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a b s t r a c t 

In a typical secure communication system, messages undergo two different encodings: an error-correcting

code is applied at the physical layer to ensure correct reception by the addressee (integrity), while at an

upper protocol layer cryptography is leveraged to enforce secrecy with respect to eavesdroppers (confi- 

dentiality). All constructive solutions proposed so far to concurrently achieve both integrity and confiden- 

tiality at the physical layer, aim at meeting the secrecy capacity of the channel, i.e. , at maximizing the

rate of the code while guaranteeing an asymptotically small information leakage.

In this paper, we propose a viable encoding scheme that, to the best of our knowledge, is the first one

to guarantee both perfect secrecy ( i.e. , no information leakage) and reliable communication over the gen- 

eralized Ozarow-Wyner’s wire-tap channel. To this end, we first introduce a metric called uncertainty rate

that, similarly to the equivocation rate metric, captures the amount of information leaked by a coding

scheme in the considered threat model, but it is simpler to apply in the context of linear codes. Based

on this metric, we provide an alternative and simpler proof of the known result that no linear error- 

correcting code alone can achieve perfect secrecy. Finally, we propose a constructive solution combin- 

ing secret sharing and linear error-correcting codes, and we show that our solution provides the desired

combination of reliable and perfectly secret communication. The provided solution, other than being sup- 

ported by thorough analysis, is viable in practical communication systems.

© 2016 Elsevier B.V. All rights reserved.
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. Introduction

Secure communications require two equally important condi-

ions being concurrently guaranteed: (i) integrity, i.e. , correct re-

eption of the message by the intended recipient; and, (ii) con-

dentiality, i.e. , only authorized users should be able to access

he content of the message. The integrity of the message received

y the addressee may be voluntarily endangered by an adversary

 e.g. , through jamming) or disturbed by natural phenomena such as

oise, distortion, and fading. Even when the adversary is not able

or not intending) to modify the message, she can easily eaves-

rop on the transmissions whenever the communication channel

s insecure ( e.g. , wireless). Regardless of the origin of the noise, re-

iable communication over noisy channels is usually made possi-
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le by adding redundancy to the data transmitted through Error-

orrecting Codes (ECC), whereas cryptography is the standard so-

ution to enforce data confidentiality and integrity under active at-

acks [1] . 

In many circumstances, the adversary can access and/or mod-

fy only a limited amount of information with respect to the in-

ended recipient. To describe a similar scenario, Wyner introduced

 model for physical layer security, called wire-tap channel model

2] , in which the message travels over two different channels: the

ain channel, accessible to the addressee, and the eavesdropper’s

hannel, suffering from superior noise. The model was later sim-

lified by Ozarow and Wyner with the introduction of the wire-

ap channel II (or Ozarow-Wyner’s wire-tap channel) [3] , in which

he main channel is noiseless, and the concept of eavesdropper’s

hannel is substituted by the assumption that the adversary can

hoose any subset of l ≤ n noiseless digits, where n is the message

ength. The Generalized Ozarow-Wyner’s wire-tap (GOW) channel

4] combines the wide applicability of the original wire-tap chan-

el with the precisely defined eavesdropper of the wire-tap II, as-
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suming that the main channel is a Discrete Memoryless Channel

(DMC), and that the adversary can eavesdrop on a subset of l code-

word digits of her choice. 

For traditional channels, Shannon proved that it is possible to

reliably communicate at rates arbitrarily close to the channel’s

capacity, provided that codewords are sufficiently long. Similarly,

Wyner proved that it is possible to reliably and securely commu-

nicate ( i.e. , achieving perfect secrecy) over the wire-tap channel at

rates arbitrarily close to what he called the secrecy capacity of the

channel. Wyner did not propose any practical construction for a

perfectly secret and reliable code, but recent work showed how the

secrecy capacity of the channel can be actually achieved with ad-

vanced coding schemes [5,6] . Unfortunately, all similar results con-

sider the asymptotic behaviour of the code, i.e. , perfect secrecy is

only guaranteed when the message becomes “infinitely long”. Tra-

ditional ECCs that achieve some level of secrecy exist [7] , and se-

cret sharing [8] or similar techniques can provide perfect secrecy

over the wire-tap channel II, but none of them alone can provide

both security requirements over the GOW channel. 

While trying to maximize the rate of secure communications

is extremely fascinating, it is likewise important to understand

whether current protocols, that do not require cryptography or un-

realistically long codewords, can concurrently guarantee perfect se-

crecy and resilience to transmission errors, and what is the related

overhead. In this paper, we show how to combine ECCs and secret

sharing to achieve perfect secrecy while enforcing arbitrary error

correction capabilities in the GOW wire-tap channel model. What

we propose is a thorough analysis of a constructive solution that

can serve as a benchmark to which previous and future proposals

can be compared. 

Contributions 

In this paper we provide the following contributions: 

• We introduce the uncertainty rate security metric, defined as a

special case of the well known equivocation rate [9] . We show

that the proposed metric is particularly suitable for measuring

the security of a code in the GOW channel; 

• Relying on the proposed uncertainty rate, we show how to eas-

ily measure the level of confidentiality guaranteed by a linear

ECC when used over the GOW channel. In particular, we ex-

hibit a simple proof that such codes alone cannot achieve per-

fect secrecy—as already known in the literature for the tradi-

tional wire-tap channel; 

• We propose a novel, general and constructive procedure based

on secret sharing that transforms any ECC into a secure wire-

tap code. Analytic results prove that through this procedure we

achieve perfect secrecy and resilience to data loss; 

• We thoroughly analyse the pros and cons of the solution pro-

posed, discussing them with the help of a toy example, and

outlining a more realistic case study. 

To the best of our knowledge, our approach to secure commu-

nications leveraging the physical layer is completely independent

from similar solutions in the literature, with the further benefit of

being extremely practical and constructive. 

Roadmap 

We start with a complete characterization of our system model

in Section 2 , that includes an overview of linear ECCs and se-

cret sharing schemes 1 . In Section 3 we discuss related work. In

Section 4 we introduce the notion of uncertainty rate and use it to

discuss deficiencies and limitations of linear codes under the con-

sidered threat model. In Section 5 , after highlighting why secret
1 This section can be safely jumped by readers familiar with the topic. 

B

o

haring alone is not a feasible option, we propose a constructive

olution based on a combination of secret sharing with an ECC,

nd discuss it via a toy example. Finally, Section 6 reports our con-

lusions. 

