Table 1 , each FP has an IF with it no matter it is in Up-

date.inc or in Update.del. When aggregating the records of
an FP , we only need summing up their IFs . We add the value

of IF whose corresponding FP is in Update.inc and deduct

the value of IF whose corresponding FP is in Update.del. If

the calculated value of IF , say IF c , is greater than zero, we

keep the record of FP in Update.inc whose corresponding IF

is set to IF c ; if IF c < 0, we keep the record of FP in Update.del

whose corresponding IF is set to abs ( IF c ); if IF c = 0; we keep

no record for the FP . Details can be found in Algorithm 2 . 

2) The update of GlobalFP 

To ease the descriptions, we first describe the meaning of some

notations. 

Let Q SN (Update.inc) represent the set of Update.inc in Q SN ,

nd Q SN (Update.del) stand for the set of Update.del in Q SN .

et Q SN (Update.inc).FP represent an FP in Q SN (Update.inc), and

 SN (Update.inc).FP- > IF stand for the IF whose corresponding FP

s in Q SN (Update.inc). Let Q SN (Update.del). FP represent an FP in

 SN (Update.del), and Q SN (Update.del).FP- > IF stand for the IF whose

orresponding FP is in Q SN (Update.del). Let GlobalFPs.FP represent

he FP in GlobalFPs, and GlobalFPs.FP- > IF stand for the IF whose

orresponding FP is in GlobalFPs. 

When the number of FPs in Q SN is greater than threshold δ in a

ubnet, we start updating GlobalFPs as shown in Algorithm 2 . 

In Algorithm 2 , we take the delay of message transmis-

ions among the super nodes into account to treat the FPs in

 SN (Update.del), so as to ensure the consistency of GlobalFPs in

ach super node. 

.3. LocalFP and globalfps-based malicious node detection 

We have discussed the establishment and update of LocalFPs

nd GlobalFPs. Generally speaking, if a node has fewer BPs consis-

ent with the FPs , then the possibility that the node is an outlier

nd thus a malicious node is high [15,16] . Based on this finding,

o verify whether a node is malicious or not, we first calculate the

ode’s outlier factor, including the local outlier factor (LocalOF) and

he global outlier factor (GlobalOF), by using LocalFPs and Glob-

lFPs. Any node i ’s LocalOF and GlobalOF are calculated as follows.

ocalO F i = 1 −
∑ 

X ⊆B P i ,X ∈ LocalF P SN 
w ( X ) 

‖ 

Lo calF P SN ‖ 

(9) 

here X is a local FP to which node i ’s BPs conform, w (X ) = 

1 
s ×

 X‖ is the weight of X , and s = || I || is the number of keys. 

From Formula ( 9 ), we see that the fewer a node’s BPs conform-

ng to the Local FPs are, the greater its LocalOF is and thus the

igher the possibility that the node is an outlier is. 

l obal O F i = 1 −
∑ 

X ⊆B P i ,X ∈ Gl obal F P SN 
IF ( X ) ∑ 

Y ∈ Gl obal F P SN 
IF ( Y ) 

(10)

here X is a global FP to which node i ’s BPs conform, and IF(X) is

 ’s impact factor as defined in ( 7 ). 

From Formula ( 10 ), we see that the fewer a node’s BPs conform-

ng to the global FPs are, the greater its GlobalOF is and thus the

igher the possibility that the node is an outlier is. 

Let LocalO F SN and Gl obal O F SN represent the average local outlier

actor and the average global outlier factor of the subnet with su-

er node SN . Then, LocalO F SN and Gl obal O F SN are calculated as fol-

ows. 

ocalO F SN = 

1 

subNetSize ( SN ) 

∑ 

i ∈ subNet ( SN ) 

LocalO F i (11) 

l obal O F SN = 

1 

subNetSize ( SN ) 

∑ 

i ∈ subNet ( SN ) 

Gl obal O F i (12) 
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where subNet(SN) is the node set of the subnet with super node

SN , and subNetSize ( SN ) is the number of nodes in the subnet with

super node SN . 