. Coding primitives and channel model 

In this section, we recall the definition and the main proper-

ies of the coding primitives that will be used in the sequel of this

aper, and we characterize our channel model. More specifically,

n Section 2.1 we briefly review linear ECCs and secret sharing

chemes, while in Section 2.2 we describe the Generalized Ozarow-

yner’s wire-tap (GOW) channel model [3] . Hereinafter, F q will

enote the finite field of order q , where q = p v is a prime power. 

.1. Coding primitives 

inear error-correcting codes 

A linear Error-Correcting Code is a deterministic map E from a

et of messages M = F k q into a set of codewords C ⊂ F n q , such that,

or each m ∈ M , the digits of c = E(m ) ∈ C are obtained as n linear

ombinations of the digits of m . The set C is a linear subspace of

 

n 
q of dimension k , and it uniquely determines the code. The code

s usually defined by either means of its n × k matrix G , called

enerating matrix of the code, such that c = G · m, or by its (n −
 ) × n parity-check matrix H , such that H · c = 0 if and only if c ∈
 . Each codeword of length n conveys k information digits and the

atio r = k/n is called code rate. k and n are called the dimension

nd the length of the code, respectively. 

ecret sharing 

Assume a user U knows a secret S . A ( i, j )-threshold secret shar-

ng scheme allows U to choose two positive integers j and i ≤ j and

o generate j pieces of information, such that any i out of them are

ecessary and sufficient to recover S . The most known construc-

ion of secret sharing schemes relies on polynomial interpolation, 2 

everaging on the fact that any point of the curve defined by a

olynomial of degree i − 1 determines a linear equation satisfied

y the i coefficients of the polynomial. If S ∈ F q , a random polyno-

ial f ( x ) ∈ F q [ x ] with free term S is chosen, and j pieces of infor-

ation d 1 , . . . , d j ∈ F q , denoted shares , are generated as d t = f (t)

od F q , for t = 1 , . . . , j. Anyone with access to i or more shares

an recover f ( x ), and thus S , but with less than i shares anyone of

he possible q values for S is exactly equally likely, and no infor-

ation about S is leaked. 

.2. The generalized Ozarow-Wyner’s wire-tap channel model 

ire-tap channel 

The wire-tap channel model, depicted in Fig. 1 , describes a sce-

ario where two parties, Alice and Bob, want to communicate over

 noisy channel, but an adversary Eve tries to eavesdrop on the

ommunications. Since the channel between Alice and Bob, re-

erred to as the main channel, is noisy, Alice uses an encoder E to

btain a codeword c ∈ F n q from the original message m ∈ F k q . Bob re-

eives a noisy version c B of c and uses a decoder D B to remove the

oise and obtain a message m B . The communication is successful

f m B = m . To model Eve having limited eavesdropping capacity, in

yner’s model she is assumed to have physical access to a chan-

el noisier than that of Bob, called the eavesdropper’s channel, over

hich the same codeword c is sent. Eve receives a different noisy

ersion c E of c , and tries to decode it with her own decoder D E ,

btaining a message m . 
2 Sharing schemes were formally introduced independently by Shamir [8] and 

lakley [10] . The two schemes are de facto equivalent, but Shamir’s definition, based 

n polynomial interpolation, is the most renowned. 
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Fig. 1. A graphical representation of the wire-tap channel. 
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3 A more typical notation is ( k, n ) secret sharing. However, k and n are reserved 

for denoting dimension and length of a code, respectively. See Section 2.1 for our 

notations. 
eneralized Ozarow-Wyner’s channel 

The wire-tap channel is a generic model, whose performance is

onsiderably dependent on the type of noise experienced by the

ecipient Bob and the adversary Eve. To simplify the analysis, the

zarow-Wyner’s model (OW) was proposed as a variation of the

ire-tap. It consists in a noiseless main channel, and in an ad-

ersary Eve that is capable of gaining access to a subset of l ≤ n

oiseless digits of c of her choice, where n is the codeword length.

 middle ground between such two configurations is the General-

zed Ozarow-Wyner’s (GOW) model, in which the main channel is

odelled as a Discrete Memoryless Channel (DMC), but the eaves-

ropper’s channel is modelled as in the OW. From a security stand-

oint, without specific assumptions on the type of noise affecting

he main channel (except for it being memoryless ), and by letting

 vary from 0 to n , the GOW model covers all possible scenarios,

rom the best- to the worst-case. Assuming that Eve is able to ex-

ract l noiseless digits allows neglecting both the noise affecting

he adversary and the unknown quantity of information she inter-

epts, while only focusing on what is ultimately relevant. Besides,

pplication settings where a similar eavesdropper is realistic do ex-

st: if the codewords are split into several sub-codewords, each one

ransmitted over a different noiseless physical link, the assump-

ion that the adversary cannot earn more than l digits can be re-

laced with the assumption that the adversary cannot eavesdrop

rom more than l physical links. 

. Related work 

Whenever communication occurs over an insecure channel, it

s fundamental to concurrently ensure integrity and confidential-

ty of the transmitted data. In particular, the recent rise of wire-

ess transmissions drew the attention to physical-layer security as

 promising paradigm to protect communications against eaves-

ropping attacks by exploiting the physical characteristics of the

hannel [11] . The fundamentals for physical-layer security [7] were

aid in the early seventies with the introduction and elaboration

f Wyner’s wire-tap channel [2] . Since then, several extensions of

yner’s channel model have been considered: for instance, the

roadcast Channel with Confidential messages (BCC) [12] in which,

imilarly to the wire-tap channel, a message intended for one of

he receivers is confidential; the Gaussian channel [13] , that is the

yner’s wire-tap channel when data transmission errors are mod-

lled through Additive White Gaussian Noise (AWGN); and, chan-

els that impose a combinatorial constraint, rather than probabilis-

ic, on the adversary [3,6] . 