According to the existing researches [2,4,8,11,12] , most nodes

in a P2P network are normal and well-meant ones. Based on this

finding, we present the malicious node detection approach as fol-

lows. 

(1) For any node i in the subnet with super node SN ,

if LocalO F i ≤ LocalO F SN and Gl obal O F i ≤ Gl obal O F SN , then it

means that node i ’s BPs conform to both the local FPs and

global FPs . Thus, node i is a normal node and the subnet

node i is in is a normal subnet. 

(2) For any node i in the subnet with super node SN ,

if LocalO F i > LocalO F SN and GlobalO F i ≤ GlobalO F SN , then it

means that node i is an outlier in its subnet but not an out-

lier in the global network. In other words, node i ’s BPs con-

form to the global FPs , but are not consistent with the local

FPs . Thus, node i is a normal node, but the subnet node i is

in is an abnormal subnet. 

(3) For any node i in the subnet with super node SN ,

if LocalO F i ≤ LocalO F SN and GlobalO F i > GlobalO F SN , then it

means node i is not an outlier in its subnet, but an outlier

in the global network. In other words, node i ’s BPs conform

to the local FPs , but are not consistent with the global FPs .

Therefore, node i is a malicious node and the subnet node i

is in is an abnormal subnet. 

(4) For any node i in the subnet with super node SN , if

LocalO F i > LocalO F SN and Gl obal O F i > Gl obal O F SN , then node i

is an outlier in both the subnet and the global network. In

such situation, node i is a malicious node, and the subnet

node i is in might be a normal or an abnormal subnet. 

For an abnormal subnet as shown in case ( 3 ), it might be a col-

lusion group. In such case, the BPs existed in LocalFPs but not in

GlobalFPs are considered to be the behavioral features of the col-

lusion group. Based on this, the super node of the subnet could

curb the malicious behavior and notify other super nodes. For a

malicious peer, if its BPs do not conform to the BPs of any collu-

sion group, then it is an individual malicious peer. 

5. Examples of applying our model to curb malicious attacks 

In this section, we take the examples of curbing collusion, Sybil

and file pollution attacks to describe the process of applying our

model in hybrid P2P networks. 

5.1. The detection of collusion and sybil attacks 

By referring to Maze

[27–29] , we adopt the incentive mechanism that we increase

a peer’s score when the peer uploaded a file and decrease a peer’s

score when the peer downloaded a file to detect the peers which

started collusion or Sybil attacks. Collusion peers increase their

scores by mutually requesting files among themselves, and a Sybil

node increases its score by using multiple accounts. According to

[1] , the set of keys can be set to I = {duplication degree, pair-wise

degree, PM ratio, traffic concentration degree}, as described in

Section 3.2 

According to the different features owned by normal peers, col-

lusion peers and Sybil peers, we set the keys for different peers as

follows. A normal peer’s BP can be represented by I 1 ={low du-

plication degree, low pair-wise degree, low PM ratio, low traffic

concentration degree}; a collusion peer’s BP can be represented by

I 2 ={high duplication degree, high pair-wise degree, low PM ratio,

high traffic concentration degree}; a Sybil peer’s BP can be repre-

sented by I ={high duplication degree, high pair-wise degree, high
3 
M ratio, high traffic concentration degree}. Note that here the

ords of “high” and “low” refer to which interval (see the para-

raph of “Normalization of the initial behavior patterns” in Section

.1 ) the value is in. 

In some hybrid P2P networks, peers are clustered to form a sub-

et based on nodes’ IPs aiming at reducing traffic overhead. The

xisting research [1] indicated that the nodes in the same IP space

end to build up each other, which means that a subnet might be

bnormal in hybrid P2P networks. 

Based on the above analysis, our strategy uses following steps

o detect collusion and Sybil nodes 

Step 1. For each subnet, its super node SN constructs the be-

avior patterns of the peers in the subnet and normalizes them to

btain peers’ behavior pattern set, D 

T x 
SN 

, within period T x as men-

ioned in Section 4.1 ; 

Step 2. We calculate the conditions used to determine whether

he local FP mining process should be triggered or not, as de-

cribed in Section 4.2.1 . 