To discuss the security of the wire-tap channel, Wyner in-

roduced the notions of reliability condition and security condi-

ion [2] . The reliability condition is verified if lim k → + ∞ 

Pr [ m 

′ 	 =
 ] = 0 , i.e. , if the error probability approaches zero as the size of

he message grows. The security condition, instead, is verified if

im k → + ∞ 

I(m, y ) k −1 = 0 , i.e. , if the normalized mutual information

etween the eavesdropped data and the message is zero. Based on
uch two requirements, Wyner also introduced the concept of se-

recy capacity of the channel, that is the maximum rate at which

nformation can be transmitted over the channel with the reliabil-

ty and security conditions holding. Wyner proved that when the

eceiver’s channel is subject to less noise than the wire-tapping

pponent’s one the secrecy capacity is positive, i.e. , it is possible

o communicate over that channel without violating either of the

wo conditions. Several papers [14,15] (even very recently [16–20] )

ollowed Wyner’s work, focusing on the concept of secrecy capac-

ty and the security properties of error-control coding techniques. 

Wyner’s work had two main limitations. On the one hand, its

ecurity condition was too weak, as highlighted by Maurer [14] ,

ho suggested to replace Wyner’s security condition with the re-

uirement that the mutual entropy approaches zero as the size of

he message grows; that is: lim k → + ∞ 

I(m, y ) = 0 . However, even

aurer’s definition responds to an idea of asymptotic security,

hile perfect secrecy actually means to leak no information at

ll. On the other hand, Wyner did not provide any constructive

ndication for designing codes approaching the secrecy capacity.

everal researchers tried to fill in this gap, but the best results

ere obtained under precise assumptions on the channel model

 e.g. , Binary Erasure Channel [21] , Binary Symmetric Channel [22] ,

ombinatorial constrained model [6] , Gaussian wire-tap channel

23,24] , compound wire-tap channel [25] , broadcast channel with

onfidential messages [26] ). In general, what emerges is that LDPC

odes [21,23,25] and Polar Codes [22,24,26] seem the most promis-

ng solutions. 

Wrapping up, past research concerning the wire-tap channel

ostly focused on understanding if and how it is possible to com-

unicate at rates approaching the secrecy capacity of the chan-

el, i.e. , only trying to guarantee (to some extent) asymptotic se-

recy. Conversely, this paper aims at providing a constructive so-

ution to obtain perfect secrecy with practical encoding and de-

oding algorithms. We achieve this goal by applying secret shar-

ng as a preliminary step to any ECC encoder. The joint use of

CCs and some sort of secret sharing is not new in the litera-

ure [27] and, indeed, theoretical results suggest that secret shar-

ng problems can be reformulated as equivalent secure commu-

ication problems via wire-tap channel models [28] . Some prac-

ical solutions [5,6] are based on Rivest’s All-Or-Nothing Transform

AONT) [29] , a primitive assimilable to ( i, j ) secret sharing 3 . Relia-

ility for transmission errors could in principle be obtained com-

ining AONTs with error-correction codes, as successfully proposed

or data security in dispersed storage systems [30] . However, anal-

gous solutions for the wire-tap channel have never been investi-

ated and—differently from the proposed solution—they would rely

n a cryptographic construction. A different cryptographic based
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4 Our uncertainty rate coincides with the equivocation rate of the message in the 

traditional Wyner’s model (except for base q logarithm, as we are assuming digits 

in F q ), but it is a more direct measure of the level of uncertainty of the adversary 

when we focus on the GOW channel. 
construction [31] relies on invertible extractors and focuses also

on providing reliability properties. Finally, a more recent approach

[32] considers a channel model called Adversarial WireTaP (AWTP)

channel, in which Eve is able to eavesdrop on a noiseless fraction

ρr and to mask a fraction ρw 

of the transmitted codeword, with

ρr + ρw 

< 1 . To achieve secrecy and reliability over the AWTP, the

authors propose a solution based on AMD codes , Subspace Evasive

Sets, and Folded Reed-Solomon codes. However, the code here pro-

posed requires very long messages and codewords, achieving se-

crecy capacity only asymptotically . With respect to this work, we

will present a scheme that has the desirable properties of being

both more flexible and readily usable. Additionally, the AWTP is

a fully adversarial model characterized by the restrictive condition

ρr + ρw 

< 1 , contrarily to the hybrid GOW model where the eaves-

dropper’s channel is adversarial, but there are no limitations on the

main channel except for it being probabilistic. This means that our

scheme guarantees perfect secrecy and reliability under identical

assumptions on the eavesdropper’s channel, but more widely ap-

plicable assumptions on the main channel. 

4. Security of linear codes in the generalized Ozarow-Wyner’s 

model 

In this section we provide fundamental results helpful to de-

termine the level of security provided by linear ECCs when used

as encoders in the Generalized Ozarow-Wyner’s (GOW) model. To

this end, we first introduce in Section 4.1 the notion of uncertainty

rate, to capture to which extent a code used over a specific chan-

nel leaks information concerning the transmitted data. Then, in

Section 4.2 we introduce two practical formulas binding the un-

certainty rate of the code to its parameters and to the code rate,

respectively. Our results are discussed in Section 4.3 , and compared

with the state of the art in Section 4.4 . 

4.1. Uncertainty rate 

As we discussed in Section 3 , Wyner [2] proposed a definition

of security for the wire-tap channel based on two desiderata, that

he defined reliability and security conditions. Based on such re-

quirements, he introduced the notion of secrecy capacity of a chan-

nel, that intuitively corresponds to the maximum rate at which in-

formation can be securely transmitted over that channel. However,

while Wyner’s definition focuses on the intrinsic and asymptotic

properties of the channel, we are more interested in discussing

security under a different perspective: we want to measure the

amount of information leaked as a function of both the specific

threat model and coding scheme considered. Since recent work

[33,34] demonstrates the validity of the equivocation rate [35] as

a secrecy metric, to achieve our goal we opted to specialize such

a measure to meet our needs. The result is the uncertainty rate , a

very practical secrecy metric defined in the following. 

Let us assume that Alice and Bob are communicating over a

wire-tap channel using a linear ECC of dimension k and length n .

The adversary Eve eavesdrops on the transmission of a codeword

c , obtaining a noisy version c E of c . 

Definition 1 (Dimension of uncertainty) . Let us assume that, based

on c E and leveraging on the linear equations binding the digits of c ,

Eve is able to reduce the space where c varies to a set of q s equally

likely codewords. We call the parameter s ≤ k , which depends on

both the system and the threat model, the dimension of uncertainty

of the adversary 

Since the total number of admitted codewords is q k , the ratio

between the two dimensions ε = s/k ∈ [0 , 1] is a normalized mea-

sure of the adversary uncertainty. 
efinition 2 (Uncertainty rate) . Let s ≤ k be the dimension of un-

ertainty of the adversary, and let ε = s/k ∈ [0 , 1] . We refer to ε as

he uncertainty rate of the adversary. 