Step 3. If the local FP mining process is triggered, the super

ode runs Algorithm 1 mentioned in Section 4.2.1 , to achieve top- k

ocal FPs . Based on the mining results, we could reach a conclusion

s follows. 

(1) For a normal subnet, most nodes in the subnet are normal

ones, and thus the local FPs would be the subset of I 1 . 

(2) For an abnormal subnet, most nodes in the subnet are ab-

normal ones, and thus the local FPs would be the subsets of

I 2 and I 3 . 

Step 4. Each super node incrementally propagates its Local FPs

mong the super nodes and updates its own GlobalFPs based on

he received and aggregated local FPs by using Algorithm 2 men-

ioned in Section 4.2.2 . 

Step 5. Each super node calculates the local outlier factor and

he global outlier factor for the peers in the subnet the super node

s in, and based on which to evaluate whether a peer is outlier or

ot as mentioned in Section 4.3 and to further distinguish the type

f malicious peers as Step 6 shows. 

Step 6. Each super node analyzes the type of malicious nodes

s follows. 

(1) If the BPs of a malicious node conform to I 2 , then the node

is identified as the collusion node. Similarly, if the BPs of a

malicious node conform to I 3 , then the node is identified as

the Sybil node; 

(2) If the local FPs of an abnormal subnet conform to I 2 , then

there exists a collusion group in the subnet. Similarly, if the

local FPs of an abnormal subnet conform to I 3 , then there

exist a lot of Sybil peers, each of which owns multiple ac-

counts in the subnet. 

(3) If the BPs of a malicious node do not conform to I 2 and I 3 ,

then the node might be a malicious node of another type. In

this situation, we should further analyze the node’s BPs . For

example, if a node’s BPs conform to I = {high duplication de-

gree, low pair-wise degree, low PM ratio, low traffic concen-

tration degree}, then the node might be a file polluter or an

enthusiastic uploader of files. We could further analyze the

node’s behavior by taking the node’s file upload frequency,

repetitive interaction ratio and feedbacks into account. De-

tails can be found in the next section. 

.2. The detection of file polluters 

In order to detect file polluter, it is necessary to add several

eys to the detection metrics. Thus, we set I = {duplication degree,

air-wise degree, PM ratio, traffic concentration degree, file upload

requency, repetitive interaction ratio, feedback}, where file upload
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Algorithm 1 

Local frequent behavior pattern mining algorithm. 

1) Calculate D τ
SN 

according to Formula ( 3 ); 

2) Calculate V SN ( τ , τ ’) and MaxV SN ( τ , τ ’) according to Formulae ( 4 )-(6); 

3) If ( V SN ( τ , τ ′ ) ≥ μ1 or MaxV SN ( τ , τ ′ ) ≥ μ2 ) 

1 © Execute the frequent behavior pattern mining algorithm to obtain top-k frequent behavior patterns from D τ
SN 

; 

Input: k and D τ
SN 

Output: the Top-k most frequent behavior patterns 

2 © Set Update.inc and Update.del according to the newly mining result. 

4) End 

Algorithm 2 

The update of GlobalFPs. 

For each FP in Q SN (Update.inc) and Q SN (Update.del) do { 

(1) When the FP in Q SN (Update.inc) is new for GlobalFPs, we insert the FP into GlobalFPs as a new FP , and eliminate the FP from Q SN (Update.inc); 

(2) When the FP in Q SN (Update.inc) is not new for GlobalFPs, we add Q SN (Update.inc).FP- > IF to the field of GlobalFPs.FP- > IF, and eliminate the FP from Q SN (Update.inc); 

(3) When the FP in Q SN (Update.del) is new for GlobalFPs, we still keep it in Q SN (Update.del), which will be used to update GlobalFPs next time. This case might be 

occurred due to the distributed message propagation and aggregation; 

(4) When the FP in Q SN (Update.del) is not new for GlobalFPs, we take the following three cases into account. 

First, if (GlobalFPs.FP- > IF - Q SN (Update.del).FP- > IF) > 0, then we change GlobalFPs.FP- > IF to the value of (GlobalFPs.FP- > IF- Q SN (Update.del).FP- > IF), and eliminate 

the FP from Q SN (Update.del); 

Second, if (GlobalFPs.FP- > IF - Q SN (Update.del).FP- > IF) < 0, then we eliminate GlobalFPs.FP from GlobalFPs, and still keep Q SN (Update.del).FP in Q SN (Update.del) but 

change its IF to the value of ( Q SN (Update.del).FP- > IF - GlobalFPs.FP- > IF), which will be used to update GlobalFPs next time; 

Third, if (GlobalFPs.FP- > IF- Q SN (Update.del).FP- > IF) = 0, then we eliminate the FP from the both sides; 

} 
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requency represents the frequency that a file is repeatedly up-

oaded, repetitive interaction ratio stands for the possibility that two

odes make transaction again, and feedback is the feedback on the

eceived service. 

Based on the above definition, we analyze the following two

ituations. 

(1) From the angle of a file polluter 

According to the above defined keys, a file polluter should have

he following characteristics: 

1) The file polluter repeatedly uploads polluted files with a higher

frequency; 

2) The receivers of the polluted files are distributed loosely over

the network, so as to ease the spreading of the polluted files. 

(2) From the angle of a polluted file receiver 

The receiver of polluted files has the following characteristics: 

1) For a normal receiver, the possibility that it repeatedly makes

transactions with a polluter is lower. 

2) For a normal receiver, it would give a file polluter a lower feed-

back. 

According to the above analysis, a file polluter’s behavior pat-

ern can be represented by I 4 = {high duplication degree, low pair-

ise degree, low PM ratio, low traffic concentration degree, high

le upload frequency, low repetitive interaction ratio, low feed-

ack}. This behavior pattern can be used to detect file polluters

y using the similar approach as mentioned in Section 5.1 . 

. Simulations and analysis 

In this section, we evaluate our model’s performance in a hy-

rid P2P network. We take a file sharing network as the applica-

ion scenario of our model, and we construct the network similar

o Maze [27–29] and KaZaA [21] , which consists of super peers and

rdinary peers. A peer joins the network by randomly selecting a

uper peer and uploads the meta-data of its shared files, includ-

ng filename, file size, hash value of the file content, file descrip-

or and so on, to the super peer [24,25] . Each super peer holds its

eighboring super peers’ information. By referring to Maze [27–

9] , we adopt the incentive mechanism that we increase a peer’s
core when the peer uploaded a file and decrease a peer’s score

hen the peer downloaded a file. We assume there are three types

f attacks in the network, collusion, Sybil and file polluter, and all

he malicious peers take the ratio of α. Under the incentive mecha-

ism, the collusion peers and Sybil peers would behave maliciously

o increase their scores. Specifically, the collusion peers increase

heir scores by mutually requesting files among themselves, and a

ybil node increases its score by using multiple accounts. 

According to [1] , we set I = {duplication degree, pair-wise de-

ree, PM ratio, traffic concentration degree} as mentioned in

ection 5.1 . We set h = 4, meaning that each key could take one of

he four values respectively representing very low, low, high and

ery high. There are 10 0 0 nodes in the network, ten of which are

andomly selected as the super peers, and the others are ordinary

eers. Each simulation consists of 20 time windows, and each time

indow includes 5 periods. 

For an ordinary peer, it completes the following tasks in a pe-

iod. It sends a file request to its super peer, and waits for the ser-

ice peers’ list from the super peer; it downloads the requested file

rom a selected service peer, and gives a feedback on the down-

oaded file’s quality to its super peer. 

For a super peer, it completes the following tasks in a period. In

he first period of the current time window, the super peer checks

hether or not to run the local frequent pattern mining process

ccording to the triggering conditions, and propagates the mes-

ages of Update.inc and Update.del to its neighboring super peers;

rocesses the file requests coming from the ordinary peers; up-

ates GlobalFPs according to the received messages coming from

ther super peers; establishes each ordinary peer’s behavior pat-

erns and calculates each ordinary peer’s local outlier factor and

lobal outlier factor, and based on which to detect and analyze ma-

icious peers. 