Let us observe that, in the worst case for security, given a di-

ension of uncertainty equal to s the adversary can reconstruct at

ost 

 − s = 
 (1 − ε) k � (1)

igits of the original message m . In case of a systematic linear

ode, the adversary can directly obtain exactly k − s digits of m ,

ince she has the freedom to choose which digits to eavesdrop.

ven when a non-systematic linear code is used, there could ex-

st k − s parity digits binding exactly k − s message digits. On the

ther hand, if the adversary was able to recover more than k − s

igits of the original message, her uncertainty would be limited to

ess than q s codewords, which contradicts the definition. 

The dimension of uncertainty s coincides with the Shannon’s

ntropy of the codeword c , conditioned to the intercepted word c E .

n fact, if knowing c E allows Eve to infer that the codeword c is

niformly distributed in a set of size q s , then 

(c| c E ) = −
q s ∑ 

i =1 

1 

q s 
log q 

(
1 

q s 

)
= s 

here H denotes the entropy function. 4 

The uncertainty rate is in fact a normalized metric that depends

n the dimension k of the code, and such that the higher it is,

he lesser is the information leakage of the code. Ideally, we would

ike to find a code with uncertainty rate ε = 1 since this would

uarantee zero leakage. Unfortunately (yet intuitively), in the next

ection we will prove that no code can achieve ε = 1 under the

OW model with positive parameter l > 0. 

.2. Measuring security through the uncertainty rate 

In the GOW model, the adversary Eve eavesdrops l noiseless

igits of her choice from the transmitted codeword c . We assume

hat the specifications of the code used are known to Eve, i.e. , she

nows the linear parity-check equations that bind the digits of c .

ased on the l digits available to her and on such equations, Eve

an infer information about the original message m . Relying on our

otion of uncertainty rate, Theorem 1 and Corollary 1 establish to

hich extent this happens. To enhance readability, all proofs are

ostponed to Appendix A . 

heorem 1. Assume that a linear ECC code of dimension k and length

 is used as an encoder in the GOW wire-tap channel model, in which

he adversary has access to l noiseless digits of the transmitted code-

ord c. The dimension of uncertainty of the code is 0, and so is the

ncertainty rate, if and only if l ≥ k. For all l < k, the dimension

f uncertainty of the code is s = k − l, and the uncertainty rate is

= 

s 
k 

= 1 − l 
k 

. In particular, ε = 1 if and only if l = 0 . Hence, a linear

ode alone cannot guarantee perfect secrecy. 

Observe that Theorem 1 could be equivalently stated in terms

f the rank of the parity check matrix H of the code, recalling that

uch rank is n − k . This may turn to be especially useful since some

owerful families of linear codes ( e.g. , LDPC codes), are usually de-

cribed and generated by means of the matrix H . 

While Theorem 1 binds the uncertainty rate of the code

o its parameters and to the number l of intercepted digits,
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Fig. 2. Values for the uncertainty rate ε = s/k ∈ [0 , 1] achievable by an ECC code with code length n = 20 . The colour matches with the value of ε (darker is lower) that is 

depicted as a function of both the rank of the parity-check matrix rk( H ) and the number of digits eavesdropped by the adversary l . 
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orollary 1 expresses the same results in terms of rates of infor-

ation transmitted, and eavesdropped. 

orollary 1. Assume that a linear ECC code of dimension k and

ength n is used as an encoder in the GOW wire-tap channel model,

n which the adversary has access to l noiseless digits of the transmit-

ed codeword c. Let ρ = 

k 
n denote the code rate, and let λ = 

l 
n denote

he eavesdropping rate of the adversary. The uncertainty rate of the

ode is 0 if and only if ρ ≤ λ. For all ρ > λ, the uncertainty rate is

= 1 − λ
ρ . In particular, ε = 1 if and only if λ = 0 . 

When the code length n grows, the number l of digits accessible

o the adversary can be reasonably expected to grow proportion-

lly, exactly as the code dimension k . The eavesdropping rate λ is

xactly the proportionality constant between l and n , similarly to

he code rate ρ for k and n . Corollary 1 shows how ε depends on

and λ, capturing the idea that the uncertainty rate does not re-

lly depend on the code dimension and length, but rather on the

ates to which information is transmitted and eavesdropped. The

orollary shows that there exists a critical value for the code rate

nder which the code becomes completely unreliable for security

urposes under the GOW channel model, and that such a critical

alue is exactly the eavesdropping rate of the adversary. 

.3. Discussion 

The uncertainty rate is remarkably suitable to measure the level

f security guaranteed by a linear code under the GOW model.

orollary 1 is particularly interesting, relating the uncertainty rate

ith the code rate ρ and the eavesdropping rate λ. The code rate,

hat is, the ratio between the dimension k of the code and its

ength n , measures how much information a code conveys. The

avesdropping rate, that is, the ratio of code digits available to the

dversary, measures the amount of information leaked. The smaller

s the code rate, the larger is the redundancy introduced by the

ode, improving the error correcting capabilities of the code, but

oncurrently facilitating the attack. Secure communications when

≤ λ are impossible, and, in general, the security depends of the

atio λ
ρ . 

In the following, we exhibit a graphical representation of

chievable values of uncertainty rate for linear codes with fixed

ode length, by varying the rank of the parity-check matrix and the

avesdropping ability of the adversary. In particular, Fig. 2 shows

chievable uncertainty rates ε ∈ [0, 1] for a linear code with n = 20

s a function of both the rank of the parity-check matrix rk( H ) and

he number l of digits eavesdropped by the adversary. The larger

s l , the lower must be the rank of the parity-check matrix to en-

ure a positive value of uncertainty. The special cases l = 5 , 10 , 15
re further depicted in Fig. 3 ; for instance, the maximum value of

ncertainty rate achievable when the adversary gets l = 10 = n/ 2

igits of the codeword is ε = 0 . 5 . Notably, for different values of n ,

he graphics in both figures show the same qualitative trend. 