We use Peersim [30] , an open source P2P systems simulator, to

onduct the simulations. Each simulation runs 20 times, and the

verage value is reported as the simulation result. Without the loss

f generality, we take the commonly used false positive rate (FPR,

.e. the ratio of peers that are normal but considered as malicious

o all the normal peers) and false negative rate (FNR, i.e. the ratio

f peers that are malicious but considered as normal to all the ma-
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Fig. 1. Impacts of different top-k on FPR under different α. 

Fig. 2. Impacts of different top-k on FNR under different α. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Fig. 3. Peers’ LocalOF and GlobalOF in the abnormal subnet. 

Fig. 4. Peers’ LocalOF and GlobalOF in the normal subnet. 
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licious peers) as the criterion [11,12] to assess the performance of

our model. 

6.1. Impacts of different top- k on FPR and FNR under different α

In our model, top- k is a variable used to determine the size

of LocalFP s mined in each subnet. In this section, we analyze the

impacts of different top- k on FPR and FNR under different α, as

shown in Figs. 1 and 2. 

From Figs. 1 and 2 we see that different values of top- k have

insignificant impacts on FPR and FNR. When the value of top- k is

smaller, a part of normal FPs are excluded from the LocalFP s and

the GlobalFP s , which makes FPR and FNR higher. However, with

the increase of top- k , GlobalFP s could fully reflect the behavior pat-

terns of normal peers, which makes FPR and FNR drop and tend to

be steady. As shown in Fig. 1 , when α ≤ 0.2 and top- k ≥ 17, FPR

tends to be smaller and steady; when α ≥ 0.3 and top- k ≥ 14, FPR

also tends to be smaller and steady. As shown in Fig. 2 , when

top- k ≥ 2, the value of FNR tends to 0, indicating that almost all

the malicious nodes are detected even though the malicious node

rate α is as much as 0.5. 

Fig. 1 tells us that FPR becomes higher when α is smaller, and

FPR becomes lower when α is bigger. This is because when α is

smaller, the average outlier factor would be approximate to those

of the normal peers and thus the outlier factors of some nor-

mal peers would be higher than the average outlier factor, which

makes the normal peers whose outlier factors are equal to or

higher than the average outlier factor mistakenly identified as the

malicious peers, and so the FPR becomes higher. When α is bigger,

the average outlier factor would be much higher than those of the

normal peers, which makes the FPR lower. 

6.2. Validation of peers’ local outlier factors and global outlier factors 

In the simulations, we only take two subnets into account, one

is the abnormal subnet and another is the normal subnet. In the
bnormal subnet, 80% of the nodes are assumed to be malicious

nd only 20% of the nodes are normal. In the normal subnet, 80%

f the nodes are assumed to be normal and 20% of the nodes are

alicious. The two subnets both consist of 100 nodes, and the

ther subnets are randomly formed. We set α = 0.2 and top- k = 3.

ig. 3 and Fig. 4 show the simulation results. 

In Fig. 3 and Fig. 4 , the x-axis represents the node IDs, and

he y-axis plots the average local outlier factor and the average

lobal outlier factor of peers in the corresponding subnet. From

ig. 3 we see that the GlobalOF of most peers in the abnormal sub-

et is higher than the average value represented by GlobalOF(AVE),

howing that the subnet is abnormal. In this situation, the ma-

icious peers’ LocalOF is lower and the normal peers’ LocalOF is

igher. This is because in such subnet the malicious peers’ behav-

or patterns take the major part, which constructs the frequent be-

avior patterns. Consequently, the normal peers’ LocalOF is higher

nd the abnormal peers’ LocalOF is lower. In Fig. 4 , the GlobalOF of

ost peers in the normal subnet is lower than the average value

epresented by GlobalOF(AVE), indicating that the subnet is nor-

al. In this situation, malicious peers’ LocalOF is higher and nor-

al peers’ LocalOF is lower. In the both situations, the peers whose

lobalOF is higher than the average value are the malicious peers

nd the peers whose GlobalOF is lower than the average value are

he normal peers. The simulation results indicate that our model

ould accurately detect the normal subnet and the abnormal sub-

et, as well as the malicious peers in the two kinds of subnet. 

.3. Evaluation on the communication cost 

In this simulation, we evaluate the communication cost gen-

rated by propagating Update.inc and Update.del among the su-

er peers. As shown in Table 1 , the message of Update.inc or Up-

ate.del consists of ( FP i , IF ), so we use the average number of ( FP i ,

F ) propagated by each super node to quantify the communication

ost. In Fig. 5 , the x-axis plots the time windows, and the y-axis
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Fig. 5. Evolution of the communication cost under different Top-k. 

Fig. 6. FPR and FNR under different models with α= 0.2. 
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Fig. 7. FPR and FNR under different models with α= 0.4. 
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epresents the average number of ( FP i , IF ) propagated by each su-

er node. As shown in Fig. 5 , in the initial phase of the simulation,

he communication cost is correlated with the value of Top-k, and

ore messages are propagated among super peers due to the fact

hat in this phase each super peer needs to send almost all the FPs

ined in its subnet to its neighboring super peers. However, as the

imulation goes on, the propagated messages of each super peer

educe sharply and tend to zero. This is because the FPs stored in

ach super peer tend to be the same with the increase of time

indow. Note that a larger Top-k means more update messages

hould be propagated in the initial phase of the simulation, but

eanwhile the propagated messages would reduce more sharply

s the simulation goes on, since a larger Top-k makes the compu-

ation of GlobalFP more accurate, which means the GlobalFP stored

n each super peer tends to be the same more quickly, and thus the

ropagated messages would reduce more sharply as the simulation

oes on, as shown in Fig. 5. 

.4. Performance comparison 

In this section, we examine the effectiveness of our model in

omparison with EigenTrust [2] , PeerMate [11] and SMART [12] .

igenTrust is a typical global trust model, and PeerMate and

MART are both trust-based malicious peer detection models, as

entioned in Section 2 . 

In this simulation, we set top-k = 17 according to the simulation

esult given in Section 6.1 . The value of α is respectively set to

.2 and 0.4. We have all the malicious peers join the subnets ran-

omly. 

As shown in Fig. 6 and Fig. 7 , the FNR of EigenTrust is the

ighest among the four models. EigenTrust iteratively calculates a

eer’s trust by using the collected feedbacks. Due to the sparse-

ess of the subjective feedbacks, the correctness of its trust calcu-

ation could not be guaranteed. As mentioned in Section 2 , Peer-

ate could not identify a part of Sybil nodes which have the simi-

ar behavior to the normal peers. This makes the FNR of PeerMate

igher than that of SMART. Note that though the FNR of PeerMate

nd SMART is smaller than that of EigenTrust, their FPR is the
ighest among the four models. This is because the two models

istakenly identified the low-ranking normal nodes as the mali-

ious ones. Our model has the lowest FNR and FPR among the four

odels, mainly because we do not use trust model but take the ac-

ual transaction data as the outlier mining basis to detect malicious

eers, which could not be affected by the peers’ subjective behav-

or such as feedbacks. From Figs. 6 and 7 , we see that the higher

alue of α makes the FPR of our model reduced significantly. This

s because when the number of malicious nodes is higher, the av-

rage global outlier factor tends to be the value of the average ma-

icious peers’ outlier factor which is significantly greater than that

f the normal peers, and thus the value of FPR becomes smaller. 

. Conclusions 

In this paper, we mainly discussed how to detect malicious

eers using outlier mining approach in hybrid P2P networks. We

rst presented several definitions, and described a peer’s behavior

atterns based on the peer’s interaction data. Then, we detailed the

ocal frequent behavior pattern mining process and the global fre-

uent behavior pattern producing approach by incrementally prop-

gating and aggregating the local frequent behavior patterns. Based

n the local frequent patterns and the global frequent patterns, we

epicted the malicious node detection process and the examples of

sing our model. The simulation results indicated that our model

ould effectively detect malicious behavior, such as collusion, Sybil

nd file polluter. In our future work, we will focus our effort s on

oth the settings of keys used to perform frequent behavior pat-

ern mining and the application of our model in other types of P2P

etworks. 
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