.4. Comparison with similar results in the literature 

Ozarow and Wyner [3] supported their OW model describing its

athematical properties. The most important difference between

heir model and the GOW model is that the main channel is noise-

ess in the OW, while noisy in the GOW. Considering a noiseless

hannel allows enhancing secrecy by adding some sort of random-

ess to the transmitted codeword through so-called randomized

oset codes, a randomized construction based on linear codes. To

he best of our knowledge, the use of such codes over wire-tap

hannels has been proved secure only when the main channel is

oiseless, so that the random bits added in randomized coset cod-

ng, sent in clear using a systematic encoding, are correctly re-

eived by Bob and end up increasing the entropy of the message

nly from Eve’s point of view. Conversely, if the main channel is

oisy, especially if a non-systematic code is used, the random bits

ecome de facto undistinguishable from the secret message, and

andomized coset coding offers unreliable error-correcting capabil-

ties since Bob has to struggle to remove randomness from the

odewords, even though to a lesser extent than Eve. For this rea-

on, in this paper we consider only deterministic applications of

inear encoders. Additionally, the main results achieved by Ozarow

nd Wyner aim at proving non-constructive existence theorems for



26 G. Aliberti et al. / Computer Networks 109 (2016) 21–30 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

p  

r

5

 

c  

n  

O  

e  

p  

p  

t

 

a  

g  

c  

g  

f  

t  

 

w

 

n  

T  

s

T  

g

P  

c  

s  

 

b  

e  

m  

(

C  

g  

s  

c

 

C  

i  

w  

ALGORITHM 1: general procedure for transforming any ECC 

into a secure and data loss resilient wire-tap code. 

input : m ∈ F q message to encode; E : F 
j 
q → F n q linear ECC 

encoder. 

output : c ∈ F n q encoded message. 

1 for u = 1 , . . . , i − 1 do 

2 αu = 

R ← − F q ; 

3 end 

4 f (X ) ∈ F q [ X] = m + α1 X + · · · + αi −1 X 
i −1 ; 

5 for u = 1 , . . . , j do 

6 d u = f (u ) mod F q ; 

7 end 

8 c = E(d 1 , . . . , d j ) 
showing that encoders with given security parameters must exist,

while our main focus is to propose a practicable solution. 

In a similar way, the more recent work of Cheng et al. [36] pro-

vides theoretical results for characterizing the achievable values of

code rate in the OW model. In our work, instead, we focused on

linear codes to obtain more specific and practical results concern-

ing the secrecy of the less restrictive GOW model. In particular,

Theorem 1 and Corollary 1 provide precise formulae to compute

the uncertainty rate of the adversary, which allowed us to plot

in Fig. 2 all the uncertainty rates achievable by linear codes un-

der the assumption of specific conditions. In their work, Ozarow

and Wyner also found interesting properties related to the un-

certainty achieved by linear codes that have been further refined

by Wei [37] . However, linear codes were not explicitly considered

and there is no result similar to the uncertainty rate formula that

we provided. Applications of some families of linear codes ( e.g. ,

LDPC codes) to the wire-tap channel model have been considered

[16,38] but, to the best of our knowledge, their application on the

GOW model has not been deeply investigated. 

5. A constructive solution: combining secret sharing and ECC 

In Section 4 , we showed that deterministic ECCs cannot of-

fer perfect secrecy, and that the error correcting capability of a

code is proportional to the information leakage it causes. Random-

ized encoders can represent a viable solution, but only when the

main channel is noiseless, as discussed in Section 4.4 . However,

the negative results of deterministic encoders suggest exploring

other constructions relying on the same rationale of randomized

encoders, that is, obfuscating the codeword of deterministic en-

coders so as to leverage the different levels of noise experienced by

Bob and Eve. Along this line, a possible approach to obtain perfect

secrecy while allowing reliable communications is secret sharing,

described in Section 2.1 . More precisely, so-called threshold secret

sharing schemes allow generating j pieces of information, called

shares, from a single secret S , such that any i ≤ j of them are nec-

essary and sufficient to recover S. i is the threshold that determines

the amount of information needed to reconstruct S : perfect secrecy

is guaranteed provided that at most i − 1 shares are leaked; correct

reception is ensured if no more than j − i shares are lost. 

Notwithstanding their interesting properties, secret sharing

schemes were not designed to allow communication over a noisy

channel. This is particularly evident if we consider a channel model

where transmissions may be subject to a combination of erasures

and errors. For instance, assume that Bob receives i + 2 out of the j

shares originated and transmitted by Alice. Bob has 
(

i +2 
i 

)
available

combinations of i shares to try to reconstruct the secret message

S . Even if one of the received shares is corrupted, 
(

i +1 
i 

)
= i + 1 of

such combinations will produce the same value for S , while the

remaining ones will most likely give uniformly distributed values:

Bob can correctly decode S by majority. However, if two or more

shares are corrupted, only one combination will certainly produce

the true secret S , making it impossible for Bob to identify such cor-

rect value. More generally, secret sharing schemes are conceived to

offer protection with respect to data loss, not to data corruption.

In coding theory terminology, it means that secret sharing can be

used to tackle erasures, not errors. While potentially suitable for

the OW channel model, the applicability of secret sharing to the

GOW model is therefore severely limited. 

In Section 5.1 , we describe a family of encoding schemes based

on combining secret sharing with ECCs. The rationale is that the

underlying secret sharing scheme is used for security purposes

(provided that the adversary cannot correctly eavesdrop enough

data), while the outer ECC allows reliable communication in the

presence of errors. Later in Section 5.2 , we discuss a toy exam-
le where a ( j, j ) secret sharing scheme is combined with a (l + 1)

epetition code (a special case of a linear ECC). 

.1. Combining secret sharing and ECC 

An ECC can guarantee reliable communication over a noisy

hannel, but it cannot provide perfect secrecy in the GOW chan-

el model, as it has uncertainty rate ε = 1 − l 
k 

< 1 for each l > 0.

n the opposite side of the spectrum, a ( i, j ) secret sharing based

ncoding scheme can guarantee perfect secrecy if l < i , but cannot

rovide suitable error correcting capabilities. Therefore, we pro-

ose to combine the two primitives to obtain a coding technique

hat concurrently achieves both requirements. 

The proposed scheme, described in Algorithm 1 , produces

 codeword c ∈ F n q from a message m ∈ F q composed of a sin-

le digit. The encoding consists of the following steps: (i) i − 1

oefficients are randomly picked in F q [lines 1-3] and used to-

ether with m to define the polynomial f ( x ) ∈ F q [ X ] [line 4]; (ii)

 ( x ) is used to implement a ( i, j ) secret sharing scheme, obtaining

he j shares d 1 , . . . , d j ∈ F q [lines 5-7]; and, finally, (iii) the word

(d 1 , . . . , d j ) ∈ F 
j 
q is encoded with a liner ECC E to obtain the code-

ord c ∈ F n q [line 8]. 

Let us assume that the codeword c is sent over a GOW chan-

el, where the adversary Eve is able to eavesdrop l noiseless digits.

heorem 2 and Corollary 2 provide precise results concerning the

ecurity properties of the proposed scheme. 

heorem 2. Under the GOW channel model, the proposed scheme

uarantees perfect secrecy if and only if l < i. 

roof. Theorem 1 establishes that the uncertainty rate of the

onsidered model is ε = 1 − l 
j 

or, equivalently, that the dimen-

ion of uncertainty is s = j − l. The number of digits of the word

(d 1 , . . . , d j ) that the adversary can reconstruct is upper bounded

y j − s = l; this happens, for instance, when systematic codes are

mployed (see Eq. (1) ). This means that the attacker cannot recover

ore than l shares, and the thesis follows from the properties of

 i, j ) secret sharing schemes. �

Given Theorem 2 , the following corollary is straightforward. 

orollary 2. Under the GOW channel model, the proposed scheme

uarantees perfect secrecy and reliable communication if the adver-

ary can access a number of noiseless digits l < i, while the recipient

an recover a number of noiseless digits l ≥ i. 

The condition for reliable communication expressed by

orollary 2 is only a sufficient one. More generally, accord-

ng to the error correcting capabilities of the linear ECC used,

henever the corresponding decoder allows the recipient Bob



G. Aliberti et al. / Computer Networks 109 (2016) 21–30 27 

t  

r

R  

e  

t  

e  

c  

i  

d  

p  

w  

c  

s  

w  

p  

o

5

 

c  

n  

M  

c  

o  

p

R

 

n  

m  

m  

g  

F  

c  

1  

t

C  

d

k  

e  

i

 

u  

k  

s  

m  

c  

s  

c

 

w  

p  

o  

r  

r  

t  

i

A

 

c  

o  

w  

t  

a  

e

 

d  

x  

o

[  

t  

i  

r

 

E  

x  

h  

i  

b  

l  

u  

S  

e  

t  

c  

t  

s

 

t  

i  

c  

 

l  

t  

 

v  

o  

i  

f  

d

 

e  

a  

t  

f

5 When i = j, a ( i, j ) secret sharing scheme can be implemented as shown, with- 

out resorting to polynomial interpolation. 
o reconstruct at least i digits of the word (d 1 , . . . , d j ) , Bob can

ecover f ( X ) by interpolation and obtain the constant term m . 

emark. Although generalizing our results to other channel mod-

ls is not straightforward, the proposed solution is flexible enough

o be promising for all applications in which the noise affecting the

avesdropper’s channel is “worse” than the one affecting the main

hannel (a basic assumption of all wire-tap channel models). For

nstance, let us assume the case that both the main and the eaves-

ropper’s channel are binary symmetric channels with crossover

robabilities p m 

(Bob’s side) and p e (Eve’s side), respectively, and

ith p m 

< < p e . Intuitively, a suitable (non-systematic) ECC can be

hosen so as to guarantee that reconstructing at least i digits ( i.e. ,

hares) of the original message is possible with high probability

hen the crossover probability is p m 

, but not when the crossover

robability is p e . Yet, a more technical analysis is beyond the scope

f this paper and we leave it as a possibility for future work. 

.2. A toy example 

In this section, we discuss the performance of a toy example

ode combining a ( j, j ) secret sharing scheme ( i.e. , all j shares are

ecessary to recover the secret S ) with a (l + 1) repetition code.

ore specifically: (i) we provide a brief description of repetition

odes and compute their uncertainty rate, and (ii) we show that

ur toy example achieves perfect secrecy and error correcting ca-

abilities in the considered model. 

epetition codes 

Repetition codes are a special family of linear ECCs. As the

ame suggests, in a r repetition code each digit of the original

essage is simply repeated r times. That digit can be recovered by

ajority if at least half of the r copies are correctly received, re-

ardless of the fact that the other copies are erased or corrupted.

ormally, k message digits (x 1 , . . . , x k ) ∈ F k q are encoded into n = rk

ode digits (x 1 , . . . , x 1 , . . . , x k , . . . , x k ) ∈ F n q , where each digit x i , i =
 , . . . , k is replicated r ∈ N times. The code rate is ρ = 

1 
r . Thanks to

he results of Section 4 , the following corollary holds. 

orollary 3. Under the GOW channel model, if the adversary eaves-

rops l digits, the uncertainty rate of a r repetition code is ε = 0 if l ≥
, while it is ε = 1 − l 

k 
otherwise, regardless of r. Equivalently, if the

avesdropping rate of the adversary is λ, the uncertainty rate is ε = 0

f λ ≥ 1 
r , while it is ε = 1 − rλ otherwise. 

Corollary 3 tells us that a repetition code guarantees positive

ncertainty provided that the adversary Eve eavesdrops less than

 noiseless digits. Indeed, the best-case scenario for Eve is when

he eavesdrops one copy each of l distinct digits of the original

essage. However, the uncertainty rate is pretty low, especially if

ompared to the level of reliability provided by the code: to be

ure to correctly recover all the original message, the intended re-

ipient Bob needs at least r 
2 copies of all message digits. 

As a special case, consider for instance a scenario where Alice

ants to transmit to Bob a single digit x ∈ F q , i.e. , k = 1 . Alice ap-

lies a r repetition code to get the codeword (x, . . . , x ) composed

f r copies of x . What Theorem 3 says is that, no matter how large

 is, if Eve intercepts l ≥ 1 digits of the codeword the uncertainty

ate is ε = 0 . Indeed, all digits of the codeword coincide with x , so

o intercept any one of them means to get to know x . Conversely,

f l < k, i.e. , if l = 0 , the uncertainty is clearly ε = 1 . 

nalysis of the proposed toy example 

To amplify the uncertainty rate provided by an r repetition

ode, we propose to combine it with a preliminary step consisting

f a ( j, j ) secret sharing scheme. We will focus on the special case

here Alice wants to send to Bob a single digit m ∈ F q , and prove
hat such a composed scheme achieves perfect secrecy for up to

 suitable l , depending on the choice of r and j . The proposed toy

xample is described in Algorithm 2 . 

ALGORITHM 2: secretly shared single digit repetition code 

input : m ∈ F q message to encode. 

output : c = (c 1 , 1 , . . . , c 1 ,r , c 2 , 1 , . . . , c j,r ) ∈ F 
jr 
q encoded 

message. 

1 for i = 1 , . . . , j − 1 do 

2 x i = 

R ← − F q ; 

3 end 

4 x j = m + x 1 + · · · + x j−1 mod F q ; 

5 for i = 1 , . . . , j do 

6 for t = 1 , . . . , r do 

7 c i,t = x i ; 

8 end 

9 end 

From a single message digit m , the encoder of Algorithm 2 pro-

uces a codeword of length n = jr as follows: (i) j − 1 digits

 1 , . . . , x j−1 are picked uniformly at random in F q [lines 1-3]; (ii)

ne further digit is computed as x j = m + x 1 + · · · + x j−1 mod F q 
line 4]; and, finally, (iii) all j digits x 1 , . . . , x j are replicated r times

o produce the code digits c 1 , 1 , . . . , c j,r [lines 5-9]. Steps (i) and (ii)

mplement a ( j, j ) secret sharing scheme. 5 Step (iii) is a simple r

eplication scheme, where each x i is replicated r times. 

Assume that the adversary Eve can eavesdrop l noiseless digits.

ve can recover m if and only if she gets access to all the shares

 1 , . . . , x j . If l ≥ j , Eve might be able to pick l such digits so as to

ave at least one copy of all such digits. However, if l < j , there

s no way for Eve to get all the digits x 1 , . . . , x j , and it is impossi-

le for her to recover m . Consequently, the uncertainty is ε = 0 if

 ≥ j , while it is ε = 1 if l < j . Let us formalise the same concepts

sing our notion of uncertainty rate, together with the results of

ection 4 . If we only focus on the repetition code, it is used to

ncode the word (x 1 , . . . , x j ) of length j , so it produces an uncer-

ainty rate ε = 1 − l 
j 

concerning (x 1 , . . . , x j ) . This means that Eve

an recover j(1 − ε) = l digits of the set (x 1 , . . . , x j ) . Once again,

his yields perfect secrecy if l < j thanks to the properties of secret

haring, while zero uncertainty if l ≥ j . 

For what concerns the impact of the proposed scheme on

he reliability of the transmission, it is easy to realize that us-

ng only the first step of the example ( i.e. , secret sharing) we

ould get even better secrecy: if Alice directly transmits the word

(x 1 , . . . , x j ) without replication, perfect secrecy is guaranteed as

ong as Eve eavesdrops l < j digits. This means that we can ob-

ain the same level of secrecy for a much larger eavesdropping rate

( l 
j 
instead of l 

jr 
) . However, directly transmitting (x 1 , . . . , x j ) pro-

ides no correction capabilities to Bob in the presence of errors

r erasures: if even a single digit x i is not correctly received, it is

mpossible to recover m . Conversely, the toy example allows per-

ect reception of m , provided that at least r 
2 of the r copies of each

igit x i are correctly received. 

It is worth noticing that both our general scheme and our toy

xample can be easily extended to any message of length k > 1,

nd they still guarantee perfect secrecy whenever we know that

he adversary can eavesdrop no more than j − 1 noiseless digits

or each codeword sent . 
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Towards more complex solutions 

The toy example based on repetition codes discussed in this

section has the unique feature of operating on single digits inde-

pendently. This characteristic allowed us to illustrate a practical

and easy implementation of the proposed scheme that achieves

perfect secrecy (under specific assumptions) with the additional

benefit of better showing that the security of the scheme is due

to the secret sharing and not to the ECC. In fact, repetition codes

are intuitively the less promising codes for security purposes. How-

ever, it is possible to consider more realistic application settings

that suggest to employ a different ECC in our scheme. For instance,

let us consider a scenario in which seven different physical links

( e.g. seven radio frequencies) are available, and Eve’s eavesdrop-

ping capabilities are limited to no more than three of them. In ad-

dition, let us assume that each of these physical links can be mod-

elled as a binary symmetric channel with crossover probability p

< < 1. Based on the proposed construction, we can design a per-

fectly secure code wherein each bit is correctly received with prob-

ability 1 − (1 − p) 7 − 7 p(1 − p) 6 , combining a (4, 4) secret sharing

scheme and the renowned Hamming (7,4) linear ECC. More pre-

cisely, for each message bit m t Alice randomly picks three bits d t , 1 ,

d t , 2 , d t , 3 and sets d t, 4 = m t � d t, 1 � d t, 2 � d t, 3 , thus implementing

a (4, 4) secret sharing scheme 6 on the secret m t . Then Alice applies

the Hamming code on the message ( d t , 1 , d t , 2 , d t , 3 , d t , 4 ), obtain-

ing seven bits p t , 1 , p t , 2 , d t , 1 , p t , 3 , d t , 2 , d t , 3 , d t , 4 ( p t , 1 , p t , 2 , p t , 3
being parity bits), and she sends each of such bits over a differ-

ent physical link. Since Eve can only eavesdrop over three channels

( i.e. , l = 3 ), she cannot recover more than three shares. Hence, she

cannot recover m t . On the other hand, Bob correctly recovers m t 

as long as no more than one communication error occurs, which

happen with probability 1 − (1 − p) 7 − 7 p(1 − p) 6 . 

6. Conclusion 

In this paper, we focused on the Generalized Ozarow-Wyner’s

wire-tap (GOW) channel model and, to the best of our knowledge,

we are the first to provide constructive solutions that combine

secret sharing and linear error-correcting codes to overcome the

presence of transmission errors, while guaranteeing perfect secu-

rity. We also introduced a security metric, called uncertainty rate,

that specifies the equivocation rate in the context of linear error-

correcting codes. This newly introduced metric, other than being

instrumental to our proposal, also helped to state, in a simple way,

theoretical results concerning the implementation of ECC encoders

in the GOW channel model that were already known for the tradi-

tional wire-tap channel model—yet, requiring a complex technical

machinery. 

It is worth noticing that our work significantly deviates from

the research trend in the area. In fact, most papers focus on the

secrecy capacity, studying limiting behaviours of the model when

the size of the message approaches infinity. Taking a different ap-

proach, we showed that reliable and perfectly secret communica-

tion is possible in practice, at the cost of a (slightly) lower commu-

nication rate. Moreover, we also provided a generic and construc-

tive procedure for obtaining a secure wire-tap code from a linear

encoder. 

While the proposed formalization and theoretical contributions

stand on their own, they have also a wealth of practical applica-

tions, for instance in contexts where the amount of transmitted

data is limited, or where key management and costly cryptographic

algorithms are hard to implement—such as in many distributed
6 The implementation of standard secret sharing schemes based on polynomial 

interpolation is limited over F 2 . The scheme used here is an example of a well- 

known alternative construction for ( j, j ) binary secret sharing. 

 

m  

e  

T  

d  
nd unattended application settings—or, finally, where perfect se-

recy is at premium. 
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ppendix A. Proofs of the results in Section 4 

This appendix contains the proof of the results presented in

ection 4 . We start with few preliminary definitions and results. 

efinition 3 (Row-Column Permutation) . A row-column permuta-

ion of a t × u matrix H is a map σ : M t×u −→ M t×u defined by

(h i j ) �→ (h σt (i ) σu ( j) ) where σ t and σ u are permutations of the sets

 1 , . . . , t} and { 1 , . . . , u } , respectively. 

A row-column permutation σ of a parity-check matrix H de-

nes a new matrix ˜ H = σ (H) that shares the same size of H and

hose codewords are a permutation of those defined by H . In fact,

(H) σu (c) T = 0 is satisfied if and only if Hc T = 0 (note that, since

 is a vector of dimension u , it can be though as a matrix 1 × u

nd, thus, σ ( c ) permutes its elements accordingly to σ u ( c )). 

emma 1. Let H be the (n − k ) × n parity-check matrix of a linear

ode used as an encoder in the OW wire-tap channel model, and

et c be the transmitted codeword. The adversary can recover the

hole codeword c if and only if there is a row-column permuta-

ion σ : H �→ σ (H) = 

˜ H such that ˜ H = [ ̃  H 1 
˜ H 2 ] is a two blocks matrix

here ˜ H 1 is an (n − k ) × l sub-matrix, and ˜ H 2 an (n − k ) × (n − l)

ub-matrix having rk ( ̃  H 2 ) = n − l. Further, the dimension of uncer-

ainty of the LDPC is 

 = min 

σ
{ n − l − rk ( ̃  H 2 ) } . (A.1)

roof. ( ⇐�) Let us assume that there is a row-column permu-

ation σ : H �→ σ (H) = 

˜ H = [ ̃  H 1 
˜ H 2 ] such that ˜ H 1 is an (n − k ) × l

ub-matrix and 

˜ H 2 is an (n − k ) × (n − l) sub-matrix with rk ( ̃  H 2 ) =
 − l. We want to show that the adversary can recover any code-

ord c transmitted over the channel. Let us denote with ˜ c =
n (c) the application of this permutation to a generic codeword

 , namely ˜ c = [ c σn (1) . . . c σn (l) c σn (l+1) . . . c σn (n ) ] . To ease notation,

e write ˜ c = [ ̃ x ˜ y ] where ˜ x represents the first l elements of ˜ c and

˜  the remaining n − l. Accordingly to the OW model, the adver-

ary can choose to eavesdrop the l bits composing ˜ x . Noticing that
˜ 
 ̃  c T = 0 is equivalent to 

˜ 
 1 ̃  x T = 

˜ H 2 ̃  y T (A.2)

nd that ˜ H 1 ̃  x T is a vector known to the adversary, she can retrieve

he missing n − l components of ˜ y by solving the system defined

n Eq. (A.2) . In fact, it is made of rk ( ˜ H 2 ) = n − l independent linear

quations and it has, thus, a single solution. Finally, she can re-

rieve the original codeword c by applying the inverse of the row

olumn permutation, namely c = σ−1 
n . 

( �⇒ ) If the adversary can retrieve a codeword c by exploiting

he linear equations defined by Hc T = 0 and using only l bits, then

t means that she has at least n − l independent linear equations

o work with; namely, rk (H) ≥ n − l. Then, a row-column permu-

ation σ (H) = 

˜ H = [ ˜ H 1 
˜ H 2 ] with rk ( ̃  H 2 ) = n − l must exists because

k (H) ≥ n − l implies that H has a sub-matrix M with rank n − l

the elements of M can be arbitrarily moved to match 

˜ H 2 using an

ppropriate permutation σ ). 

We want to show that the dimension of uncertainty is s =
in σ { n − l − rk ( ̃  H 2 ) } . We have already observed that the recov-

ring of a codeword is linked to the solution of the Eq. (A.2) .

hus, the adversary must recover n − l bits using rk ( ̃  H 2 ) indepen-

ent linear equations. Taking the minimum of this value among all
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he possible row-column permutations σ , we obtain the claimed

quation. �

The following statement is equivalent to Lemma 1 but easier to

pply and provides a proof for the results presented in Section 4 . 

heorem 3. Let H be the (n − k ) × n parity-check matrix of a lin-

ar code used as an encoder in the OW wire-tap channel model and

et c be the transmitted codeword. The adversary can recover the

hole codeword c if and only if rk (H) ≥ n − l. If the adversary can-

ot recover the whole codeword, then the dimension of uncertainty is

 − l − rk (H) . 

roof. ( ⇐⇒ ) Due to Lemma 1 , we only need to prove that there is

 row-column permutation σ : H �→ σ (H) = 

˜ H = [ ̃  H 1 
˜ H 2 ] such that

˜ 
 1 is an (n − k ) × l sub-matrix and that ˜ H 2 is an (n − k ) × (n − l)

ub-matrix with rk ( ̃  H 2 ) = n − l if and only if rk (H) ≥ n − l. The

ondition rk (H) ≥ n − l is equivalent to say that H has a (n − k ) ×
(n − l) sub-matrix M with rank rk (M) = n − l obtained by remov-

ng l columns from H . Thus, the corollary is proved by picking σ
s the rows column permutation that moves the elements of M to

he sub-matrix ˜ H 2 . �

Theorem 3 directly proves Theorem 1 , by simply recalling that,

or each linear code, the rank of the parity-check matrix H is n − k .

orollary 1 follows immediately by recalling that the code rate is

efined as ρ = 

k 
n . 
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